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On ergodicity of some cylinder flows
by

Krzysztof Fraczek (Torun)

Abstract. We study ergodicity of cylinder flows of the form
Tp:TxR—TxR, Tf(a:,y):(a:—i—oz,y—i—f(x)),

where f : T — R is a measurable cocycle with zero integral. We show a new class of
smooth ergodic cocycles. Let k be a natural number and let f be a function such that
Dkf is piecewise absolutely continuous (but not continuous) with zero sum of jumps. We
show that if the points of discontinuity of DF f have some good properties, then T is
ergodic. Moreover, there exists ey > 0 such that if v : T — R is a function with zero

integral such that DFv is of bounded variation with Var(Dkv) < ey, then Ty, is ergodic.

1. Introduction. Assume that 7' : (X, B, u) — (X, B, u) is an ergodic
measure-preserving automorphism of a standard Borel space. Each measur-
able function f : X — R is called a cocycle. For every n € Z, let

f@)+ f(Tz)+ ...+ f(T" ') if n >0,
Ff™@)=<0 if n=0,
—(f(Tmz) + f(T" ) + ...+ f(Ttx)) ifn<0.

Let R = R U {oo} be the one-point Aleksandrov compactification of R.
Then r € R is said to be an extended essential value of f (see [10]) if for each
open neighbourhood U(r) of r and an arbitrary set C' € B with u(C) > 0,
there exists an integer n such that

pCNT"Cn{zeX: f™eu@)}) >o.
The set of extended essential values will be denoted by E(f). The set E(f) =

E(f)NR is called the set of essential values of f. The skew product
Ty (X xR B.Ji) — (X xR.B.ji),  Ty(r,y) = T,y + f(z),
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is said to be the cylinder flow. Here i denotes the product measure of
and infinite Lebesgue measure on the line. It is shown in [10] that E(f) is
a closed subgroup of R and it is the collection of periods of Tj-invariant
functions, i.e.

E(f) ={r € R: Vg.xxok, goT;=¢ (T, y + 1) = ¢(x,y) fira.e.}.

In particular, T} is ergodic iff E(f) = R.
We say that a strictly increasing sequence {g, }nen is a rigid time for T
if
lim pu(T"ANA)=0 forany A€ B.

n—oo

In [6], Lemanczyk, Parreau and Volny have proved

PROPOSITION 1. Suppose that f : X — R is an integrable cocycle such
that the sequence {||f(9)|| 1 Ynen is bounded, where {qn Ynen is a rigid time
for T. If

lim sup ‘ S e2milf ) dul <e<1

n—oo
for all | large enough, then T is ergodic.

We denote by T the group R/Z which will be identified with the interval
[0,1) with addition mod 1. Let A denote the Lebesgue measure on T. Let
< C T x T be defined by: z < yiff 0 < y — 2 < 1/2, where < C T x T is
the usual order on [0,1). By {t} we denote the fractional part of ¢ and ||¢||
is the distance of ¢ from the set of integers.

Assume that « € [0,1) is an irrational with continued fraction expansion

a=[0;a1,az,...].
The natural numbers a,, are said to be the partial quotients of a. Put
ro=0, 71 =1, Tptl = Qn41Tn + Tn—1,
so=1, s1=a1, Sn+1 = CGnt1Sn + Sn—1-
The rationals r,, /s, are called the convergents, and s, is the nth denomi-
nator of a. We have the inequality
1

25,8041

1

SnSn41

Tn
a_i
Sn

< <

For every nonnegative integer k, let Sy denote the subset of irrational
numbers « such that

Z-H [l

liminf s al| < oo
n—oo

and let S,g denote the subset of irrational numbers o such that
lim inf s**1||s,a| = 0.
n—oo

The above sets are residual in T.
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A function f : T — R is said to be piecewise absolutely continuous
(PAC for short) if there are (o, ..., By € T such that f|(s, s,,,) is absolutely
continuous (Bx11 = Bp). Set

fi(@) = lim f(y) and f_(z)= lim f(y).

y—at y—x~
Let a; = f+(B;) — f-(B;) for j =0,...,k and
k k
S =) a;=~) f-(8) — [+(8;) = = | Df () dA(2).
j=0 j=0 T

Assume that o € [0,1) is irrational. Denote by Tx = x + o mod 1 the
corresponding ergodic rotation on T. We shall study skew products of the
form

Ty :TxR—->TxR, Ti(z,y) =Tz, y+ f(x)),
where f: T — R is a measurable cocycle with ST fdA=0.

In [8], Pask has given a class of cocycles which are PAC with S(f) # 0,
and has showed ergodicity for all irrationals «. Lemanczyk, Parreau and
Volny [6] have proved that the class of cocycles considered in [8] is ergodically
stable in the space BV(T)g of bounded variation functions with zero integral,
ie. if f € PAC with S(f) # 0 and Var(f—g) < [S(f)|, then T} is still ergodic.
It has been proved in [9] that if f is k—1 times differentiable a.e. and D*~1 f
is PAC with S(D*~1f) # 0, then T} is ergodic for a € Sj.

The aim of this paper is to study the ergodicity of T in the case where a
derivative D* f of f is piecewise absolutely continuous (but not continuous)
and S(DFf) = 0.

Let k& be a natural number. We denote by C’éHBV the space of k — 1
differentiable functions f : T — R with zero integral such that D*~'f is
absolutely continuous and D* f is of bounded variation. Set C’8+BV = BV,.

Observe that if f: T — R is a function of bounded variation with zero
integral, then
(1) sup |f(2)] < Var(f).

z€eT
Notice that if f € C4™Y, then Var(D/=1f) < Var(D’f) for j = 1,...,k.
Indeed, since D’~'f is absolutely continuous, we have Var(D/~1f) =
{r [D7 fldX and (. D7 f d\ = 0. From (1) we have

Var(DI71f) = {[D f| dX < sup| D/ f(w)| < Var(D f).
T zeT
In C¥BY we define the norm || ||,y gy = Var(D* f). With this norm, C¥ BV

becomes a Banach space. Let CS+PAC denote the subspace of functions
fe C§+BV such that DF f is piecewise absolutely continuous and let C§+AC
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denote the space of functions f € C§+PAC such that DFf is absolutely
continuous. Recall that the subspace of trigonometric polynomials is dense
in C¥AC with respect to the C¥TBY norm.

Assume that f € Cé”PAC and S(DFf) = 0. Suppose that o € S? and
0=0 < B1<...<Bqg<1 are all the discontinuity points of D*f. In this
paper we will prove the following theorem.

THEOREM 1.1 (Main Theorem). Let k € N and f € CETPAC be such
that S(D* f) = 0. If there exists a sequence {qn}nen of denominators of
such that

lim qfleqnaH =0 and lim {g.0:} = v,

where v; # y; fori # j, 1,5 =0,...,d, then Ty is ergodic. Moreover, there
exists € > 0 such that if v € C5TBY and ||v||kymv < €, then Tyy, is ergodic.

2. Some generalizations of the Denjoy—Koksma inequality. In
this section we prove some generalizations of the Denjoy—Koksma inequality
which will be needed to prove the main theorem. Let @),, be a partition of
T into the intervals defined by the points {ia};"; ! Then for all n, each
interval of @, has length ||s,_1a| + ||spa| or ||sn—1¢].

THEOREM 2.1. For a given nonnegative integer k there is a positive con-
stant My = M such that if f € C(]erBV, then

(2) sil fO) (@) < M(1+ 3™ |[spal]) Var(DF f)
for any natural n.

Proof (by induction on k). For k£ = 0 the inequality (2) is the ordinary
Denjoy—Koksma inequality (see [5], p. 73).

Assuming (2) to hold for a certain k, we will prove that there exists
M1 > 0 such that if f € CFTBY | then

sEFL fOn) (1)) < Myy1 (14 s572||s,a) Var(DFFf).
Let I be an interval of size ||s,,—1¢/||. Then
(i@ =] | rwal=| | f@a
I Uszg t it T\Ung TP

Since

Spn—1 Sp—1—1

T\ |J 1= |J 77
i=0 =0

where J is an interval of size ||s,al|, we have
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[ 7o @) da| = | |70 (@) da| < I Var(f) < [lsna Var(DF1).
I J

If |I| = ||sn—1¢| + ||sna||, then we split this into two chunks, one I of size
|sn—1¢||, the other I of size ||s, . Then

[ 7o @) da] = | | £ (@) da
I

I

+ ‘ S f(S”)(x) dm‘ < 2Hsna\|Var(Dk+1f).
I3

It follows that for each interval I of Q),, there is x; € I with
£ (@r)] < dsnl|sna]| Var(DEFLF).

Indeed, if f(*»)|; changes sign, then we can take z; such that f(»)(z;) = 0.
Assume that f(*»)|; does not change sign. Suppose that

|f6)(2)] = 4splsnal| Var(DFF f)
for any € I. Then

{70 (@) da| > |Tl4sul|snall Var(D*4Lf) > 2]sual Var(DH ),
1
a contradiction. Since f is absolutely continuous and the formula (2) is true
for k, we have
b

) = f) @) = | [ DF e (@) d

b _
< Mip(1+ sF[s,a) Var(Dk+1f)| al

sk

n

foralla,be T.If z € I € ), then
70 w) - £ ()] < 221 a1 4 s Var (D )
< 2M;,

- Sﬁ—l—l

(14 5™ [[snall) Var(D* f)

and finally
sEPUFOm) (@) < sEFY FOm) (@) = £ (ap) ]+ sh T O ()]
< (2My(1+ sptIsnall) + 455t || spall) Var(DM f)
< (2Mg +4)(1 + s’fl+2||snoz||) Var(Dk“f). n

COROLLARY 2.1. Assume that o € Sy and {qn}nen is a sequence of
denominators of « such that the sequence {gE™||q || }nen is bounded. Then
there is a constant K > 1 such that

aulf1) (@) < K| flle+pv
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forany f € C§+BV and n € N. Moreover, if f € C§+AC, then the sequence
{qF fla)}, en uniformly converges to zero.

Proof. Notice that Theorem 2.1 implies the first part of the corollary.
Since for every f € C’é”AC there exists a sequence { Py, }men of trigonometric
polynomials with zero integral such that

lim ”Pm - fHkJrBV = 07
m—0o0

it suffices to show that for every trigonometric polynomial f with zero inte-
gral the sequence {¢* f (q")}neN uniformly converges to zero. Let

M
— § : amBQﬂ'zmx
m=—M

where ag = 0. Then

[[mal

It follows that ¢* f(4) uniformly converges to zero, which completes the
proof. m

A 27rzmqn -1 i
‘qnf(q" | - Z U™ orima _ 1 e2mima _ 1 esmme
m=—M
M
By milguol 2la|m
N L L P> -

Wy = Imal

3. Ergodicity of differentiable cocycles. We need auxiliary lemmas.

LEMMA 3.1. Let 0 =By < 1 < ... < Bq < Bgr1 =1 and let aq,...,aq+1
be real numbers with zero sum. Consider a function h : T — R with zero
integral given by

d+1

0)+ > ailys, .
i=1

Then h(0) = del a;3; and

qg—1d+1

(3) R = hD0) + 33 ai15—any

5=0 i=1
for any natural q, where T' : T — T s the rotation through o.
Proof. Since SThd)\ =0and a; + ...+ agy1 = 0, we have

d+1 d+1

0="h(0)+ > ai(l—8)="hr(0)—> ap

=1 =1
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For all a,b,xz € T, we have

1y (z+a) = 1p(a) = 1p_a1) () — 1p_an(2).

It follows that
d+1

h(z + a) Zaz 1 (@ +a) = 1g, 1) ()

d+1 d+1

:Zai(l[ﬁifa,lﬂ )_11 al) Zaz [Bi—a, 1)
=1

Therefore
qg—1d+1
R =hD0)+ >3 ailpsan)
s=0 i=1

for any natural ¢q. m

LEMMA 3.2. Let I C R be an interval and k be a natural number. If P
is a real polynomial of the form P(z) = cpa® 4+ ...+ co, cx # 0, then there
exists a closed subinterval J C I with |J| > |I|/4% such that

x€J=|P(x)| > K|ck|(|T]/4)".

Proof. Let f : R — R be a differentiable function with continuous
derivative. Suppose that there exists a closed interval I C R such that
|IDf(z)] > a > 0 for any x € I. We first show that there exists an in-
terval J C I with |J| > |I|/4 and |f(x)| > a|l|/4 for any = € J. With-
out loss of generality we can assume that Df(x) > a > 0 for any z €
I. Suppose that for every interval J C I with |J| > |I|/4 there exists
x € J such that |f(z)] < all|/4. Since f increases on I, we can find
x,y € I such that x —y > |I|/2 and |f(x)|,|f(y)| < a|I|/4. Tt follows
that

all|/2 < alz —y| <|f(z) = f(y)l <all]/2,

a contradiction. Applying the above fact to derivatives of P we obtain our
assertion. m

Let f € CETPAC be such that S(D¥f) = 0. Let a € Y and let 0 = ) <
B1 < ... < B4 < 1 be all the discontinuities of D*f. Suppose that there
exists a sequence {gy, }nen of denominators of « such that

lim qflJ“lanaH =0 and lim {g.0:} = v,

where v; # v; for i # j, 4,5 = 0,...,d. It is clear that the function f can
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be represented as f = g + h, where g € C§+AC, h € C§+PAC and D*h is
constant on each interval (3;, B;+1). Then

D*hy(B;) = D*h(8;) = D* f1.(8:) = D*f-(8:) = a; # 0
fori=0,...,d and

d+1
DFhy = DFh,(0) + Za,l[ﬁﬂl)

with D¥h (0) = Zd+1 a;f3;. By Lemma 3.1,

q—1d+1

(4) DR = DFRD (0 +Zza21[ﬁl sa,1)
s=0 i=1

for any natural q. Let o be a permutation of the set {0,1,...,d} such that
0=70) <Yo1) < - < Vo) < Vo(d+1) = L,

where 0(0) = o(d+1). For given 1 < <d+1and 0 < j < gy, let tgj) be

the unique integer satisfying 0 < t? ) < gn and

tgj)pn +] = [Qnﬁi] mod dn,

where {p,,/qn }nen is the sequence of convergents of o. Then
j ni n i i) Pn i 5n
B —tWa — 2.0 | {anBi} @ P ) O
Qn dn Gn Qn
(T +— p ({Qnﬂz} - t(J)5 n) mod 1,

n n

where [0,,| = ||gn/|. It follows that

Baoy — 1y < Boqry — 1900 S . S Boqa) — 1Y)y < Baio) — 50 0
for j=0,...,¢, — 1. Let 0<j<qg,—1and 0 <i <d. Set

I(J) _ { (6‘7( ) T to’(l)a ﬁa(z—f—l) (z+1) ) if0<i<d,
l (Botay = 15y Ba0) — too )) ) ifi=d.

LEMMA 3.3. If z € I, then

D*p(a) (x Z A {Gnfm} + Z .
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Proof. Let z € Ii(j). From (4), we have

Q7L_1 d+1

k1 (an) Y (qn
D*h) (x) = D h+ )+ lz; z;am [Borm) =ty 1)(:6)
( —1d+1 d+1
=D h+ +;2am+zam [Bo(m)— tn(m)al)( @)
th(Qn)(O) + Z am,
m=1
Moreover

qn—1 gn—1

DR (0) = 3 D¥hy(ja) = - (DR (0) Zazlw ()
J=0 Jj=0

d Qn_l

= ankth(O) + Zai Z 1[,81,1)(‘70‘)
=1 =0

On the other hand,

qn—
Z 1 /Bz 1) ]Oé

=card{0 < j < @, : {ja} > i}

=card{0 < j < gy : {Jpn/an} + 36n/an > [anBi)/an + {anBi}/an}
= card{0 < j < qn : {jpn/an} > [@:Bil/an}

=an — [@aBi] — 1.

Therefore
d+1

DR (0) = g Zazﬂz + Z ai(qn — [gnfBi] — 1)
= qn Z @i + Z ai({anBit — anlBi) + ao
i=1 i=1

d
= Z ai{gnBi} + ao
i=1

and consequently
d

DRI = 3 alga} + 3 . m
m=0

m=1
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Let 0<j<¢q,—1and 0<i<d. Let T Z(.j ) denote the interval

(ﬁa(i) - tf,]()i)a + quanall,ﬂg(iH) - tf,]()iﬂ)a - qg”‘]nan)
if 0 <4 < d, and the interval
) 1
(5a(d) - t[(,]()d)@ + quQnOKHHBU(O) - tg](g) )04 - qTIiHQnOK”)

if i = d. Since ¢**!||gnal — 0 as n — oo, we have

1 ' ]
17 = o tanBoint =B} = Oty — 1) — 205 lanal]|

Yo (i+1) — Yo(i)
2Gn
for all n large enough.

AV

COROLLARY 3.1. If z € T then

d i
DR @) = g (D amlanBn} + Y am).
m=0

m=1

Proof. For every x € T, we have
DEpan (z) = th(q")(x)
+ D*hl9) (2 + gpa) 4+ ...+ DFRED (2 + (¢F — 1)gna).

+1)

Ifx e fgj), then x + lg,a € Ii(j) for 1 =0,1,...,q¥ — 1. It follows that
d

DR (z) = qﬁ( Z am{gnBm} + ZZ: am). .
m=0

m=1

COROLLARY 3.2. There exists a collection {J; 3161 of pairwise disjoint
closed intervals and there exist constants 0 < C < 1, M > 0 such that

C 1
2~ endz € J; = DR ()] > Mg,
forj=0,...,q,— 1.

Proof. Fix

d i
c; = Z A Ym + Z Aoy -
m=1 m=0
At least one of the numbers ¢; is not zero. Indeed, if we suppose that ¢; =0
fori=0,...,d,thena; =¢; —c¢;_1 =0fori=0,...,d, which is impossible.
Take ip such that ¢;, # 0. Set
d

b(n) = Z am{Qnﬁm} + zo: Q-
m=0

m=1
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+1)

Since D*h(an kb(") on ﬂj), we have

k+l)

DR ) () = ¢Fp™ k1 + Pi(x)

on I(]) where P; is a polynomial with deg(P;) <k —1(j=0,...,q, — 1).
By Lemma 3.2, there exist closed subintervals J; C I Z(g ) such that

> Yo (io+1) — Yo(io)
4kq,,

|J5| >

and if x € Jj, then

Dh(qH) > ok 1p™ | (])| > Yo (io+1) — Vo(io) S
IDROED @) = ghb™) > Jables (22—

’Ci0|(70(i0+1) - %(io+1)) B
4k*
for 7 =0,...,q, — 1. It follows that we can set

= Qn

Yoliot1) ~— Volio) . 4 s — |Cio | (Vor(io4+1) — Vor(io)) "

4k 4k2
Proof of Theorem 1.1. Notice that {g**!},cy is a rigid time for the
rotation Tz = z + o. By Corollary 2.1, the sequence {||(f 4+ v) @ |so bnen

is bounded, because H(f—l—v)(an)HOO < @F||(f+v) @) || and f+v e CFTEY.
By Proposition 1, it suffices to find € > 0 such that Var(DFv) < ¢ 1mphes

C =

lim sup‘ 2”Zl(f+”)(q” (@) dr| <c<1
for all [ large enough.

Represent f as the sum of functions g € C’g+AC and h € C§+PAC, where
D¥h is constant on intervals (3;, Bi41). Since [[¢%" lse < %[99 ||so,

the sequence {g(qzﬂ)}neN uniformly converges to zero, by Corollary 2.1.
Therefore

lim Se%ﬂuﬂWVﬁf”uo¢z—Se””“””“ﬁ+5@ﬁdw):(x

n—oo
It follows that it suffices to compute

lim sup ‘ 27ril(h+v)<q,’i+1)(1:) dac‘

n—oo

By Corollary 3.2, there exists a collection {J; : 5 =0,..., g, — 1} of pairwise
disjoint closed intervals and there exist 0 < C' < 1, M > 0 such that

C 1
iz~ and € ;= |DR@") (2)] > Mgy,

n
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for j = 0,...,¢, — 1. Let J; = [a;,b;] for j = 0,...,¢, — 1. Applying
integration by parts we get

anl anl bj . ( k:+1>
<1- Y |Jj +‘ S e dx‘
§=0

Jj=0 a;

4n =1 2wilv(q'ﬁ+l)(m) it
€ i1h(an )
<1-C+ 27ilh'In (a:)‘
]ZO aS 2mil Dh(an") (x)
—1-C

k1 k+1
Gn—1 627ril(h+v)(qn+ )(bj) 6271—71(h‘—"_v)<qn+ )(aj)

+ <

7=0

2mil Dh(@ ) (b;)  2mil Dh(#: ) (ay)

b . k+1

it leh(qﬁ“>(m)d e2mitv(n (@) >‘
Se R k1
o 2mil Dhlan") ()

Since |Dh(qz+l)(x)| > Mg, for every = € J;, we obtain

! <e2wu(h+v)<q§“><bj) e27fz‘l(h+v)“’f”+1)(aj)> ‘ :
= \ 2mil DR (b;) 2wl DR(aR" ) (ay) M

and

k k
27rilv(qn+1)(z) e27‘rilv(qn+1)
< Varzj- T kLY

’ Dh(‘In )

27TlVarZ§, (v(qﬁﬂ)) T Vars < 1 >
T ary | ——— 1
inf(,, 4, [DRG)] i\ Dhlant™h)

bj )
Sezmzwﬁ“)(x) P
Dha™) (x)

b Var? (Dh(@n ™)
S 27Tl S’Dv(qﬁ+l)|d)\+ aj( s )
Mg, J M=q;

for 7 =0,...,q, — 1. It follows that

2mil(htv)@n D () ‘ B 1
He de| <1=C+
1 b Var(Dh(n "))
Dot ) jay 4 7
* g, | [Dvim D dx+ 2rIM2 2

T
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By Corollary 2.1, we have

X IDv(@ )| dx < ¢k S | Dy
T T

d\ < Kqp||v|lg+BV-

Moreover,
Var(Dh(qﬁH)) < Kqa ||| k4Bv-

Indeed, for £k = 1, we have
Var(Dh4")) < ¢2 Var(Dh)
and

Var(Dh(@)) = | ID2R@ )| g\ < gk {ID?h@)|dx < Kg2 Var(D*h)
T T
for k > 1, by Corollary 2.1. It follows that

. ghtl 1 K K
li 2mil(h4v) M) (@) g ‘<1—C — |k :
im sup ’Sre x| < —i—lMW—l-MHkaJer-i-leH | k+BV

n—oo

Let v € C&™BY. Suppose that ||v]|zrpy < MC/K. Then

. 2mil(htv)(n ) (x) ’< o K
hmsup‘ée de| <1 5 C U

n—oo

HUHHBv) <1

for all [ large enough, which completes the proof. =

References

[1] I P.Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin,
1982.

[2] H. Furstenberg, Strict ergodicity and transformations on the torus, Amer. J.
Math. 83 (1961), 573-601.

[3] P. Gabriel, M. Lemanczyk et P. Liardet, Ensemble d’nvariants pour les pro-
duits croisés de Anzai, Mém. Soc. Math. France 47 (1991).

[4] P. Hellekalek and G. Larcher, On the ergodicity of a class of skew products,
Israel J. Math. 54 (1986), 301-306.

[5] M. R.Herman, Sur la conjugaison différentiable des difféomorphismes du cercle a
des rotations, Publ. Mat. IHES 49 (1979), 5-234.

[6] M. Lemanczyk, F. Parreau and D. Volny, Ergodic properties of real cocycles
and pseudo-homogeneous Banach spaces, Trans. Amer. Math. Soc. 348 (1996), 4919—
4938.

[7] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, Cambridge, 1981.

[8] D. Pask, Skew products over the irrational rotation, Israel J. Math. 69 (1990),
65—74.

[9] —, Ergodicity of certain cylinder flows, ibid. 76 (1991), 129-152.



130 K. Fraczek

[10] K. Schmidt, Cocycles of Ergodic Transformation Groups, Macmillan Lectures in
Math. 1, Delhi, 1977.

Faculty of Mathematics and Computer Science
Nicholas Copernicus University

Chopina 12/18

87-100 Torun, Poland

E-mail: fraczek@mat.uni.torun.pl

Received 16 November 1998



