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On ergodicity of some cylinder flows

by

Krzysztof F r ą c z e k (Toruń)

Abstract. We study ergodicity of cylinder flows of the form

Tf : T× R→ T× R, Tf (x, y) = (x+ α, y + f(x)),

where f : T → R is a measurable cocycle with zero integral. We show a new class of
smooth ergodic cocycles. Let k be a natural number and let f be a function such that
Dkf is piecewise absolutely continuous (but not continuous) with zero sum of jumps. We
show that if the points of discontinuity of Dkf have some good properties, then Tf is
ergodic. Moreover, there exists εf > 0 such that if v : T → R is a function with zero
integral such that Dkv is of bounded variation with Var(Dkv) < εf , then Tf+v is ergodic.

1. Introduction. Assume that T : (X,B, µ) → (X,B, µ) is an ergodic
measure-preserving automorphism of a standard Borel space. Each measur-
able function f : X → R is called a cocycle. For every n ∈ Z, let

f (n)(x) =




f(x) + f(Tx) + . . .+ f(Tn−1x) if n > 0,
0 if n = 0,
−(f(Tnx) + f(Tn+1x) + . . .+ f(T−1x)) if n < 0.

Let R = R ∪ {∞} be the one-point Aleksandrov compactification of R.
Then r ∈ R is said to be an extended essential value of f (see [10]) if for each
open neighbourhood U(r) of r and an arbitrary set C ∈ B with µ(C) > 0,
there exists an integer n such that

µ(C ∩ T−nC ∩ {x ∈ X : f (n) ∈ U(r)}) > 0.

The set of extended essential values will be denoted by E(f). The set E(f) =
E(f) ∩ R is called the set of essential values of f . The skew product

Tf : (X × R, B̃, µ̃)→ (X × R, B̃, µ̃), Tf (x, y) = (Tx, y + f(x)),
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is said to be the cylinder flow. Here µ̃ denotes the product measure of µ
and infinite Lebesgue measure on the line. It is shown in [10] that E(f) is
a closed subgroup of R and it is the collection of periods of Tf -invariant
functions, i.e.

E(f) = {r ∈ R : ∀φ:X×R→R, φ◦Tf=φ φ(x, y + r) = φ(x, y) µ̃-a.e.}.
In particular, Tf is ergodic iff E(f) = R.

We say that a strictly increasing sequence {qn}n∈N is a rigid time for T
if

lim
n→∞

µ(T qnA4A) = 0 for any A ∈ B.
In [6], Lemańczyk, Parreau and Volný have proved

Proposition 1. Suppose that f : X → R is an integrable cocycle such
that the sequence {‖f (qn)‖L1}n∈N is bounded , where {qn}n∈N is a rigid time
for T . If

lim sup
n→∞

∣∣∣
\
X

e2πilf(qn)
dµ
∣∣∣ ≤ c < 1

for all l large enough, then Tf is ergodic.

We denote by T the group R/Z which will be identified with the interval
[0, 1) with addition mod 1. Let λ denote the Lebesgue measure on T. Let
<̃ ⊂ T × T be defined by: x <̃ y iff 0 < y − x < 1/2, where < ⊂ T × T is
the usual order on [0, 1). By {t} we denote the fractional part of t and ‖t‖
is the distance of t from the set of integers.

Assume that α ∈ [0, 1) is an irrational with continued fraction expansion

α = [0; a1, a2, . . .].

The natural numbers an are said to be the partial quotients of α. Put

r0 = 0, r1 = 1, rn+1 = an+1rn + rn−1,

s0 = 1, s1 = a1, sn+1 = an+1sn + sn−1.

The rationals rn/sn are called the convergents, and sn is the nth denomi-
nator of α. We have the inequality

1
2snsn+1

<

∣∣∣∣α−
rn
sn

∣∣∣∣ <
1

snsn+1
.

For every nonnegative integer k, let Sk denote the subset of irrational
numbers α such that

lim inf
n→∞

sk+1
n ‖snα‖ <∞

and let S0
k denote the subset of irrational numbers α such that

lim inf
n→∞

sk+1
n ‖snα‖ = 0.

The above sets are residual in T.
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A function f : T → R is said to be piecewise absolutely continuous
(PAC for short) if there are β0, . . . , βk ∈ T such that f |(βj ,βj+1) is absolutely
continuous (βk+1 = β0). Set

f+(x) = lim
y→x+

f(y) and f−(x) = lim
y→x−

f(y).

Let aj = f+(βj)− f−(βj) for j = 0, . . . , k and

S(f) =
k∑

j=0

aj = −
k∑

j=0

f−(βj)− f+(βj) = −
\
T
Df(x) dλ(x).

Assume that α ∈ [0, 1) is irrational. Denote by Tx = x + α mod 1 the
corresponding ergodic rotation on T. We shall study skew products of the
form

Tf : T× R→ T× R, Tf (x, y) = (Tx, y + f(x)),

where f : T→ R is a measurable cocycle with
T
T f dλ = 0.

In [8], Pask has given a class of cocycles which are PAC with S(f) 6= 0,
and has showed ergodicity for all irrationals α. Lemańczyk, Parreau and
Volný [6] have proved that the class of cocycles considered in [8] is ergodically
stable in the space BV(T)0 of bounded variation functions with zero integral,
i.e. if f ∈ PAC with S(f) 6= 0 and Var(f−g) < |S(f)|, then Tg is still ergodic.
It has been proved in [9] that if f is k−1 times differentiable a.e. and Dk−1f
is PAC with S(Dk−1f) 6= 0, then Tf is ergodic for α ∈ Sk.

The aim of this paper is to study the ergodicity of Tf in the case where a
derivative Dkf of f is piecewise absolutely continuous (but not continuous)
and S(Dkf) = 0.

Let k be a natural number. We denote by Ck+BV
0 the space of k − 1

differentiable functions f : T → R with zero integral such that Dk−1f is
absolutely continuous and Dkf is of bounded variation. Set C0+BV

0 = BV0.
Observe that if f : T → R is a function of bounded variation with zero

integral, then

(1) sup
x∈T
|f(x)| ≤ Var(f).

Notice that if f ∈ Ck+BV
0 , then Var(Dj−1f) ≤ Var(Djf) for j = 1, . . . , k.

Indeed, since Dj−1f is absolutely continuous, we have Var(Dj−1f) =T
T |Djf | dλ and

T
TD

jf dλ = 0. From (1) we have

Var(Dj−1f) =
\
T
|Djf | dλ ≤ sup

x∈T
|Djf(x)| ≤ Var(Djf).

In Ck+BV
0 we define the norm ‖f‖k+BV = Var(Dkf). With this norm, Ck+BV

0
becomes a Banach space. Let Ck+PAC

0 denote the subspace of functions
f ∈ Ck+BV

0 such that Dkf is piecewise absolutely continuous and let Ck+AC
0
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denote the space of functions f ∈ Ck+PAC
0 such that Dkf is absolutely

continuous. Recall that the subspace of trigonometric polynomials is dense
in Ck+AC

0 with respect to the Ck+BV
0 norm.

Assume that f ∈ Ck+PAC
0 and S(Dkf) = 0. Suppose that α ∈ S0

k and
0 = β0 < β1 < . . . < βd < 1 are all the discontinuity points of Dkf . In this
paper we will prove the following theorem.

Theorem 1.1 (Main Theorem). Let k ∈ N and f ∈ Ck+PAC
0 be such

that S(Dkf) = 0. If there exists a sequence {qn}n∈N of denominators of α
such that

lim
n→∞

qk+1
n ‖qnα‖ = 0 and lim

n→∞
{qnβi} = γi,

where γi 6= γj for i 6= j, i, j = 0, . . . , d, then Tf is ergodic. Moreover , there
exists ε > 0 such that if v ∈ Ck+BV

0 and ‖v‖k+BV < ε, then Tf+v is ergodic.

2. Some generalizations of the Denjoy–Koksma inequality. In
this section we prove some generalizations of the Denjoy–Koksma inequality
which will be needed to prove the main theorem. Let Qn be a partition of
T into the intervals defined by the points {iα}sn−1

i=0 . Then for all n, each
interval of Qn has length ‖sn−1α‖+ ‖snα‖ or ‖sn−1α‖.

Theorem 2.1. For a given nonnegative integer k there is a positive con-
stant Mk = M such that if f ∈ Ck+BV

0 , then

(2) skn|f (sn)(x)| ≤M(1 + sk+1
n ‖snα‖) Var(Dkf)

for any natural n.

P r o o f (by induction on k). For k = 0 the inequality (2) is the ordinary
Denjoy–Koksma inequality (see [5], p. 73).

Assuming (2) to hold for a certain k, we will prove that there exists
Mk+1 > 0 such that if f ∈ Ck+1+BV

0 , then

sk+1
n |f (sn)(x)| ≤Mk+1(1 + sk+2

n ‖snα‖) Var(Dk+1f).

Let I be an interval of size ‖sn−1α‖. Then
∣∣∣
\
I

f (sn)(x) dx
∣∣∣ =

∣∣∣
\

⋃sn−1
i=0 T iI

f(x) dx
∣∣∣ =

∣∣∣
\

T\⋃sn−1
i=0 T iI

f(x) dx
∣∣∣.

Since

T \
sn−1⋃

i=0

T iI =
sn−1−1⋃

j=0

T jJ,

where J is an interval of size ‖snα‖, we have
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∣∣∣
\
I

f (sn)(x) dx
∣∣∣ =

∣∣∣
\
J

f (sn−1)(x) dx
∣∣∣ ≤ |J |Var(f) ≤ ‖snα‖Var(Dk+1f).

If |I| = ‖sn−1α‖+ ‖snα‖, then we split this into two chunks, one I1 of size
‖sn−1α‖, the other I2 of size ‖snα‖. Then
∣∣∣
\
I

f (sn)(x) dx
∣∣∣ =

∣∣∣
\
I1

f (sn)(x) dx
∣∣∣+
∣∣∣
\
I2

f (sn)(x) dx
∣∣∣ ≤ 2‖snα‖Var(Dk+1f).

It follows that for each interval I of Qn there is xI ∈ I with

|f (sn)(xI)| ≤ 4sn‖snα‖Var(Dk+1f).

Indeed, if f (sn)|I changes sign, then we can take xI such that f (sn)(xI) = 0.
Assume that f (sn)|I does not change sign. Suppose that

|f (sn)(x)| ≥ 4sn‖snα‖Var(Dk+1f)

for any x ∈ I. Then
∣∣∣
\
I

f (sn)(x) dx
∣∣∣ > |I|4sn‖snα‖Var(Dk+1f) > 2‖snα‖Var(Dk+1f),

a contradiction. Since f is absolutely continuous and the formula (2) is true
for k, we have

|f (sn)(b)− f (sn)(a)| =
∣∣∣
b\
a

Df (sn)(x) dx
∣∣∣

≤Mk(1 + sk+1
n ‖snα‖) Var(Dk+1f)

|b− a|
skn

for all a, b ∈ T. If x ∈ I ∈ Qn, then

|f (sn)(x)− f (sn)(xI)| ≤ 2
‖sn−1α‖

skn
Mk(1 + sk+1

n ‖snα‖) Var(Dk+1f)

≤ 2Mk

sk+1
n

(1 + sk+1
n ‖snα‖) Var(Dk+1f)

and finally

sk+1
n |f (sn)(x)| ≤ sk+1

n |f (sn)(x)− f (sn)(xI)|+ sk+1
n |f (sn)(xI)|

≤ (2Mk(1 + sk+1
n ‖snα‖) + 4sk+2

n ‖snα‖) Var(Dk+1f)

≤ (2Mk + 4)(1 + sk+2
n ‖snα‖) Var(Dk+1f).

Corollary 2.1. Assume that α ∈ Sk and {qn}n∈N is a sequence of
denominators of α such that the sequence {qk+1

n ‖qnα‖}n∈N is bounded. Then
there is a constant K ≥ 1 such that

qkn|f (qn)(x)| ≤ K‖f‖k+BV
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for any f ∈ Ck+BV
0 and n ∈ N. Moreover , if f ∈ Ck+AC

0 , then the sequence
{qknf (qn)}n∈N uniformly converges to zero.

P r o o f. Notice that Theorem 2.1 implies the first part of the corollary.
Since for every f ∈ Ck+AC

0 there exists a sequence {Pm}m∈N of trigonometric
polynomials with zero integral such that

lim
m→∞

‖Pm − f‖k+BV = 0,

it suffices to show that for every trigonometric polynomial f with zero inte-
gral the sequence {qknf (qn)}n∈N uniformly converges to zero. Let

f(x) =
M∑

m=−M
ame

2πimx

where a0 = 0. Then

|qknf (qn)(x)| =
∣∣∣∣qkn

M∑

m=−M
am

e2πimqnα − 1
e2πimα − 1

e2πimx

∣∣∣∣

≤ 2qkn

M∑

m=−M
|am|m‖qnα‖‖mα‖ = qkn‖qnα‖

M∑

m=−M

2|am|m
‖mα‖ .

It follows that qknf
(qn) uniformly converges to zero, which completes the

proof.

3. Ergodicity of differentiable cocycles. We need auxiliary lemmas.

Lemma 3.1. Let 0 = β0 < β1 < . . . < βd < βd+1 = 1 and let a1, . . . , ad+1

be real numbers with zero sum. Consider a function h : T → R with zero
integral given by

h = h(0) +
d+1∑

i=1

ai1[βi,1).

Then h(0) =
∑d+1
i=1 aiβi and

(3) h(q) = h(q)(0) +
q−1∑
s=0

d+1∑

i=1

ai1[βi−sα,1)

for any natural q, where T : T→ T is the rotation through α.

P r o o f. Since
T
T h dλ = 0 and a1 + . . .+ ad+1 = 0, we have

0 = h(0) +
d+1∑

i=1

ai(1− βi) = h(0)−
d+1∑

i=1

aiβi.
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For all a, b, x ∈ T, we have

1[b,1)(x+ a)− 1[b,1)(a) = 1[b−a,1)(x)− 1[1−a,1)(x).

It follows that

h(x+ a)− h(a) =
d+1∑

i=1

ai(1[βi,1)(x+ a)− 1[βi,1)(x))

=
d+1∑

i=1

ai(1[βi−a,1)(x)− 1[1−a,1)(x)) =
d+1∑

i=1

ai1[βi−a,1)(x).

Therefore

h(q) = h(q)(0) +
q−1∑
s=0

d+1∑

i=1

ai1[βi−sα,1)

for any natural q.

Lemma 3.2. Let I ⊂ R be an interval and k be a natural number. If P
is a real polynomial of the form P (x) = ckx

k + . . . + c0, ck 6= 0, then there
exists a closed subinterval J ⊂ I with |J | ≥ |I|/4k such that

x ∈ J ⇒ |P (x)| ≥ k!|ck|(|I|/4)k.

P r o o f. Let f : R → R be a differentiable function with continuous
derivative. Suppose that there exists a closed interval I ⊂ R such that
|Df(x)| ≥ a > 0 for any x ∈ I. We first show that there exists an in-
terval J ⊂ I with |J | ≥ |I|/4 and |f(x)| ≥ a|I|/4 for any x ∈ J . With-
out loss of generality we can assume that Df(x) ≥ a > 0 for any x ∈
I. Suppose that for every interval J ⊂ I with |J | ≥ |I|/4 there exists
x ∈ J such that |f(x)| < a|I|/4. Since f increases on I, we can find
x, y ∈ I such that x − y ≥ |I|/2 and |f(x)|, |f(y)| < a|I|/4. It follows
that

a|I|/2 ≤ a|x− y| ≤ |f(x)− f(y)| < a|I|/2,
a contradiction. Applying the above fact to derivatives of P we obtain our
assertion.

Let f ∈ Ck+PAC
0 be such that S(Dkf) = 0. Let α ∈ S0

k and let 0 = β0 <
β1 < . . . < βd < 1 be all the discontinuities of Dkf . Suppose that there
exists a sequence {qn}n∈N of denominators of α such that

lim
n→∞

qk+1
n ‖qnα‖ = 0 and lim

n→∞
{qnβi} = γi,

where γi 6= γj for i 6= j, i, j = 0, . . . , d. It is clear that the function f can
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be represented as f = g + h, where g ∈ Ck+AC
0 , h ∈ Ck+PAC

0 and Dkh is
constant on each interval (βi, βi+1). Then

Dkh+(βi)−Dkh−(βi) = Dkf+(βi)−Dkf−(βi) = ai 6= 0

for i = 0, . . . , d and

Dkh+ = Dkh+(0) +
d+1∑

i=1

ai1[βi,1)

with Dkh+(0) =
∑d+1
i=1 aiβi. By Lemma 3.1,

(4) Dkh
(q)
+ = Dkh

(q)
+ (0) +

q−1∑
s=0

d+1∑

i=1

ai1[βi−sα,1)

for any natural q. Let σ be a permutation of the set {0, 1, . . . , d} such that

0 = γσ(0) < γσ(1) < . . . < γσ(d) < γσ(d+1) = 1,

where σ(0) = σ(d + 1). For given 1 ≤ i ≤ d + 1 and 0 ≤ j < qn, let t(j)i be
the unique integer satisfying 0 ≤ t(j)i < qn and

t
(j)
i pn + j = [qnβi] mod qn,

where {pn/qn}n∈N is the sequence of convergents of α. Then

βi − t(j)i α =
[qnβi]
qn

+
{qnβi}
qn

− t(j)i
pn
qn
− t(j)i

δn
qn

=
j

qn
+

1
qn

({qnβi} − t(j)i δn) mod 1,

where |δn| = ‖qnα‖. It follows that

βσ(0) − t(j)σ(0)α <̃ βσ(1) − t(j)σ(1)α <̃ . . . <̃ βσ(d) − t(j)σ(d)α <̃ βσ(0) − t(j+1)
σ(0) α

for j = 0, . . . , qn − 1. Let 0 ≤ j ≤ qn − 1 and 0 ≤ i ≤ d. Set

I
(j)
i =

{
(βσ(i) − t(j)σ(i)α, βσ(i+1) − t(j)σ(i+1)α) if 0 ≤ i < d,

(βσ(d) − t(j)σ(d)α, βσ(0) − t(j+1)
σ(0) α) if i = d.

Lemma 3.3. If x ∈ I(j)
i , then

Dkh(qn)(x) =
d∑

m=1

am{qnβm}+
i∑

m=0

am.
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P r o o f. Let x ∈ I(j)
i . From (4), we have

Dkh(qn)(x) = Dkh
(qn)
+ (0) +

qn−1∑

l=0

d+1∑
m=1

am1[βσ(m)−t(l)σ(m)α,1)(x)

= Dkh
(qn)
+ (0) +

j−1∑

l=0

d+1∑
m=1

am +
d+1∑
m=1

am1[βσ(m)−t(j)σ(m)α,1)(x)

= Dkh
(qn)
+ (0) +

i∑
m=1

am.

Moreover

Dkh
(qn)
+ (0) =

qn−1∑

j=0

Dkh+(jα) =
qn−1∑

j=0

(
Dkh+(0) +

d∑

i=1

ai1[βi,1)(jα)
)

= qnD
kh+(0) +

d∑

i=1

ai

qn−1∑

j=0

1[βi,1)(jα).

On the other hand,
qn−1∑

j=0

1[βi,1)(jα)

= card{0 ≤ j < qn : {jα} > βi}
= card{0 ≤ j < qn : {jpn/qn}+ jδn/qn > [qnβi]/qn + {qnβi}/qn}
= card{0 ≤ j < qn : {jpn/qn} > [qnβi]/qn}
= qn − [qnβi]− 1.

Therefore

Dkh
(qn)
+ (0) = qn

d+1∑

i=1

aiβi +
d∑

i=1

ai(qn − [qnβi]− 1)

= qn

d∑

i=1

aiβi +
d∑

i=1

ai({qnβi} − qnβi) + a0

=
d∑

i=1

ai{qnβi}+ a0

and consequently

Dkh(qn)(x) =
d∑

m=1

am{qnβm}+
i∑

m=0

am.
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Let 0 ≤ j ≤ qn − 1 and 0 ≤ i ≤ d. Let Î (j)
i denote the interval

(βσ(i) − t(j)σ(i)α+ qkn‖qnα‖, βσ(i+1) − t(j)σ(i+1)α− qkn‖qnα‖)
if 0 ≤ i < d, and the interval

(βσ(d) − t(j)σ(d)α+ qkn‖qnα‖, βσ(0) − t(j+1)
σ(0) α− qkn‖qnα‖)

if i = d. Since qk+1
n ‖qnα‖ → 0 as n→∞, we have

|Î (j)
i | =

1
qn
|{qnβσ(i+1)} − {qnβσ(i)} − δn(t(j)σ(i+1) − t

(j)
σ(i))− 2qk+1

n ‖qnα‖|

≥ γσ(i+1) − γσ(i)

2qn
for all n large enough.

Corollary 3.1. If x ∈ Î (j)
i , then

Dkh(qk+1
n )(x) = qkn

( d∑
m=1

am{qnβm}+
i∑

m=0

am

)
.

P r o o f. For every x ∈ T, we have

Dkh(qk+1
n )(x) = Dkh(qn)(x)

+Dkh(qn)(x+ qnα) + . . .+Dkh(qn)(x+ (qkn − 1)qnα).

If x ∈ Î (j)
i , then x+ lqnα ∈ I(j)

i for l = 0, 1, . . . , qkn − 1. It follows that

Dkh(qk+1
n )(x) = qkn

( d∑
m=1

am{qnβm}+
i∑

m=0

am

)
.

Corollary 3.2. There exists a collection {Jj}qn−1
j=0 of pairwise disjoint

closed intervals and there exist constants 0 < C < 1, M > 0 such that

|Jj | ≥ C

qn
and x ∈ Jj ⇒ |Dh(qk+1

n )(x)| ≥Mqn

for j = 0, . . . , qn − 1.

P r o o f. Fix

ci =
d∑

m=1

amγm +
i∑

m=0

am.

At least one of the numbers ci is not zero. Indeed, if we suppose that ci = 0
for i = 0, . . . , d, then ai = ci− ci−1 = 0 for i = 0, . . . , d, which is impossible.
Take i0 such that ci0 6= 0. Set

b(n) =
d∑

m=1

am{qnβm}+
i0∑
m=0

am.
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Since Dkh(qk+1
n ) = qknb

(n) on Î
(j)
i0

, we have

Dh(qk+1
n )(x) = qknb

(n)xk−1 + Pj(x)

on Î
(j)
i0

, where Pj is a polynomial with deg(Pj) < k − 1 (j = 0, . . . , qn − 1).

By Lemma 3.2, there exist closed subintervals Jj ⊂ Î (j)
i0

such that

|Jj | ≥ 1
4k−1 |Î

(j)
i0
| ≥ γσ(i0+1) − γσ(i0)

4kqn
and if x ∈ Jj , then

|Dh(qk+1
n )(x))| ≥ qkn|b(n)|

( |Î (j)
i0
|

4

)k−1

≥ 1
2
qkn|ci0 |

(
γσ(i0+1) − γσ(i0)

4kqn

)k−1

≥ qn
|ci0 |(γσ(i0+1) − γσ(i0+1))k−1

4k2

for j = 0, . . . , qn − 1. It follows that we can set

C =
γσ(i0+1) − γσ(i0)

4k
and M =

|ci0 |(γσ(i0+1) − γσ(i0))k−1

4k2 .

Proof of Theorem 1.1. Notice that {qk+1
n }n∈N is a rigid time for the

rotation Tx = x+α. By Corollary 2.1, the sequence {‖(f + v)(qk+1
n )‖∞}n∈N

is bounded, because ‖(f+v)(qk+1
n )‖∞ ≤ qkn‖(f+v)(qn)‖∞ and f+v ∈ Ck+BV

0 .
By Proposition 1, it suffices to find ε > 0 such that Var(Dkv) < ε implies

lim sup
n→∞

∣∣∣
\
T
e2πil(f+v)(qk+1

n )(x) dx
∣∣∣ ≤ c < 1

for all l large enough.
Represent f as the sum of functions g ∈ Ck+AC

0 and h ∈ Ck+PAC
0 , where

Dkh is constant on intervals (βi, βi+1). Since ‖g(qk+1
n )‖∞ ≤ qkn‖g(qn)‖∞,

the sequence {g(qk+1
n )}n∈N uniformly converges to zero, by Corollary 2.1.

Therefore

lim
n→∞

∣∣∣
\
T
e2πil(f+v)(qk+1

n )(x) dx−
\
T
e2πil(h+v)(qk+1

n )(x) dx
∣∣∣ = 0.

It follows that it suffices to compute

lim sup
n→∞

∣∣∣
\
T
e2πil(h+v)(qk+1

n )(x) dx
∣∣∣.

By Corollary 3.2, there exists a collection {Jj : j = 0, . . . , qn−1} of pairwise
disjoint closed intervals and there exist 0 < C < 1, M > 0 such that

|Jj | ≥ C

qn
and x ∈ Jj ⇒ |Dh(qk+1

n )(x)| ≥Mqn
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for j = 0, . . . , qn − 1. Let Jj = [aj , bj ] for j = 0, . . . , qn − 1. Applying
integration by parts we get
∣∣∣
\
T
e2πil(h+v)(qk+1

n )(x) dx
∣∣∣

≤ 1−
qn−1∑

j=0

|Jj |+
∣∣∣
qn−1∑

j=0

bj\
aj

e2πil(h+v)(qk+1
n )(x) dx

∣∣∣

≤ 1− C +
∣∣∣∣
qn−1∑

j=0

bj\
aj

e2πilv(qk+1
n )(x)

2πilDh(qk+1
n )(x)

de2πilh(qk+1
n )(x)

∣∣∣∣

= 1− C

+
∣∣∣∣
qn−1∑

j=0

(
e2πil(h+v)(qk+1

n )(bj)

2πilDh(qk+1
n )(bj)

− e2πil(h+v)(qk+1
n )(aj)

2πilDh(qk+1
n )(aj)

−
bj\
aj

e2πilh(qk+1
n )(x) d

e2πilv(qk+1
n )(x)

2πilDh(qk+1
n )(x)

)∣∣∣∣.

Since |Dh(qk+1
n )(x)| ≥Mqn for every x ∈ Jj , we obtain

∣∣∣∣
qn−1∑

j=0

(
e2πil(h+v)(qk+1

n )(bj)

2πilDh(qk+1
n )(bj)

− e2πil(h+v)(qk+1
n )(aj)

2πilDh(qk+1
n )(aj)

)∣∣∣∣ ≤
1

lMπ

and
∣∣∣∣
bj\
aj

e2πilh(qk+1
n )(x) d

e2πilv(qk+1
n )(x)

Dh(qk+1
n )(x)

∣∣∣∣ ≤ Varbjaj

(
e2πilv(qk+1

n )

Dh(qk+1
n )

)

≤ 2πlVarbjaj (v
(qk+1
n ))

inf(aj ,bj) |Dh(qk+1
n )|

+Varbjaj

(
1

Dh(qk+1
n )

)

≤ 2πl
Mqn

bj\
aj

|Dv(qk+1
n )| dλ+

Varbjaj (Dh
(qk+1
n ))

M2q2
n

for j = 0, . . . , qn − 1. It follows that
∣∣∣
\
T
e2πil(h+v)(qk+1

n )(x) dx
∣∣∣ ≤ 1− C +

1
lMπ

+
1

Mqn

\
T
|Dv(qk+1

n )| dλ+
Var(Dh(qk+1

n ))
2πlM2q2

n

.
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By Corollary 2.1, we have\
T
|Dv(qk+1

n )| dλ ≤ qkn
\
T
|Dv(qn)| dλ ≤ Kqn‖v‖k+BV.

Moreover,

Var(Dh(qk+1
n )) ≤ Kq2

n‖h‖k+BV.

Indeed, for k = 1, we have

Var(Dh(qk+1
n )) ≤ q2

n Var(Dh)

and

Var(Dh(qk+1
n )) =

\
T
|D2h(qk+1

n )| dλ ≤ qkn
\
T
|D2h(qn)| dλ ≤ Kq2

n Var(Dkh)

for k > 1, by Corollary 2.1. It follows that

lim sup
n→∞

∣∣∣
\
T
e2πil(h+v)(qk+1

n )(x) dx
∣∣∣ ≤ 1−C+

1
lMπ

+
K

M
‖v‖k+BV+

K

lM2 ‖h‖k+BV.

Let v ∈ Ck+BV
0 . Suppose that ‖v‖k+BV < MC/K. Then

lim sup
n→∞

∣∣∣
\
T
e2πil(h+v)(qk+1

n )(x) dx
∣∣∣ ≤ 1− 1

2

(
C − K

M
‖v‖k+BV

)
< 1

for all l large enough, which completes the proof.
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