Measure-preserving diffeomorphisms of the torus

KRZYSZTOF FRĄCZEK
Faculty of Mathematics and Computer Science, Nicholas Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
(e-mail: fraczek@mat.uni.torun.pl)

(Received 5 February 2000 and accepted in revised form 27 June 2000)

Abstract

We consider measure-preserving diffeomorphisms of the two-dimensional torus with zero entropy. We prove that every ergodic C^{3}-diffeomorphism f of the twodimensional torus with linear growth of the derivative (i.e. the sequence $\left\{n^{-1} D f^{n}\right\}_{n \in \mathbb{N}}$ is uniformly separated from 0 and ∞ and it is bounded in the C^{2}-norm) is algebraically conjugate to a skew product of an irrational rotation on the circle and a circle C^{3}-cocycle with non-zero topological degree.

1. Introduction

Let M be a compact Riemannian smooth manifold and μ its probability Lebesgue measure. Let $f:(M, \mu) \rightarrow(M, \mu)$ be a smooth measure-preserving ergodic diffeomorphism. An important question of smooth ergodic theory is: what is the relation between the asymptotic properties of the sequence $\left\{D f^{n}\right\}_{n \in \mathbb{N}}$ and the dynamical or spectral properties of the dynamical system $f:(M, \mu) \rightarrow(M, \mu)$. There are results which describe this relation well in the case where M is the torus. For example, if a diffeomorphism f is homotopic to the identity and the sequence $\left\{D f^{n}\right\}_{n \in \mathbb{N}}$ is uniformly bounded, then f is C^{0}-conjugate to an ergodic rotation (see [2, p. 181]). Hence f has a purely discrete spectrum. Moreover, if $\left\{D f^{n}\right\}_{n \in \mathbb{N}}$ is bounded in the C^{r}-norm ($r \in \mathbb{N} \cup\{\infty\}$), then f and the ergodic rotation are C^{r}-conjugated (see [2, p. 181]). However, if $\left\{\left\|D f^{n}\right\|\right\}_{n \in \mathbb{N}}$ has 'exponential growth', precisely if f is an Anosov diffeomorphism, then it is metrically isomorphic to a Bernoulli shift (see [5]). Hence f has a countable Lebesgue spectrum. Moreover, f is C^{0}-conjugate to an algebraic automorphism of the torus (see [4]).

The aim of this paper is to explain what can happen between these extreme cases. Precisely, we study the properties of measure-preserving diffeomorphisms f of the twodimensional torus for which the sequence $\left\{D f^{n}\right\}_{n \in \mathbb{N}}$ has linear growth. One definition of the linear growth of the derivative is presented in [1]. In this paper, it is proved that if the sequence $\left\{n^{-1} D f^{n}\right\}_{n \in \mathbb{N}}$ converges μ-a.e. to a measurable μ-non-zero function, then f is algebraically conjugate (i.e. by a group automorphism) to a skew product of an irrational rotation on the circle and a circle smooth cocycle with non-zero topological degree.

Moreover, every skew product of an irrational rotation on the circle and a circle C^{2}-cocycle with non-zero degree has countable Lebesgue spectrum on the orthocomplement of the space of functions depending only on the first variable (see [3]). It follows that every measure-preserving, ergodic diffeomorphism with the previously mentioned linear growth of the derivative has countable Lebesgue spectrum on the orthocomplement of its eigenfunctions.

In this paper we propose a seemingly weaker definition of the linear growth of the derivative.

2. Notations, definition and basic remarks

By \mathbb{T}^{2} (\mathbb{T} respectively) we will mean the torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$ (the circle \mathbb{R} / \mathbb{Z} respectively); by λ will denote Lebesgue measure on \mathbb{T}^{2}. We will identify functions on \mathbb{T}^{2} with \mathbb{Z}^{2}-periodic functions (i.e. periodic of period 1 in each coordinates) on \mathbb{R}^{2}. Let $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be a smooth diffeomorphism. We will identify f with a diffeomorphism $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{aligned}
& f\left(x_{1}+1, x_{2}\right)=f\left(x_{1}, x_{2}\right)+\left(a_{11}, a_{21}\right) \\
& f\left(x_{1}, x_{2}+1\right)=f\left(x_{1}, x_{2}\right)+\left(a_{12}, a_{22}\right)
\end{aligned}
$$

for every $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, where $\left[a_{i j}\right]_{i, j=1,2} \in G L_{2}(\mathbb{Z})$. Then there exist smooth functions $\tilde{f}_{1}, \tilde{f}_{2}: \mathbb{T}^{2} \rightarrow \mathbb{R}$ such that

$$
f\left(x_{1}, x_{2}\right)=\left(a_{11} x_{1}+a_{12} x_{2}+\tilde{f}_{1}\left(x_{1}, x_{2}\right), a_{21} x_{1}+a_{22} x_{2}+\tilde{f}_{2}\left(x_{1}, x_{2}\right)\right)
$$

We will denote by $f_{1}, f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ the coordinate functions of f. By $M_{2}(\mathbb{R})$ we mean the space 2×2 matrices endowed with the operator norm.
Definition 1. We say that the derivative of a smooth diffeomorphism $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ has linear growth if there exist positive constants c, C such that

$$
\begin{equation*}
0<c \leq \frac{1}{n}\left\|D f^{n}(\bar{x})\right\| \leq C \tag{1}
\end{equation*}
$$

for every $\bar{x} \in \mathbb{T}^{2}$ and $n \in \mathbb{N}$.
One of the examples of ergodic measure-preserving diffeomorphisms with linear growth of the derivative is any skew product of any irrational rotation on the circle and any circle smooth cocycle with non-zero degree. Let $\alpha \in \mathbb{T}$ be an irrational number and let $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ be a C^{1}-cocycle. We denote by $d(\varphi)$ the topological degree of φ. Consider the skew product $T_{\alpha, \varphi}:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ defined by

$$
T_{\alpha, \varphi}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha, x_{2}+\varphi\left(x_{1}\right)\right) .
$$

Lemma 1. The sequence $n^{-1} D T_{\alpha, \varphi}^{n}$ converges uniformly to the matrix $\left[\begin{array}{cc}0 & 0 \\ d(\varphi) & 0\end{array}\right]$.
Proof. Observe that

$$
\frac{1}{n} D T_{\alpha, \varphi}^{n}\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
\frac{1}{n} & 0 \\
\frac{1}{n} \sum_{k=0}^{n-1} D \varphi\left(x_{1}+k \alpha\right) & \frac{1}{n}
\end{array}\right]
$$

By the ergodic theorem, the sequence $n^{-1} \sum_{k=0}^{n-1} D \varphi(\cdot+k \alpha)$ converges uniformly to the number $\int_{\mathbb{T}} D \varphi(x) d x=d(\varphi)$.

It follows that if $d(\varphi) \neq 0$, then $T_{\alpha, \varphi}$ has linear growth of the derivative. Let $r \in \mathbb{N}$. It is easy to check that if φ is of class C^{r}, then

$$
\max _{1 \leq i \leq r} \sup _{n \in \mathbb{N}} \sup _{\bar{x} \in \mathbb{T}^{2}} \frac{1}{n}\left\|D^{i} T_{\alpha, \varphi}^{n}(\bar{x})\right\|<\infty .
$$

Our definition has a nice property because the linear growth of the derivative is invariant under the relation of smooth conjugation. Indeed, suppose that two C^{r}-diffeomorphisms f_{1} and f_{2} of \mathbb{T}^{2} are C^{r}-conjugated, i.e. there exists C^{r}-diffeomorphism $\psi: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ such that

$$
f_{1} \circ \psi=\psi \circ f_{2}
$$

Then

$$
D f_{1}^{n} \circ \psi=D \psi \circ f_{2}^{n} \cdot D f_{2}^{n} \cdot D \psi^{-1} \circ \psi
$$

and

$$
D f_{2}^{n}=D \psi^{-1} \circ \psi \circ f_{2}^{n} \cdot D f_{1}^{n} \circ \psi \cdot D \psi
$$

for any natural n. Therefore

$$
K^{-1}\left\|D f_{2}^{n}(\bar{x})\right\| \leq\left\|D f_{1}^{n}(\psi \bar{x})\right\| \leq K\left\|D f_{2}^{n}(\bar{x})\right\|
$$

for every $\bar{x} \in \mathbb{T}^{2}$ and $n \in \mathbb{N}$, where

$$
K=\sup _{\bar{x} \in \mathbb{T}^{2}}\|D \psi(\bar{x})\| \cdot \sup _{\bar{x} \in \mathbb{T}^{2}}\left\|D \psi^{-1}(\bar{x})\right\| .
$$

It follows that if

$$
0<c \leq \frac{1}{n}\left\|D f_{1}^{n}(\bar{x})\right\| \leq C,
$$

then

$$
0<c / K \leq \frac{1}{n}\left\|D f_{2}^{n}(\bar{x})\right\| \leq C K
$$

for every $\bar{x} \in \mathbb{T}^{2}$ and $n \in \mathbb{N}$. Moreover, if $\psi: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is a group automorphism, then

$$
D^{i} f_{1}^{n}(\psi \bar{x}) \cdot(D \psi(\bar{x}))^{i}=D \psi(\bar{x}) \cdot D^{i} f_{2}^{n}(\bar{x})
$$

for any $\bar{x} \in \mathbb{T}^{2}$ and $1 \leq i \leq r$. Therefore there exists $M>0$ such that

$$
M^{-1} \sup _{1 \leq i \leq r}\left\|D^{i} f_{2}^{n}(\bar{x})\right\| \leq \sup _{1 \leq i \leq r}\left\|D^{i} f_{1}^{n}(\psi \bar{x})\right\| \leq M \sup _{1 \leq i \leq r}\left\|D^{i} f_{2}^{n}(\bar{x})\right\|
$$

for every $\bar{x} \in \mathbb{T}^{2}$ and $n \in \mathbb{N}$.
Let $\langle B,\|\cdot\|\rangle$ be a Banach space and let $r \in \mathbb{N} \cup\{0\}$. We will denote by $C^{k}\left(\mathbb{T}^{2}, B\right)$ the space C^{k}-functions $f: \mathbb{T}^{2} \rightarrow B$ endowed with the norm given by

$$
\|f\|_{r}=\max _{0 \leq i \leq r} \sup _{\bar{x} \in \mathbb{T}^{2}}\left\|D^{i} f(\bar{x})\right\| .
$$

From this, we reach the following conclusion.

COROLLARY 2. If a measure-preserving C^{3}-diffeomorphism $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ is algebraically conjugate to a skew product of an irrational rotation on the circle and a circle C^{3}-cocycle with non-zero degree, then:

- $\quad f$ is ergodic;
- $\quad f$ has linear growth of the derivative; and
- the sequence $\left\{n^{-1} D f^{n}\right\}_{n \in \mathbb{N}}$ is bounded in $C^{2}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$.

In this paper we will prove the converse of Corollary 2.
THEOREM 3. (Main theorem) Let $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ be a measure-preserving C^{3}-diffeomorphism. Suppose that:

- $\quad f$ is ergodic;
- $\quad f$ has linear growth of the derivative; and
- the sequence $\left\{n^{-1} D f^{n}\right\}_{n \in \mathbb{N}}$ is bounded in $C^{2}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$.

Then f is algebraically conjugate to a skew product of an irrational rotation on the circle and a circle C^{3}-cocycle with non-zero degree.

In addition, our theorem leads to the following conclusion. If f is ergodic, has linear growth of the derivative and the sequence $\left\{n^{-1} D f^{n}\right\}_{n \in \mathbb{N}}$ is bounded in the C^{2}-norm, then f has a countable Lebesgue spectrum on the orthocomplement of its eigenfunctions.
3. General remarks about the linear growth

Let $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ be a measure-preserving C^{3}-diffeomorphism. Assume that f has linear growth of the derivative, i.e. satisfies (1). In this section it is shown that there is something like an 'unstable' and a 'stable' direction for f at each point. A direction $u(\bar{x}) \in S^{1}$ is 'unstable' if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\left\|D f^{n}(\bar{x}) u(\bar{x})\right\|-\left\|D f^{n}(\bar{x})\right\|\right)=0 \tag{2}
\end{equation*}
$$

and a direction $v(\bar{x}) \in S^{1}$ is 'stable' if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n}\left\|D f^{n}(\bar{x}) v(\bar{x})\right\|=0 \tag{3}
\end{equation*}
$$

Moreover, if the sequence $\left\{n^{-1} D f^{n}\right\}_{n \in \mathbb{N}}$ is bounded in $C^{1}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$, then u and v can be chosen in a smooth way and they are unique up to ± 1.

Fix $\bar{x} \in \mathbb{T}^{2}$ and $n \in \mathbb{N}$. Set $B_{n}(\bar{x})=D f^{n}(\bar{x})$. Let $A_{n}(\bar{x}) \in M_{2}(\mathbb{R})$ be a (positive) symmetric matrix such that $A_{n}(\bar{x})^{2}=B_{n}(\bar{x})^{T} B_{n}(\bar{x})$. Let $\lambda_{n}(\bar{x})>\mu_{n}(\bar{x})>0$ be eigenvalues of $A_{n}(\bar{x})$. Then $\lambda_{n}(\bar{x}) \mu_{n}(\bar{x})=1$ and $\lambda_{n}(\bar{x})=\left\|A_{n}(\bar{x})\right\|=\left\|B_{n}(\bar{x})\right\|$. Hence $n c \leq \lambda_{n}(\bar{x}) \leq n C$. Let $u_{n}(\bar{x})$ and $v_{n}(\bar{x})$ be the normalized eigenvectors of $A_{n}(\bar{x})$ with eigenvalues $\lambda_{n}(\bar{x})$ and $\mu_{n}(\bar{x})$. Then $u_{n}(\bar{x})$ and $v_{n}(\bar{x})$ are perpendicular.

Lemma 4. If $\left\langle u_{n}(\bar{x}), u_{n+1}(\bar{x})\right\rangle \geq 0$ for $n \geq n_{0}$, then $\lim _{n \rightarrow \infty} u_{n}(\bar{x})=u(\bar{x})$. Moreover, there exists $K>0$ independent of \bar{x} and n_{0} such that $\left\|u_{n}(\bar{x})-u(\bar{x})\right\| \leq K / n$ for $n \geq n_{0}$ and

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\left\|D f^{n}(\bar{x}) u(\bar{x})\right\|-\left\|D f^{n}(\bar{x})\right\|\right)=0
$$

If $\left\langle v_{n}(\bar{x}), v_{n+1}(\bar{x})\right\rangle \geq 0$ for $n \geq n_{0}$, then $\lim _{n \rightarrow \infty} v_{n}(\bar{x})=v(\bar{x})$. Moreover, $\| v_{n}(\bar{x})-$ $v(\bar{x}) \| \leq K / n$ for $n \geq n_{0}$ and

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left\|D f^{n}(\bar{x}) v(\bar{x})\right\|=0
$$

Proof. Since $0 \leq\left\langle u_{n}(\bar{x}), u_{n+1}(\bar{x})\right\rangle \leq 1$, we have

$$
\left\|u_{n}(\bar{x})-u_{n+1}(\bar{x})\right\|^{2}=2\left(1-\left\langle u_{n}(\bar{x}), u_{n+1}(\bar{x})\right\rangle\right) \leq 2\left(1-\left\langle u_{n}(\bar{x}), u_{n+1}(\bar{x})\right\rangle^{2}\right) .
$$

On the other hand,

$$
1=\left\|u_{n}(\bar{x})\right\|^{2}=\left\langle u_{n}(\bar{x}), u_{n+1}(\bar{x})\right\rangle^{2}+\left\langle u_{n}(\bar{x}), v_{n+1}(\bar{x})\right\rangle^{2}
$$

Hence

$$
\left\|u_{n}(\bar{x})-u_{n+1}(\bar{x})\right\| \leq \sqrt{2}\left|\left\langle u_{n}(\bar{x}), v_{n+1}(\bar{x})\right\rangle\right| .
$$

However,

$$
\begin{aligned}
\left|\left\langle u_{n}(\bar{x}), v_{n+1}(\bar{x})\right\rangle\right| & =\frac{1}{\lambda_{n}(\bar{x})}\left|\left\langle A_{n}(\bar{x}) u_{n}(\bar{x}), v_{n+1}(\bar{x})\right\rangle\right| \\
& =\frac{1}{\lambda_{n}(\bar{x})}\left|\left\langle u_{n}(\bar{x}), A_{n}(\bar{x}) v_{n+1}(\bar{x})\right\rangle\right| \\
& \leq \frac{1}{\lambda_{n}(\bar{x})}\left\|B_{n}(\bar{x}) v_{n+1}(\bar{x})\right\| \\
& =\frac{1}{\lambda_{n}(\bar{x})}\left\|D f^{-1}\left(f^{n+1} \bar{x}\right) D f^{n+1}(\bar{x}) v_{n+1}(\bar{x})\right\| \\
& \leq \frac{1}{\lambda_{n}(\bar{x})} \sup _{\bar{y} \in \mathbb{T}^{2}}\left\|D f^{-1}(\bar{y})\right\|\left\|A_{n+1}(\bar{x}) v_{n+1}(\bar{x})\right\| \\
& =\frac{1}{\lambda_{n}(\bar{x}) \lambda_{n+1}(\bar{x})} \sup _{\bar{y} \in \mathbb{T}^{2}}\left\|D f^{-1}(\bar{y})\right\| .
\end{aligned}
$$

It follows that

$$
\left\|u_{n}(\bar{x})-u_{n+1}(\bar{x})\right\| \leq \frac{K}{n^{2}}
$$

for $n \geq n_{0}$, where $K=\sqrt{2} \sup _{\bar{y} \in \mathbb{T}^{2}}\left\|D f^{-1}(\bar{y})\right\| / c^{2}$. Therefore

$$
\lim _{n \rightarrow \infty} u_{n}(\bar{x})=u(\bar{x}) \quad \text { and } \quad\left\|u_{n}(\bar{x})-u(\bar{x})\right\| \leq K / n
$$

for $n \geq n_{0}$. Similarly, we can prove that

$$
\lim _{n \rightarrow \infty} v_{n}(\bar{x})=v(\bar{x}) \quad \text { and } \quad\left\|v_{n}(\bar{x})-v(\bar{x})\right\| \leq K / n
$$

for $n \geq n_{0}$. Moreover,

$$
\begin{aligned}
\frac{1}{n}\left(\left\|D f^{n}(\bar{x}) u(\bar{x})\right\|-\left\|D f^{n}(\bar{x})\right\|\right) & =\frac{1}{n}\left(\left\|A_{n}(\bar{x}) u(\bar{x})\right\|-\lambda_{n}(\bar{x})\right) \\
& \leq \frac{1}{n}\left(\left\|A_{n}(\bar{x})\left(u(\bar{x})-u_{n}(\bar{x})\right)\right\|+\left\|A_{n}(\bar{x}) u_{n}(\bar{x})\right\|-\lambda_{n}(\bar{x})\right) \\
& \leq \frac{1}{n}\left\|A_{n}(\bar{x})\right\|\left\|u(\bar{x})-u_{n}(\bar{x})\right\| \\
& \leq \frac{C K}{n}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{n}\left\|D f^{n}(\bar{x}) v(\bar{x})\right\| & \leq \frac{1}{n}\left(\left\|A_{n}(\bar{x})\left(v(\bar{x})-v_{n}(\bar{x})\right)\right\|+\left\|A_{n}(\bar{x}) v_{n}(\bar{x})\right\|\right) \\
& \leq \frac{1}{n}\left(\left\|A_{n}(\bar{x})\right\|\left\|v(\bar{x})-v_{n}(\bar{x})\right\|+\mu_{n}(\bar{x})\right) \leq \frac{C K}{n}+\frac{1}{c n^{2}}
\end{aligned}
$$

for $n \geq n_{0}$. Letting $n \rightarrow \infty$, we obtain our claim.
Lemma 5. Let $\bar{x} \in \mathbb{T}^{2}$ and let $\left\{n_{i}\right\}_{i \in \mathbb{N}}$ be an increasing sequence of natural numbers. Suppose that $u^{1}, v^{1}, u^{2}, v^{2} \in S^{1}$ satisfy

$$
\lim _{i \rightarrow \infty} \frac{1}{n_{i}}\left(\left\|D f^{n_{i}}(\bar{x}) u^{j}\right\|-\left\|D f^{n_{i}}(\bar{x})\right\|\right)=\lim _{i \rightarrow \infty} \frac{1}{n_{i}}\left\|D f^{n_{i}}(\bar{x}) v^{j}\right\|=0
$$

for $j=1,2$. Assume that $u^{1} \perp v^{1}$. Then $u^{2}= \pm u^{1}$ and $v^{2}= \pm v^{1}$.
Proof. Since $u^{1} \perp v^{1}$, we have

$$
\left\|D f^{n}(\bar{x}) u^{2}\right\|=\left\|\left\langle u^{2}, u^{1}\right\rangle D f^{n}(\bar{x}) u^{1}+\left\langle u^{2}, v^{1}\right\rangle D f^{n}(\bar{x}) v^{1}\right\|
$$

and

$$
\left|\left\langle u^{2}, v^{1}\right\rangle\right|\left\|D f^{n}(\bar{x}) v^{1}\right\| \geq\left|\left\|D f^{n}(\bar{x}) u^{2}\right\|-\left|\left\langle u^{2}, u^{1}\right\rangle\right|\left\|D f^{n}(\bar{x}) u^{1}\right\|\right|
$$

for all n. It follows that

$$
\begin{aligned}
\left|\left\langle u^{2}, v^{1}\right\rangle\right| \frac{1}{n_{i}}\left\|D f^{n_{i}}(\bar{x}) v^{1}\right\| \geq & \left\lvert\, \frac{1}{n_{i}}\left(\left\|D f^{n_{i}}(\bar{x}) u^{2}\right\|-\left\|D f^{n_{i}}(\bar{x})\right\|\right)\right. \\
& -\left|\left\langle u^{2}, u^{1}\right\rangle\right| \frac{1}{n_{i}}\left(\left\|D f^{n_{i}}(\bar{x}) u^{1}\right\|-\left\|D f^{n_{i}}(\bar{x})\right\|\right) \\
& \left.+\left(1-\left|\left\langle u^{2}, u^{1}\right\rangle\right|\right) \frac{1}{n_{i}}\left\|D f^{n_{i}}(\bar{x})\right\| \right\rvert\,
\end{aligned}
$$

for any natural i. Letting $i \rightarrow \infty$, we obtain

$$
\lim _{i \rightarrow \infty}\left(1-\left|\left\langle u^{2}, u^{1}\right\rangle\right|\right) \frac{1}{n_{i}}\left\|D f^{n_{i}}(\bar{x})\right\|=0
$$

Since $n^{-1}\left\|D f^{n}(\bar{x})\right\| \geq c>0$ for any natural n, we conclude that $\left\langle u^{2}, u^{1}\right\rangle= \pm 1$, hence that $u^{2}= \pm u^{1}$. Similarly we can prove that $v^{2}= \pm v^{1}$.
Lemma 6. Assume that $\sup _{n \in \mathbb{N}} n^{-1}\left\|D f^{n}\right\|_{1}=M<\infty$. Then there exist $r>0$ and $L>0$ such that for every $\bar{x}_{0} \in \mathbb{R}^{2}$ we can choose $u, v: \mathbb{R}^{2} \rightarrow S^{1}$ satisfying (2) and (3) for which the functions $u, v:\left\{\bar{x} \in \mathbb{R}^{2}:\left\|\bar{x}-\bar{x}_{0}\right\|<r\right\} \rightarrow S^{1}$ are Lipschitz with constant equal L.

Proof. First, choose sequences $\left\{u_{n}\left(\bar{x}_{0}\right)\right\}_{n \in \mathbb{N}}$ and $\left\{v_{n}\left(\bar{x}_{0}\right)\right\}_{n \in \mathbb{N}}$ with $\left\langle u_{n}\left(\bar{x}_{0}\right), u_{n+1}\left(\bar{x}_{0}\right)\right\rangle \geq 0$ and $\left\langle v_{n}\left(\bar{x}_{0}\right), v_{n+1}\left(\bar{x}_{0}\right)\right\rangle \geq 0$ for every natural n. By Lemma $4, \lim _{n \rightarrow \infty} u_{n}\left(\bar{x}_{0}\right)=u\left(\bar{x}_{0}\right)$ and $\left\|u_{n}\left(\bar{x}_{0}\right)-u\left(\bar{x}_{0}\right)\right\| \leq K / n$.

Let $\bar{x} \in \mathbb{R}^{2}$. Choose a sequence $\left\{u_{n}(\bar{x})\right\}_{n \in \mathbb{N}}$ for which $\left\langle u_{n}\left(\bar{x}_{0}\right), u_{n}(\bar{x})\right\rangle \geq 0$ for any natural n. Then

$$
\begin{aligned}
& \left|\left\langle u_{n}\left(\bar{x}_{0}\right), u_{n+1}\left(\bar{x}_{0}\right)\right\rangle-\left\langle u_{n}(\bar{x}), u_{n+1}(\bar{x})\right\rangle\right| \\
& \quad \leq\left|\left\langle u_{n}\left(\bar{x}_{0}\right)-u_{n}(\bar{x}), u_{n+1}\left(\bar{x}_{0}\right)\right\rangle\right|+\left|\left\langle u_{n}(\bar{x}), u_{n+1}\left(\bar{x}_{0}\right)-u_{n+1}(\bar{x})\right\rangle\right| \\
& \quad \leq\left\|u_{n}\left(\bar{x}_{0}\right)-u_{n}(\bar{x})\right\|+\left\|u_{n+1}\left(\bar{x}_{0}\right)-u_{n+1}(\bar{x})\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|u_{n}\left(\bar{x}_{0}\right)-u_{n}(\bar{x})\right\|^{2} & =2\left(1-\left\langle u_{n}\left(\bar{x}_{0}\right), u_{n}(\bar{x})\right\rangle\right) \\
& \leq 2\left(1-\left\langle u_{n}\left(\bar{x}_{0}\right), u_{n}(\bar{x})\right\rangle^{2}\right) \\
& =2\left\langle u_{n}\left(\bar{x}_{0}\right), v_{n}(\bar{x})\right\rangle^{2}
\end{aligned}
$$

because

$$
1=\left\|u_{n}\left(\bar{x}_{0}\right)\right\|^{2}=\left\langle u_{n}\left(\bar{x}_{0}\right), u_{n}(\bar{x})\right\rangle^{2}+\left\langle u_{n}\left(\bar{x}_{0}\right), v_{n}(\bar{x})\right\rangle^{2} .
$$

Therefore

$$
\begin{aligned}
\frac{1}{\sqrt{2}}\left\|u_{n}\left(\bar{x}_{0}\right)-u_{n}(\bar{x})\right\| & =\left|\left\langle u_{n}\left(\bar{x}_{0}\right), v_{n}(\bar{x})\right\rangle\right| \\
& =\frac{1}{\lambda_{n}\left(\bar{x}_{0}\right)}\left|\left\langle A_{n}\left(\bar{x}_{0}\right) u_{n}\left(\bar{x}_{0}\right), v_{n}(\bar{x})\right\rangle\right| \\
& =\frac{1}{\lambda_{n}\left(\bar{x}_{0}\right)}\left|\left\langle u_{n}\left(\bar{x}_{0}\right), A_{n}\left(\bar{x}_{0}\right) v_{n}(\bar{x})\right\rangle\right| \\
& \leq \frac{1}{\lambda_{n}\left(\bar{x}_{0}\right)}\left\|A_{n}\left(\bar{x}_{0}\right) v_{n}(\bar{x})\right\| \\
& =\frac{1}{\lambda_{n}\left(\bar{x}_{0}\right)}\left\|D f^{n}\left(\bar{x}_{0}\right) v_{n}(\bar{x})\right\| \\
& \leq \frac{1}{\lambda_{n}\left(\bar{x}_{0}\right)}\left(\left\|\left(D f^{n}\left(\bar{x}_{0}\right)-D f^{n}(\bar{x})\right) v_{n}(\bar{x})\right\|+\left\|D f^{n}(\bar{x}) v_{n}(\bar{x})\right\|\right) \\
& \leq \frac{1}{\lambda_{n}\left(\bar{x}_{0}\right)}\left(\sup _{\bar{y} \in \mathbb{T}^{2}}\left\|D^{2} f^{n}(\bar{y})\right\|\left\|\bar{x}_{0}-\bar{x}\right\|+\mu_{n}(\bar{x})\right) \\
& \leq \frac{M}{c}\left\|\bar{x}_{0}-\bar{x}\right\|+\frac{1}{c^{2} n^{2}} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left\|u_{n}\left(\bar{x}_{0}\right)-u_{n}(\bar{x})\right\| \leq L\left\|\bar{x}_{0}-\bar{x}\right\|+\frac{d}{n^{2}} \tag{4}
\end{equation*}
$$

and

$$
\left|\left\langle u_{n}\left(\bar{x}_{0}\right), u_{n+1}\left(\bar{x}_{0}\right)\right\rangle-\left\langle u_{n}(\bar{x}), u_{n+1}(\bar{x})\right\rangle\right| \leq 2 L\left\|\bar{x}_{0}-\bar{x}\right\|+\frac{2 d}{n^{2}},
$$

where $L=\sqrt{2} M / c$ and $d=\sqrt{2} / c^{2}$. Since

$$
\left\langle u_{n}\left(\bar{x}_{0}\right), u_{n+1}\left(\bar{x}_{0}\right)\right\rangle=1-\frac{1}{2}\left\|u_{n}\left(\bar{x}_{0}\right)-u_{n+1}\left(\bar{x}_{0}\right)\right\|^{2} \geq 1-\frac{2 K^{2}}{n^{2}},
$$

it follows that

$$
\left\langle u_{n}(\bar{x}), u_{n+1}(\bar{x})\right\rangle \geq 1-\frac{2\left(K^{2}+d\right)}{n^{2}}-2 L\left\|\bar{x}_{0}-\bar{x}\right\|
$$

for any natural n.
Choose $n_{0} \in \mathbb{N}$ such that $1-2\left(K^{2}+d\right) / n^{2}>1 / 2$ for $n \geq n_{0}$ and fix $r=1 / 4 L$. Suppose that $\left\|\bar{x}_{0}-\bar{x}\right\|<r$. Then

$$
\left\langle u_{n}(\bar{x}), u_{n+1}(\bar{x})\right\rangle \geq \frac{1}{2}-2 L r=0
$$

for $n \geq n_{0}$. By Lemma 4, $\lim _{n \rightarrow \infty} u_{n}(\bar{x})=u(\bar{x})$. However, letting $n \rightarrow \infty$ in (4), we obtain

$$
\left\|u\left(\bar{x}_{0}\right)-u(\bar{x})\right\| \leq L\left\|\bar{x}_{0}-\bar{x}\right\| .
$$

Similarly we can prove that if $\left\|\bar{x}_{0}-\bar{x}\right\|<r$, then

$$
\left\|v\left(\bar{x}_{0}\right)-v(\bar{x})\right\| \leq L\left\|\bar{x}_{0}-\bar{x}\right\| .
$$

Let $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ be a measure-preserving C^{3}-diffeomorphism. Assume that f has linear growth of the derivative and the sequence $\left\{n^{-1} D f^{n}\right\}_{n \in \mathbb{N}}$ is bounded in the space $C^{1}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$. Let $\left\{u_{n}\right\}_{n \in \mathbb{N}},\left\{v_{n}\right\}_{n \in \mathbb{N}}$ be sequences of \mathbb{Z}^{2}-periodic functions on \mathbb{R}^{2} such that

$$
\left\langle u_{n}(\bar{x}), u_{n+1}(\bar{x})\right\rangle \geq 0 \quad \text { and } \quad\left\langle v_{n}(\bar{x}), v_{n+1}(\bar{x})\right\rangle \geq 0
$$

for every $\bar{x} \in \mathbb{R}^{2}$ and $n \in \mathbb{N}$. By Lemma 4, there exist \mathbb{Z}^{2}-periodic functions $u, v: \mathbb{R}^{2} \rightarrow$ S^{1} such that

$$
\lim _{n \rightarrow \infty} u_{n}(\bar{x})=u(\bar{x}) \quad \text { and } \quad \lim _{n \rightarrow \infty} v_{n}(\bar{x})=v(\bar{x})
$$

for every $\bar{x} \in \mathbb{R}^{2}$. By $p: \mathbb{R}^{2} \rightarrow \mathbb{P R}(1)$ we mean the projection \mathbb{R}^{2} on the real projection space $\mathbb{P R}(1)$. By Lemma 6, the functions $p \circ u, p \circ v: \mathbb{R}^{2} \rightarrow \mathbb{P} \mathbb{R}(1)$ are Lipschitz continuous. It follows that there exist Lipschitz functions $\tilde{u}, \tilde{v}: \mathbb{R}^{2} \rightarrow S^{1}$ such that $p \circ \tilde{u}=p \circ u$ and $p \circ \tilde{v}=p \circ v$. Since $u: \mathbb{R}^{2} \rightarrow S^{1}$ is \mathbb{Z}^{2}-periodic,

$$
p \circ \tilde{u}\left(x_{1}+1, x_{2}\right)=p \circ u\left(x_{1}+1, x_{2}\right)=p \circ u\left(x_{1}, x_{2}\right)=p \circ \tilde{u}\left(x_{1}, x_{2}\right)
$$

for every $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Therefore there exists a function $\varepsilon: \mathbb{R}^{2} \rightarrow\{-1,1\}$ such that

$$
\tilde{u}\left(x_{1}+1, x_{2}\right)=\varepsilon\left(x_{1}, x_{2}\right) \tilde{u}\left(x_{1}, x_{2}\right)
$$

Since $\varepsilon\left(x_{1}, x_{2}\right)=\left\langle\tilde{u}\left(x_{1}, x_{2}\right), \tilde{u}\left(x_{1}+1, x_{2}\right)\right\rangle$, the function ε is continuous, hence ε is constant. It follows that

$$
\tilde{u}\left(x_{1}+2, x_{2}\right)=\varepsilon \tilde{u}\left(x_{1}+1, x_{2}\right)=\tilde{u}\left(x_{1}, x_{2}\right)
$$

for any $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Similarly,

$$
\tilde{u}\left(x_{1}, x_{2}+2\right)=\tilde{u}\left(x_{1}, x_{2}\right) \quad \text { and } \quad \tilde{v}\left(x_{1}+2, x_{2}\right)=\tilde{v}\left(x_{1}, x_{2}+2\right)=\tilde{v}\left(x_{1}, x_{2}\right)
$$

for any $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.
Let $\rho: \mathbb{R}^{2}\left(\mathbb{T}^{2}\right) \rightarrow \mathbb{R}^{2}\left(\mathbb{T}^{2}\right)$ denote the endomorphism $\rho\left(x_{1}, x_{2}\right)=\left(2 x_{1}, 2 x_{2}\right)$. Then the functions $\widehat{u}=\tilde{u} \circ \rho$ and $\widehat{v}=\tilde{v} \circ \rho$ are \mathbb{Z}^{2}-periodic. From this, we obtain the following conclusion.

COROLLARY 7. Let $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ be a measure-preserving C^{3}-diffeomorphism. Assume that f has linear growth of the derivative and the sequence $\left\{n^{-1} D f^{n}\right\}_{n \in \mathbb{N}}$ is bounded in $C^{1}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$. Then there exist Lipschitz functions $\tilde{u}, \tilde{v}: \mathbb{R}^{2} \rightarrow S^{1}$ such that the functions $\widehat{u}=\tilde{u} \circ \rho$ and $\widehat{v}=\tilde{v} \circ \rho$ are \mathbb{Z}^{2}-periodic, $\tilde{u}(\bar{x}) \perp \tilde{v}(\bar{x})$ and

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\left\|D f^{n}(\bar{x}) \tilde{u}(\bar{x})\right\|-\left\|D f^{n}(\bar{x})\right\|\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left\|D f^{n}(\bar{x}) \tilde{v}(\bar{x})\right\|=0
$$

for every $\bar{x} \in \mathbb{R}^{2}$.

For a given measure-preserving C^{3}-diffeomorphism $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ we will denote by $\widehat{f}:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ the measure-preserving C^{3}-diffeomorphism

$$
\begin{equation*}
\widehat{f}\left(x_{1}, x_{2}\right)=\left(\frac{1}{2} f_{1}\left(2 x_{1}, 2 x_{2}\right), \frac{1}{2} f_{2}\left(2 x_{1}, 2 x_{2}\right)\right) . \tag{5}
\end{equation*}
$$

Note that $f \circ \rho=\rho \circ \widehat{f}$. Moreover, $D^{k} \widehat{f^{n}}=2^{k-1} D^{k} f^{n} \circ \rho$ for any natural k and

$$
\left\|D \widehat{f}^{n}(\bar{x}) \widehat{u}(\bar{x})\right\|-\left\|D \widehat{f}^{n}(\bar{x})\right\|=\left\|D f^{n}(\rho \bar{x}) \tilde{u}(\rho \bar{x})\right\|-\left\|D f^{n}(\rho \bar{x})\right\|
$$

and

$$
\left\|D \widehat{f^{n}}(\bar{x}) \widehat{v}(\bar{x})\right\|=\left\|D f^{n}(\rho \bar{x}) \tilde{v}(\rho \bar{x})\right\| .
$$

From this, we obtain the following corollary.
COROLLARY 8. Suppose that $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ is a measure-preserving C^{3}-diffeomorphism with linear growth of the derivative such that the sequence $\left\{n^{-1} D f^{n}\right\}_{n \in \mathbb{N}}$ is bounded in $C^{2}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$. Then the measure-preserving C^{3}-diffeomorphism $\widehat{f}:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ satisfies the following conditions:

- $\quad \widehat{f}$ has linear growth of the derivative;
- the sequence $\left\{n^{-1} D \widehat{f}^{n}\right\}_{n \in \mathbb{N}}$ is bounded in $C^{2}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$;
- there exist Lipschitz functions $\widehat{u}, \widehat{v}: \mathbb{T}^{2} \rightarrow S^{1}$ such that $\widehat{u}(\bar{x}) \perp \widehat{v}(\bar{x})$ and

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\left\|D \widehat{f}^{n}(\bar{x}) \widehat{u}(\bar{x})\right\|-\left\|D \widehat{f}^{n}(\bar{x})\right\|\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left\|D \widehat{f^{n}}(\bar{x}) \widehat{v}(\bar{x})\right\|=0
$$

for every $\bar{x} \in \mathbb{T}^{2}$.

4. A few properties of \widehat{f}

In this section we prove a few properties of the diffeomorphism \widehat{f} which we will need in the following sections. Let $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ be a measure-preserving automorphism of standard Borel space. We will denote by \mathcal{A}_{T} the σ-algebra of \mathcal{B} measurable T-invariant sets.

LEMMA 9. If there exists $c>0$ such that $\mu(A) \geq c$ for every set $A \in \mathcal{A}_{T}$ with positive measure, then the σ-algebra \mathcal{A}_{T} is finite.
Proof. Consider the family $\mathcal{S}=\left\{A \in \mathcal{A}_{T}: \mu(A) \geq c\right\}$ endowed with the order given by the relation of inclusion. Let $\left\{A_{\gamma}: \gamma \in \Gamma\right\}$ be a chain in \mathcal{S}. Then $\bigcap_{\gamma \in \Gamma} A_{\gamma} \in \mathcal{A}_{T}$. Since $\mu\left(A_{\gamma}\right) \geq c$ for every $\gamma \in \Gamma$, we conclude that $\mu\left(\bigcap_{\gamma \in \Gamma} A_{\gamma}\right) \geq c>0$, hence that $\bigcap_{\gamma \in \Gamma} A_{\gamma} \in \mathcal{S}$. By the Kuratowski-Zorn lemma, for any $A \in \mathcal{S}$ there exists a minimal set $B \in \mathcal{S}$ with $B \subset A$. It follows easily that we can find a finite collection $\left\{A_{1}, \ldots, A_{k}\right\}$ pairwise disjoint minimal sets in \mathcal{S} such that $\mu\left(\bigcup_{i=1}^{k} A_{k}\right)=1$. Therefore \mathcal{A}_{T} is generated by the sets A_{1}, \ldots, A_{k}.

Lemma 10. If \mathcal{A}_{T} is finite, then $\mathcal{A}_{T^{m}}$ is finite for any natural m.
Proof. Let $\left\{A_{1}, \ldots, A_{k}\right\}$ be a collection of pairwise disjoint sets, which generates the σ-algebra \mathcal{A}_{T}. Suppose that $A \in \mathcal{A}_{T^{m}}$ and $\mu(A)>0$. Then $\bigcup_{i=0}^{m-1} T^{i} A \in \mathcal{A}_{T}$. Hence

$$
\mu(A) \geq \frac{1}{m} \mu\left(\bigcup_{i=0}^{m-1} T^{i} A\right) \geq \frac{1}{m} \min _{1 \leq j \leq k} \mu\left(A_{j}\right)>0
$$

Lemma 9 now shows that $\mathcal{A}_{T^{m}}$ is finite, which completes the proof.

Let $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ be a smooth measure-preserving diffeomorphism. Represent f as

$$
f\left(x_{1}, x_{2}\right)=\left(a_{11} x_{1}+a_{12} x_{2}+\tilde{f}_{1}\left(x_{1}, x_{2}\right), a_{21} x_{1}+a_{22} x_{2}+\tilde{f}_{2}\left(x_{1}, x_{2}\right)\right)
$$

where $\left[a_{i j}\right]_{i, j=1,2} \in G L_{2}(\mathbb{Z})$ and $\tilde{f_{1}}, \tilde{f_{2}}: \mathbb{T}^{2} \rightarrow \mathbb{R}$. Then

$$
\widehat{f}\left(x_{1}, x_{2}\right)=\left(a_{11} x_{1}+a_{12} x_{2}+\frac{1}{2} \tilde{f}_{1}\left(2 x_{1}, 2 x_{2}\right), a_{21} x_{1}+a_{22} x_{2}+\frac{1}{2} \tilde{f}_{2}\left(2 x_{1}, 2 x_{2}\right)\right)
$$

Let $\sigma_{1}, \sigma_{2}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ denote the diffeomorphisms $\sigma_{1}\left(x_{1}, x_{2}\right)=\left(x_{1}+\frac{1}{2}, x_{2}\right), \sigma_{2}\left(x_{1}, x_{2}\right)=$ $\left(x_{1}, x_{2}+\frac{1}{2}\right)$. Then $\sigma_{i} \circ \sigma_{i}=\mathrm{Id}, \sigma_{1} \circ \sigma_{2}=\sigma_{2} \circ \sigma_{1}$ and $\rho \circ \sigma_{i}=\rho$ for $i=1,2$. Let $\varepsilon \in M_{2}(\mathbb{Z} / 2 \mathbb{Z})$ be defined by $\varepsilon_{i j}=2\left\{a_{i j} / 2\right\}$ for $i, j \in\{1,2\}$. Then

$$
\widehat{f} \circ \sigma_{j}=\sigma_{1}^{\varepsilon_{1 j}} \circ \sigma_{2}^{\varepsilon_{2 j}} \circ \widehat{f}
$$

for $j=1,2$. We have $\operatorname{det} \varepsilon \neq 0$, because \widehat{f} is a bijection. It follows that the matrix ε is equal to

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { or }\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { or }\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \text { or }\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { or }\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \text { or }\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] .
$$

Therefore $\varepsilon^{6}=\mathrm{Id}$ over the field $\mathbb{Z} / 2 \mathbb{Z}$. Hence

$$
\begin{equation*}
\widehat{f}^{6} \circ \sigma_{1}^{\varepsilon_{1}} \circ \sigma_{2}^{\varepsilon_{2}}=\sigma_{1}^{\varepsilon_{1}} \circ \sigma_{2}^{\varepsilon_{2}} \circ \widehat{f}^{6} \tag{6}
\end{equation*}
$$

for any $\varepsilon_{1}, \varepsilon_{2} \in\{-1,1\}$.
Lemma 11. If $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ is ergodic, then the σ-algebra $\mathcal{A}_{\widehat{f}}$ is finite.
Proof. Let $A \in \mathcal{A}_{\widehat{f}}$ with $\lambda(A)>0$. Set $A^{\prime}=A \cup \sigma_{1} A \cup \sigma_{2} A \cup \sigma_{1} \sigma_{2} A$. Then $A^{\prime} \in \mathcal{A}_{\widehat{f}}$ and $\sigma_{1} A^{\prime}=\sigma_{2} A^{\prime}=A^{\prime}$. Next set $A^{\prime \prime}=A^{\prime} \cap\left[0, \frac{1}{2}\right) \times\left[0, \frac{1}{2}\right)$. Then $A^{\prime}=A^{\prime \prime} \cup \sigma_{1} A^{\prime \prime} \cup \sigma_{2} A^{\prime \prime} \cup \sigma_{1} \sigma_{2} A^{\prime \prime}$ and

$$
\begin{aligned}
f\left(\rho A^{\prime \prime}\right) & =\rho \circ \widehat{f}\left(A^{\prime \prime}\right)=\rho\left(\widehat{f}\left(A^{\prime \prime}\right) \cup \sigma_{1} \widehat{f}\left(A^{\prime \prime}\right) \cup \sigma_{2} \widehat{f}\left(A^{\prime \prime}\right) \cup \sigma_{1} \sigma_{2} \widehat{f}\left(A^{\prime \prime}\right)\right) \\
& =\rho \circ \widehat{f}\left(A^{\prime \prime} \cup \sigma_{1} A^{\prime \prime} \cup \sigma_{2} A^{\prime \prime} \cup \sigma_{1} \sigma_{2} A^{\prime \prime}\right)=\rho \circ \widehat{f}\left(A^{\prime}\right)=\rho\left(A^{\prime}\right) \\
& =\rho\left(A^{\prime \prime} \cup \sigma_{1} A^{\prime \prime} \cup \sigma_{2} A^{\prime \prime} \cup \sigma_{1} \sigma_{2} A^{\prime \prime}\right)=\rho A^{\prime \prime} .
\end{aligned}
$$

By the ergodicity of $f, \lambda\left(\rho A^{\prime \prime}\right)=1$. Therefore

$$
\lambda\left(A \cup \sigma_{1} A \cup \sigma_{2} A \cup \sigma_{1} \sigma_{2} A\right)=\lambda\left(A^{\prime}\right)=\lambda\left(\rho^{-1}\left(\rho A^{\prime \prime}\right)\right)=\lambda\left(\rho A^{\prime \prime}\right)=1 .
$$

It follows that $\lambda(A) \geq 1 / 4$. Now we can apply Lemma 9 and the proof is complete.
Lemma 12. If $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ is ergodic, then there exists a dense subset $A \subset \mathbb{T}^{2}$ and an increasing sequence $\left\{n_{i}\right\}_{i \in \mathbb{N}}$ of natural numbers such that $\widehat{f}^{n_{i}} \bar{x} \rightarrow \bar{x}$ for every $\bar{x} \in A$.

Proof. By Lemmas 10 and 11, the σ-algebra $\mathcal{A}_{\widehat{f} 6}$ is finite. Let $\left\{A_{1}, \ldots, A_{s}\right\}$ be a collection of measurable pairwise disjoint sets (with positive measure), which generates $\mathcal{A}_{\widehat{f}^{6}}$. Let $\mathcal{U}_{1}=\left\{U \in \mathcal{U}: \lambda\left(U \cap A_{1}\right)=0\right\}$, where \mathcal{U} is the family all open subsets of \mathbb{T}^{2}. Set

$$
B_{1}=A_{1} \backslash \bigcup_{U \in \mathcal{U}_{1}} U
$$

Then $\lambda\left(B_{1}\right)=\lambda\left(A_{1}\right)$ and $\widehat{f}^{6} B_{1}=B_{1} \bmod \lambda$. Next set $B=\bigcap_{n \in \mathbb{Z}} \widehat{f}^{6 n} B_{1}$. Then $\widehat{f}^{6} B=B$ and $B \cap U \neq \emptyset, U \in \mathcal{U}$ implies $\lambda(B \cap U)>0$. Now consider the measurepreserving homeomorphism $\widehat{f}^{6}:(B, \lambda \mid B) \rightarrow(B, \lambda \mid B)$ (with the induced topology). Since $\widehat{f} \widehat{f}^{6}:(B, \lambda \mid B) \rightarrow(B, \lambda \mid B)$ and $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ are ergodic, there exists $\bar{x}_{0} \in B$ such that the sequence $\left\{\widehat{f}^{6 n} \bar{x}_{0}\right\}_{n \in \mathbb{N}}$ is dense in B and the sequence $\left\{f^{n} \rho \bar{x}_{0}\right\}_{n \in \mathbb{N}}$ is dense in \mathbb{T}^{2}. Choose an increasing sequence $\left\{m_{i}\right\}_{i \in \mathbb{N}}$ such that $\widehat{f}^{6 m_{i}} \bar{x}_{0} \rightarrow \bar{x}_{0}$. Define

$$
A=\left\{\sigma_{1}^{\varepsilon_{1}} \sigma_{2}^{\varepsilon_{2}} \widehat{f}^{n}\left(\bar{x}_{0}\right): \varepsilon_{1}, \varepsilon_{2} \in\{-1,1\}, n \in \mathbb{N}\right\}
$$

and $n_{i}=6 m_{i}$ for any $i \in \mathbb{N}$. First note that $\widehat{f}^{n_{i}} \bar{x} \rightarrow \bar{x}$ for every $\bar{x} \in A$. Indeed, let $\bar{x}=\sigma_{1}^{\varepsilon_{1}} \sigma_{2}^{\varepsilon_{2}} \widehat{f^{n}}\left(\bar{x}_{0}\right)$, where $\varepsilon_{1}, \varepsilon_{2} \in\{-1,1\}$ and $n \in \mathbb{N}$. From (6), it follows that

$$
\widehat{f}^{n_{i}} \bar{x}=\widehat{f}^{6 m_{i}} \sigma_{1}^{\varepsilon_{1}} \sigma_{2}^{\varepsilon_{2}} \widehat{f}^{n} \bar{x}_{0}=\sigma_{1}^{\varepsilon_{1}} \sigma_{2}^{\varepsilon_{2}} \widehat{f}^{n} \widehat{f}^{6 m_{i}} \bar{x}_{0} \rightarrow \sigma_{1}^{\varepsilon_{1}} \sigma_{2}^{\varepsilon_{2}} \widehat{f}^{n} \bar{x}_{0}=\bar{x} .
$$

Next we show that A is dense in \mathbb{T}^{2}. First observe that $\rho A=\left\{f^{n} \rho \bar{x}_{0}: n \in \mathbb{N}\right\}$ is dense in \mathbb{T}^{2} and $\sigma_{1} A=\sigma_{2} A=A$. Let $\bar{y} \in \mathbb{T}^{2}$. By the density of ρA, there exists a sequence $\left\{\bar{y}_{n}\right\}_{n \in \mathbb{N}}$ in A such that $\rho \bar{y}_{n} \rightarrow \rho \bar{y}$. Let $\left\{\bar{y}_{s_{i}}\right\}_{i \in \mathbb{N}}$ be a convergent subsequence with $\bar{y}^{\prime}=\lim _{i \rightarrow \infty} \bar{y}_{s_{i}}$. Then

$$
\rho \bar{y}=\lim _{i \rightarrow \infty} \rho \bar{y}_{s_{i}}=\rho \bar{y}^{\prime} .
$$

Therefore there exist $\varepsilon_{1}, \varepsilon_{2} \in\{-1,1\}$ such that $\bar{y}=\sigma_{1}^{\varepsilon_{1}} \sigma_{2}^{\varepsilon_{2}} \bar{y}^{\prime}$. Hence

$$
\bar{y}=\lim _{i \rightarrow \infty} \sigma_{1}^{\varepsilon_{1}} \sigma_{2}^{\varepsilon_{2}} \bar{y}_{s_{i}} \quad \text { and } \quad \sigma_{1}^{\varepsilon_{1}} \sigma_{2}^{\varepsilon_{2}} \bar{y}_{s_{i}} \in \sigma_{1}^{\varepsilon_{1}} \sigma_{2}^{\varepsilon_{2}} A=A
$$

which completes the proof.

5. Proof of the Main theorem

We will use the symbol $h_{x_{i}}$ to denote the partial derivative $\partial h / \partial x_{i}$. Let $\varepsilon \in\{-1,1\}$ be a number such that $\varepsilon=\operatorname{det} D f(\bar{x})$ for any $\bar{x} \in \mathbb{T}^{2}$. In this section we will show the following result, which leads to the Main theorem.

THEOREM 13. Let $f:\left(\mathbb{T}^{2}, \lambda\right) \rightarrow\left(\mathbb{T}^{2}, \lambda\right)$ be a measure-preserving C^{3}-diffeomorphism. Assume that:

- the σ-algebra \mathcal{A}_{f} is finite;
- there exists a dense subset $A \subset \mathbb{T}^{2}$ and an increasing sequence $\left\{s_{i}\right\}_{i \in \mathbb{N}}$ of natural numbers such that $f^{s_{i}} \bar{x} \rightarrow \bar{x}$ for every $\bar{x} \in A$;
- $\quad f$ has linear growth of the derivative;
- the sequence $\left\{n^{-1} D f^{n}\right\}_{n \in \mathbb{N}}$ is bounded in $C^{2}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$; and
- there exist Lipschitz functions $u, v: \mathbb{T}^{2} \rightarrow S^{1}$ such that $u(\bar{x}) \perp v(\bar{x})$ and

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\left\|D f^{n}(\bar{x}) u(\bar{x})\right\|-\left\|D f^{n}(\bar{x})\right\|\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left\|D f^{n}(\bar{x}) v(\bar{x})\right\|=0
$$

for every $\bar{x} \in \mathbb{T}^{2}$.
Then f is algebraically conjugate to a skew product of an irrational rotation on the circle and a circle C^{3}-cocycle with non-zero degree.

This immediately gives the following.

Proof of Theorem 3. By Corollary 8, Lemmas 11 and 12 and Theorem 13, there exists a group automorphism $B: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ such that

$$
B \circ \widehat{f} \circ B^{-1}\left(x_{1}, x_{2}\right)=T_{\alpha, \varphi}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha, x_{2}+\varphi\left(x_{1}\right)\right),
$$

where α is irrational and $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ is a C^{3}-cocycle with non-zero degree. Since ρ commutes with B and $B^{-1} \circ \sigma_{1}=\sigma_{1}^{\varepsilon_{1}} \circ \sigma_{2}^{\varepsilon_{2}} \circ B^{-1}$, where $\varepsilon_{1}, \varepsilon_{2} \in\{-1,1\}$, we have

$$
\begin{aligned}
\left(2 x_{1}+2 \alpha, 2 x_{2}+2 \varphi\left(x_{1}+\frac{1}{2}\right)\right) & =\rho \circ T_{\alpha, \varphi} \circ \sigma_{1}\left(x_{1}, x_{2}\right) \\
& =B \circ f \circ \rho \circ \sigma_{1}^{\varepsilon_{1}} \circ \sigma_{2}^{\varepsilon_{2}} \circ B^{-1}\left(x_{1}, x_{2}\right) \\
& =B \circ f \circ \rho \circ B^{-1}\left(x_{1}, x_{2}\right)=\rho \circ T_{\alpha, \varphi}\left(x_{1}, x_{2}\right) \\
& =\left(2 x_{1}+2 \alpha, 2 x_{2}+2 \varphi\left(x_{1}\right)\right) .
\end{aligned}
$$

It follows that $\varphi(x+1 / 2)=\varphi(x)+d(\varphi) / 2$. Define

$$
\tilde{\varphi}(x)=2 \varphi\left(\frac{1}{2} x\right)
$$

Then $\tilde{\varphi}: \mathbb{T} \rightarrow \mathbb{T}$ and $d(\tilde{\varphi})=d(\varphi) \neq 0$. Moreover,

$$
B \widehat{\circ f \circ} B^{-1}=B \circ \widehat{f} \circ B^{-1}=T_{\alpha, \varphi}=\widehat{T_{2 \alpha, \tilde{\varphi}}} .
$$

Therefore $B \circ f \circ B^{-1}=T_{2 \alpha, \tilde{\varphi}}$.
Remark. In the remainder of the paper assume that the system $[u(\bar{x}), v(\bar{x})]$ has a positive orientation, i.e. there exist Lipschitz functions $a, b: \mathbb{T}^{2} \rightarrow \mathbb{R}$ such that

$$
u(\bar{x})=\left[\begin{array}{l}
a(\bar{x}) \\
b(\bar{x})
\end{array}\right], \quad v(\bar{x})=\left[\begin{array}{c}
-b(\bar{x}) \\
a(\bar{x})
\end{array}\right]
$$

and $a^{2}(\bar{x})+b^{2}(\bar{x})=1$ for any $\bar{x} \in \mathbb{T}^{2}$.
To prove Theorem 13, we need the following lemmas.
Lemma 14. Under the assumptions of Theorem $13, u, v \in C^{1}\left(\mathbb{T}^{2}, \mathbb{R}^{2}\right)$.
Proof. Since the sequence $\left\{n^{-1} D f^{n}\right\}_{n \in \mathbb{N}}$ is bounded in $C^{2}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$, there exists a subsequence $\left\{n_{i}^{-1} D f^{n_{i}}\right\}_{i \in \mathbb{N}}$ convergent to a function h in $C^{1}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$. Then $0<c \leq$ $\|h(\bar{x})\| \leq C$ for any $\bar{x} \in \mathbb{T}^{2}$. Since $n^{-1} D f^{n}(\bar{x}) v(\bar{x}) \rightarrow 0$, we have $h(\bar{x}) v(\bar{x})=0$ for any $\bar{x} \in \mathbb{T}^{2}$. Therefore

$$
h(\bar{x})=\left[\begin{array}{ll}
c(\bar{x}) a(\bar{x}) & c(\bar{x}) b(\bar{x}) \\
d(\bar{x}) a(\bar{x}) & d(\bar{x}) b(\bar{x})
\end{array}\right],
$$

where $c, d: \mathbb{T}^{2} \rightarrow \mathbb{R}$ are Lipschitz functions given by

$$
\left[\begin{array}{l}
c(\bar{x}) \\
d(\bar{x})
\end{array}\right]=h(\bar{x})\left[\begin{array}{l}
a(\bar{x}) \\
b(\bar{x})
\end{array}\right] .
$$

Then $\|h(\bar{x})\|^{2}=c^{2}(\bar{x})+d^{2}(\bar{x})$. Let $g: \mathbb{T}^{2} \rightarrow \mathbb{R}$ be given by $g(\bar{x})=\|h(\bar{x})\|$. Since $g(\bar{x})=\|h(\bar{x})\|=\sqrt{\sum_{i, j \in\{1,2\}}\left(h^{i j}(\bar{x})\right)^{2}}\left(h=\left[h^{i j}\right]_{i, j \in\{1,2\}}\right)$ and $0<c \leq g(\bar{x}) \leq C$, g is a C^{1}-function.

Fix $\tilde{x}_{2} \in \mathbb{R}$. Since $a, c, d: \mathbb{T}^{2} \rightarrow \mathbb{R}$ are Lipschitz, for almost all $x_{1} \in \mathbb{R}$ there exist partial derivatives $a_{x_{1}}\left(x_{1}, \tilde{x}_{2}\right), c_{x_{1}}\left(x_{1}, \tilde{x}_{2}\right), d_{x_{1}}\left(x_{1}, \tilde{x}_{2}\right)$ and $a_{x_{1}}\left(\cdot, \tilde{x}_{2}\right) \in L^{1}(\mathbb{T})$. Moreover, $a\left(x_{1}, \tilde{x}_{2}\right)-a\left(0, \tilde{x}_{2}\right)=\int_{0}^{x_{1}} a_{x_{1}}\left(x, \tilde{x}_{2}\right) d x$ for any $x_{1} \in \mathbb{R}$. Then

$$
h_{x_{1}}^{11}\left(x_{1}, \tilde{x}_{2}\right)=\frac{\partial}{\partial x_{1}}(c \cdot a)\left(x_{1}, \tilde{x}_{2}\right)=\left(c_{x_{1}} \cdot a+c \cdot a_{x_{1}}\right)\left(x_{1}, \tilde{x}_{2}\right)
$$

and

$$
h_{x_{1}}^{21}\left(x_{1}, \tilde{x}_{2}\right)=\frac{\partial}{\partial x_{1}}(d \cdot a)\left(x_{1}, \tilde{x}_{2}\right)=\left(d_{x_{1}} \cdot a+d \cdot a_{x_{1}}\right)\left(x_{1}, \tilde{x}_{2}\right)
$$

for almost all $x_{1} \in \mathbb{R}$. Hence

$$
\begin{aligned}
\left(h_{x_{1}}^{11} \cdot c+h_{x_{1}}^{21} \cdot d\right)\left(x_{1}, \tilde{x}_{2}\right) & =\left(\left(c_{x_{1}} \cdot c+d_{x_{1}} \cdot d\right) \cdot a\right)\left(x_{1}, \tilde{x}_{2}\right)+\left(\left(c^{2}+d^{2}\right) \cdot a_{x_{1}}\right)\left(x_{1}, \tilde{x}_{2}\right) \\
& =\left(\left(g^{2}\right)_{x_{1}} \cdot a\right)\left(x_{1}, \tilde{x}_{2}\right)+\left(g^{2} \cdot a_{x_{1}}\right)\left(x_{1}, \tilde{x}_{2}\right)
\end{aligned}
$$

and

$$
a_{x_{1}}\left(x_{1}, \tilde{x}_{2}\right)=\frac{h_{x_{1}}^{11} \cdot c+h_{x_{1}}^{21} \cdot d-\left(g^{2}\right)_{x_{1}} \cdot a}{g^{2}}\left(x_{1}, \tilde{x}_{2}\right)
$$

for almost all $x_{1} \in \mathbb{R}$. It follows that there exists a continuous function $e: \mathbb{T}^{2} \rightarrow \mathbb{R}$ such that $a_{x_{1}}\left(x_{1}, \tilde{x}_{2}\right)=e\left(x_{1}, \tilde{x}_{2}\right)$ for almost all $x_{1} \in \mathbb{R}$. Therefore

$$
a\left(x_{1}, \tilde{x}_{2}\right)-a\left(0, \tilde{x}_{2}\right)=\int_{0}^{x_{1}} a_{x_{1}}\left(x, \tilde{x}_{2}\right) d x=\int_{0}^{x_{1}} e\left(x, \tilde{x}_{2}\right) d x
$$

for any $x_{1} \in \mathbb{R}$. Hence for every $x_{1} \in \mathbb{R}$ there exists $a_{x_{1}}\left(x_{1}, \tilde{x}_{2}\right)$ and is equal to $e\left(x_{1}, \tilde{x}_{2}\right)$. Therefore, for every $\bar{x} \in \mathbb{R}$ there exists $a_{x_{1}}(\bar{x})$ and $a_{x_{1}}: \mathbb{T}^{2} \rightarrow \mathbb{R}$ is continuous. Similarly, we can prove that $a_{x_{2}}, b_{x_{1}}, b_{x_{2}}: \mathbb{T}^{2} \rightarrow \mathbb{R}$ are continuous. It follows that $a, b \in C^{1}\left(\mathbb{T}^{2}, \mathbb{R}\right)$ and finally that $u, v \in C^{1}\left(\mathbb{T}^{2}, \mathbb{R}^{2}\right)$.

Let $\langle B,\|\cdot\|\rangle$ be a Banach space and let $r \in \mathbb{N} \cup\{0\}$. Consider the space

$$
C^{r+L}\left(\mathbb{T}^{2}, B\right)=\left\{f \in C^{r}\left(\mathbb{T}^{2}, B\right): \sup _{\substack{\bar{x}, \bar{y} \in \mathbb{T}^{2}, \bar{x} \neq \bar{y}}} \frac{\left\|D^{r} f(\bar{x})-D^{r} f(\bar{y})\right\|}{\|\bar{x}-\bar{y}\|}<\infty\right\}
$$

endowed with the norm given by

$$
\|f\|_{r+L}=\max \left\{\|f\|_{r}, \sup _{\substack{\bar{x}, \bar{y} \in \mathbb{T}^{2}, \bar{x} \neq \bar{y}}} \frac{\left\|D^{r} f(\bar{x})-D^{r} f(\bar{y})\right\|}{\|\bar{x}-\bar{y}\|}\right\}
$$

Applying the Ascoli theorem, we get immediately the following lemma.
Lemma 15. Let r be a natural number and let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a bounded sequence in $C^{r+L}\left(\mathbb{T}^{2}, B\right)$. Then there exists a subsequence $\left\{n_{i}\right\}_{i \in \mathbb{N}}$ such that $f_{n_{i}} \rightarrow f$ in $C^{r}\left(\mathbb{T}^{2}, B\right)$. Moreover, $f \in C^{r+L}\left(\mathbb{T}^{2}, B\right)$ and $\|f\|_{r+L} \leq \lim \sup _{n \rightarrow \infty}\left\|f_{n}\right\|_{r+L}$.

This gives the following result by the diagonal process.

LEmma 16. Under the assumptions of Theorem 13, there exists an increasing sequence $\left\{n_{i}\right\}_{i \in \mathbb{N}}$ of natural numbers such that $f^{n_{i}} \bar{x} \rightarrow \bar{x}$ for every $\bar{x} \in A$ and

$$
\lim _{i \rightarrow \infty} \frac{1}{n_{i}} D f^{n_{i}+k}=h_{k}
$$

in $C^{1}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$ for any integer k. Moreover, $h_{k} \in C^{1+L}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$ and

$$
\left\|h_{k}\right\|_{1+L} \leq \limsup _{n \rightarrow \infty} \frac{1}{n}\left\|D f^{n}\right\|_{1+L} \leq \limsup _{n \rightarrow \infty} \frac{1}{n}\left\|D f^{n}\right\|_{2}
$$

for any integer k.
Let $\left\{n_{i}\right\}_{i \in \mathbb{N}}$ be an increasing sequence of natural numbers such that $f^{n_{i}} \bar{x} \rightarrow \bar{x}$ for every $\bar{x} \in A$ and

$$
\lim _{i \rightarrow \infty} \frac{1}{n_{i}} D f^{n_{i}+k}=h_{k}
$$

in $C^{1}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$ for any natural k. It follows that the sequence $\left\{h_{k}\right\}_{k \in \mathbb{Z}}$ is bounded in $C^{1+L}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$ and $0<c \leq\left\|h_{k}(\bar{x})\right\| \leq C$ for any $\bar{x} \in \mathbb{T}^{2}$ and $k \in \mathbb{Z}$. Since $n^{-1} D f^{n}(\bar{x}) v(\bar{x}) \rightarrow 0$, we have $h_{k}(\bar{x}) v(\bar{x})=0$. Then $\left\|h_{k}(\bar{x})\right\|=\sqrt{\sum_{i, j \in\{1,2\}}\left(h_{k}^{i j}(\bar{x})\right)^{2}}$ $\left(h_{k}=\left[h_{k}^{i j}\right]_{i, j \in\{1,2\}}\right)$, by $\operatorname{det} h_{k}(\bar{x})=0$. For every integer k, let $g_{k}: \mathbb{T}^{2} \rightarrow \mathbb{R}$ be given by $g_{k}(\bar{x})=\left\|h_{k}(\bar{x})\right\|$. Then $g_{k} \in C^{1+L}\left(\mathbb{T}^{2}, \mathbb{R}\right)$. Moreover, the sequence $\left\{g_{k}\right\}_{k \in \mathbb{Z}}$ is bounded in $C^{1+L}\left(\mathbb{T}^{2}, \mathbb{R}\right)$.
Lemma 17. For every integer k there exist $s_{k}: \mathbb{T}^{2} \rightarrow \mathbb{R}$ and $\varepsilon_{k} \in\{-1,1\}$ such that

$$
\left[u\left(f^{k} \bar{x}\right) v\left(f^{k} \bar{x}\right)\right]\left[\begin{array}{cc}
\varepsilon_{k} g_{k}(\bar{x}) / g_{0}\left(f^{k} \bar{x}\right) & 0 \\
s_{k}(\bar{x}) & \varepsilon^{k} \varepsilon_{k} g_{0}\left(f^{k} \bar{x}\right) / g_{k}(\bar{x})
\end{array}\right]=D f^{k}(\bar{x})[u(\bar{x}) v(\bar{x})]
$$

for any $\bar{x} \in \mathbb{T}^{2}$.
Proof. Fix $k \in \mathbb{Z}$. Since

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\left\|D f^{n}(\bar{x}) u(\bar{x})\right\|-\left\|D f^{n}(\bar{x})\right\|\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left\|D f^{n}(\bar{x}) v(\bar{x})\right\|=0
$$

we have

$$
\lim _{i \rightarrow \infty} \frac{1}{n_{i}}\left\|D f^{n_{i}}\left(f^{k} \bar{x}\right) u\left(f^{k} \bar{x}\right)\right\|=g_{0}\left(f^{k} \bar{x}\right), \quad \lim _{i \rightarrow \infty} \frac{1}{n_{i}}\left\|D f^{n_{i}}\left(f^{k} \bar{x}\right) v\left(f^{k} \bar{x}\right)\right\|=0
$$

Let $e_{1}, e_{2}: \mathbb{T}^{2} \rightarrow \mathbb{R}$ be functions such that

$$
\begin{gathered}
\left\|\left(g_{k}(\bar{x}) / g_{0}\left(f^{k} \bar{x}\right)\right)\left(D f^{k}(\bar{x})\right)^{-1} u\left(f^{k} \bar{x}\right)+e_{1}(\bar{x}) v(\bar{x})\right\|=1, \\
\left\|e_{2}(\bar{x})\left(D f^{k}(\bar{x})\right)^{-1} v\left(f^{k} \bar{x}\right)\right\|=1 .
\end{gathered}
$$

Set

$$
\begin{aligned}
u^{\prime}(\bar{x}) & =\left(g_{k}(\bar{x}) / g_{0}\left(f^{k} \bar{x}\right)\right)\left(D f^{k}(\bar{x})\right)^{-1} u\left(f^{k} \bar{x}\right)+e_{1}(\bar{x}) v(\bar{x}), \\
v^{\prime}(\bar{x}) & =e_{2}(\bar{x})\left(D f^{k}(\bar{x})\right)^{-1} v\left(f^{k} \bar{x}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\lim _{i \rightarrow \infty} & \frac{1}{n_{i}+k}\left(\left\|D f^{n_{i}+k}(\bar{x}) u^{\prime}(\bar{x})\right\|-\left\|D f^{n_{i}+k}(\bar{x})\right\|\right) \\
& =\lim _{i \rightarrow \infty}\left\|\left(g_{k}(\bar{x}) / g_{0}\left(f^{k} \bar{x}\right)\right) \frac{1}{n_{i}} D f^{n_{i}}\left(f^{k} \bar{x}\right) u\left(f^{k} \bar{x}\right)+e_{1}(\bar{x}) \frac{1}{n_{i}} D f^{n_{i}+k}(\bar{x}) v(\bar{x})\right\|-g_{k}(\bar{x}) \\
& =\left(g_{k}(\bar{x}) / g_{0}\left(f^{k} \bar{x}\right)\right)\left\|h_{0}\left(f^{k} \bar{x}\right)\right\|-g_{k}(\bar{x})=0
\end{aligned}
$$

and

$$
\lim _{i \rightarrow \infty} \frac{1}{n_{i}+k}\left\|D f^{n_{i}+k}(\bar{x}) v^{\prime}(\bar{x})\right\|=\lim _{i \rightarrow \infty}\left\|e_{2}(\bar{x}) \frac{1}{n_{i}} D f^{n_{i}}\left(f^{k} \bar{x}\right) v\left(f^{k} \bar{x}\right)\right\|=0 .
$$

By Lemma 5, there exist functions $\varepsilon_{1 k}, \varepsilon_{2 k}: \mathbb{T}^{2} \rightarrow\{-1,1\}$ such that $u^{\prime}=\varepsilon_{1 k} u$ and $v^{\prime}=\varepsilon_{2 k} v$. Therefore

$$
D f^{k}(\bar{x})^{-1}\left[u\left(f^{k} \bar{x}\right) v\left(f^{k} \bar{x}\right)\right]=[u(\bar{x}) v(\bar{x})]\left[\begin{array}{cc}
\varepsilon_{1 k}(\bar{x}) g_{0}\left(f^{k} \bar{x}\right) / g_{k}(\bar{x}) & 0 \\
-e_{1}(\bar{x}) g_{0}\left(f^{k} \bar{x}\right) / g_{k}(\bar{x}) & \varepsilon_{2 k}(\bar{x}) / e_{2}(\bar{x})
\end{array}\right]
$$

It follows that $\varepsilon_{1 k}$ is continuous, hence that it is constant. Let $\varepsilon_{k} \in\{-1,1\}$ be a number such that $\varepsilon_{k}=\varepsilon_{1 k}(\bar{x})$ for any $\bar{x} \in \mathbb{T}^{2}$. Since $\operatorname{det}[u(\bar{x}) v(\bar{x})]=1$ and $\operatorname{det} D f^{k}(\bar{x})=\varepsilon^{k}$ for any $\bar{x} \in \mathbb{T}^{2}$, we have

$$
\varepsilon_{2 k}(\bar{x}) / e_{2}(\bar{x})=\varepsilon^{k} \varepsilon_{k} g_{k}(\bar{x}) / g_{0}\left(f^{k} \bar{x}\right)
$$

Set $s_{k}(\bar{x})=\varepsilon^{k} e_{1}(\bar{x}) g_{0}\left(f^{k} \bar{x}\right) / g_{k}(\bar{x})$. Then

$$
D f^{k}(\bar{x})^{-1}\left[u\left(f^{k} \bar{x}\right) v\left(f^{k} \bar{x}\right)\right]=[u(\bar{x}) v(\bar{x})]\left[\begin{array}{cc}
\varepsilon_{k} g_{0}\left(f^{k} \bar{x}\right) / g_{k}(\bar{x}) & 0 \\
-\varepsilon^{k} s_{k}(\bar{x}) & \varepsilon^{k} \varepsilon_{k} g_{k}(\bar{x}) / g_{0}\left(f^{k} \bar{x}\right)
\end{array}\right]
$$

and finally

$$
\left[u\left(f^{k} \bar{x}\right) v\left(f^{k} \bar{x}\right)\right]\left[\begin{array}{cc}
\varepsilon_{k} g_{k}(\bar{x}) / g_{0}\left(f^{k} \bar{x}\right) & 0 \\
s_{k}(\bar{x}) & \varepsilon^{k} \varepsilon_{k} g_{0}\left(f^{k} \bar{x}\right) / g_{k}(\bar{x})
\end{array}\right]=D f^{k}(\bar{x})[u(\bar{x}) v(\bar{x})]
$$

LEmma 18. There exists a function $g: \mathbb{T}^{2} \rightarrow \mathbb{R}_{+}$of class C^{1+L} such that

$$
g_{k}(\bar{x}) / g_{0}\left(f^{k} \bar{x}\right)=g(\bar{x}) / g\left(f^{k} \bar{x}\right)
$$

and $\varepsilon_{k}=\varepsilon_{1}^{k}$ for any integer k.
Proof. For all $k, n \in \mathbb{Z}$ we have

$$
\begin{aligned}
D f^{n+k}[u v]= & D f^{n} \circ f^{k} \cdot D f^{k}[u v] \\
= & D f^{n} \circ f^{k}\left[u \circ f^{k} v \circ f^{k}\right]\left[\begin{array}{cc}
\varepsilon_{k} \frac{g_{k}}{g_{0} \circ f^{k}} & 0 \\
s_{k} & \varepsilon^{k} \varepsilon_{k} \frac{g_{0} \circ f^{k}}{g_{k}}
\end{array}\right] \\
= & {\left[u \circ f^{n+k} v \circ f^{n+k}\right]\left[\begin{array}{cc}
\varepsilon_{n} \frac{g_{n} \circ f^{k}}{g_{0} \circ f^{n+k}} & 0 \\
s_{n} \circ f^{k} & \varepsilon^{n} \varepsilon_{n} \frac{g_{0} \circ f^{n+k}}{g_{n} \circ f^{k}}
\end{array}\right] } \\
& \times\left[\begin{array}{cc}
\varepsilon_{k} \frac{g_{k}}{g_{0} \circ f^{k}} \\
s_{k} & \varepsilon^{k} \varepsilon_{k} \frac{g_{0} \circ f^{k}}{g_{k}}
\end{array}\right] .
\end{aligned}
$$

However,

$$
D f^{n+k}[u v]=\left[u \circ f^{n+k} v \circ f^{n+k}\right]\left[\begin{array}{cc}
\varepsilon_{n+k} \frac{g_{n+k}}{g_{0} \circ f^{n+k}} & 0 \\
s_{n+k} & \varepsilon^{n+k} \varepsilon_{n+k} \frac{g_{0} \circ f^{n+k}}{g_{n+k}}
\end{array}\right]
$$

It follows that $\varepsilon_{n+k}=\varepsilon_{n} \varepsilon_{k}$ and

$$
\frac{g_{n+k}}{g_{0} \circ f^{n+k}}=\frac{g_{n} \circ f^{k}}{g_{0} \circ f^{n+k}} \frac{g_{k}}{g_{0} \circ f^{k}}
$$

Hence $\varepsilon_{k}=\varepsilon_{1}^{k}$ and $g_{k} / g_{0} \circ f^{k}=g_{n+k} / g_{n} \circ f^{k}$. Let $\zeta: \mathbb{T}^{2} \rightarrow \mathbb{R}_{+}$be given by

$$
\zeta(\bar{x})=g_{1}(\bar{x}) / g_{0}(f \bar{x})=g_{n+1}(\bar{x}) / g_{n}(f \bar{x}) .
$$

Then $\zeta \in C^{1+L}\left(\mathbb{T}^{2}, \mathbb{R}\right), \zeta(\bar{x}) \geq c / C>0$ for any $\bar{x} \in \mathbb{T}^{2}$ and

$$
g_{n}=\zeta \cdot \zeta \circ f \cdot \ldots \cdot \zeta \circ f^{n-1} \cdot g_{0} \circ f^{n}
$$

for any natural n. Define $\tilde{\zeta}=\log \zeta$ and $\tilde{g}_{n}=\log g_{n}$ for any integer n. Then $\tilde{\zeta}, \tilde{g}_{n} \in$ $C^{1+L}\left(\mathbb{T}^{2}, \mathbb{R}\right)$. Since the sequence $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ is bounded in $C^{1+L}\left(\mathbb{T}^{2}, \mathbb{R}\right)$ and $0<c \leq g_{n}(\bar{x})$ for any $n \in \mathbb{Z}$ and $\bar{x} \in \mathbb{T}^{2}$, the sequence $\left\{\tilde{g}_{n}\right\}_{n \in \mathbb{Z}}$ is bounded in $C^{1+L}\left(\mathbb{T}^{2}, \mathbb{R}\right)$, too. Moreover,

$$
\tilde{g}_{n}=\sum_{k=0}^{n-1} \tilde{\zeta} \circ f^{k}+\tilde{g}_{0} \circ f^{n}
$$

for any natural n. Set $\tilde{\zeta}^{(n)}=\sum_{k=0}^{n-1} \tilde{\zeta} \circ f^{k}$ for any natural n. Then

$$
\begin{aligned}
\tilde{\zeta}-\frac{1}{n} \tilde{\zeta}^{(n)} & =\frac{1}{n} \sum_{k=0}^{n-1}\left(\tilde{\zeta}-\tilde{\zeta} \circ f^{k}\right)=\frac{1}{n} \sum_{k=0}^{n-1}\left(\tilde{\zeta}^{(k)}-\tilde{\zeta}^{(k)} \circ f\right)=\frac{1}{n} \sum_{k=0}^{n-1} \tilde{\zeta}^{(k)}-\frac{1}{n} \sum_{k=0}^{n-1} \tilde{\zeta}^{(k)} \circ f \\
& =\frac{1}{n} \sum_{k=0}^{n-1}\left(\tilde{g}_{k}-\tilde{g}_{0} \circ f^{k}\right)-\frac{1}{n} \sum_{k=0}^{n-1}\left(\tilde{g}_{k} \circ f-\tilde{g}_{0} \circ f^{k+1}\right) \\
& =\frac{1}{n} \sum_{k=0}^{n-1} \tilde{g}_{k}-\frac{1}{n} \sum_{k=0}^{n-1} \tilde{g}_{k} \circ f+\frac{\tilde{g}_{0} \circ f^{n}-\tilde{g}_{0}}{n} .
\end{aligned}
$$

Since the sequence $\left\{n^{-1} \sum_{k=0}^{n-1} \tilde{g}_{k}\right\}_{n \in \mathbb{N}}$ is bounded in $C^{1+L}\left(\mathbb{T}^{2}, \mathbb{R}\right)$, there exists a subsequence $\left\{m_{i}^{-1} \sum_{k=0}^{m_{i}-1} \tilde{g}_{k}\right\}_{i \in \mathbb{N}}$ convergent in $C^{1}\left(\mathbb{T}^{2}, \mathbb{R}\right)$ to a function $\tilde{g} \in$ $C^{1+L}\left(\mathbb{T}^{2}, \mathbb{R}\right)$, by Lemma 15 . By the ergodic theorem, the sequence $\left\{n^{-1} \tilde{\zeta}^{(n)}\right\}_{n \in \mathbb{N}}$ converges a.e. to a \mathcal{A}_{f}-measurable function $\tilde{\zeta}_{0}: \mathbb{T}^{2} \rightarrow \mathbb{R}$. It follows that

$$
\tilde{\zeta}(\bar{x})-\tilde{\zeta}_{0}(\bar{x})=\tilde{g}(\bar{x})-\tilde{g}(f \bar{x})
$$

for a.e. $\bar{x} \in \mathbb{T}^{2}$. Since the function $\tilde{\zeta}-\tilde{g}+\tilde{g} \circ f$ is \mathcal{A}_{f}-measurable and continuous and the σ-algebra \mathcal{A}_{f} is finite, we conclude that $\tilde{\zeta}-\tilde{g}+\tilde{g} \circ f$ is constant. Hence

$$
\tilde{\zeta}-\tilde{g}+\tilde{g} \circ f=\int_{\mathbb{T}^{2}} \tilde{\zeta}_{0} d \lambda=\int_{\mathbb{T}^{2}} \tilde{\zeta} d \lambda
$$

Since $\tilde{g}_{n}=\tilde{\zeta}^{(n)}+\tilde{g}_{0} \circ f^{n}$, we have

$$
\int_{\mathbb{T}^{2}} \tilde{g}_{n} d \lambda=n \int_{\mathbb{T}^{2}} \tilde{\zeta} d \lambda+\int_{\mathbb{T}^{2}} \tilde{g}_{0} d \lambda
$$

As the sequence $\left\{\int_{\mathbb{T}^{2}} \tilde{g}_{n} d \lambda\right\}_{n \in \mathbb{N}}$ is bounded, we obtain $\int_{\mathbb{T}^{2}} \tilde{\zeta} d \lambda=0$. This gives $\tilde{\zeta}=\tilde{g}-\tilde{g} \circ f$ and

$$
\tilde{g}_{k}-\tilde{g}_{0} \circ f^{k}=\tilde{\zeta}^{(k)}=\tilde{g}-\tilde{g} \circ f^{k}
$$

for any natural k. Define $g=\exp \tilde{g}$. Then

$$
g_{k} / g_{0} \circ f^{k}=g / g \circ f^{k}
$$

Lemmas 17 and 18 now show that

$$
\left[u \circ f^{k} v \circ f^{k}\right]\left[\begin{array}{cc}
\varepsilon_{1}^{k} g / g \circ f^{k} & 0 \\
s_{k} & \left(\varepsilon \varepsilon_{1}\right)^{k} g \circ f^{k} / g
\end{array}\right]=D f^{k}[u v] .
$$

Therefore

$$
\begin{equation*}
(g \cdot v) \circ f^{k}=\left(\varepsilon_{1} \varepsilon\right)^{k} D f^{k}(g \cdot v) \tag{7}
\end{equation*}
$$

and

$$
\left[\begin{array}{cc}
\varepsilon_{1}^{k} g / g \circ f^{k} & 0 \\
s_{k} & \left(\varepsilon \varepsilon_{1}\right)^{k} g \circ f^{k} / g
\end{array}\right]\left[\begin{array}{c}
u^{T} \\
v^{T}
\end{array}\right]=\left[\begin{array}{c}
u^{T} \circ f^{k} \\
v^{T} \circ f^{k}
\end{array}\right] D f^{k}
$$

Hence

$$
\begin{equation*}
\left(g \cdot u^{T}\right) \circ f^{k} D f^{k}=\varepsilon_{1}^{k}\left(g \cdot u^{T}\right) \tag{8}
\end{equation*}
$$

Lemma 19. For every integer k there exists $\delta_{k} \in\{-1,1\}$ such that

$$
\begin{aligned}
h_{k} & =\delta_{k} g_{k}\left[\begin{array}{cc}
-a \cdot b \circ f^{k} & -b \cdot b \circ f^{k} \\
a \cdot a \circ f^{k} & b \cdot a \circ f^{k}
\end{array}\right] \\
& =\delta_{k} g_{k} \cdot v \circ f^{k} \cdot u^{T} .
\end{aligned}
$$

Proof. Recall that $\left\{n_{i}\right\}_{i \in \mathbb{N}}$ is the sequence for which $f^{n_{i}} \bar{x} \rightarrow \bar{x}$ for every $\bar{x} \in A$ and

$$
\lim _{i \rightarrow \infty} \frac{1}{n_{i}} D f^{n_{i}+k}=h_{k}
$$

in $C^{1}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$. Therefore $h_{k} \cdot v=0$. Let $c_{k}, d_{k} \in C^{1}\left(\mathbb{T}^{2}, \mathbb{R}\right)$ be given by

$$
\left[\begin{array}{l}
c_{k} \\
d_{k}
\end{array}\right]=\frac{1}{g_{k}} h_{k} \cdot u .
$$

Then $c_{k}^{2}+d_{k}^{2}=1$ and

$$
h_{k}=g_{k}\left[\begin{array}{l}
c_{k} \tag{9}\\
d_{k}
\end{array}\right] u^{T} .
$$

Suppose that $\bar{x} \in A$. From (8),

$$
\frac{1}{n_{i}} u^{T}\left(f^{n_{i}+k} \bar{x}\right) D f^{n_{i}+k}(\bar{x})=\frac{\varepsilon_{1}^{n_{i}+k}}{n_{i}}\left(g(\bar{x}) / g\left(f^{n_{i}+k} \bar{x}\right)\right) u^{T}(\bar{x}) \rightarrow 0 .
$$

Since $f^{n_{i}+k} \bar{x} \rightarrow f^{k} \bar{x}$, we have $u^{T}\left(f^{k} \bar{x}\right) \cdot h_{k}(\bar{x})=0$. From (9), it follows that

$$
u^{T}\left(f^{k} \bar{x}\right)\left[\begin{array}{l}
c_{k}(\bar{x}) \\
d_{k}(\bar{x})
\end{array}\right] u^{T}(\bar{x})=0
$$

hence that

$$
u^{T}\left(f^{k} \bar{x}\right)\left[\begin{array}{l}
c_{k}(\bar{x}) \tag{10}\\
d_{k}(\bar{x})
\end{array}\right]=0
$$

for any $\bar{x} \in A$. Since the set A is dense in \mathbb{T}^{2}, we see that the equality (10) holds for any $\bar{x} \in \mathbb{T}^{2}$. It follows that there exists a function $\delta_{k}: \mathbb{T}^{2} \rightarrow\{-1,1\}$ such that

$$
\left[\begin{array}{l}
c_{k}(\bar{x}) \\
d_{k}(\bar{x})
\end{array}\right]=\delta_{k}(\bar{x}) v\left(f^{k} \bar{x}\right)
$$

Since

$$
\delta_{k}(\bar{x})=v^{T}\left(f^{k} \bar{x}\right)\left[\begin{array}{l}
c_{k}(\bar{x}) \\
d_{k}(\bar{x})
\end{array}\right],
$$

we conclude that δ_{k} is continuous, hence that it is constant. Therefore

$$
h_{k}=\delta_{k} g_{k} \cdot v \circ f^{k} \cdot u^{T},
$$

by (9).
LEMMA 20. $a_{x_{1}}+b_{x_{2}}=0$ and $g_{x_{1}} b=g_{x_{2}} a$.
Proof. Since $n_{i}^{-1} D f^{n_{i}} \rightarrow h_{0}$ in $C^{1}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$, it follows that $n_{i}^{-1} D^{2} f^{n_{i}} \rightarrow D h_{0}$ uniformly. Let $\tilde{v}=g \cdot v$. Then
$D\left(\frac{1}{n_{i}} D f^{n_{i}} \cdot \tilde{v}\right)=\frac{1}{n_{i}} D^{2} f^{n_{i}} \cdot \tilde{v}+\frac{1}{n_{i}} D f^{n_{i}} \cdot D \tilde{v} \rightarrow D h_{0} \cdot \tilde{v}+h_{0} \cdot D \tilde{v}=D\left(h_{0} \cdot \tilde{v}\right)=0$
uniformly, because $h_{0} \cdot \tilde{v}=g \cdot h_{0} \cdot v=0$. However, $\tilde{v} \circ f^{k}=\left(\varepsilon_{1} \varepsilon\right)^{k} D f^{k} \cdot \tilde{v}$ (see (7)) implies $\left(\varepsilon_{1} \varepsilon\right)^{k} D\left(D f^{k} \tilde{v}\right)=D \tilde{v} \circ f^{k} \cdot D f^{k}$. Let $\bar{x} \in A$. Then

$$
\left(\varepsilon_{1} \varepsilon\right)^{n_{i}} D\left(\frac{1}{n_{i}} D f^{n_{i}}(\bar{x}) \tilde{v}(\bar{x})\right)=D \tilde{v}\left(f^{n_{i}} \bar{x}\right) \frac{1}{n_{i}} D f^{n_{i}}(\bar{x}) \rightarrow D \tilde{v}(\bar{x}) h_{0}(\bar{x}) .
$$

From (11), we obtain $D \tilde{v}(\bar{x}) h_{0}(\bar{x})=0$ for any $\bar{x} \in A$. Since A is dense in \mathbb{T}^{2}, it follows that $D \tilde{v} \cdot h_{0}=0$. Hence

$$
\left[\begin{array}{cc}
-(g \cdot b)_{x_{1}} & -(g \cdot b)_{x_{2}} \\
(g \cdot a)_{x_{1}} & (g \cdot a)_{x_{2}}
\end{array}\right]\left[\begin{array}{c}
-b \\
a
\end{array}\right]=\left(\delta_{0} / g_{0}\right) D \tilde{v} \cdot h_{0} \cdot u=0
$$

Since $a_{x_{1}} a+b_{x_{1}} b=0$ and $a_{x_{2}} a+b_{x_{2}} b=0$, we conclude that

$$
\begin{aligned}
0 & =(g \cdot b)_{x_{1}} b-(g \cdot b)_{x_{2}} a \\
& =g\left(b_{x_{1}} b-b_{x_{2}} a\right)+b\left(g_{x_{1}} b-g_{x_{2}} a\right) \\
& =-g a\left(a_{x_{1}}+b_{x_{2}}\right)+b\left(g_{x_{1}} b-g_{x_{2}} a\right)
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =-(g \cdot a)_{x_{1}} b+(g \cdot a)_{x_{2}} a \\
& =g\left(-a_{x_{1}} b+a_{x_{2}} a\right)-a\left(g_{x_{1}} b-g_{x_{2}} a\right) \\
& =-g b\left(a_{x_{1}}+b_{x_{2}}\right)-a\left(g_{x_{1}} b-g_{x_{2}} a\right) .
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{cc}
-g a & b \\
-g b & -a
\end{array}\right]\left[\begin{array}{c}
a_{x_{1}}+b_{x_{2}} \\
g_{x_{1}} b-g_{x_{2}} a
\end{array}\right]=0
$$

It follows that $a_{x_{1}}+b_{x_{2}}=0$ and $g_{x_{1}} b=g_{x_{2}} a$.
Lemma 21. $(g \cdot a)_{x_{2}}=(g \cdot b)_{x_{1}}$.
Proof. Let k be an integer number. Since $n_{i}^{-1} D f^{n_{i}+k} \rightarrow h_{k}$ in $C^{1}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$ and

$$
h_{k}=\delta_{k} g_{k}\left[\begin{array}{cc}
-a \cdot b \circ f^{k} & -b \cdot b \circ f^{k} \\
a \cdot a \circ f^{k} & b \cdot a \circ f^{k}
\end{array}\right]
$$

(by Lemma 19), we have

$$
\begin{aligned}
\left(g_{k} \cdot a \cdot b \circ f^{k}\right)_{x_{2}} & =-\delta_{k} \lim _{i \rightarrow \infty} \frac{1}{n_{i}}\left(f_{1}^{n_{i}+k}\right)_{x_{1} x_{2}} \\
& =-\delta_{k} \lim _{i \rightarrow \infty} \frac{1}{n_{i}}\left(f_{1}^{n_{i}+k}\right)_{x_{2} x_{1}} \\
& =\left(g_{k} \cdot b \cdot b \circ f^{k}\right)_{x_{1}}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(g_{k} \cdot a \cdot a \circ f^{k}\right)_{x_{2}} & =\delta_{k} \lim _{i \rightarrow \infty} \frac{1}{n_{i}}\left(f_{2}^{n_{i}+k}\right)_{x_{1} x_{2}} \\
& =\delta_{k} \lim _{i \rightarrow \infty} \frac{1}{n_{i}}\left(f_{2}^{n_{i}+k}\right)_{x_{2} x_{1}} \\
& =\left(g_{k} \cdot b \cdot a \circ f^{k}\right)_{x_{1}} .
\end{aligned}
$$

Suppose that $e: \mathbb{T}^{2} \rightarrow \mathbb{R}$ is a C^{1}-function satisfying

$$
\begin{equation*}
\left(g_{k} \cdot a \cdot e \circ f^{k}\right)_{x_{2}}=\left(g_{k} \cdot b \cdot e \circ f^{k}\right)_{x_{1}} \tag{12}
\end{equation*}
$$

and $D e \cdot v=0$. Observe that the functions a and b satisfy these properties. Indeed, by Lemma 20,

$$
D a \cdot v=\left[a_{x_{1}} a_{x_{2}}\right]\left[\begin{array}{c}
-b \\
a
\end{array}\right]=-a_{x_{1}} b+a_{x_{2}} a=b_{x_{2}} b+a_{x_{2}} a=0
$$

and

$$
D b \cdot v=\left[b_{x_{1}} b_{x_{2}}\right]\left[\begin{array}{c}
-b \\
a
\end{array}\right]=-b_{x_{1}} b+b_{x_{2}} a=-b_{x_{1}} b-a_{x_{1}} a=0 .
$$

Since $g_{k} / g_{0} \circ f^{k}=g / g \circ f^{k}$, (12) shows that

$$
\left(g a \cdot\left(g_{0} g^{-1} e\right) \circ f^{k}\right)_{x_{2}}=\left(g b \cdot\left(g_{0} g^{-1} e\right) \circ f^{k}\right)_{x_{1}}
$$

Hence

$$
\begin{aligned}
\left((g b)_{x_{1}}-(g a)_{x_{2}}\right) \cdot\left(g_{0} g^{-1} e\right) \circ f^{k} & =g\left(-b\left(\left(g_{0} g^{-1} e\right) \circ f^{k}\right)_{x_{1}}+a\left(\left(g_{0} g^{-1} e\right) \circ f^{k}\right)_{x_{2}}\right) \\
& =g D\left(\left(g_{0} g^{-1} e\right) \circ f^{k}\right) \cdot v \\
& =D\left(g_{0} g^{-1} e\right) \circ f^{k} \cdot D f^{k} \cdot(g v) .
\end{aligned}
$$

Since $(g \cdot v) \circ f^{k}=\left(\varepsilon_{1} \varepsilon\right)^{k} D f^{k}(g \cdot v)$ (see (7)), we have

$$
\begin{aligned}
\left((g b)_{x_{1}}-(g a)_{x_{2}}\right) \cdot\left(g_{0} g^{-1} e\right) \circ f^{k} & =\left(\varepsilon_{1} \varepsilon\right)^{k}\left(D\left(g_{0} g^{-1} e\right) \cdot g v\right) \circ f^{k} \\
& =\left(\varepsilon_{1} \varepsilon\right)^{k}\left(D\left(g_{0} g^{-1}\right) \cdot e g v+g_{0} D e \cdot v\right) \circ f^{k} \\
& =\left(\varepsilon_{1} \varepsilon\right)^{k}\left(D\left(g_{0} g^{-1}\right) \cdot e g v\right) \circ f^{k}
\end{aligned}
$$

Letting $c=a$ and $c=b$ we obtain

$$
(g b)_{x_{1}}-(g a)_{x_{2}}=\left(\varepsilon_{1} \varepsilon\right)^{k}\left(D\left(g_{0} g^{-1}\right) \cdot g_{0}^{-1} g^{2} v\right) \circ f^{k}
$$

Therefore, the function $\left|(g b)_{x_{1}}-(g a)_{x_{2}}\right|$ is \mathcal{A}_{f}-measurable. Since \mathcal{A}_{f} is finite, the function $(g b)_{x_{1}}-(g a)_{x_{2}}$ is constant. However,

$$
\int_{\mathbb{T}^{2}}\left((g b)_{x_{1}}-(g a)_{x_{2}}\right) d \lambda=0 .
$$

Hence $(g b)_{x_{1}}=(g a)_{x_{2}}$.
Proof of Theorem 13. By the previous lemmas, there exists $g \in C^{1+L}\left(\mathbb{T}^{2}, \mathbb{R}\right)$ such that:

- $\quad 0<c \leq g(\bar{x})$ for any $\bar{x} \in \mathbb{T}^{2}$;
- $\quad\left(g \cdot u^{T}\right) \circ f D f=\varepsilon_{1}\left(g \cdot u^{T}\right)$; and
- $\quad(g \cdot b)_{x_{1}}=(g \cdot a)_{x_{2}}, a_{x_{1}}+b_{x_{2}}=0$ and $g_{x_{1}} b=g_{x_{2}} a$.

It follows that there exists a C^{2+L}-function $\xi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
D \xi=[g \cdot a g \cdot b]=g \cdot u^{T} .
$$

Consider the map

$$
\left(x_{1}, x_{2}\right) \longmapsto \xi\left(x_{1}+1, x_{2}\right)-\xi\left(x_{1}, x_{2}\right) .
$$

Since its derivative is equal to zero, we see that it is constant. Similarly

$$
\left(x_{1}, x_{2}\right) \longmapsto \xi\left(x_{1}, x_{2}+1\right)-\xi\left(x_{1}, x_{2}\right) .
$$

is constant. Therefore, ξ can be represented as

$$
\begin{equation*}
\xi\left(x_{1}, x_{2}\right)=p_{1} x_{1}+p_{2} x_{2}+\tilde{\xi}\left(x_{1}, x_{2}\right) \tag{13}
\end{equation*}
$$

where $p_{1}, p_{2} \in \mathbb{R}$ and $\tilde{\xi}: \mathbb{T}^{2} \rightarrow \mathbb{R}$ is a C^{2}-function. Note that $p_{1}^{2}+p_{2}^{2}>0$. Indeed, since $\tilde{\xi}$ is \mathbb{Z}^{2}-periodic, there exists $\bar{x}_{0} \in \mathbb{T}^{2}$ such that $D \tilde{\xi}\left(\bar{x}_{0}\right)=0$. Then $p_{1}=$ $\xi_{x_{1}}\left(\bar{x}_{0}\right)=(g \cdot a)\left(\bar{x}_{0}\right), p_{2}=\xi_{x_{2}}\left(\bar{x}_{0}\right)=(g \cdot b)\left(\bar{x}_{0}\right)$ and $p_{1}^{2}+p_{2}^{2}=g^{2}\left(\bar{x}_{0}\right)>0$. Since $\left(g \cdot u^{T}\right) \circ f \cdot D f=\varepsilon_{1}\left(g \cdot u^{T}\right)$, we have $D \xi \circ f \cdot D f=\varepsilon_{1} D \xi$. Hence $D\left(\xi \circ f-\varepsilon_{1} \xi\right)=0$. Therefore there exists $\beta \in \mathbb{R}$ such that

$$
\begin{equation*}
\xi \circ f=\varepsilon_{1} \xi+\beta . \tag{14}
\end{equation*}
$$

Represent f as

$$
f\left(x_{1}, x_{2}\right)=\left(a_{11} x_{1}+a_{12} x_{2}+\widetilde{f}_{1}\left(x_{1}, x_{2}\right), a_{21} x_{1}+a_{22} x_{2}+\widetilde{f}_{2}\left(x_{1}, x_{2}\right)\right)
$$

where $\left[a_{i j}\right]_{i, j=1,2} \in G L_{2}(\mathbb{Z})$ and $\tilde{f_{1}}, \tilde{f_{2}}: \mathbb{T}^{2} \rightarrow \mathbb{R}$. From (14),

$$
p_{1} a_{11}+p_{2} a_{21}=\varepsilon_{1} p_{1} \quad \text { and } \quad p_{1} a_{12}+p_{2} a_{22}=\varepsilon_{1} p_{2} .
$$

Observe that there exists a real number $d \neq 0$ such that

$$
p_{1} d, p_{2} d \in \mathbb{Z} \quad \text { and } \quad \operatorname{gcd}\left(p_{1} d, p_{2} d\right)=1
$$

If one of the numbers p_{1}, p_{2} is equal to zero, then $d=1 /\left(p_{1}+p_{2}\right)$. If $p_{1}, p_{2} \neq 0$, then set $d_{1}=p_{1} / p_{2}$. Hence

$$
a_{11}+\frac{1}{d_{1}} a_{21}=\varepsilon_{1} \quad \text { and } \quad d_{1} a_{12}+a_{22}=\varepsilon_{1} .
$$

Note that d_{1} is rational. Indeed, suppose that d_{1} is irrational. Then $\left[\begin{array}{ccc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=\varepsilon_{1} \mathrm{Id}$. Therefore f^{2} can be represented as

$$
f^{2}\left(x_{1}, x_{2}\right)=\left(x_{1}+\psi_{1}\left(x_{1}, x_{2}\right), x_{2}+\psi_{2}\left(x_{1}, x_{2}\right)\right)
$$

where $\psi_{1}, \psi_{2}: \mathbb{T}^{2} \rightarrow \mathbb{R}$ are C^{3}-functions. Then

$$
f^{2 n}\left(x_{1}, x_{2}\right)=\left(x_{1}+\sum_{k=0}^{n-1} \psi_{1}\left(f^{2 k}\left(x_{1}, x_{2}\right)\right), x_{2}+\sum_{k=0}^{n-1} \psi_{2}\left(f^{2 k}\left(x_{1}, x_{2}\right)\right)\right)
$$

and

$$
\begin{equation*}
\frac{1}{n}\left(f^{2 n}-\mathrm{Id}\right)=\left(\frac{1}{n} \sum_{k=0}^{n-1} \psi_{1} \circ f^{2 k}, \frac{1}{n} \sum_{k=0}^{n-1} \psi_{2} \circ f^{2 k}\right) \tag{15}
\end{equation*}
$$

Since the sequence $\left\{n^{-1} D f^{2 n}\right\}_{n \in \mathbb{N}}$ is bounded in $C^{2}\left(\mathbb{T}^{2}, M_{2}(\mathbb{R})\right)$ and $0<2 c \leq$ $\left\|n^{-1} D f^{2 n}(\bar{x})\right\| \leq 2 C$, there exists an increasing sequence $\left\{m_{k}\right\}_{k \in \mathbb{N}}$ of naturals and $\psi \in C^{1}\left(\mathbb{T}^{2}, \mathbb{R}^{2}\right)$ such that

$$
\frac{1}{m_{k}}\left(f^{2 m_{k}}-\mathrm{Id}\right) \rightarrow \psi, \quad \frac{1}{m_{k}}\left(D f^{2 m_{k}}-\mathrm{Id}\right) \rightarrow D \psi
$$

uniformly and $0<2 c \leq\|D \psi(\bar{x})\|$. From (15), ψ is $\mathcal{A}_{f^{2}}$-measurable. By Lemma 10, the σ-algebra $\mathcal{A}_{f^{2}}$ is finite. Hence ψ is constant. This gives $D \psi=0$, which contradicts the fact that $0<2 c \leq\|D \psi(\bar{x})\|$ for any $\bar{x} \in \mathbb{T}^{2}$. Therefore d_{1} is rational. Let $d_{1}=p / q$ where $p \in \mathbb{Z}, q \in \mathbb{N}$ and $\operatorname{gcd}(p, q)=1$. Set $d=p / p_{1}$. Then $p_{1} d=p$ and $p_{2} d=q$.

Next note that $\varepsilon_{1}=1$. Suppose, contrary to our claim, that $\varepsilon_{1}=-1$. Let $\widehat{\xi}: \mathbb{T}^{2} \rightarrow S^{1}$ be given by $\widehat{\xi}=\exp 2 \pi i \xi / d$. From (14) $\widehat{\xi} \circ f=e^{2 \pi i \beta / d} \widehat{\xi}$. Hence

$$
\widehat{\xi} \circ f^{2}=e^{2 \pi i \beta / d} \overline{\widehat{\xi} \circ f}=\widehat{\xi} .
$$

Since $\widehat{\xi}$ is $\mathcal{A}_{f^{2}}$-measurable and the σ-algebra $\mathcal{A}_{f^{2}}$ is finite, it follows that $\widehat{\xi}$ is constant, hence that ξ is constant, which contradicts the fact that $0<c \leq\|D \xi(\bar{x})\|$ for any $\bar{x} \in \mathbb{T}^{2}$.

However, $b_{x_{1}}=a_{x_{2}}$. Since

$$
\begin{gathered}
a a_{x_{1}}+b a_{x_{2}}=a a_{x_{1}}+b b_{x_{1}}=0 \\
-b a_{x_{1}}+a a_{x_{2}}=b b_{x_{2}}+a a_{x_{2}}=0
\end{gathered}
$$

we have $D a=0$ and similarly $D b=0$. Consequently a and b are constants and g satisfies the partial linear equation with constant coefficients $g_{x_{1}} b-g_{x_{2}} a=0$. It follows that there exists a strictly increasing C^{2}-function $w: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
g\left(x_{1}, x_{2}\right)=D w\left(a x_{1}+b x_{2}\right)
$$

Hence

$$
\xi_{x_{1}}\left(x_{1}, x_{2}\right)=D w\left(a x_{1}+b x_{2}\right) a \quad \text { and } \quad \xi_{x_{2}}\left(x_{1}, x_{2}\right)=D w\left(a x_{1}+b x_{2}\right) b
$$

Therefore we can assume that $\xi\left(x_{1}, x_{2}\right)=w\left(a x_{1}+b x_{2}\right)$. It follows that

$$
\begin{aligned}
& w(x+a)=p_{1}(x / a+1)+\tilde{\xi}(x / a+1,0)=w(x)+p_{1} \\
& w(x+b)=p_{2}(x / b+1)+\tilde{\xi}(0, x / b+1)=w(x)+p_{2}
\end{aligned}
$$

by (13). Consequently

$$
w(x+q a)=q p_{1}=p p_{2}=w(x+p b)
$$

and $q a=p b$. Define $\tilde{w}(x)=d w(b x / q)$. Then $d w\left(a x_{1}+b x_{2}\right)=\tilde{w}\left(p x_{1}+q x_{2}\right)$ and $\tilde{w}(x+1)=\tilde{w}(x)+1$. Moreover,

$$
\tilde{w}\left(p f_{1}(\bar{x})+q f_{2}(\bar{x})\right)=\tilde{w}\left(p x_{1}+q x_{2}\right)+\beta^{\prime},
$$

by (14). Let r, s be integer numbers such that $p s-q r=1$. Consider the group automorphism $B: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ defined by $B\left(x_{1}, x_{2}\right)=\left(p x_{1}+q x_{2}, r x_{1}+s x_{2}\right)$. Let $\check{f}=$ $B \circ f \circ B^{-1}$ and $\pi_{i}: \mathbb{T}^{2} \rightarrow \mathbb{T}$ be the projection on the i th coordinate for $i=1,2$. Then

$$
\begin{aligned}
\tilde{w}\left(\check{f}_{1}\left(x_{1}, x_{2}\right)\right) & =\tilde{w}\left(p f_{1} \circ B^{-1}\left(x_{1}, x_{2}\right)+q f_{2} \circ B^{-1}\left(x_{1}, x_{2}\right)\right) \\
& =\tilde{w}\left(p \pi_{1} \circ B^{-1}\left(x_{1}, x_{2}\right)+q \pi_{2} \circ B^{-1}\left(x_{1}, x_{2}\right)\right)+\beta^{\prime} \\
& =\tilde{w}\left(x_{1}\right)+\beta^{\prime} .
\end{aligned}
$$

Therefore, \check{f}_{1} depends only on the first variable. Then

$$
D \check{f}=\left[\begin{array}{cc}
\frac{\partial \check{f}_{1}}{\partial x_{1}} & 0 \\
\frac{\partial \check{f}_{2}}{\partial x_{1}} & \frac{\partial \check{f}_{2}}{\partial x_{2}}
\end{array}\right] \quad \text { and } \quad \frac{\partial \check{f}_{1}}{\partial x_{1}} \frac{\partial \check{f}_{2}}{\partial x_{2}}=\operatorname{det} D \check{f}=\varepsilon
$$

Since $\left(\partial \check{f}_{2} / \partial x_{2}\right)\left(x_{1}, x_{2}\right)=\varepsilon /\left(\partial \check{f}_{1} / \partial x_{1}\right)\left(x_{1}, 0\right)$, there exists a C^{3}-function $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ such that

$$
\check{f_{2}}\left(x_{1}, x_{2}\right)=\frac{\varepsilon}{\left(\partial \check{f}_{1} / \partial x_{1}\right)\left(x_{1}, 0\right)} x_{2}+\varphi\left(x_{1}\right)
$$

and $\varepsilon /\left(\partial \check{f}_{1} / \partial x_{1}\right)\left(x_{1}, 0\right)$ is an integer constant. As the map $\mathbb{T} \ni x \longmapsto \check{f}_{1}(x, 0) \in \mathbb{T}$ is continuous and increasing, it follows that $\left(\partial \check{f}_{1} / \partial x_{1}\right)\left(x_{1}, 0\right)=1$. Therefore

$$
\check{f}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha, \varepsilon x_{2}+\varphi\left(x_{1}\right)\right),
$$

where α is irrational, by the ergodicity of f. Next note that $\varepsilon=1$. Indeed, suppose that $\varepsilon=-1$. Then

$$
\frac{1}{2 n} D \check{f}^{2 n}\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
\frac{1}{2 n} & 0 \\
\frac{1}{2 n} \sum_{k=0}^{n-1}\left(D \varphi\left(x_{1}+\alpha+2 k \alpha\right)-D \varphi\left(x_{1}+2 k \alpha\right)\right) & \frac{1}{2 n}
\end{array}\right] .
$$

By the ergodic theorem,

$$
\frac{1}{2 n} \sum_{k=0}^{n-1}\left(D \varphi\left(x_{1}+\alpha+2 k \alpha\right)-D \varphi\left(x_{1}+2 k \alpha\right)\right) \rightarrow \frac{1}{2} \int_{\mathbb{T}}(D \varphi(x+\alpha)-D \varphi(x)) d x=0
$$

uniformly, which contradicts the fact that f has linear growth of the derivative.

Acknowledgements. Research partly supported by KBN grant 2 P03A 002 14(1998), by FWF grant P12250-MAT and by Foundation for Polish Science.

REFERENCES

[1] K. Frączek. Linear growth of the derivative for measure-preserving diffeomorphisms. Coll. Math. 84/85 (2000), 147-157.
[2] M. Herman. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. Mat. IHES 49 (1979), 5-234.
[3] A. Iwanik, M. Lemańczyk and D. Rudolph. Absolutely continuous cocycles over irrational rotations. Israel J. Math. 83 (1993), 73-95.
[4] A. Manning. There are no new Anosov diffeomorphisms on tori. Amer. J. Math. 96 (1974), 422-429.
[5] Ya. Sinai. Markov partition and C-diffeomorphisms. Anal. Appl. 2 (1968), 70-50.

