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Abstract. We consider measure-preserving diffeomorphisms of the two-dimensional torus
with zero entropy. We prove that every ergodic C3-diffeomorphism f of the two-
dimensional torus with linear growth of the derivative (i.e. the sequence {n~'Df"},cn
is uniformly separated from 0 and oo and it is bounded in the C?-norm) is algebraically
conjugate to a skew product of an irrational rotation on the circle and a circle C3-cocycle
with non-zero topological degree.

1. Introduction

Let M be a compact Riemannian smooth manifold and u its probability Lebesgue measure.
Let f : (M,u) — (M, ) be a smooth measure-preserving ergodic diffeomorphism.
An important question of smooth ergodic theory is: what is the relation between the
asymptotic properties of the sequence {Df"}, cn and the dynamical or spectral properties
of the dynamical system f : (M, u) — (M, u). There are results which describe this
relation well in the case where M is the torus. For example, if a diffeomorphism f is
homotopic to the identity and the sequence {Df"},cn is uniformly bounded, then f is
CO-conjugate to an ergodic rotation (see [2, p. 181]). Hence f has a purely discrete
spectrum. Moreover, if {Df"},cn is bounded in the C"-norm (r € N U {oco}), then f
and the ergodic rotation are C”-conjugated (see [2, p. 181]). However, if {||Df"||},,cn has
‘exponential growth’, precisely if f is an Anosov diffeomorphism, then it is metrically
isomorphic to a Bernoulli shift (see [S]). Hence f has a countable Lebesgue spectrum.
Moreover, f is C?-conjugate to an algebraic automorphism of the torus (see [4]).

The aim of this paper is to explain what can happen between these extreme cases.
Precisely, we study the properties of measure-preserving diffeomorphisms f of the two-
dimensional torus for which the sequence {Df"}, iy has linear growth. One definition of
the linear growth of the derivative is presented in [1]. In this paper, it is proved that if the
sequence {n~!'Df"},cn converges ji-a.e. to a measurable zi-non-zero function, then f is
algebraically conjugate (i.e. by a group automorphism) to a skew product of an irrational
rotation on the circle and a circle smooth cocycle with non-zero topological degree.
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Moreover, every skew product of an irrational rotation on the circle and a circle C?-cocycle
with non-zero degree has countable Lebesgue spectrum on the orthocomplement of
the space of functions depending only on the first variable (see [3]). It follows that
every measure-preserving, ergodic diffeomorphism with the previously mentioned linear
growth of the derivative has countable Lebesgue spectrum on the orthocomplement of its
eigenfunctions.

In this paper we propose a seemingly weaker definition of the linear growth of the
derivative.

2. Notations, definition and basic remarks

By T2 (T respectively) we will mean the torus R?/Z? (the circle R/Z respectively); by A
will denote Lebesgue measure on T2. We will identify functions on T? with Z2-periodic
functions (i.e. periodic of period 1 in each coordinates) on RZ. Let f : T> — T2 be a
smooth diffeomorphism. We will identify f with a diffeomorphism f : R*> — R? such
that

fr+1,x2) = f(x1, x2) + (a1, a21),
f(xi,x2+ 1) = f(x1,x2) + (a2, a)
for every (x1, x2) € R2, where [a;;];, j=1,2 € GL2(Z). Then there exist smooth functions
f1, f> : T> = R such that
Fx1,x2) = (anxn +anxz + fixr, x2), azxy + axxz + fx1, x2).
We will denote by fi, f> : R — R the coordinate functions of f. By M>(R) we mean

the space 2 x 2 matrices endowed with the operator norm.

Definition 1. We say that the derivative of a smooth diffeomorphism f : T> — T? has
linear growth if there exist positive constants ¢, C such that

0<c< i@l <c M
n

for every X € T?> and n € N.

One of the examples of ergodic measure-preserving diffeomorphisms with linear growth
of the derivative is any skew product of any irrational rotation on the circle and any
circle smooth cocycle with non-zero degree. Let « € T be an irrational number and let
¢ : T — Tbea C!-cocycle. We denote by d(¢) the topological degree of ¢. Consider the
skew product Ty ¢, : (']I‘Z, A) — (TI‘Z, A) defined by

To,p(x1,x2) = (X1 + @, X2 + @(x1)).
LEMMA 1. The sequence n™! DTOZ’,w converges uniformly to the matrix [d(o(ﬂ) 8]

Proof. Observe that
1

n

(=)

1

—DT) (x1,x2) = n—1
A 1

" E Do(x1 + ka)

=0
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By the ergodic theorem, the sequence n~! Zz;(l) Dy(- + ka) converges uniformly to the
number [ Do(x)dx = d(¢). O

It follows that if d(¢) # 0, then Ty 4 has linear growth of the derivative. Let r € N.
It is easy to check that if ¢ is of class C”, then

1. -
max sup sup —| D' Tof’(p(x)H < 0.
ISi=r 4eN zeT? ’
Our definition has a nice property because the linear growth of the derivative is invariant
under the relation of smooth conjugation. Indeed, suppose that two C”-diffeomorphisms

f1 and f> of T2 are C”-conjugated, i.e. there exists C” -diffeomorphism ¢ : T? — T? such
that

Jioy =vofo
Then
Dff oy =Dy o fil - Dfy - Dy~ Loy
and
D =Dy oo f-Dff oy - DY
for any natural n. Therefore
KD @O < D@D < KD ®)]

for every X € T? and n € N, where

K = sup Dy (®)] - sup Dy~ (D).

xeT? xeT?

It follows that if
0<c=IDA®I=C
then
0<c/K < %anz"()E)n <CK

for every X € T? and n € N. Moreover, if ¢ : T> — T2 is a group automorphism, then
D' fl(yX) - (DY (X)) = DY (X) - D' f3 (%)
for any x € T2 and 1 <i < r. Therefore there exists M > 0 such that

M~ sup |ID' @) < sup |IDF () < M sup ||D' )

1<i<r 1<i<r 1<i<r

for every X € T?> and n € N.
Let (B, || - ||) be a Banach space and let » € N U {0}. We will denote by C¥(T2, B) the
space C¥-functions f : T2 — B endowed with the norm given by

I£1l- = max sup [D'f(&)].
0<i<

= oxeT?

From this, we reach the following conclusion.
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COROLLARY 2. If a measure-preserving C3-diffeomorphism f : (T2, 1) — (T2, 1) is
algebraically conjugate to a skew product of an irrational rotation on the circle and a
circle C3-cocycle with non-zero degree, then:

° f is ergodic;

° f has linear growth of the derivative; and

° the sequence {n~'Df™},cx is bounded in C*(T?, M>(R)).

In this paper we will prove the converse of Corollary 2.

THEOREM 3. (Main theorem) Let f : (T2, 0) — (T2, 1) be a measure-preserving
C3-diffeomorphism. Suppose that:

° f is ergodic;

° f has linear growth of the derivative; and

° the sequence {n~'Df™},cN is bounded in C(T2, My (R)).

Then f is algebraically conjugate to a skew product of an irrational rotation on the circle
and a circle C3-cocycle with non-zero degree.

In addition, our theorem leads to the following conclusion. If f is ergodic, has linear
growth of the derivative and the sequence {n~' Df"},cy is bounded in the C2-norm, then
f has a countable Lebesgue spectrum on the orthocomplement of its eigenfunctions.

3. General remarks about the linear growth

Let f : (T2, 1) — (T2,)) be a measure-preserving C3—diffeomorphism. Assume that f
has linear growth of the derivative, i.e. satisfies (1). In this section it is shown that there
is something like an ‘unstable’ and a ‘stable’ direction for f at each point. A direction
u(¥) € S' is ‘unstable’ if

.1 o -
lim —(IDf"@u)|| — D" ) =0 (2)
n—-oon
and a direction v(x) € S! is ‘stable’ if
.1 o
lim —||Df"(xX)v(x)| = 0. (3)
n—-oon

Moreover, if the sequence {n’1 Df"},eN is bounded in C! (Tz, M>(R)), then u and v can
be chosen in a smooth way and they are unique up to £1.

Fix ¥ € T2 andn € N. Set B,(¥) = Df"(x). Let A,(x) € M>(R) be a (positive)
symmetric matrix such that Ap(©)? = B,(®)TB,(¥). Let (%) > Un(x) > 0 be
eigenvalues of A,(x). Then A,(X)un,(x) = 1 and A, (x) = A, = 1B, (X)].
Hence nc < A,(x) < nC. Let u,(x) and v,(x) be the normalized eigenvectors of A, (x)
with eigenvalues A, (x) and u, (x). Then u, (x) and v, (x) are perpendicular.

LEMMA 4. If (uy(X), up+1(x)) = 0 for n > ng, then lim,— oo un(x) = u(x). Moreover,
there exists K > 0 independent of x and nqo such that ||u,(x) — u(x)|| < K/n forn > nog
and

1
Jim ;(IIDf”(f)u(i)ll —IDf* @I = 0.
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If (v, (X), vp41(X)) > 0 for n > ng, then lim,_, o, v, (X) = v(x). Moreover, ||v,(X) —
v(X)|| < K/n forn > ng and

1
im ;IIDf”(i)v(i)ll =0.

Proof. Since 0 < (u, (x), up+1(x)) < 1, we have
1 (B) = tn g1 D)7 = 201 = (U (), n 1)) < 2(1 = (0 (%), 41 (X))).
On the other hand,
L= [lun @7 = (n(®), ttn 41 (B)* + (un (%), vag1 ().
Hence
0 (F) = ttna1 E < V201t (%), Vg1 ()]

However,

1
[(un (%), Va1 )| = —=[(An (X up (X), Vus1(X))]

An(X)

1
= ml(un(i), An(X) V41 (X))

IA

) 1B (X) V41 (X ||

1
5 IDF= L R DT E) vpgt ()

An

< —— sup [IDf T D Ant1 B a1 B
A (X) yeT?

S —— D -5 .
M1 () b 107

It follows that

_ _ K
lin () = tn 1 (D < =
n

for n > ng, where K = ﬁsupyeTz IDf~1(9)|l/c2. Therefore

Jm oy (¥) = u(x) and up(¥) —u@)ll = K/n
for n > ng. Similarly, we can prove that

im0, () =v(x) and vy (¥) —v(@®)] = K/n

for n > ng. Moreover,

1
;(IIDf"(i)u(i)ll— IDf" (DD = = (1An®)u )| — 1 (X))

= =14 ) (u(x) = un )N + [An (D un )| = 2 (X))

—_— = S| =

< —N[An Gl (x) — un ()|
CK
<

S

n
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and
1 o 1 _ _ _ _ _
;IIDf"(x)v(x)II < ;(IIAn(X)(v(x) = Vn D + | An (D) vp (1]
1 _ _ _ _ CK 1
= —([An O v(xX) = va (O + pn (X)) < — + —
n n cn
for n > ng. Letting n — oo, we obtain our claim. O

LEMMA 5. Let X € T? and let {n;}jcn be an increasing sequence of natural numbers.
Suppose that ul vl u? v e sl satisfy
. 1 ni(=\,,J ni (= : 1 N (=\a,J
lim — (I Df" Ou’ | = IDf" (X)) = lim —[|IDf" (x)v/|| =0
i—00 N 1—>00 N
for j =1,2. Assume that u' L v'. Then u® = +u' and v* = +v'.
Proof. Since ul 1 v, we have
IDf" Eyu* || = [w?, u") D" @u' + @, v") D" @)
and
[?, o) D" @' = [IDF" @u? ]| — [, ul) | DF" @u ]
for all n. It follows that

2 .1 l ni r=y.,1 l ni (2,20 ni (x
[{u”, v )In_IIDf @] = n_(IIDf @u”ll = 1D G
2 1 1 ni =\, 1 ni (=
= [u”u )I;(IIDf Xu |l = IDfM @)D

1 Lo
+ (1 —|<u2,u‘>|>;||D "3 |
1
for any natural i. Letting i — 0o, we obtain
1
Tim (1 — [(@?, u"))—IDf" ()|l = 0.
I—00 n;

Since n'|Df"(%)|| = ¢ > 0 for any natural n, we conclude that (u?, u'y = +1, hence
that u? = +u'. Similarly we can prove that v?> = +v'. O

LEMMA 6. Assume that sup,cyn~'||Df"l} = M < oo. Then there exist r > 0 and
L > 0 such that for every ¥y € R* we can choose u, v : R> — S! satisfying (2) and (3)
for which the functions u, v : {x € R? : |lx — xoll <r} — S are Lipschitz with constant
equal L.

Proof. First, choose sequences {u,, (x0)},en and {vy, (Xo) }nen With (4, (X0), un+1(X0)) = 0
and (v, (X0), vn+1(x9)) > O for every natural n. By Lemma 4, lim,—, o0 4, (X0) = u(Xo)
and [lun (x0) —u(xo)|l < K/n.

Let ¥ € R2. Choose a sequence {u, (¥)},en for which (u,(X0), un(x)) > 0 for any
natural n. Then

[(un (X0), Un+1(X0)) — (Un(X), ttn11(X))]
< [un (x0) = un(X), upt1(x0))| + (1 (X), tny1(X0) — tn41(X))]

=< llun(X0) — un (Ol + lltn+1(X0) — tnr1(X) |l
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and
e (0) — un (E)[1* = 2(1 — {un (Fo), un (¥)))
< 2(1 = (un (Fo), un (¥))%)
= 2(un (o), va (¥))*
because
1= [lun o) 1> = (un (%0). tn () + (un (o). va ().
Therefore

%Ilun(io) — up (X[ = [(un(X0), va (X))]

1
= [{An (X0)un(X0), va (X))]

An (X0)
= (1)20) [{un(X0), An(X0)vn (X))
=< o G0) | An (X0)vn GOl
1 " - _
= G 1 Df* (Xo)vn Gl
1
< —([(Df" (x0) — Df" (X)) va ()|l + D" (X)va ()]
An(X0)
1
< = ( sup | D? f"(3)|l|%o — || + Mn(f))
An(X0) FeT?
< Pt — 51+ 5y
¢ c2n?’
Hence
_ _ _ _ d
lun (x0) — un ()| < Lilxo — x|l + ) 4)
and

[(un (X0), Un+1(X0)) — (un(X), tn11(X))| < 2L|Ix0 — X || + PR

where L = v/2M/c and d = +/2/¢2. Since
_ _ 1 - -2 g
(n(X0), nt1(x0)) =1 — EHMn(xO) —Un1(X)[I” = 1 — e

it follows that

—2L|lxo — X||

2(K*+d
(Un(X), upg1(x)) > 1 — (724_)
n

for any natural n.
Choose ng € N such that 1 — 2(K2+d)/n?> > 1/2 forn > ng and fix r = 1/4L.
Suppose that ||xo — x|| < r. Then

(Un (X), nt1(¥)) = 5 —2Lr =0
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for n > ng. By Lemma 4, lim,,_, o 1, (X) = u(x). However, letting n — oo in (4), we
obtain
llu(xo) —u()ll < Llixo — x|l
Similarly we can prove that if || xo — x|| < r, then
lv(Xo) —v(X) | = Llixo — x|I. o

Let f: (T2,A) — (T2, A1) bea measure-preserving C 3-diffeomorphism. Assume that
f has linear growth of the derivative and the sequence {n~!Df"},cy is bounded in the
space CH(T?, M2(R)). Let {ut} neNs {Vn}nen be sequences of Z2-peri0dic functions on R?
such that

(tp (%), uny1(X)) 20 and (v, (X), Vay1(x)) = 0

for every ¥ € R? and n € N. By Lemma 4, there exist Z?-periodic functions u, v : R —
S1 such that

lim u,(x) =u(x) and lim v,(x) = v(X)

n—o0 n—o0
for every X € R2. By p : R? — PR(1) we mean the projection R? on the real projection
space PR(1). By Lemma 6, the functions p o u, p o v : R* — PR(1) are Lipschitz

continuous. It follows that there exist Lipschitz functions i, : R> — S! such that
poii=pouand pod = pou. Sinceu : R> - S is Z2-periodic,

poii(x; +1,x) = pou(x; +1,x) = pou(xy, x2) = poii(xy, x2)
for every (x1, x2) € RZ. Therefore there exists a function ¢ : RZ — {—1, 1} such that
u(xy + 1, x2) = e(x1, x2)u(xy, x2).

Since e(x1, x3) = (u(x1,x2),u(x; + 1, x2)), the function & is continuous, hence ¢ is
constant. It follows that

u(xy +2,x2) = ei(xy + 1, x2) = it (xy, x2)
for any (xg, x2) € RZ, Similarly,
i(xy, x2 +2) =d(x;,x2) and 0(x; 42, x2) = v(xq, x2 +2) = 0(x1, x2)

for any (xg, x2) € RZ,

Let p : R2(T?) — R%(T?) denote the endomorphism p(x1, x2) = (2x1, 2x2). Then the
functions @ = ii o p and U = ¥ o p are Z>-periodic. From this, we obtain the following
conclusion.

COROLLARY 7. Let f : (T2, 1) — (T2, 1) be a measure-preserving C3-diffeomorphism.
Assume that f has linear growth of the derivative and the sequence {n~'Df"},cN is
bounded in C*(T%, M>(R)). Then there exist Lipschitz functions it, v : R> — S! such
that the functions @ = ii o p and 0 = ¥ o p are Z*-periodic, i(X) L (X) and

1 1
Jim - (IDf"@a®] D" @) = lim —[Df"(©E®)] =0

forevery x € R2.
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For a given measure-preserving C3-diffeomorphism f : (T2, 1) — (T2, 1) we will
denote by f : (T%, A) — (T2, A) the measure-preserving C>-diffeomorphism
G, x) = G fi2xr,2x), L HQx, 2x0)). (5)
Note that f o p = p o f. Moreover, D¥ f" = 2k=1 Dk 1  p for any natural k and
1D @aE)| — 1D @) = I Df" (p)ii(p) | — | Df" (o)
and
1D F* (D@ = |1 Df" (p%)(pH)]]-
From this, we obtain the following corollary.
COROLLARY 8. Suppose that f : (T2, ) — (T%,)) is a measure-preserving
C3-diffeomorphism with linear growth of the derivative such that the sequence
(n~'Df™},en is bounded in C*(T?, M(R)). Then the measure-preserving C3-diffeo-
morphism f : (T2, 1) — (T2, A) satisfies the following conditions:

° f has linear growth of the derivative;
° the sequence {n~'D f"},cx is bounded in C*(T?, M2(R));
. there exist Lipschitz functions @, 0 : T2 — S! such that (x) L 0(x) and

1 o ~ N R P
Jim (D @EE] - D] @®I) = lim = D] @) =0

for every X € T2

4. A few properties off

In this section we prove a few properties of the diffeomorphism fwhich we will need
in the following sections. Let T : (X,B,u) — (X, B, 1) be a measure-preserving
automorphism of standard Borel space. We will denote by A7 the o-algebra of 5-
measurable 7 -invariant sets.

LEMMA 9. If there exists ¢ > 0 such that L(A) > c for every set A € Ar with positive
measure, then the o-algebra Ar is finite.

Proof. Consider the family S = {A € Ar : u(A) > ¢} endowed with the order given
by the relation of inclusion. Let {A, : y € T'} be a chainin S. Then (1, .- A, € Ar.
Since p(Ay) > c forevery y € T', we conclude that (), Ay) > ¢ > 0, hence that
(N,er Ay € S. By the Kuratowski—Zorn lemma, for any A € S there exists a minimal

set B € S with B C A. It follows easily that we can find a finite collection {Ay, ..., Ag}
pairwise disjoint minimal sets in S such that M( Uf:l Ak) = 1. Therefore Ar is generated
by the sets A1, ..., Ak. O

LEMMA 10. If Ay is finite, then Apm is finite for any natural m.

Proof. Let {Ay, ..., Ay} be a collection of pairwise disjoint sets, which generates the
o-algebra Ar. Suppose that A € Arm and w(A) > 0. Then U:":_Ol T!A € Ar. Hence

m—1
w(A) > lu Jra) = 1 i w(Aj) > 0.
T m i - 1<j<k

ml<j

Lemma 9 now shows that A7 is finite, which completes the proof. O
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Let f : (T2, 1) — (T2, A) be a smooth measure-preserving diffeomorphism. Represent
f as
f(x1,x2) = (anxy + anxa + fi(x1, x2), axxi + anxa + f(x1, x2)),
where [a;;]i, j=1,2 € GL2(Z) and fl fz : T2 — R. Then
F(x1,x2) = (@11x1 + apxs + LAi@2x1,2x0), azixt + anxa + L H(2x1,2x2)).

Let o1, o3 : T2 — T2 denote the diffeomorphisms o1 (x1, x2) = (x —l—%, x2), 02(x1, X2) =
(x1,x2 + %). Then 0 c0; = Id, 61 0o0p = oo ooy and poo; = p fori = 1,2.
Lete € M(Z/27Z) be defined by ¢;; = 2{a;;/2} fori, j € {1,2}. Then

Foo; =0 oot o]

for j = 1,2. We have dete # 0, because fis a bijection. It follows that the matrix ¢ is

equal to
1 0 0 1 1 0 or 1 1 or 0 1 or 1 1
0 1 1 0 1 1 0 1 1 1 1 0]

Therefore £© = Id over the field Z/2Z. Hence
J/‘\Goafloazezzfrfloa;zo]}‘\6 6)
forany €1, 67 € {—1, 1}.
EMMA 11. : ,A) — , A) is ergodic, then the o -algebra A+ is finite.
L 11. If f : (T%, 1) — (T2, A) is ergodic, then th Igebra Az is fini
Proof. Let A € A,? with A(A) > 0. Set A” = A Uo1A U o0A UojopA. Then
A" € A7 and o1A" = 0pA" = A’ Nextset A” = A'N[0,35) x [0,3). Then
A'=A"Uo1A" UoyA” Uo1opA” and
f(pA") =po J(A") = p(F(A") Vo1 f(A") Vo2 f(A") Uaioa f(A")
=po f(A"UcA" UoA” UsionA”) = po F(A) = p(A)
=p(A"Uo1A" U A" Uo10pA”) = pA”.
By the ergodicity of f, A(pA”) = 1. Therefore
MAUGIAUcmAUoiomA) = A(A) = A(p 1 (pA”)) = A(pA”) = 1.
It follows that A(A) > 1/4. Now we can apply Lemma 9 and the proof is complete. O

LEMMA 12. If f : (T2, 1) — (T2, ) is ergodic, then there exists a dense subset A C T?
and an increasing sequence {n;};eN of natural numbers such that f"'x — X for every
x € A

Proof. By Lemmas 10 and 11, the o-algebra Aff, is finite. Let {Aq, ..., Ay} be a collection
of measurable pairwise disjoint sets (with positive measure), which generates 4 7o- Let

Uy ={U elU : M(U N Ay) = 0}, where U is the family all open subsets of T2. Set

B =A1\ U v

Uel
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Then A(B1) = A(A1) and f631 = By mod A. Nextset B =),z f(’”Bl. Then fBB =B
and BNU # @, U € U implies A(B N U) > 0. Now consider the measure-
preserving homeomorphism f6 : (B,A|B) — (B, A|B) (with the induced topology).
Since f(’ : (B,A|B) — (B,A|B) and f : (T2,1) — (T2, 1) are ergodic, there exists
Xp € B such that the sequence {]/‘\6"120},,61\; is dense in B and the sequence { f” pxo},eN is
dense in T2. Choose an increasing sequence {m;};< such that ]/‘\6'"" X0 — Xo. Define

A={o{'0y> ["(%0) : e1.62 € {~1.1}, n € N}

and n; = 6m; for any i € N. First note that f”f x — x for every x € A. Indeed, let
X =o0,'05% f"(X0), where &, &2 € {—1, 1} and n € N. From (6), it follows that
flix = ﬁmfgf‘g;Zf"jo = of'afzf”]%m’io — 018'0282]/‘\")20 =X.

Next we show that A is dense in T2. First observe that pA = {f"pxo : n € N} is
dense in T2 and 01A = oA = A. Let y € T2. By the density of pA, there exists a
sequence {y,}n,en in A such that py, — py. Let {y}ien be a convergent subsequence
with " = lim; oo ¥5;. Then

py = lim pys, = py'.
11— 00
Therefore there exist &1, &2 € {—1, 1} such that y = o{'052}’. Hence
y = lim 0/'0,%y;, and o['052y, € 0, 052A = A,
11— 00

which completes the proof. a

5. Proof of the Main theorem

We will use the symbol £, to denote the partial derivative d//dx;. Lete € {—1,1} be a
number such that ¢ = det Df (x) for any ¥ € T2. In this section we will show the following
result, which leads to the Main theorem.

THEOREM 13. Let f : (T2, 1) — (T2, 1) be a measure-preserving C3-diffeomorphism.
Assume that:
° the o -algebra Ay is finite;

° there exists a dense subset A C T? and an increasing sequence {s;};cy of natural
numbers such that f*x — x for every x € A;
° f has linear growth of the derivative;

° the sequence {n~'Df™"},cn is bounded in C%(T2, M>(R)); and
° there exist Lipschitz functions u, v : T2 — S such that u(x) L v(x) and
1 N - 1 o
lim —([[Df"@u) | = IDf" (X)) = lim —[|Df"(X)v(x)]| =0
n—-oon n—-oon

for every X € T2
Then f is algebraically conjugate to a skew product of an irrational rotation on the circle
and a circle C3-cocycle with non-zero degree.

This immediately gives the following.
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Proof of Theorem 3. By Corollary 8, Lemmas 11 and 12 and Theorem 13, there exists a
group automorphism B : T? — T2 such that

Bo foB ' (x1,x2) = Tuy(x1, x2) = (x1 + @, x2 4 ¢(x1)),

where « is irrational and ¢ : T — T is a C3-cocycle with non-zero degree. Since p
commutes with B and B~! o0y = 0{' 0052 0 B~!, where &1, &2 € {1, 1}, we have

(2x1 + 20, 2x2 + 29(x1 + 3)) = p 0 Ty 0 1 (x1, X2)

=Bofopoo; oazgzoBfl(xl,xz)
=BofopoB l(x1,x) = poTyuxi,x2)
= (2x1 4 20, 2x2 4 2¢(x1)).

It follows that ¢(x + 1/2) = ¢(x) + d(¢)/2. Define
P(x) =20(3x).

Then ¢ : T — T and d(¢) = d(¢) # 0. Moreover,

BofoB '=BofoB ' =Ty =Ty
Therefore Bo f o B~ = Trq, - O

Remark. 1In the remainder of the paper assume that the system [u(X), v(x)] has a positive
orientation, i.e. there exist Lipschitz functions a, b : T2 — R such that

. Ta@® _ [-b@
”(x)_[b(@}’ ”(x)_[a@)}

and a?(X) 4+ b*(x) = 1 for any x € T?.
To prove Theorem 13, we need the following lemmas.
LEMMA 14. Under the assumptions of Theorem 13, u, v € C'(T?, R?).

Proof. Since the sequence {n~!Df"},cy is bounded in C%(T2, M>(R)), there exists a
subsequence {ni_lDf"i }ien convergent to a function /4 in C! (T2, M>(R)). Then 0 < ¢ <
|A(%)| < C forany ¥ € T2. Since n~ ' Df"(X)v(X) — 0, we have h(X)v(X) = 0 for any
X € T?. Therefore

h(E) = c(xX)a(x) c(x)b(x)
T ldX)ax) d@bE) |’

where ¢, d : T> — R are Lipschitz functions given by

c®7 _, - [a@®
[d@} = [b@} |
Then |h(¥)|? = c*(%) + d*(x). Let g : T2 — R be given by g(x) = [|h(X)].

Since g(X) = [A@) | = /X; jeqr.2y(h7 @)* (h = [h]; jep2) and 0 < ¢ < g(¥) < C,

g is a C!-function.
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Fix ¥, € R. Since a,c,d : T> — R are Lipschitz, for almost all x; € R there exist
partial derivatives ay, (x1, X2), cx, (X1, X2), dx, (x1, X2) and ay, (-, X2) € LY(T). Moreover,
a(xy, %) —a(0,%2) = [y ay,(x, %) dx for any x| € R. Then

N 9 N N
hy) (x1, %2) = B (€ D@L T = (e -a+e-an)n, %)

and
21 N 0 - .
hy, (x1,X2) = a—xl(d ca)(x1,X2) = (dy, -a+d - ay)(x1,X2)

for almost all x; € R. Hence
(hy! e+ h3 - d)(x1, %2) = ((ex, - ¢ + dy, - d) - @) (x1, F2) + (¥ +d?) - ax,) (x1, X2)
= (gD, - @) (x1, X2) + (g% - ax,) (x1, X2)
and

h;} oc—i-h)zc} 'd—(gz)x1 .a(x )
P 1, X2

aX| (xla i2) =

for almost all x; € R. It follows that there exists a continuous function e : T> — R such
that ay, (x1, X2) = e(x1, X2) for almost all x; € R. Therefore

X] X1
a(xy, X2) —a(0, x2) =/ axl(x,iz)dx=/ e(x,x)dx
0 0

for any x; € R. Hence for every x| € R there exists a,, (x1, X2) and is equal to e(x1, X2).
Therefore, for every x € R there exists a,, (X) and ay, : T2 — R is continuous. Similarly,
we can prove that ay,, by, by, : T2 — R are continuous. It follows that @, b € C1(T?, R)

and finally that u, v € C!(T?, R?). ]
Let (B, | - ||) be a Banach space and let r € N U {0}. Consider the space
D" f(x)— D" f(y
Cr+L(T2, B) — {f e Cr(TZ, B) : sup ” f(xz - f(}’)” < OO}
%,5eT?, X — ¥l

X#y

endowed with the norm given by

D' (%) — D" (3
I fllr+2 = max {”f”r, sup 107 (%) FOI }

P
X#Yy

Applying the Ascoli theorem, we get immediately the following lemma.

LEMMA 15. Let r be a natural number and let { f,},eN be a bounded sequence in
C'tL(T2, B). Then there exists a subsequence {n;};cN such that f,, — f in C" (T2, B).
Moreover, f € C"E(T2, B) and || f |+ < limsup, o | fallr+L.

This gives the following result by the diagonal process.
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LEMMA 16. Under the assumptions of Theorem 13, there exists an increasing sequence
{ni}ieN of natural numbers such that f"ix — x for every x € A and

1
lim —Df"+k = py

i—o0 n;

in C1 (T2, M>(R)) for any integer k. Moreover, hy € CHL(T2, M3 (R)) and

. 1 . 1
itz = lim sup - IDf"[l14+2 < limsup p IDf"ll2

n—o0 n—o0

for any integer k.

Let {n;};cn be an increasing sequence of natural numbers such that f"x — x for every
x € Aand

1
lim —Df" K = py

i—oo n;

in C1(T?, M»(R)) for any natural k. It follows that the sequence {h}ie7 is bounded
in C'*E(T?, My(R)) and 0 < ¢ < | (X)|| < C for any ¥ € T? and k € Z. Since

n~'Df"(F)v(E) — 0, we have hy ()v(E) = 0. Then [l @) = /X, ;1.0 B ()

(hy = [h;;j]i,je{l,z}), by dethx(x) = 0. For every integer k, let g : T2 — R be given by
gk (X) = |hx(X)|l. Then g € C'TL(T2, R). Moreover, the sequence {gx }rc7 is bounded
in C'*L(T2, R).

LEMMA 17. For every integer k there exist sy : T> — R and ¢ € {—1, 1} such that

ekgk(¥)/go(fX%) 0

k= k=
w0 0| M o

} — DA @) v(@®)]

forany x € T2
Proof. Fix k € Z. Since
1 - _ 1 -
lim —(|Df"(Xu@)|| = IDf" (X)) = lim —[Df"(x)v(x)| =0,
n—o0on n—oon
we have
o1 ok _ _ o1 . _ _
lim — || D" (FfDu(ff o)l = go(f*%),  lim —[IDf" (fF*Du(f* )] = 0.
i—00 N; 1—>00 N
Let e1, e2 : T2 — R be functions such that

I(gx (X)/go(S*ENDF* ) u(f*5) + er(®v@)| =1,
lea @) (DfFE) w0l = 1.
Set
' (%) = (gr(®)/g0(FXONDFEGEN u(fF5) + e1 (R)v(F),
V' (E) = ex(@®)(DFFE) o (fER).
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Then
1
lim (IDfm G’ @) = 1D )
i—oon; +k
T - ko by enigopk= k= N Ty
—l_lggo (gk(x)/8o(f x))n_Df (f"Ou(f x)+€1(x)n'Df (XDv(x) | —grx)
= (& @)/go(f* DN ho(fX B — g (®) =0
and
- itk =y = . N Y S
lim IDf ) ()| = lim flea(x)—Df" (f*x)v(f %) =0.
i—oon; +k i—00 n;
By Lemma 5, there exist functions &g, €2 : ™ - {—1, 1} such that ¥’ = exu and
v = gyxv. Therefore
- k_ -
Dk k= K2\T — [0 n(F e1k(X)go(f*x)/gk(x) 0 i|
6 = v | SRR e

It follows that &1, is continuous, hence that it is constant. Let g € {—1, 1} be a number
such that ; = e () for any X € T2. Since det[u(X)v(¥)] = 1 and det Df*(x) = &* for
any x € T2, we have

ek (X)/e2(¥) = e¥ex gu(X)/g0(f*%).
Set s¢ (%) = ek e1(¥)go(f*%) /g (¥). Then

k_ -
DAY T 5500 FEYT = Tu(yo(e) | 56 800 %)/ 8k (¥) 0 }
5T u(fFx)v(fT )] [u(x)v(x)][ ekso(E) ek er 2B/ 20 f45)
and finally
Koy ook | €k 8K(E)/g0( A ) 0 }_D koot o s
[u(f*x)v(f X)][ i) ke 00 (F40)/ae @) |~ O x)vx)]. O

LEMMA 18. There exists a function g : T> — R of class C'*tL such that
8()/80(f %) = g(0)/g(f*%)

and g = 811‘ for any integer k.

Proof. For all k,n € Z we have

Df" ™ uv] = Df" o f* - Df*[uv]
Sk

&k 7 0
_ n k k k 80 ©
=Df"o f*luo f*vo f*] kgOOfk
Sk ehey
8k
gnofk
X X En ofn+k 0
:[uofn+ vof’”] 80 of”+k
spo fk g, 0
n n k
gnof
8k
Sp——— 0
o« goo fk .
k goof
Sk e ——

8k
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However,
Enik 8n+k 0
n+ k
goo frt
Dfn+k[uv] — [M ° fn+k vo fn+k] " 200 fn+k
Sn+k e ey g ————
8n+k
It follows that &, = &,& and
8n+k _ 8no fk 8k

goo frtk  goo frtk ggo K

Hence g = ¥ and g /g0 o f* = guix/gn o f*. Let¢ : T2 — Ry be given by

¢(x) = g1(xX)/80(fX) = gn+1(X)/gn(fX).
Then ¢ € C'*L (T2, R), ¢(X) = ¢/C > 0 for any X € T? and

gn=C-Cof-...-tof" gyof"

for any natural n. Define { = log¢ and g, = logg, for any integer n. Then Z, g, €
C'*L(T?, R). Since the sequence {g,},c7 is bounded in C'+L (T2, R) and 0 < ¢ < g, (¥)
forany n € Z and ¥ € T2, the sequence {g,},cz is bounded in C'*tL (T2, R), too.
Moreover,

n—1
gn=Y Coff+gof"
k=0

for any natural n. Set £ = ZZ;(]) ¢ o f¥ for any natural n. Then

. 1. 1 n—1 . . 1 n—1 B . 1 n—1 B 1 n—1 .
{—=tW==% ((-CofH==-3 W -tWop=-310--% 0oy
n =0 =0 =0 =0

ln—l 1n—1
==Y @ —80ofH == @of—gof
=0 =0

n—1 n—1 ~ n ~
= %Zék—%z(éwf-i-igoofn Ly

k=0 k=0
Since the sequence {n~! ZZ;& Zklneny is bounded in C'tL(T? R), there exists
a subsequence {m[lzkm;'gl 8r}ien convergent in C'(T?,R) to a function § €
C'*L (T2, R), by Lemma 15. By the ergodic theorem, the sequence {n~'z™},cN
converges a.e. to a A -measurable function Zo : T — R. It follows that

(%) = o(X) = (%) — &(f%)

for a.e. ¥ € T2. Since the function{ — g+ g o f is A r-measurable and continuous and
the o-algebra A is finite, we conclude that { — g + g o f is constant. Hence

E—g+gof=/ Eodk=/ Tdn.
T2 T2
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Since g, = £™ + gy o f™, we have

/g,,d)\=n Ed/\+/ Zodn.
T2 T2 T2

As the sequence {[12 &1 dA}uen is bounded, we obtain [, dAh = 0. This gives
{=g—go fand

Z—gooff=tW=g-gors
for any natural k. Define g = exp g. Then
gi/goo f* =g/go fF. O
Lemmas 17 and 18 now show that
k k
€1 8/80 f 0 k
wo ffvo k][l }:D [uv].
frvet Sk (een)* go fX/g f
Therefore
(g-v)o fF = (e18)Dff(g - v) @)
and
Slfg/gofk 0 ul _ uTofk ka
Sk (een)f go frrg] (v ] [vT o f* '
Hence
(g-u")o f*Dff =&f(g-u"). ®)

LEMMA 19. For every integer k there exists §; € {—1, 1} such that

—a-bo fk —b-bofki|

hkzakgk[a.aofk b-aofk

:(Skgk-vofk-uT.

Proof. Recall that {n;};c is the sequence for which f"'x — x for every x € A and
1
lim —Df"itk = py
1—00 Nn;

in Cl(Tz, M>(R)). Therefore hy - v = 0. Let ¢x, di € Cl(Tz, R) be given by

Ck 1
= —hy - u.
[dk} 8k ¢

Then c,% + d,% =1 and

hi = g [c"} ul ©)
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Suppose that x € A. From (8),

n;+k
%uT(f"f“)z)Df"f*k(i) = Eln_ (@)/g(f"**x)) u” (¥) — 0.

Since [t x — fkx, we have u” (f¥x) - hy(x) = 0. From (9), it follows that

T, k= | kG| 7o
u (f*x) [dk@}u (x) =0,

hence that

T, k= | CHGO) |
ul (F¥%) [dk(i)}_o (10)

for any X € A. Since the set A is dense in T2, we see that the equality (10) holds for any
X € T2. It follows that there exists a function 8 : T2 — {—1, 1} such that

a@®1 oo e
[dk(i)} =8 (X) v(f"Xx).
Since
) =07 () | 10
)]’

we conclude that §; is continuous, hence that it is constant. Therefore
he =8k gr-vo f*-ul,

by (9). |
LEMMA 20. ay, + by, = 0and g, b = gy,a.
Proof. Since n;'Df" — hg in C'(T?, Ma(R)), it follows that n; ' D?f" — Dhy
uniformly. Let v = g - v. Then
D(%Df”" -ﬁ) = %sz"f -ﬁ+&Df”" . DV — Dhqy -9+ ho- Db = D(ho-7) =0

| l | (11D
uniformly, because ho - v = g - hg - v = 0. However, v o K = (e1e)kDf* - ¥ (see (7))

implies (¢18)*D(Df*%) = D o f* - Df¥. Let¥ € A. Then

1 1
(e1e)" D (—Dfn’ (i)f)(i)> = Do(f"x)—Df" (X) — Dv(X)ho(X).
n; ni
From (11), we obtain Dv(x)ho(x) = O for any x € A. Since A is dense in T2, it follows
that Dv - hg = 0. Hence

[_(g : b)xl _(g : b)xz

—b ~
(g : a)xl (g- a)x2 :| |: i| (60/g0)Dv - ho - u

a
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Since ay,a + by, b = 0 and ay,a + by,b = 0, we conclude that
0= (g : b)xlb - (g : b)xza

= g(by,b — by,a) + b(gx,b — gr,a)
= —ga(ay, + by,) +b(gx b — g,a)

and
0=—(g-a)xb+(g-a)a

= g(—=ax b+ ax,a) —a(gxb — gx,a)

= —gb(ax, + by,) —a(gx,b — gx,a).
Therefore

[—ga b j| [ Ay, + by, j| —0.
—gb —a]|gqb—gna

It follows that ay, + by, = 0 and g,,b = gx,a. ad

LEMMA 21. (g-a)x, = (g8 - b)x,.
Proof. Let k be an integer number. Since n; ' Df"it* — hy in C'(T?, M(R)) and

_ —a-boffF —b-bofk
hk_akgk[a-aofk b-aofk
(by Lemma 19), we have

fni+k

o1
(gk.a.bofk)x2:—5k _hm _( 1 )X|X2
=00 N

R S
= =& lim — ("),
1—00 Nj

=(gk-b-bo fhy,
and

fni+/<

. 1
(gk-a-ao X =8 lim — (") x
1—>00 N

i+k
fznt )x2x1

1
= 8 lim —(
i—00 N
= (gk-b-ao [y
Suppose that e : T> — R is a C'-function satisfying
(gk-a-eo f =(gk-b-eo fy (12)

and De - v = 0. Observe that the functions a and b satisfy these properties. Indeed, by
Lemma 20,

—b
Da - v = [ay, ay,] [ . i| = —ay b+ ayna =by,b+ay,a=0
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and

Db - v = [by, by,] [_ab} = —by,b+by,a=—byb—aya=0.
Since gx/go o f* = g/g o f*, (12) shows that
(ga - (g0g 'e) o [N, = (gb - (808 e) o fF)y,.
Hence
((gb)x, — (80)x,) - (808 "e) o f* = g(—b((g08 ") o fF)x, +al(g0g™"e) 0 fF)x,)
=gD((gog ') o f*) - v
= D(g0g 'e) o fX- Df* - (gv).
Since (g - v) o fk = (sls)kka(g - v) (see (7)), we have
((gh)x, — (8a)x,) - (08" €) o [ = (e18)*(D(g0g™"e) - gv) o f*
= (e1)*(D(g0g™") - egv + goDe - v) o f*
= (218" (D(g0g™") - egv) o f*.
Letting ¢ = a and ¢ = b we obtain
(gb)x, — (8@)x, = (£18)(D(g0g™") - g5 ' g%v) o fX.

Therefore, the function |(gb)x, —(ga)x,| is A r-measurable. Since A is finite, the function
(gb)x, — (ga)y, is constant. However,

Az((gb)xl - (ga)xz)d)L = O
Hence (gb)x, = (8a)x,. -

Proof of Theorem 13. By the previous lemmas, there exists g € C'*(T2, R) such that:
° O<c§g(i)f0ranyie'ﬂ‘2;

e (¢g-ul)ofDf =¢e1(g-u’);and

o (¢ = (8- )y ay, + by, = 0and g5,b = gra.

It follows that there exists a C2+L-function & : R — R such that

DE=[g-ag-bl=g-u'.
Consider the map
(x1, x2) > &(x1 + 1, x2) — §(x1, x2).
Since its derivative is equal to zero, we see that it is constant. Similarly
(x1, x2) > &(x1, 02 + 1) — §(x1, x2).
is constant. Therefore, & can be represented as

E(x1,x2) = p1x1 + pax2 + E(x1, x2), (13)
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where pi,p» € Rand € : T2 — R is a C2-function. Note that p% + p% > 0.
Indeed, since £ is Z*-periodic, there exists Xo € T? such that DE(%y) = 0. Then p; =
£ (o) = (8- @)(F0), p2 = &x,(%0) = (g-b)(Fo) and pi + p; = g°(X) > 0.
Since (g-uT)o f-Df = e1(g-u’), wehave Déo f-Df = 1 D&. Hence D(£o f —e1£) = 0.
Therefore there exists 8 € R such that

fof=c§+8. (14
Represent f as
Fx1,x2) = (anxn +anxz + fixy, x2), anxy +anxz + fx1, x2),
where [;;]; j=12 € GL2(Z) and fi, f> : T2 — R. From (14),
piail + p2az1 = é1p1 and  piaiz + paax = &1p2.
Observe that there exists a real number d # 0 such that
pid, pod € Z and ged(pid, p2d) = 1.

If one of the numbers pp, p> is equal to zero, then d = 1/(p1 + p2). If p1, p» # 0, then
setd; = p1/p>. Hence

1
an—i-d—azl =e¢1 and djapp+axp =¢.
1

Note that d; is rational. Indeed, suppose that d; is irrational. Then [Z;} Zég] = ¢;1d.
Therefore f2 can be represented as

A1, x2) = (x1 + Y1 (x1, x2), x2 + Y2 (x1, X2)),

where 1, ¥ : T?> — R are C3-functions. Then

n—1 n—1
fP 1, x0) = (xl + ) e ), x4+ Y Y, XZ))>
k=0 k=0

and
1o 1 x 1S 2%
~(f —Id>=<—2w1of =Y Wnof ) (15)
n =0 =0

Since the sequence {(n~'Df?},cn is bounded in C3(T2, M>(R)) and 0 < 2¢ <
||n*1Df2”()E)|| < 2C, there exists an increasing sequence {my}ren of naturals and
¥ € C'(T?, R?) such that

L1 > . (D™ —1d) > Dy
mg mg

uniformly and 0 < 2¢ < || Dy (x)]|. From (15), v is Afz-measurable. By Lemma 10, the
o-algebra A is finite. Hence v is constant. This gives Dy = 0, which contradicts the
fact that 0 < 2¢ < ||Dy¥(x)]|| for any x € T2. Therefore d; is rational. Let d| = p/q
where p € Z,q € Nand ged(p,q) = 1. Setd = p/pi1. Then p1d = p and prd = q.
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Next note that ¢; = 1. Suppose, contrary to our claim, that &y = —1. Letg: T? — s!
be given byg = exp2ni&/d. From (14), go f = emib/d E Hence
Eofr=ePlEof=E.

Since E is A p2-measurable and the o-algebra A 2 Is finite, it follows that E is constant,
hence that £ is constant, which contradicts the fact that 0 < ¢ < || D&(x)| for any x € T2.
However, by, = ay,,. Since

aay, + bay, = aay, +bby, =0,
—bay, + aax, = bb,, +aay, =0,

we have Da = 0 and similarly Db = 0. Consequently a and b are constants and g satisfies
the partial linear equation with constant coefficients g,,b — gy,a = 0. It follows that there
exists a strictly increasing C2-function w : R — R such that

g(x1,x2) = Dw(axy + bx2).
Hence
&y (x1,x2) = Dw(axy +bxz)a and &, (x1, x2) = Dw(axy + bxz)b.

Therefore we can assume that £(x1, x2) = w(ax; + bxy). It follows that

wx +a)=pi(x/a+1)+Ex/a+1,0) =wk) + pr,

wx +b) = p(x/b+ 1) +£0,x/b+1) = w) + p2,
by (13). Consequently

w(x +ga) = gp1 = pp2 = w(x + pb)

and ga = pb. Define w(x) = dw(bx/q). Then dw(ax; + bxy) = w(px; + gx2) and
w(x + 1) = w(x) + 1. Moreover,

W(pfi(X) +qf2(X) = w(px1 +gx2) + B,

by (14). Let r,s be integer numbers such that ps — gr = 1. Consider the group
automorphism B : T2 — T2 defined by B(x1,x2) = (px1 + gx2,rx1 + sx3). Let f =
Bo foB landn; : T2 — T be the projection on the ith coordinate for i = 1, 2. Then
D(f1(x1,x2)) = B(p fro B~ (x1,x2) +¢ f20 B~ (x1,x2))
=w(pmioB  (x1,x2) +gmo B (x1,x2)) + '
=wx) +p.

Therefore, f depends only on the first variable. Then

i o
. af10 "
Df = 8xV1 . and iﬁ:deth:s.
i 0t 1 02

0x; 0xp
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Since (8f2/8x2)(x1,x2) = 8/(3f1/8x1)(x1, 0), there exists a C3-function ¢ : T — T
such that

" e
Sa(x1, x2) = mxz + @(x1)

and 8/(8ﬁ/8x1)(x1, 0) is an integer constant. As the map T > x +—— fvl (x,0) € Tis
continuous and increasing, it follows that (d f1/9x1)(x1, 0) = 1. Therefore

v

fx1,x2) = (x1 + o, ex2 + ¢(x1)),

where « is irrational, by the ergodicity of f. Next note that ¢ = 1. Indeed, suppose that
& = —1. Then

1
— 0

1 o 2n
2—Df (x1,x2) = | 1 n=l 1
n — E (Do(x1 + a + 2ka) — Do(x) + 2ka))  —
2n = 2n

By the ergodic theorem,

1= 1
2 DDl + -+ 2ka) = Dylot + 2ka) = 3 [ (Dot + ) — Dyt dx =0
2n = 2 Jr
uniformly, which contradicts the fact that f has linear growth of the derivative. a
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