
GROWTH AND MIXING

KRZYSZTOF FR�CZEK AND LEONID POLTEROVICH

Abstract. Given a bi-Lipschitz measure-preserving homeomorphism of a com-
pact metric measure space of �nite dimension, consider the sequence formed by
the Lipschitz norms of its iterations. We obtain lower bounds on the growth
rate of this sequence assuming that our homeomorphism mixes a Lipschitz
function. In particular, we get a universal lower bound which depends on the
dimension of the space but not on the rate of mixing. Furthermore, we get a
lower bound on the growth rate in the case of rapid mixing. The latter turns
out to be sharp: the corresponding example is given by a symbolic dynamical
system associated to the Rudin-Shapiro sequence.

1. Introduction and main results

Let (M,ρ, µ) be a compact metric space endowed with a probability Borel mea-
sure µ with supp(µ) = M . Denote by G the group of all bi-Lipschitz homeomor-
phisms of (M,ρ) which preserve the measure µ. For φ ∈ G write Γ(φ) = Γρ(φ)
for the maximum of the Lipschitz constants of φ and φ−1. Note that Γ(φ) is a
sub-multiplicative: Γ(φψ) ≤ Γ(φ) · Γ(ψ). Thus log Γ is a pseudo-norm on G, which
enables us to consider the group G as a geometric object. In the present note we
discuss a link between dynamics of φ ∈ G (the rate of mixing) and geometry of the
cyclic subgroup of G generated by φ (the growth rate of Γ(φn) as n→∞.) On the
geometric side, we focus on the quantity

Γ̂n(φ) := max
i=1,...,n

Γ(φi) .

Notations. We write (f, g)L2 for the L2-scalar product on L2(M,µ). We denote
by E the space of all Lipschitz functions on M with zero mean with respect to µ.
We write ||f ||L2 for the L2-norm of a function f , Lip(f) for the Lipschitz constant
of f and ||f ||∞ for the uniform norm of f .

De�nition 1.1. We say that a di�eomorphism φ ∈ G mixes a function f ∈ E if
(f ◦ φn, f)L2 → 0 as n→∞.

It is known that there exist volume-preserving di�eomorphisms φ of certain smooth

closed manifoldsM with arbitrarily slow growth of Γ̂n(φ), n→∞ (see e.g. Borichev
[3] for M = T2 and Fuchs [9] for extension of Borichev's results to manifolds
admitting an e�ective T2-action). As we shall see below, the situation changes if

we assume that φ mixes a Lipschitz function: in this case the growth rate of Γ̂n(φ)
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admits a universal lower bound. Furthermore the bound becomes better provided
the rate of mixing is decaying su�ciently fast.

To state our �rst result we need the following invariant of the metric space (M,ρ).
Denote by ER,C , where R,C ≥ 0, the subset of functions f ∈ E with Lip(f) ≤ R
and ‖f‖∞ ≤ C. By the Arzela-Ascoli theorem ER,C is compact with respect to
the uniform norm. Denote by D(R, ε, C) the minimal number of ε/2-balls (in the
uniform norm) needed to cover ER,C . Note that for �xed ε and C the function
D(R, ε, C) is non-decreasing with R. For t ≥ D(0, 1.4, C) = [C/0.7] + 1 put

τ(t, C) := sup{R ≥ 0 : D(R, 1.4, C) ≤ t} .

Theorem 1.2. Assume that a bi-Lipschitz homeomorphism φ ∈ G mixes a function
f ∈ E with ||f ||L2 = 1. Then there exists α > 0 so that

Γ̂n(φ) ≥ τ(αn, ‖f‖∞)
Lip(f)

for all su�ciently large n.

The proof is given in Section 2.

For a compact subset A of a metric space (X, ρ1) and ε > 0 denote by Nε(A) the
minimal number of open balls with radius ε/2 such that their union covers A. Then
the upper box dimension of (A, ρ1) is de�ned as

(1) dimB(A) = lim
ε→0

logNε(A)
log 1/ε

.

Let (Y, ρ2) be a compact metric space and let DAR(Y ) ⊂ Y A stand for the set of
Lipschitz functions f : A → Y with Lip(f) ≤ R, where Y A is equipped with the
uniform distance

dist(f, g) = sup
x∈A

ρ2(f(x), g(x)) .

It is easy to show (the proof is analogous to that of Theorem XXV in [11])

(2) Nε(DAR(Y )) ≤ Nε/4(Y )Nε/(4R)(A).

For the reader's convenience, we present the proof in the Appendix.

Assume now that the metric space (M,ρ) satis�es the following condition:

Condition 1.3. There exist positive numbers d and κ so that for every δ > 0 one
can �nd a δ-net in (M,ρ) consisting of at most κ · δ−d points.

This condition is immediately veri�ed if (M,ρ) is a smooth manifold of dimension
d or if d > dimB(M). Moreover, it is satis�ed for some fractal sets M ⊂ Rn where
d is the fractal dimension M , e.g. if M is a self�similar set (see Theorem 9.3 [5]).

In what follows [α] denotes the integer part of α ∈ R. Assume that Condition
1.3 holds. Since ER,C = DMR ([−C,C]), by (2), we have

D(R, ε, C) ≤
([

4C
ε

]
+ 1
)Nε/(4R)(M)

≤
([

4C
ε

]
+ 1
)κ(ε/(4R))−d

.

Therefore τ(t, C) ≥ const · log1/d t. Thus Theorem 1.2 above yields the following:
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Corollary 1.4. If φ ∈ G mixes a Lipschitz function then there exists λ > 0 so that

Γ̂n(φ) ≥ λ · log
1
d n

for all su�ciently large n.

This contrasts sharply with the situation when the growth of the sequence
Γ(φn) is taken under consideration. In fact, for every slowly increasing func-
tion u : [0; +∞) → [0;+∞) there exists a volume-preserving real-analytic dif-
feomorphism of the 3�torus which mixes a real-analytic function and such that
Γ(φn) ≤ const · u(n) for in�nitely many n. Such di�eomorphisms are presented in
Section 6.

As a by-product of our proof of Theorem 1.2 we get the following result. Let φ be
a bi-Lipschitz homeomorphism of a compact metric space M satisfying Condition
1.3.

Theorem 1.5. If

(3) lim inf
n→∞

Γ̂n(φ)

log1/d n
= 0

then the cyclic subgroup {φn} has the identity map as its limit point with respect to
C0-topology.

This theorem has the following application to bi-Lipschitz ergodic theory (the next
discussion is stimulated by correspondence with A. Katok). Let T be an auto-
morphism of a probability space (X,σ). A bi-Lipschitz realization of (X,T, σ) is
a metric isomorphism between (X,T, σ) and (M,φ, µ), where φ is a bi-Lipschitz
homeomorphism of a compact metric space M equipped with a Borel probability
measure µ. An objective of bi-Lipschitz ergodic theory is to �nd restrictions on bi-
Lipschitz realizations of various classes of dynamical systems (X,T, σ). The class
of interest for us is given by non-rigid automorphisms which is de�ned as follows:
Denote by UT the induced Koopman operator f 7→ f ◦ T of L2(X,σ). We say that
T is non-rigid [10] if the closure of the cyclic subgroup generated by UT with re-
spect to strong operator topology does not contain the identity operator. Theorem
1.5 shows that any bi-Lipschitz homeomorphism φ satisfying condition (3) cannot
serve as a bi-Lipschitz realization of a non-rigid dynamical system.

Let us return to the study of the interplay between growth and mixing: Next we

explore the in�uence of the rate of mixing on the growth of Γ̂n(φ). We shall need
the following de�nitions.

De�nition 1.6. Let {an}n∈N be a sequence of positive numbers converging to zero
as n → ∞. We say that a di�eomorphism φ ∈ G mixes a function f ∈ E at the
rate {an} if

|(f ◦ φn, f)L2 | ≤ an ∀n ∈ N.

Given a positive sequence an → 0, we call a positive integer sequence {v(n)} adjoint
to {an} if the following conditions hold:

(4)
∑

i:0<iv(n)≤n

aiv(n) ≤
1
4
,
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and

(5)
n

v(n)
→∞ as n→∞ .

Lemma 1.7. Every positive sequence an → 0 admits an adjoint sequence.

The proof is given in Section 5.

In the next theorem we assume that the metric space (M,ρ) satis�es Condition 1.3.

Theorem 1.8. Assume that a bi-Lipschitz homeomorphism φ ∈ G mixes a Lip-
schitz function f ∈ E with ||f ||L2 = 1 at the rate {an}. Then for every adjoint
sequence {v(n)} of {an} we have

(6) Γ̂n(φ) ≥ 1
2κ

1
d Lip(f)

·
[ n

2v(n)

]1/d
∀n ∈ N .

In particular, if
∑
ai <∞ then

(7) Γ̂n(φ) ≥ const · n 1
d .

Note that the second part of the theorem is an immediate consequence of the
�rst part. Indeed, if

∑
ai < ∞ then the adjoint sequence can be taken constant,

v(n) ≡ v0 and (6) implies (7).
As we shall show in Section 7 below the estimate (7) is asymptotically sharp: It

is attained for the shift associated with the Rudin-Shapiro sequence.

Corollary 1.9. Suppose that φ ∈ G mixes a Lipschitz function at the rate {an}
such that an = O(1/nν), where 0 < ν < 1. Then

Γ̂n(φ) ≥ const · n ν
d .

Proof. If an ≤ c/nν for some ν ∈ (0; 1) then one readily checks that for C > 0 large
enough there exists a sequence {v(n)} adjoint to {an} such that v(n) ≤ C · n1−ν .
Thus

Γ̂n(φ) ≥ 1
2κ

1
d Lip(f)

·
[ n

2Cn1−ν

]1/d
≥ const · n ν

d .

Organization of the paper: In Section 2 we prove the universal lower growth
bound given in Theorem 1.2 for a bi-Lipschitz homeomorphism which mixes a
Lipschitz function (the case of homeomorphism which mixes an L2�function is also
considered). Furthermore, we prove Theorem 1.5 asserting that if a bi-Lipschitz
homeomorphism grows su�ciently slow, it must have strong recurrence properties
and in particular must be rigid in the sense of ergodic theory. The section ends
with a discussion on comparison of growth rates in �nitely generated groups and
in groups of homeomorphisms. In Section 3 we prove Theorem 1.8 which relates
the growth rate to the rate of mixing. For the proof, we derive an auxiliary fact on
"almost orthonormal" sequences of Lipschitz functions. In Section 4 we generalize
the main results of the paper to the case of Hölder observables. In Section 5 we
prove existence of adjoint sequences used in the formulation of Theorem 1.8.

Next we pass to constructing examples. In Section 6 we present an example

which emphasizes the di�erence between the growth rates of sequences Γ̂n(φ) and
Γ(φn): We construct a volume-preserving real-analytic di�eomorphism of the 3-
torus which mixes a real-analytic function and such that Γ(φni) grows arbitrarily
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slowly along a suitable subsequence ni →∞. In Section 7 we show that the bound
in Theorem 1.8 is sharp: It is attained in the case of a symbolic dynamical system
associated to the Rudin-Shapiro sequence.

Finally, in Appendix we prove Kolmogorov-Tihomirov type estimate (2).

2. Recurrence via Arzela-Ascoli compactness

Proof of Theorem 1.2. Suppose that the assertion of the theorem is false. Then,
considering a sequence αk = 1/k, k ∈ N we get a sequence {nk} so that nk/k ≥
[‖f‖∞/0.7] + 1 and

Rk := Lip(f) · Γ̂nk
(φ) < τ(nk/k, ‖f‖∞) .

This yields
D(Rk, 1.4, ‖f‖∞) ≤ nk/k < m+ 1,

where m = [nk/k] ≥ 1. Consider m+ 1 functions

f, f ◦ φk, . . . , f ◦ φmk .
Since

Lip(g ◦ ψ) ≤ Lip(g) · Γ(ψ) ∀g ∈ E,ψ ∈ G ,

these functions lie in the subset ERk,‖f‖∞ ⊂ E. Recall that ERk,‖f‖∞ can be covered
by D(Rk, 1.4, ‖f‖∞) ≤ m balls (in the uniform norm) of the radius 0.7. By the
pigeonhole principle, there is a pair of functions from our collection lying in the same
ball. In other words for some natural numbers p > q we have ||f ◦φpk−f ◦φqk||∞ ≤
1.4. Put j = (p− q)k. We have

||f − f ◦ φj ||L2 ≤ ||f − f ◦ φj ||∞ ≤ 1.4 .

Since
||f ||L2 = ||f ◦ φj ||L2 = 1,

we have

(f, f ◦ φj)L2 =
1
2
(||f ||2L2

+ ||f ◦ φj ||2L2
− ||f − f ◦ φj ||2L2

) ≥ 1
2
(1 + 1− 1.42) = 0.02 .

Note that j ≥ k and thus increasing k we get the above inequality for arbitrarily
large values of j. This contradicts the assumption that φ mixes f .

Denote by H the group of all bi-Lipschitz homeomorphisms (not necessarily
measure preserving) of a compact metric space (M,ρ). An argument similar to the

one used in the proof above shows that if the growth rate of Γ̂n(φ) is su�ciently
slow, the cyclic subgroup {φn} generated by φ has the identity map as its limit point
with respect to C0-topology (cf. a discussion in D'Ambra-Gromov [2, 7.10.C,D]).
Here is a precise statement. Denote by Λ the space of Lipschitz self-maps ofM . For
φ ∈ Λ write Lip(ψ) for the Lipschitz constant of ψ. Equip Λ with the C0-distance

dist(φ, ψ) = sup
x∈M

ρ(φ(x), ψ(x)) .

Denote by ΛR the subset consisting of all maps ψ from Λ with Lip(ψ) ≤ R. This
subset is compact with respect to the metric dist by the Arzela-Ascoli theorem.
Denote by ∆(R, ε) the minimal number of ε/2-balls required to cover ΛR. For
t ≥ ∆(0, ε) = Nε(M) put

θ(t, ε) = sup{R ≥ 0 : ∆(R, ε) ≤ t} .



6 K. FR�CZEK AND L. POLTEROVICH

Theorem 2.1. Let φ : M →M be a bi-Lipschitz homeomorphism. Assume that the
identity map is not a limit point with respect to C0-topology for the cyclic subgroup
{φn}. Then for every sequence εn → 0 there exists α > 0 so that

Γ̂n(φ) ≥ θ(αn, εn)

for all su�ciently large n.

Proof. Suppose that the assertion of the theorem is false. For every α = 1/k, k ∈ N
we can choose nk > max(Nεk(M), k) so that

Γ̂nk
(φ) < θ(nk/k, εk).

Put mk = [nk/k] and Rk = Γ̂nk
(φ). Since Rk < θ(nk/k, εk), we obtain

∆(Rk, εk) ≤ nk/k < mk + 1.

Consider mk + 1 maps 1, φk, . . . , φkmk . They lie in ΛRk
. Since ∆(Rk, εk) ≤ mk, it

follows that at least two of these maps lie in the same εk/2-ball covering of ΛRk
.

Therefore there exist p > q so that

dist(φpk, φqk) ≤ εk .

Put lk = (p−q)k, and note that dist(φpk, φqk) = dist(1, φlk). Thus dist(1, φlk) ≤ εk,
and since k divides lk we have lk → ∞. We conclude that φlk → 1 , which
contradicts the fact that the identity map is not a limit point (with respect to
C0-topology) for the sequence {φn}.

Remark 2.2. Assume that the metric space (M,ρ) satis�es Condition 1.3 with
exponent d > 0. Since ΛR = DRM (M), by (2), we have

∆(R, ε) ≤ Nε/4(M)Nε/(4R)(M) ≤ (κ(ε/4)−d)κ(ε/(4R))−d

.

Thus

θ(t, ε) ≥ const
ε · log1/d t

log1/d 1/ε
.

Corollary 2.3. Let φ : M → M be a bi-Lipschitz homeomorphism, where M
satis�es Condition 1.3. Assume that the identity map is not a limit point with
respect to C0-topology for the cyclic group {φn}. Let {η(n)} be a sequence of positive

numbers such that η(n) → +∞ as n → +∞ and η(n) = o(log n). Then Γ̂n(φ) ≥
η(n)1/d for all su�ciently large n.

Proof. An application of Theorem 2.1 for εn = (η(n)/ log n)
1
2d gives the existence

of α > 0 for which

Γ̂n(φ) ≥ θ(αn, εn) ≥ const
εn · log1/d αn

log1/d 1/εn
≥ const

(
η(n)
logn

) 1
2d · log1/d n

log1/d logn
η(n)

= const

(
logn
η(n)

) 1
2d

log1/d logn
η(n)

· η(n)1/d ≥ η(n)1/d

for all su�ciently large n.
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Theorem 1.5 is an immediate consequence of Corollary 2.3.

Remark 2.4. Consider any group H equipped with a pseudo-norm `: `(h) ≥ 0 all
h ∈ H, `(h−1) = `(h) and `(hg) ≤ `(h) + `(g). For an element h ∈ G put̂̀

n(h) = max
i=1,...,n

`(hn) .

It is instructive to compare possible growth rates of cyclic subgroups in the following
two cases:

(i) H is a �nitely generated group, ` is the word norm;
(ii) H is the group of all bi-Lipschitz homeomorphisms equipped with the

pseudo-norm ` = log Γ.

We claim that in the �rst case, condition

(8) lim inf
n→∞

̂̀
n(φ)
log n

= 0

is equivalent to the fact that φ is of �nite order. Indeed, assume that φ satis�es (8).
Denote by HR ⊂ H the ball of radius R centred at φ in the word norm. Denote by
K the number of elements in the generating set of H. Then the cardinality of HR

does not exceed KR+1. Condition (8) guarantees that there exists n > 0 arbitrarily

large so that ̂̀n(φ) ≤ log n/(2 logK). Consider n + 1 elements 1, φ, . . . , φn. All of

them lie in the set HR with R = ̂̀
n(φ). This set contains at most KR+1 ≤ K

√
n

elements. Since K
√
n < n+ 1 for large n we get that among 1, φ, . . . , φn there are

at least two equal elements, hence φ is of �nite order. The claim follows.
In contrast to this, in the case (ii), the group of bi-Lipschitz homeomorphisms

may have elements of in�nite order which satisfy (8), see [3, 9]. These elements are
"exotic" from the algebraic viewpoint: they cannot be included into any �nitely
generated subgroup H ′ of H so that the inclusion

(H ′,word norm) ↪→ (H, log Γ)

is quasi-isometric. It would be interesting to explore more thoroughly the dynamics
of these exotic elements.

Corollary 2.3 shows that if such an exotic element is of a "very slow" growth then
it has strong recurrence properties. The argument based on the Arzela compact-
ness, which was used in its proof, imitates the argument showing that condition (8)
characterizes elements of �nite order in �nitely generated groups. Let us compare
these results for bi-Lipschitz homeomorphisms of d-dimensional spaces. Consider

such a homeomorphism, say, φ with ̂̀n(φ) = o(log n), which means that it is al-
gebraically exotic in the sense of the discussion above. If φ satis�es a stronger

inequality ̂̀n(φ) ≤ ( 1
d − ε) log log n, it is strongly recurrent by Corollary 2.3 above.

We conclude this discussion with the following open problem: explore dynamical
properties of those bi-Lipschitz homeomorphisms of d-dimensional spaces whose

growth sequence ̂̀n(φ) falls into the gap between 1
d log log n and o(log n).

3. Almost orthonormal systems of Lipschitz functions

In this section we prove Theorem 1.8. We start with the following general result
on "almost orthonormal" systems of functions:
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Theorem 3.1. Let {fi} be a sequence of linear independent Lipschitz functions
from E with ||fi||L2 = 1 with the following property: There exists a sequence of
positive real numbers an → 0 so that |(fi, fj)L2 | ≤ ai−j for all j < i. Let {v(n)} be
an adjoint sequence of {an}. Then

(9) max
i=1,...,n

Lip(fi) ≥
1

2κ
1
d

·
[ n

2v(n)

]1/d
∀n ∈ N .

Lemma 3.2. Let fi ∈ L2(M), i = 1, . . . , N be a sequence of functions with

||fi||L2 = 1 for all i and |(fi, fj)L2 | ≤ αi−j for j < i, where
∑N
i=1 αi ≤ 1/4.

Then for every real numbers c1, . . . , cN we have

||
N∑
i=1

cifi||2L2
≥ 1

2

N∑
i=1

c2i .

Proof. Put

h =
N∑
i=1

cifi and C =

√√√√ N∑
i=1

c2i .

Then
||h||2L2

= C2 + I ,

where I = 2
∑
j<i cicj(fi, fj). By the Cauchy-Schwarz inequality,

|I| ≤ 2
N∑
p=1

N−p∑
j=1

|cj | · |cj+p| · αp ≤ 2 · 1
4
· C2 = C2/2 .

Thus
||h||2L2

≥ C2 − C2/2 = C2/2
as required.

Proof of Theorem 3.1. We shall assume that 2v(n) ≤ n, otherwise the inequality
(9) holds by trivial reasons. Put q(n) = [n/(2v(n))] and δ = (κ/q(n))1/d. By the
de�nition of κ and d, there exists a δ-net on M consisting of p ≤ q(n) points.
Denote by E′ ⊂ E the codimension p subspace consisting of all those functions
which vanish at the points of the net.

Let V be the linear span of the functions fiv(n), i = 1, . . . , 2q(n). Then the
dimension of W := V ∩ E′ is ≥ 2q(n) − p ≥ q(n). It is well known [4, p.103] that
there exists h ∈W with

(10) ||h||∞ ≥
√

dimW ||h||L2 .

Write h =
∑2q(n)
i=1 cifiv(n). Note that |(fiv(n), fjv(n))L2 | ≤ a(i−j)v(n) for i < j. Put

αi = aiv(n). By the de�nition of v(n), we have
2q(n)∑
i=1

αi ≤
1
4
,

and hence by Lemma 3.2

||h||2L2
≥ C2/2 , with C =

√√√√2q(n)∑
i=1

c2i .



GROWTH AND MIXING 9

We conclude from (10) that

||h||∞ ≥ 1√
2
·
√
q(n) · C .

Recall now that h vanishes at all the points of the δ-net. Thus

(11) Lip(h) ≥ ||h||∞/δ ≥
1√
2
·
√
q(n) · C · (κ/q(n))−1/d .

Next, let us estimate Lip(h) from above. Put

Πn := max
i=1,...,n

Lip(fi) .

We have

Lip(h) = Lip
( 2q(n)∑
i=1

cifiv(n)

)
≤ Πn ·

√
2q(n) · C .

Combining this inequality with lower bound (11) we get

Πn ≥
1

2κ
1
d

· q(n)
1
d ,

as required.

Reduction of Theorem 1.8 to Theorem 3.1: We start with the following
auxiliary lemma.

Lemma 3.3. Assume that φ ∈ G mixes a function f ∈ E. Then for every m > 0
the functions f, f ◦ φ, . . . , f ◦ φm are linearly independent elements of E.

Proof. Assume that ‖f‖L2 = 1 and on the contrary that for some m these functions
are linearly dependent. Then for some p ∈ N

f ◦ φp ∈ V := Span(f, f ◦ φ, . . . , f ◦ φp−1)

which implies that every function of the form f ◦φn, n ∈ Z belongs to V . The space
V is �nite-dimensional and every element of the sequence {f ◦ φn}, n ∈ Z has unit
L2-norm. Thus this sequence has a subsequence converging to an element g ∈ V
of unit L2-norm. Since φ mixes f , we have (g, f ◦ φn)L2 = 0 for every n ∈ Z. It
follows that g = 0, contrary to ‖g‖L2 = 1. This completes the proof.

Proof of Theorem 1.8. Put fi = f ◦ φi, i ∈ N. Since φ mixes f at the rate {ai} we
have |(fi, fj)L2 | ≤ ai−j for all j < i. The functions {fi} are linearly independent
by Lemma 3.3. Thus all the assumptions of Theorem 3.1 hold. Theorem 1.8 readily
follows from Theorem 3.1 combined with the inequality

max
i=1,...,n

Lip(fi) ≤ Γ̂n(φ) · Lip(f) .
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Remark 3.4. Assume that {fi} is an orthonormal system (in the L2-sense) of
Lipschitz functions with zero mean. Put

Πn := max
i=1,...,n

Lip(fi) .

It follows from Theorem 3.1 that

Πn ≥ const · n 1
d .

For an illustration, consider the Euclidean torus Td = Rd/Zd. Let λ1 ≤ λ2 ≤ . . .
be the sequence of the eigenvalues (taken with their multiplicities) of the Laplace
operator. Each λn has the form 4π2|v|2, where v runs over Zd \ {0}. Choose
the sequence of eigenfunctions fn corresponding to λi so that the eigenfunctions
corresponding to 4π2|v|2 are

√
2 sin 2π(x, v) and

√
2 cos 2π(x, v). It follows that

Lip(fn) ≈ |v| ≈ λ1/2
n ≈ n1/d ,

where the last asymptotic (up to a multiplicative constant) is just the Weyl law. It
follows that the exponent of the power-law in the right hand side of the inequality
(9) is sharp.

4. From Lipschitz to Hölder observables

Assume that the metric space (M,ρ) satis�es Condition 1.3 with exponent d > 0.
Let φ : (M,ρ, µ) → (M,ρ, µ) be a bi-Lipschitz homeomorphism. Suppose that
f : M → R is a Hölder continuous function with exponent β ∈ (0; 1] which is
mixed by φ. Let ρβ stand for the metric on M given by ρβ(x, y) = ρ(x, y)β . Under
the new metric f becomes a Lipschitz function and φ remains bi-Lipschitz with
Γρβ

(φ) = Γ(φ)β . Moreover the metric space (M,ρβ) satis�es Condition 1.3 with
exponent d/β. By Corollary 1.4, we have

Γ̂n(φ)β = (̂Γρβ
)
n
(φ) ≥ const · log

β
d n

which yields the following:

Corollary 4.1. If φ ∈ G mixes a Hölder continuous function then there exists
λ > 0 so that

Γ̂n(φ) ≥ λ · log
1
d n

for all natural n.

In the same manner an application of Theorem 1.8 and Corollary 1.9 gives the
following:

Corollary 4.2. Suppose that φ ∈ G mixes a Hölder continuous function at the rate
{an} such that

∑
an <∞. Then there exists λ > 0 so that

Γ̂n(φ) ≥ λ · n 1
d

for all natural n. If an = O(1/nν), where 0 < ν < 1 then there exists λ > 0 so that

Γ̂n(φ) ≥ λ · n ν
d

for all natural n.
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5. Existence of an adjoint sequence

Proof of Lemma 1.7. Making a rescaling if necessary assume that an ≤ 1 for all n.
Choose Nk ↗∞, k ∈ N so that N1 = 1 and ai ≤ 1/k for all i ≥ Nk. Put bn := 1/k
for n ∈ [Nk;Nk+1). Thus {bn} a non-increasing positive sequence which majorates
{an} and converges to zero.

De�ne v(n) as the minimal integer k with

bk
k
<

1
4n

.

Note that v(n) →∞ as n→∞. By de�nition

bv(n)−1

v(n)− 1
≥ 1

4n
.

Thus we get that

v(n)
4n

≤ bv(n)−1 +
1
4n

,

and hence v(n)/n → 0 which yields assumption (5). Furthermore, using mono-
tonicity of bn and inequality bv(n)/v(n) < 1/(4n) which follows from the de�nition
of v(n) we estimate ∑

i:0<iv(n)≤n

biv(n) ≤
n

v(n)
· bv(n) ≤

1
4

and we get assumption (4).

6. Slowly growing diffeomorphisms

As we have shown above, if a bi-Lipschitz homeomorphism φ of a d-dimensional
compact metric space mixes a Lipschitz function, the growth rate of the sequence

Γ̂n(φ) is at least ∼ log1/d n (see Corollary 1.4). Furthermore, Γ̂n(φ) ≥ const · nν/d
provided the mixing rate is ∼ n−ν for some ν ∈ (0; 1) (see Corollary 1.9 ). In this
section we work out an example which shows that the behavior of the sequence

Γ(φn) is essentially di�erent from the one of Γ̂n(φ) even in real-analytic category.

In addition, this example gives us an opportunity to test our lower bounds on Γ̂n(φ)
in terms of the rate of mixing.

Consider the three dimensional torus T3 = R3/Z3 equipped with the Euclidean
metric and the Lebesgue measure. Fix any concave increasing function u : [0; +∞) →
[0;+∞) such that

lim
x→+∞

u(x) = +∞, u(1) ≥ 1 and u(x) ≤ x3/4.

Theorem 6.1. There exists a real-analytic measure-preserving di�eomorphism φ :
T3 → T3 with the following properties:

(i) φ mixes a nonzero real-analytic function at the rate {log u(n)/u(n)1/3};
(ii) There exists a positive constant c1 > 0 such that Γ(φn) ≤ c1u(n) for in�n-

itely many n ∈ N;
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(iii) There exist positive constants c2, c3 such that

c2

√
n

log u(n)
≤ Γ̂n(φ) ≤ c3u(

√
n)
√
n,

where the left hand side inequality holds for every natural n and the right
hand side holds for in�nitely many n.

In particular, this theorem shows that Γ(φn) can grow arbitrarily slowly along a
subsequence even when φ mixes a real-analytic function.

Remark 6.2. Taking u(x) = x3ν , for 0 < ν < 1/4, we get a di�eomorphism φ which
mixes a real-analytic function at the rate 1/nν−ε (for arbitrary small ε > 0) and
such that Γ̂n(φ) ≥ const·n1/2−ε. Notice that applying Corollary 1.9 we get Γ̂n(φ) ≥
const · nν/3−ε. Thus Corollary 1.9 gives a correct prediction of the appearance of a

power law in the lower bound for Γ̂n(φ), though with a non-optimal exponent. It
is an interesting open problem to �nd the sharp value of the exponent in Corollary
1.9.

Our construction of a di�eomorphism φ in Theorem 6.1 and the estimate of the rate
of mixing follows the work of Fayad [6] (see also [7]). The main additional di�culty
in our situation is due to the fact that we have to keep track of the growth of the
di�erential.

Preliminaries: We denote by T the circle group R/Z which we will constantly
identify with the interval [0; 1) with addition mod 1. For a real number t denote
by ‖t‖ its distance to the nearest integer number. For an irrational α ∈ T denote
by {qn} its sequence of denominators, i.e.

q0 = 1, q1 = a1, qn+1 = an+1qn + qn−1,

where [0; a1, a2, . . . ] is the continued fraction expansion of α. Then

(12)
1

2qn+1
< ‖qnα‖ <

1
qn+1

for each natural n.

Let T : T → T stand for the corresponding ergodic rotation Tx = x + α. Every
measurable function ϕ : T → R determines the measurable cocycle over the rotation
T given by

ϕ(n)(x) =

 ϕ(x) + ϕ(Tx) + . . .+ ϕ(Tn−1x) if n > 0
0 if n = 0

−
(
ϕ(Tnx) + . . .+ ϕ(T−1x)

)
if n < 0.

If ϕ : T → R is a continuous function then

‖ϕ(m+n)‖∞ ≤ ‖ϕ(m)‖∞ + ‖ϕ(n)‖∞ and ‖ϕ(−n)‖∞ = ‖ϕ(n)‖∞
for all integer m,n.

Recall that

(13) 4‖x‖ ≤ |e2πix − 1| ≤ 2π‖x‖ for each real x.

The construction: Let us consider a pair of irrational numbers (α, α′) such that
the sequences of denominators {qn}, {q′n} of convergents for their continued fraction
expansion satisfy

(14) 2u−1(eq
′
n−1) ≤ qn

u(qn)
≤ 3u−1(eq

′
n−1), 2u−1(eqn) ≤ q′n

u(q′n)
≤ 3u−1(eqn)
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for any n ≥ n0(α, α′). Here n0 is a su�ciently large positive integer which will
be chosen in the course of the proof. For a given pair we consider real analytic
functions ϕ,ψ on T given by

(15) ϕ(x) =
∞∑

n=n0

cos 2πqnx
2πqnu−1(eqn)

, ψ(y) =
∞∑

n=n0

cos 2πq′ny
2πq′nu−1(eq′n)

.

Let us consider the volume�preserving di�eomorphism φ : T3 → T3 given by

φ(x, y, z) = (x+ α, y + α′, z + ϕ(x) + ψ(y)).

We claim that φ has all the properties listed in Theorem 6.1.

Starting growth estimates: Then for each integer n we have

φn(x, y, z) = (x+ nα, y + nα′, z + ϕ(n)(x) + ψ(n)(y))

and hence Γ(φn) ∼ max(‖ϕ′(n)‖∞, ‖ψ′(n)‖∞).

Lemma 6.3. For every x, y ∈ T and k ∈ N we have

|ϕ′(qk)(x)| ≤ 6qk
u−1(eqk)

, |ϕ′′(qk)(x)| ≤ 6q2k
u−1(eqk)

,

|ψ′(q
′
k)(y)| ≤ 48q′k

u−1(eq′k)
, |ψ′′(q

′
k)(y)| ≤ 48q′2k

u−1(eq′k)
.

Proof. Since

ϕ(m)(x) =
∞∑

n=n0

1
2πqnu−1(eqn)

Re e2πiqnx
e2πimqnα − 1
e2πiqnα − 1

,

we obtain

(16) ϕ′(m)(x) =
∞∑

n=n0

1
u−1(eqn)

Im e2πiqnx
e2πimqnα − 1
e2πiqnα − 1

,

hence

|ϕ′(qk)(x)| ≤
∞∑

n=n0

1
u−1(eqn)

|e2πiqkqnα − 1|
|e2πiqnα − 1|

.

In the next chain of inequalities we use that by increasing n0 we can assume that∑∞
n=n0

qn/u
−1(eqn) < 1/4. We have

k−1∑
n=n0

1
u−1(eqn)

|e2πiqkqnα − 1|
|e2πiqnα − 1|

≤
k−1∑
n=n0

2
u−1(eqn)

‖qkqnα‖
‖qnα‖

≤
k−1∑
n=n0

2
u−1(eqn)

qn‖qkα‖
‖qnα‖

≤
k−1∑
n=n0

4
u−1(eqn)

qnqn+1

qk+1
≤ 4qk
qk+1

k−1∑
n=n0

qn
u−1(eqn)

≤ qk
qk+1

≤ qk
q′k

.

In view of (14),
qk
q′k
≤ 1

2u(q′k)
qk

u−1(eqk)
≤ qk
u−1(eqk)

.
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It follows that
k−1∑
n=n0

1
u−1(eqn)

|e2πiqkqnα − 1|
|e2πiqnα − 1|

≤ qk
u−1(eqk)

.

Furthermore,

∞∑
n=k

1
u−1(eqn)

|e2πiqkqnα − 1|
|e2πiqnα − 1|

≤
∞∑
n=k

2qk
u−1(eqn)

≤ 4qk
u−1(eqk)

,

and the required upper bound for |ϕ′(qk)(x)| follows.
Since

|ϕ′′(qk)(x)| ≤
∞∑

n=n0

2πqn
u−1(eqn)

|e2πiqkqnα − 1|
|e2πiqnα − 1|

,

similar arguments to those above show that |ϕ′′(qk)(x)| ≤ 48q2n/u
−1(eqk).

The remaining inequalities are proved similarly.

Lemma 6.4. For every natural m and k we have

‖ϕ′(m)‖∞ ≤ 6m
u−1(eqk)

+ qk, ‖ϕ′′(m)‖∞ ≤ 48mqk
u−1(eqk)

+ qk,

‖ψ′(m)‖∞ ≤ 6m
u−1(eq′k)

+ q′k, ‖ψ′′(m)‖∞ ≤ 48mq′k
u−1(eq′k)

+ q′k.

Proof. Write m as m = pqk + r, where p = [m/qk] and 0 ≤ r < qk. Then

‖ϕ′(m)‖∞ ≤ p‖ϕ′(qk)‖∞ + ‖ϕ′(r)‖∞ ≤ m

qk

6qk
u−1(eqk)

+ r‖ϕ′‖∞ ≤ 6m
u−1(eqk)

+ qk.

The remaining inequalities are proved similarly.

A van der Corput like Lemma:1 For estimating the rate of mixing, we shall
need the following version of the van der Corput Lemma:

Lemma 6.5. Let f : T → R be a C1 function. Suppose there exist a family
{(aj ; bj) ⊂ T : j = 1, . . . , s} of pairwise disjoint intervals and a real positive number
a such that |f ′(x)| ≥ a > 0 for all x ∈ T \

⋃s
j=1(aj ; bj). Then

(17)

∣∣∣∣∫
T
e2πif(x)dx

∣∣∣∣ ≤ 1
2π
‖f ′′‖∞
a2

+
s

πa
+

s∑
j=1

(bj − aj).

Proof. Without loss of generality we can assume that a1 < b1 < . . . < as < bs < a1.
Put D =

⋃s
j=1(aj ; bj) and as+1 = a1. Then∣∣∣∣∫

T
e2πif(x) dx

∣∣∣∣ ≤

∣∣∣∣∣
∫

T\D
e2πif(x) dx

∣∣∣∣∣+
s∑
j=1

(bj − aj)

=

∣∣∣∣∣
∫

T\D

1
2πif ′(x)

de2πif(x)

∣∣∣∣∣+
s∑
j=1

(bj − aj).

1It is known also as a stationary phase argument.
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Integrating by parts gives∣∣∣∣∣
∫

T\D

1
2πif ′(x)

de2πif(x)

∣∣∣∣∣
=

∣∣∣∣∣∣
s∑
j=1

(
e2πif(aj+1)

2πf ′(aj+1)
− e2πif(bj)

2πf ′(bj)
− 1

2π

∫ aj+1

bj

e2πif(x) d

(
1

f ′(x)

))∣∣∣∣∣∣
=

∣∣∣∣∣∣
s∑
j=1

(
e2πif(aj+1)

2πf ′(aj+1)
− e2πif(bj)

2πf ′(bj)
+

1
2π

∫ aj+1

bj

e2πif(x) f ′′(x)
(f ′(x))2

dx

)∣∣∣∣∣∣
≤ 1

2π

s∑
j=1

( 1
|f ′(aj)|

+
1

|f ′(bj)|

)
+

s∑
j=1

|aj+1 − bj |
‖f ′′‖∞
a2


≤ 1

2π
‖f ′′‖∞
a2

+
s

πa
.

Lemma 6.6. There exists C > 0 such that

Im :=
∣∣∣∣∫

T2
e2πi(ϕ

(m)(x)+ψ(m)(y)) dxdy

∣∣∣∣ ≤ C
log u(m)
u(m)1/3

.

Proof. For each m large enough there exists a natural number k ≥ n0 such that

u−1(eqk) ≤ m

u(m)
≤ u−1(eq

′
k) or u−1(eq

′
k) ≤ m

u(m)
≤ u−1(eqk+1).

Suppose that m/u(m) ∈ [u−1(eqk);u−1(eq
′
k)]. Then

m

u(m)
≤ u−1(eq

′
k) ≤ qk+1

2u(qk+1)
≤ qk+1/2
u(qk+1/2)

and hence m ≤ qk+1/2 because of the concavity of u.
Put

aj =
1

2qk

(
j − 1

u(m)1/3

)
− (m− 1)α

2
, bj =

1
2qk

(
j +

1
u(m)1/3

)
− (m− 1)α

2

for j = 1, . . . , 2qk. If x ∈ T \
⋃2qk

j=1(aj ; bj), then

1/u(m)1/3 ≤ ‖2qk(x+ (m− 1)α/2)‖ ≤ | sin 2πqk(x+ (m− 1)α/2)|.

By (16),

|ϕ′(m)(x)| ≥ 1
u−1(eqk)

∣∣∣∣Im e2πiqkx
e2πimqkα − 1
e2πiqkα − 1

∣∣∣∣
−

k−1∑
n=n0

1
u−1(eqn)

|e2πimqnα − 1|
|e2πiqnα − 1|

−
∞∑

n=k+1

1
u−1(eqn)

|e2πimqnα − 1|
|e2πiqnα − 1|

.
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Note that ∣∣∣∣Im e2πiqkx
e2πimqkα − 1
e2πiqkα − 1

∣∣∣∣
=

∣∣∣∣ 1
2i

(
e2πiqkx

e2πiqkmα − 1
e2πiqkα − 1

− e−2πiqkx
e−2πiqkmα − 1
e−2πiqkα − 1

)∣∣∣∣
=

∣∣∣∣ 1
2i
e2πiqkmα − 1
e2πiqkα − 1

(
e2πiqkx − e−2πiqk(x+(m−1)α)

)∣∣∣∣
=

|e2πiqkmα − 1|
|e2πiqkα − 1|

| sin 2πqk(x+ (m− 1)α/2)|.

Since m ≤ qk+1/2 and ‖qkα‖ < 1/qk+1, we have

‖mqkα‖ ≤ m‖qkα‖ ≤
1
2
qk+1‖qkα‖ <

1
2
,

hence ‖mqkα‖ = m‖qkα‖. It follows that
|e2πiqkmα − 1|
|e2πiqkα − 1|

≥ ‖qkmα‖
2‖qkα‖

=
m

2
.

Thus ∣∣∣∣Im e2πiqkx
e2πimqkα − 1
e2πiqkα − 1

∣∣∣∣ ≥ m

2u(m)1/3u−1(eqk)
.

Since ‖qnα‖ > 1/(2qn+1), we have
k−1∑
n=n0

1
u−1(eqn)

|e2πimqnα − 1|
|e2πiqnα − 1|

≤
k−1∑
n=n0

1
u−1(eqn)

1
2‖qnα‖

≤
k−1∑
n=n0

1
u−1(eqn)

qn+1

≤ qk

k−1∑
n=n0

1
u−1(eqn)

≤ qk.

Moreover
∞∑

n=k+1

1
u−1(eqn)

|e2πimqnα − 1|
|e2πiqnα − 1|

≤ m
∞∑

n=k+1

2
u−1(eqn)

≤ 4m
u−1(eqk+1)

.

Therefore, if x ∈ T \
⋃2qk

j=1(aj ; bj), then

|ϕ′(m)(x)| ≥ m

2u(m)1/3u−1(eqk)
− qk −

4m
u−1(eqk+1)

.

Since u−1(eqk) ≤ m/u(m) ≤ m, we have

qk ≤ log u(m) ≤ log u(m)
u(m)2/3

m

u(m)1/3u−1(eqk)
.

Moreover, since

u−1(eqk) ≤ m

u(m)
≤ qk+1 and u(m) ≤ m3/4,

we have

m

u−1(eqk+1)
≤ m

u(m)1/3u−1(eqk)
m/(u(m))2/3

u−1(em/u(m))

≤ m

u(m)1/3u−1(eqk)
(m/u(m))2

u−1(em/u(m))
.
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Therefore, for m large enough,

(18) |ϕ′(m)(x)| ≥ m

4u(m)1/3u−1(eqk)
for all x ∈ T \

2qk⋃
j=1

(aj ; bj).

On the other hand, by Lemma 6.4,

|ϕ′′(m)(x)| ≤ 48mqk
u−1(eqk)

+ qk ≤
50mqk
u−1(eqk)

.

An application of Lemma 6.5 for the function ϕ(m) and the family of intervals
(ai; bi), i = 1, . . . , 2qk gives∣∣∣∣∫

T
e2πiϕ

(m)(x) dx

∣∣∣∣
≤ 1

2π

50mqk

u−1(eqk )(
m

4u(m)1/3u−1(eqk )

)2 +
2qk
πm

4u(m)1/3u−1(eqk )

+
2

u(m)1/3

=
400qku−1(eqk)u(m)2/3

πm
+

4qku−1(eqk)u(m)1/3

πm
+

2
u(m)1/3

≤ 200qku−1(eqk)u(m)2/3

m
+

2
u(m)1/3

.

Since u−1(eqk) ≤ m/u(m), we have qk ≤ log u(m) and

qku
−1(eqk)u(m)2/3

m
≤ log u(m)
u(m)1/3

.

Consequently ∣∣∣∣∫
T
e2πiϕ

(m)(x) dx

∣∣∣∣ ≤ 202
log u(m)
u(m)1/3

.

When m/u(m) ∈ [u−1(eq
′
k);u−1(eqk+1)], proceeding in the same way we obtain∣∣∣∣∫

T
e2πiψ

(m)(y) dy

∣∣∣∣ ≤ 202
log u(m)
u(m)1/3

.

Therefore for each natural m we have

Im =
∣∣∣∣∫

T
e2πiϕ

(m)(x)dx

∣∣∣∣ ∣∣∣∣∫
T
e2πiψ

(m)(y)dy

∣∣∣∣ ≤ 202
log u(m)
u(m)1/3

.

Proof of Theorem 6.1.

(i): Take f : T3 → R given by f(x, y, z) = sin 2πz. Then in view of Lemma 6.6 we
obtain

|(f ◦ φn, f)| =
1
2

∣∣∣∣Im ∫
T2
e2πi(ϕ

(n)(x)+ψ(n)(y)) dxdy

∣∣∣∣
≤ 1

2

∣∣∣∣∫
T2
e2πi(ϕ

(n)(x)+ψ(n)(y)) dxdy

∣∣∣∣ ≤ const · log u(n)
u(n)1/3

for all n ∈ N large enough.

(ii): Since

φn(x, y, z) = (x+ nα, y + nα′, z + ϕ(n)(x) + ψ(n)(y))
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it su�ces to show that max(‖ϕ′(n)‖∞, ‖ψ′(n)‖∞) ≤ c1u(n) for in�nitely many n ∈ N.
By Lemma 6.3 and Lemma 6.4,

‖ϕ′(qk)‖∞ ≤ 1 and ‖ψ′(qk)‖∞ ≤ 6qk
u−1(eq

′
k−1)

+ q′k−1.

From (14) we have

q′k−1 ≤ log u(qk) and u−1(eq
′
k−1) ≥ qk

3u(qk)
.

It follows that

‖ψ′(qk)‖∞ ≤ 18u(qk) + log u(qk) ≤ 20u(qk)

for all k large enough.

(iii): Set

gm := max(‖ϕ′(m)‖∞, ‖ψ′(m)‖∞) and ĝm = max
0≤i≤m

gi.

It su�ces to show that

(19) c2

√
m

log u(m)
≤ ĝm ≤ c3u(

√
m)
√
m ,

where the left hand side inequality holds for every natural m and the right hand
side holds for in�nitely many m.

By Lemma 6.4,

(20) ĝm ≤ max
(

6m
u−1(eqk)

+ qk,
6m

u−1(eq′k)
+ q′k

)
for every natural m and k. Choose x and y so that

sin(2πqk(x+ (m− 1)α/2)) = sin(2πq′k(y + (m− 1)α′/2)) = 1 .

Proceeding along the same lines as in the proof of Lemma 6.6 one readily shows
that

u−1(eqk) ≤ m

u(m)
≤ u−1(eq

′
k) =⇒ gm ≥ |ϕ′(m)(x)| ≥ m

4u−1(eqk)
,(21)

u−1(eq
′
k) ≤ m

u(m)
≤ u−1(eqk+1) =⇒ gm ≥ |ψ′(m)(y)| ≥ m

4u−1(eq′k)
.(22)

To prove the lower bound on ĝm suppose that u−1(eqk) ≤ m/u(m) ≤ u−1(eq
′
k)

(the case of u−1(eq
′
k) ≤ m/u(m) ≤ u−1(eqk+1) is treated similarly).

Case 1. Suppose that m ≤ (u−1(eqk))2. Set m0 := [u−1(eqk)]. Then

u−1(eqk)/2 ≤ m0 ≤ u−1(eqk) ≤ m

and

u−1(eq
′
k−1) ≤ qk ≤

eqk/3

2
≤
(
u−1(eqk)

2

)1/4

≤ m
1/4
0 ≤ m0

u(m0)
≤ u−1(eqk).

Therefore in view of (22), we obtain

ĝm ≥ gm0 ≥
m0

4u−1(eq
′
k−1)

≥ u−1(eqk)
8u−1(eq

′
k−1)

≥ u−1(eqk)
4qk

≥
√
m

4 log u(m)
.
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Case 2. Suppose that m ≥ (u−1(eqk))2. Then in view of (21), we obtain

ĝm ≥ gm ≥ m

4u−1(eqk)
≥
√
m/4.

The desired lower bound on ĝm follows.

To prove the upper bound on ĝm in formula (19) we take m = (q′k)
2. Then

6m
u−1(eqk)

+ qk =
6(q′k)

2

u−1(eqk)
+ qk ≤ 18u(q′k)q

′
k + qk ≤ 20u(q′k)q

′
k ≤ 20u(

√
m)
√
m.

Moreover
6m

u−1(eq′k)
+ q′k =

6(q′k)
2

u−1(eq′k)
+ q′k ≤ 2q′k = 2

√
m.

Finally, from (20) we have
ĝm ≤ 20u(

√
m)
√
m.

This completes the proof.

7. Growth of the Rudin-Shapiro shift

In the present section we prove the following result.

Theorem 7.1. Fix d > 0. There exists a bi-Lipschitz homeomorphism φ of a
compact measure metric space (X, ρ, µ) with the following properties:

(i) The upper box dimension (see formula (1) above) of (X, ρ) equals d. Fur-
thermore, for every δ > 0 there exists a δ-net in X containing at most
const · δ−d points (see Condition 1.3 above);

(ii) The homeomorphism φ mixes a nonzero Lipschitz function f : X → R with
zero mean at the speediest possible rate, i.e. (f ◦ φk, f)L2(X,µ) = 0 for all
k 6= 0;

(iii) There exist c1, c2 > 0 so that the growth rate of φ satis�es

c1 · n1/d ≤ Γ̂n(φ) ≤ c2 · n1/d

for all n ∈ N.

Thus we con�rm that the lower bound (7) in Theorem 1.8 is sharp. As we shall
explain below, the homeomorphism φ can be chosen as the shift associated to the
Rudin-Shapiro sequence.

In what follows we work in the framework of the theory of symbolic dynamical
systems associated to substitutions (see [12, 8]). Let us consider a �nite alphabet
A. Denote by A∗ =

⋃
n≥1An the set of all �nite words over the alphabet A. A

substitution on A is a mapping ζ : A → A∗. Any substitution ζ induces two maps,
also denoted by ζ, one from A∗ to A∗ and another from AN to AN by putting

ζ(a0a1 . . . an) = ζ(a0)ζ(a1) . . . ζ(an) for every a0a1 . . . an ∈ A∗,

ζ(a0a1 . . . an . . .) = ζ(a0)ζ(a1) . . . ζ(an) . . . for every a0a1 . . . an . . . ∈ AN.

If there exists a letter a ∈ A so that ζ(a) consists of at least two letters and starts
with a, the word ζn(a) starts with ζn−1(a) and is strictly longer than ζn−1(a).
Thus ζn(a) converges in the obvious sense as n → ∞ to an in�nite word v ∈ AN

such that ζ(v) = v.
We can associate to the sequence v a topological dynamical system as follows.

Let L(v) denote the language of the sequence v, i.e. the set of all �nite words (over
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the alphabet A) which occur in v. Let Xv ⊂ AZ stand for the set of all sequences
x = {xn}n∈Z ∈ AZ such that xnxn+1 . . . xn+k−1 ∈ L(v) for all n ∈ Z and k ∈ N.
Obviously, Xv is a compact subset of AZ with the product topology and Xv is
invariant under the two-sided Bernoulli shift φ : AZ → AZ, [φ({xk}k∈Z)]n = xn+1.
Therefore we can consider φ as a homeomorphism of Xv.

A substitution ζ is called primitive if there exists k ≥ 1 such that ζk(a) contains b
for every a, b ∈ A. If ζ is primitive, the spaceX = Xv does not depend on the choice
of v. Furthermore, the corresponding homeomorphism φ : X → X is minimal and
uniquely ergodic. Unique ergodicity of φ can be deduced from the analogous result
in [12, Chapter V] for the one-sided shift: Given two words z, w ∈ L(v), denote by
Ωz(w) the number of appearances of z as a sub-word in w. Unique ergodicity of
the one-sided shift yields (see [12, Corollary IV.14]) existence of a positive function
ω : L(v) → (0; 1] so that for every z

(23)
Ωz(w)

length(w)
→ ω(z) uniformly in w as length(w) →∞ .

This in turn yields, exactly as in [12, Corollary IV.14], unique ergodicity of the
two-sided shift φ.

Let us consider the Rudin�Shapiro sequence v = {vn}n≥0 over the alphabet
A = {−1,+1} which is de�ned by the relation

v0 = 1, v2n = vn, v2n+1 = (−1)nvn for any n ≥ 0.

It arises from the �xed point ABACABDB . . . of the primitive substitution A 7→
AB,B 7→ AC,C 7→ DB,D 7→ DC after replacing A,B by +1 and C,D by −1.
As above, we associate to the sequence v the topological space X ⊂ AZ and the
two-sided shift φ : X → X. Notice that φ is uniquely ergodic as a factor of the
corresponding uniquely ergodic substitution system.

Proof of Theorem 7.1. Let µ be the unique φ-invariant Borel probability measure
on X. We shall show that after a suitable choice of a metric on X, the shift
φ : X → X possesses properties (i)-(iii) stated in the theorem.

Choosing the metric: Fix a concave increasing function u : [0; +∞) → [0;+∞)
such that u(0) = 0 and u(t) → +∞ as t → +∞. Then de�ne a metric ρ on X
by putting ρ(x, y) = e−u(k(x,y)), where k(x, y) = min{|k| : xk 6= yk, k ∈ Z} for two
distinct sequences x, y ∈ X. Of course, φ is a bi-Lipschitz homeomorphism with

Γ̂n(φ) ≤ eu(n).
Denote by {pn(v)} the complexity of the sequence v, that is pn(v) is the number

of di�erent words of length n occurring in v. As it was shown in [1], pn(v) = 8(n−1)
for every n ≥ 2 (in fact, a simpler estimate n ≤ pn(v) ≤ const · n is su�cient for
our purposes, see Propositions 1.1.1 and 5.4.6 in [8]).

Suppose that u(t) = d−1 log t for all t large enough. Given k > 2, put p =
p2k−1(v) and consider all possible words w(1), . . . , w(p) from L(v) of length 2k − 1.
Fix arbitrary elements x(i) ∈ X, i = 1, . . . , p so that x

(i)
−k+1x

(i)
−k+2 . . . x

(i)
k−2x

(i)
k−1 =

w(i). Note that the points x(i) lie at the distance ≥ e−u(k−1) = (k−1)−1/d one from
the other. Furthermore, every point of X lies at the distance ≤ e−u(k) = k−1/d from
x(i) for some i = 1, . . . , p. Recalling that p = 16k − 16 we conclude that the upper
box dimension of X equals d, and moreover for every δ > 0 there exists a δ-net in
X containing at most const · δ−d points. Thus we get property (i) in Theorem 7.1.
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Mixing: Consider a function f : X → R, f(x) = x0. Clearly, f is Lipschitz with
respect to ρ. Let us check that (f ◦ φk, f)L2(X,µ) = 0 for all k 6= 0. We prove this
property by combining the unique ergodicity of φ with the following fact, see [8,
Proposition 2.2.5]:

lim
N→∞

1
N

N−1∑
n=0

vnvn+k = 0 ∀k ∈ N .

Indeed, there exists a sequence y ∈ X such that yn = vn for all n ≥ 0 (see Lemma
7.3 below). Then∫

X

f(φkx)f(x) dµ(x) = lim
N→∞

1
N

N−1∑
n=0

f(φk+ny)f(φny)

= lim
N→∞

1
N

N−1∑
n=0

vnvn+k = 0.

This proves property (ii) in Theorem 7.1.

Growth bounds: The lower bound (7) in Theorem 1.8 yields Γ̂n(φ) ≥ const·n1/d.
On the other hand

Γ̂n(φ) ≤ eu(n) = n1/d,

which yields property (iii) in Theorem 7.1.
This completes the proof.

Remark 7.2. Let us modify the metric ρ de�ned above by taking the function
u(t) to be of an arbitrarily slow growth. As a result we get an example of a bi-
Lipschitz homeomorphism φ of a compact metric measure space (M,ρ, µ) of in�nite
box dimension which mixes a Lipschitz function f at the speediest possible rate,

that is (f, f ◦ φn)L2 = 0 for all n ∈ N, and such that the growth rate of Γ̂n(φ) is
arbitrarily slow. This illustrates the signi�cance of Condition 1.3 on the metric ρ
for the validity of the statement of Theorem 1.8.

We conclude this section with the following lemma which was used in the proof of
Theorem 7.1 above.

Lemma 7.3. There exists a sequence y ∈ X so that yn = vn for all n ≥ 0.

Proof. By (23), for every n ∈ N the word v0 . . . vn appears in�nitely many times
as a subword in v. Thus we can �nd a sequence of words of the form y(n) =
y
(n)
−n . . . y

(n)
−1 v0 . . . vn, n ∈ N in the language L(v). Next we choose a collection

{{nlk}k∈N}l∈N of increasing sequences of natural numbers by the following induc-

tive procedure: Since {y(n)
−1 }n∈N takes only two values, we can �nd an increasing

sequence {n1
k}k∈N such that {y(n1

k)
−1 }k∈N is constant. Assume that the sequence

{nlk}k∈N is already chosen. Choose {nl+1
k }k∈N as a subsequence of {nlk}k∈N for which

{y(nl+1
k )

−l−1 }k∈N is constant. Now we can de�ne the desired sequence y = {yk}k∈Z ∈ X
by putting

y−k = y
(nk

k)
−k for k > 0 and yk = vk for k ≥ 0.
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8. Appendix: Kolmogorov-Tihomirov formula

In this section we prove formula (2). Cover A by n = Nε/(4R)(A) balls A1, . . . , An
of radius ε/(8R) centered at a1, . . . , an ∈ A respectively and cover Y by m =
Nε/4(Y ) balls Y1, . . . , Ym of radius ε/8 centered at y1, . . . , ym respectively. Put
I = {1, . . . , n}, J = {1, . . . ,m}. For a map σ : I → J set

Xσ = {f ∈ DAR(Y ) : f(ai) ∈ Yσ(i) ∀i ∈ I} .

Obviously, DAR(Y ) is covered by mn sets Xσ. Warning: some of these sets might
be in fact empty.

Assume that f, g ∈ Xσ ∩ DAR(Y ). Take any point a ∈ A. Choose ai so that
ρ1(a, ai) < ε/(8R). Then ρ2(f(a), f(ai)) < ε/8 and ρ2(g(a), g(ai)) < ε/8 since
the Lipschitz constant of f and g is ≤ R. Furthermore, ρ2(f(ai), yσ(i)) < ε/8 and
ρ2(g(ai), yσ(i)) < ε/8. Thus ρ2(f(a), g(a)) < ε/2. Since this is true for all points
a in a compact space A we conclude that dist(f, g) < ε/2. It follows that the set
Xσ ∩ DAR(Y ) is either empty, or is fully contained in a ball of radius ε/2 (in the
sense of metric dist) centered at any of its points.

Looking at all σ ∈ JI , we get a covering of DAR(Y ) by at most mn of metric balls
of radius ε/2, as required.
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