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Abstract. We consider measure-preserving diffeomorphisms of the two-dimensional torus
with zero entropy. We prove that every ergodic C3-diffeomorphism f of the two-
dimensional torus with linear growth of the derivative (i.e. the sequence {n−1Df n}n∈N
is uniformly separated from 0 and ∞ and it is bounded in the C2-norm) is algebraically
conjugate to a skew product of an irrational rotation on the circle and a circle C3-cocycle
with non-zero topological degree.

1. Introduction
LetM be a compact Riemannian smooth manifold andµ its probability Lebesgue measure.
Let f : (M,µ) → (M,µ) be a smooth measure-preserving ergodic diffeomorphism.
An important question of smooth ergodic theory is: what is the relation between the
asymptotic properties of the sequence {Df n}n∈N and the dynamical or spectral properties
of the dynamical system f : (M,µ) → (M,µ). There are results which describe this
relation well in the case where M is the torus. For example, if a diffeomorphism f is
homotopic to the identity and the sequence {Df n}n∈N is uniformly bounded, then f is
C0-conjugate to an ergodic rotation (see [2, p. 181]). Hence f has a purely discrete
spectrum. Moreover, if {Df n}n∈N is bounded in the Cr -norm (r ∈ N ∪ {∞}), then f

and the ergodic rotation are Cr -conjugated (see [2, p. 181]). However, if {‖Df n‖}n∈N has
‘exponential growth’, precisely if f is an Anosov diffeomorphism, then it is metrically
isomorphic to a Bernoulli shift (see [5]). Hence f has a countable Lebesgue spectrum.
Moreover, f is C0-conjugate to an algebraic automorphism of the torus (see [4]).

The aim of this paper is to explain what can happen between these extreme cases.
Precisely, we study the properties of measure-preserving diffeomorphisms f of the two-
dimensional torus for which the sequence {Df n}n∈N has linear growth. One definition of
the linear growth of the derivative is presented in [1]. In this paper, it is proved that if the
sequence {n−1Df n}n∈N converges µ-a.e. to a measurable µ-non-zero function, then f is
algebraically conjugate (i.e. by a group automorphism) to a skew product of an irrational
rotation on the circle and a circle smooth cocycle with non-zero topological degree.
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Moreover, every skew product of an irrational rotation on the circle and a circle C2-cocycle
with non-zero degree has countable Lebesgue spectrum on the orthocomplement of
the space of functions depending only on the first variable (see [3]). It follows that
every measure-preserving, ergodic diffeomorphism with the previously mentioned linear
growth of the derivative has countable Lebesgue spectrum on the orthocomplement of its
eigenfunctions.

In this paper we propose a seemingly weaker definition of the linear growth of the
derivative.

2. Notations, definition and basic remarks
By T2 (T respectively) we will mean the torus R2/Z2 (the circle R/Z respectively); by λ

will denote Lebesgue measure on T2. We will identify functions on T2 with Z2-periodic
functions (i.e. periodic of period 1 in each coordinates) on R2. Let f : T2 → T2 be a
smooth diffeomorphism. We will identify f with a diffeomorphism f : R2 → R2 such
that

f (x1 + 1, x2) = f (x1, x2)+ (a11, a21),

f (x1, x2 + 1) = f (x1, x2)+ (a12, a22)

for every (x1, x2) ∈ R2, where [aij ]i,j=1,2 ∈ GL2(Z). Then there exist smooth functions
f̃1, f̃2 : T2 → R such that

f (x1, x2) = (a11x1 + a12x2 + f̃1(x1, x2), a21x1 + a22x2 + f̃2(x1, x2)).

We will denote by f1, f2 : R2 → R the coordinate functions of f . By M2(R) we mean
the space 2× 2 matrices endowed with the operator norm.

Definition 1. We say that the derivative of a smooth diffeomorphism f : T2 → T2 has
linear growth if there exist positive constants c, C such that

0 < c ≤ 1

n
‖Df n(x̄)‖ ≤ C (1)

for every x̄ ∈ T2 and n ∈ N.

One of the examples of ergodic measure-preserving diffeomorphisms with linear growth
of the derivative is any skew product of any irrational rotation on the circle and any
circle smooth cocycle with non-zero degree. Let α ∈ T be an irrational number and let
ϕ : T → T be a C1-cocycle. We denote by d(ϕ) the topological degree of ϕ. Consider the
skew product Tα,ϕ : (T2, λ)→ (T2, λ) defined by

Tα,ϕ(x1, x2) = (x1 + α, x2 + ϕ(x1)).

LEMMA 1. The sequence n−1DT n
α,ϕ converges uniformly to the matrix

[
0 0

d(ϕ) 0

]
.

Proof. Observe that

1

n
DT n

α,ϕ(x1, x2) =




1

n
0

1

n

n−1∑
k=0

Dϕ(x1 + kα)
1

n


 .
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By the ergodic theorem, the sequence n−1 ∑n−1
k=0 Dϕ( · + kα) converges uniformly to the

number
∫
T
Dϕ(x) dx = d(ϕ). ✷

It follows that if d(ϕ) �= 0, then Tα,ϕ has linear growth of the derivative. Let r ∈ N.
It is easy to check that if ϕ is of class Cr , then

max
1≤i≤r

sup
n∈N

sup
x̄∈T2

1

n
‖DiT n

α,ϕ(x̄)‖ <∞.

Our definition has a nice property because the linear growth of the derivative is invariant
under the relation of smooth conjugation. Indeed, suppose that two Cr -diffeomorphisms
f1 and f2 of T2 are Cr -conjugated, i.e. there exists Cr -diffeomorphismψ : T2 → T2 such
that

f1 ◦ ψ = ψ ◦ f2.

Then

Df n
1 ◦ ψ = Dψ ◦ f n

2 ·Df n
2 ·Dψ−1 ◦ ψ

and

Df n
2 = Dψ−1 ◦ ψ ◦ f n

2 ·Df n
1 ◦ ψ ·Dψ

for any natural n. Therefore

K−1‖Df n
2 (x̄)‖ ≤ ‖Df n

1 (ψx̄)‖ ≤ K‖Df n
2 (x̄)‖

for every x̄ ∈ T2 and n ∈ N, where

K = sup
x̄∈T2

‖Dψ(x̄)‖ · sup
x̄∈T2

‖Dψ−1(x̄)‖.

It follows that if

0 < c ≤ 1

n
‖Df n

1 (x̄)‖ ≤ C,

then

0 < c/K ≤ 1

n
‖Df n

2 (x̄)‖ ≤ CK

for every x̄ ∈ T2 and n ∈ N. Moreover, if ψ : T2 → T2 is a group automorphism, then

Dif n
1 (ψx̄) · (Dψ(x̄))i = Dψ(x̄) ·Dif n

2 (x̄)

for any x̄ ∈ T2 and 1 ≤ i ≤ r . Therefore there exists M > 0 such that

M−1 sup
1≤i≤r

‖Dif n
2 (x̄)‖ ≤ sup

1≤i≤r
‖Dif n

1 (ψx̄)‖ ≤ M sup
1≤i≤r

‖Dif n
2 (x̄)‖

for every x̄ ∈ T2 and n ∈ N.
Let 〈B, ‖ · ‖〉 be a Banach space and let r ∈ N ∪ {0}. We will denote by Ck(T2, B) the

space Ck-functions f : T2 → B endowed with the norm given by

‖f ‖r = max
0≤i≤r sup

x̄∈T2
‖Dif (x̄)‖.

From this, we reach the following conclusion.
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COROLLARY 2. If a measure-preserving C3-diffeomorphism f : (T2, λ) → (T2, λ) is
algebraically conjugate to a skew product of an irrational rotation on the circle and a
circle C3-cocycle with non-zero degree, then:
• f is ergodic;
• f has linear growth of the derivative; and
• the sequence {n−1Df n}n∈N is bounded in C2(T2,M2(R)).

In this paper we will prove the converse of Corollary 2.

THEOREM 3. (Main theorem) Let f : (T2, λ) → (T2, λ) be a measure-preserving
C3-diffeomorphism. Suppose that:
• f is ergodic;
• f has linear growth of the derivative; and
• the sequence {n−1Df n}n∈N is bounded in C2(T2,M2(R)).

Then f is algebraically conjugate to a skew product of an irrational rotation on the circle
and a circle C3-cocycle with non-zero degree.

In addition, our theorem leads to the following conclusion. If f is ergodic, has linear
growth of the derivative and the sequence {n−1Df n}n∈N is bounded in the C2-norm, then
f has a countable Lebesgue spectrum on the orthocomplement of its eigenfunctions.

3. General remarks about the linear growth
Let f : (T2, λ) → (T2, λ) be a measure-preserving C3-diffeomorphism. Assume that f
has linear growth of the derivative, i.e. satisfies (1). In this section it is shown that there
is something like an ‘unstable’ and a ‘stable’ direction for f at each point. A direction
u(x̄) ∈ S1 is ‘unstable’ if

lim
n→∞

1

n
(‖Df n(x̄)u(x̄)‖ − ‖Df n(x̄)‖) = 0 (2)

and a direction v(x̄) ∈ S1 is ‘stable’ if

lim
n→∞

1

n
‖Df n(x̄)v(x̄)‖ = 0. (3)

Moreover, if the sequence {n−1Df n}n∈N is bounded in C1(T2,M2(R)), then u and v can
be chosen in a smooth way and they are unique up to ±1.

Fix x̄ ∈ T2 and n ∈ N. Set Bn(x̄) = Df n(x̄). Let An(x̄) ∈ M2(R) be a (positive)
symmetric matrix such that An(x̄)

2 = Bn(x̄)
T Bn(x̄). Let λn(x̄) > µn(x̄) > 0 be

eigenvalues of An(x̄). Then λn(x̄)µn(x̄) = 1 and λn(x̄) = ‖An(x̄)‖ = ‖Bn(x̄)‖.
Hence nc ≤ λn(x̄) ≤ nC. Let un(x̄) and vn(x̄) be the normalized eigenvectors of An(x̄)

with eigenvalues λn(x̄) and µn(x̄). Then un(x̄) and vn(x̄) are perpendicular.

LEMMA 4. If 〈un(x̄), un+1(x̄)〉 ≥ 0 for n ≥ n0, then limn→∞ un(x̄) = u(x̄). Moreover,
there exists K > 0 independent of x̄ and n0 such that ‖un(x̄)− u(x̄)‖ ≤ K/n for n ≥ n0

and

lim
n→∞

1

n
(‖Df n(x̄)u(x̄)‖ − ‖Df n(x̄)‖) = 0.
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If 〈vn(x̄), vn+1(x̄)〉 ≥ 0 for n ≥ n0, then limn→∞ vn(x̄) = v(x̄). Moreover, ‖vn(x̄) −
v(x̄)‖ ≤ K/n for n ≥ n0 and

lim
n→∞

1

n
‖Df n(x̄)v(x̄)‖ = 0.

Proof. Since 0 ≤ 〈un(x̄), un+1(x̄)〉 ≤ 1, we have

‖un(x̄)− un+1(x̄)‖2 = 2(1− 〈un(x̄), un+1(x̄)〉) ≤ 2(1− 〈un(x̄), un+1(x̄)〉2).
On the other hand,

1 = ‖un(x̄)‖2 = 〈un(x̄), un+1(x̄)〉2 + 〈un(x̄), vn+1(x̄)〉2.
Hence

‖un(x̄)− un+1(x̄)‖ ≤
√

2|〈un(x̄), vn+1(x̄)〉|.
However,

|〈un(x̄), vn+1(x̄)〉| = 1

λn(x̄)
|〈An(x̄)un(x̄), vn+1(x̄)〉|

= 1

λn(x̄)
|〈un(x̄), An(x̄)vn+1(x̄)〉|

≤ 1

λn(x̄)
‖Bn(x̄)vn+1(x̄)‖

= 1

λn(x̄)
‖Df −1(f n+1x̄)Df n+1(x̄)vn+1(x̄)‖

≤ 1

λn(x̄)
sup
ȳ∈T2

‖Df −1(ȳ)‖‖An+1(x̄)vn+1(x̄)‖

= 1

λn(x̄)λn+1(x̄)
sup
ȳ∈T2

‖Df−1(ȳ)‖.

It follows that

‖un(x̄)− un+1(x̄)‖ ≤ K

n2

for n ≥ n0, where K = √
2 supȳ∈T2 ‖Df −1(ȳ)‖/c2. Therefore

lim
n→∞ un(x̄) = u(x̄) and ‖un(x̄)− u(x̄)‖ ≤ K/n

for n ≥ n0. Similarly, we can prove that

lim
n→∞ vn(x̄) = v(x̄) and ‖vn(x̄)− v(x̄)‖ ≤ K/n

for n ≥ n0. Moreover,
1

n
(‖Df n(x̄)u(x̄)‖−‖Df n(x̄)‖) = 1

n
(‖An(x̄)u(x̄)‖ − λn(x̄))

≤ 1

n
(‖An(x̄)(u(x̄)− un(x̄))‖ + ‖An(x̄)un(x̄)‖ − λn(x̄))

≤ 1

n
‖An(x̄)‖‖u(x̄)− un(x̄)‖

≤ CK

n
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and
1

n
‖Df n(x̄)v(x̄)‖ ≤ 1

n
(‖An(x̄)(v(x̄)− vn(x̄))‖ + ‖An(x̄)vn(x̄)‖)

≤ 1

n
(‖An(x̄)‖‖v(x̄)− vn(x̄)‖ + µn(x̄)) ≤ CK

n
+ 1

cn2

for n ≥ n0. Letting n→∞, we obtain our claim. ✷

LEMMA 5. Let x̄ ∈ T2 and let {ni}i∈N be an increasing sequence of natural numbers.
Suppose that u1, v1, u2, v2 ∈ S1 satisfy

lim
i→∞

1

ni
(‖Df ni (x̄)uj‖ − ‖Df ni (x̄)‖) = lim

i→∞
1

ni
‖Df ni (x̄)vj‖ = 0

for j = 1, 2. Assume that u1 ⊥ v1. Then u2 = ±u1 and v2 = ±v1.

Proof. Since u1 ⊥ v1, we have

‖Df n(x̄)u2‖ = ‖〈u2, u1〉Df n(x̄)u1 + 〈u2, v1〉Df n(x̄)v1‖
and

|〈u2, v1〉|‖Df n(x̄)v1‖ ≥ |‖Df n(x̄)u2‖ − |〈u2, u1〉|‖Df n(x̄)u1‖|
for all n. It follows that

|〈u2, v1〉| 1

ni
‖Df ni (x̄)v1‖ ≥

∣∣∣∣ 1

ni
(‖Df ni (x̄)u2‖ − ‖Df ni (x̄)‖)

− |〈u2, u1〉| 1

ni
(‖Df ni (x̄)u1‖ − ‖Df ni (x̄)‖)

+ (1− |〈u2, u1〉|) 1

ni
‖Df ni (x̄)‖

∣∣∣∣
for any natural i. Letting i →∞, we obtain

lim
i→∞(1− |〈u2, u1〉|) 1

ni
‖Df ni (x̄)‖ = 0.

Since n−1‖Df n(x̄)‖ ≥ c > 0 for any natural n, we conclude that 〈u2, u1〉 = ±1, hence
that u2 = ±u1. Similarly we can prove that v2 = ±v1. ✷

LEMMA 6. Assume that supn∈N n−1‖Df n‖1 = M < ∞. Then there exist r > 0 and
L > 0 such that for every x̄0 ∈ R2 we can choose u, v : R2 → S1 satisfying (2) and (3)
for which the functions u, v : {x̄ ∈ R2 : ‖x̄ − x̄0‖ < r} → S1 are Lipschitz with constant
equal L.

Proof. First, choose sequences {un(x̄0)}n∈N and {vn(x̄0)}n∈N with 〈un(x̄0), un+1(x̄0)〉 ≥ 0
and 〈vn(x̄0), vn+1(x̄0)〉 ≥ 0 for every natural n. By Lemma 4, limn→∞ un(x̄0) = u(x̄0)

and ‖un(x̄0)− u(x̄0)‖ ≤ K/n.
Let x̄ ∈ R2. Choose a sequence {un(x̄)}n∈N for which 〈un(x̄0), un(x̄)〉 ≥ 0 for any

natural n. Then

|〈un(x̄0), un+1(x̄0)〉 − 〈un(x̄), un+1(x̄)〉|
≤ |〈un(x̄0)− un(x̄), un+1(x̄0)〉| + |〈un(x̄), un+1(x̄0)− un+1(x̄)〉|
≤ ‖un(x̄0)− un(x̄)‖ + ‖un+1(x̄0)− un+1(x̄)‖
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and

‖un(x̄0)− un(x̄)‖2 = 2(1− 〈un(x̄0), un(x̄)〉)
≤ 2(1− 〈un(x̄0), un(x̄)〉2)
= 2〈un(x̄0), vn(x̄)〉2

because

1 = ‖un(x̄0)‖2 = 〈un(x̄0), un(x̄)〉2 + 〈un(x̄0), vn(x̄)〉2.
Therefore

1√
2
‖un(x̄0)− un(x̄)‖ = |〈un(x̄0), vn(x̄)〉|

= 1

λn(x̄0)
|〈An(x̄0)un(x̄0), vn(x̄)〉|

= 1

λn(x̄0)
|〈un(x̄0), An(x̄0)vn(x̄)〉|

≤ 1

λn(x̄0)
‖An(x̄0)vn(x̄)‖

= 1

λn(x̄0)
‖Df n(x̄0)vn(x̄)‖

≤ 1

λn(x̄0)
(‖(Df n(x̄0)−Df n(x̄))vn(x̄)‖ + ‖Df n(x̄)vn(x̄)‖)

≤ 1

λn(x̄0)

(
sup
ȳ∈T2

‖D2f n(ȳ)‖‖x̄0 − x̄‖ + µn(x̄)

)

≤ M

c
‖x̄0 − x̄‖ + 1

c2n2 .

Hence

‖un(x̄0)− un(x̄)‖ ≤ L‖x̄0 − x̄‖ + d

n2
(4)

and

|〈un(x̄0), un+1(x̄0)〉 − 〈un(x̄), un+1(x̄)〉| ≤ 2L‖x̄0 − x̄‖ + 2d

n2
,

where L = √
2M/c and d = √

2/c2. Since

〈un(x̄0), un+1(x̄0)〉 = 1− 1

2
‖un(x̄0)− un+1(x̄0)‖2 ≥ 1− 2K2

n2 ,

it follows that

〈un(x̄), un+1(x̄)〉 ≥ 1− 2(K2 + d)

n2
− 2L‖x̄0 − x̄‖

for any natural n.
Choose n0 ∈ N such that 1 − 2(K2 + d)/n2 > 1/2 for n ≥ n0 and fix r = 1/4L.

Suppose that ‖x̄0 − x̄‖ < r . Then

〈un(x̄), un+1(x̄)〉 ≥ 1
2 − 2Lr = 0
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for n ≥ n0. By Lemma 4, limn→∞ un(x̄) = u(x̄). However, letting n → ∞ in (4), we
obtain

‖u(x̄0)− u(x̄)‖ ≤ L‖x̄0 − x̄‖.
Similarly we can prove that if ‖x̄0 − x̄‖ < r , then

‖v(x̄0)− v(x̄)‖ ≤ L‖x̄0 − x̄‖. ✷

Let f : (T2, λ) → (T2, λ) be a measure-preserving C3-diffeomorphism. Assume that
f has linear growth of the derivative and the sequence {n−1Df n}n∈N is bounded in the
space C1(T2,M2(R)). Let {un}n∈N, {vn}n∈N be sequences of Z2-periodic functions on R2

such that

〈un(x̄), un+1(x̄)〉 ≥ 0 and 〈vn(x̄), vn+1(x̄)〉 ≥ 0

for every x̄ ∈ R2 and n ∈ N. By Lemma 4, there exist Z2-periodic functions u, v : R2 →
S1 such that

lim
n→∞ un(x̄) = u(x̄) and lim

n→∞ vn(x̄) = v(x̄)

for every x̄ ∈ R2. By p : R2 → PR(1) we mean the projection R2 on the real projection
space PR(1). By Lemma 6, the functions p ◦ u, p ◦ v : R2 → PR(1) are Lipschitz
continuous. It follows that there exist Lipschitz functions ũ, ṽ : R2 → S1 such that
p ◦ ũ = p ◦ u and p ◦ ṽ = p ◦ v. Since u : R2 → S1 is Z2-periodic,

p ◦ ũ(x1 + 1, x2) = p ◦ u(x1 + 1, x2) = p ◦ u(x1, x2) = p ◦ ũ(x1, x2)

for every (x1, x2) ∈ R2. Therefore there exists a function ε : R2 → {−1, 1} such that

ũ(x1 + 1, x2) = ε(x1, x2)ũ(x1, x2).

Since ε(x1, x2) = 〈ũ(x1, x2), ũ(x1 + 1, x2)〉, the function ε is continuous, hence ε is
constant. It follows that

ũ(x1 + 2, x2) = εũ(x1 + 1, x2) = ũ(x1, x2)

for any (x1, x2) ∈ R2. Similarly,

ũ(x1, x2 + 2) = ũ(x1, x2) and ṽ(x1 + 2, x2) = ṽ(x1, x2 + 2) = ṽ(x1, x2)

for any (x1, x2) ∈ R2.
Let ρ : R2(T2)→ R2(T2) denote the endomorphism ρ(x1, x2) = (2x1, 2x2). Then the

functions û = ũ ◦ ρ and v̂ = ṽ ◦ ρ are Z2-periodic. From this, we obtain the following
conclusion.

COROLLARY 7. Let f : (T2, λ)→ (T2, λ) be a measure-preserving C3-diffeomorphism.
Assume that f has linear growth of the derivative and the sequence {n−1Df n}n∈N is
bounded in C1(T2,M2(R)). Then there exist Lipschitz functions ũ, ṽ : R2 → S1 such
that the functions û = ũ ◦ ρ and v̂ = ṽ ◦ ρ are Z2-periodic, ũ(x̄) ⊥ ṽ(x̄) and

lim
n→∞

1

n
(‖Df n(x̄)ũ(x̄)‖ − ‖Df n(x̄)‖) = lim

n→∞
1

n
‖Df n(x̄)ṽ(x̄)‖ = 0

for every x̄ ∈ R2.
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For a given measure-preserving C3-diffeomorphism f : (T2, λ) → (T2, λ) we will
denote by f̂ : (T2, λ)→ (T2, λ) the measure-preservingC3-diffeomorphism

f̂ (x1, x2) = ( 1
2f1(2x1, 2x2),

1
2f2(2x1, 2x2)). (5)

Note that f ◦ ρ = ρ ◦ f̂ . Moreover, Dkf̂ n = 2k−1Dkf n ◦ ρ for any natural k and

‖Df̂ n(x̄)̂u(x̄)‖ − ‖Df̂ n(x̄)‖ = ‖Df n(ρx̄)ũ(ρx̄)‖ − ‖Df n(ρx̄)‖
and

‖Df̂ n(x̄)̂v(x̄)‖ = ‖Df n(ρx̄)ṽ(ρx̄)‖.
From this, we obtain the following corollary.

COROLLARY 8. Suppose that f : (T2, λ) → (T2, λ) is a measure-preserving
C3-diffeomorphism with linear growth of the derivative such that the sequence
{n−1Df n}n∈N is bounded in C2(T2,M2(R)). Then the measure-preserving C3-diffeo-
morphism f̂ : (T2, λ)→ (T2, λ) satisfies the following conditions:
• f̂ has linear growth of the derivative;
• the sequence {n−1Df̂ n}n∈N is bounded in C2(T2,M2(R));
• there exist Lipschitz functions û, v̂ : T2 → S1 such that û(x̄) ⊥ v̂(x̄) and

lim
n→∞

1

n
(‖Df̂ n(x̄)̂u(x̄)‖ − ‖Df̂ n(x̄)‖) = lim

n→∞
1

n
‖Df̂ n(x̄)̂v(x̄)‖ = 0

for every x̄ ∈ T2.

4. A few properties of f̂
In this section we prove a few properties of the diffeomorphism f̂ which we will need
in the following sections. Let T : (X,B, µ) → (X,B, µ) be a measure-preserving
automorphism of standard Borel space. We will denote by AT the σ -algebra of B-
measurable T -invariant sets.

LEMMA 9. If there exists c > 0 such that µ(A) ≥ c for every set A ∈ AT with positive
measure, then the σ -algebra AT is finite.

Proof. Consider the family S = {A ∈ AT : µ(A) ≥ c} endowed with the order given
by the relation of inclusion. Let {Aγ : γ ∈ +} be a chain in S. Then

⋂
γ∈+ Aγ ∈ AT .

Since µ(Aγ ) ≥ c for every γ ∈ +, we conclude that µ
(⋂

γ∈+ Aγ

) ≥ c > 0, hence that⋂
γ∈+ Aγ ∈ S. By the Kuratowski–Zorn lemma, for any A ∈ S there exists a minimal

set B ∈ S with B ⊂ A. It follows easily that we can find a finite collection {A1, . . . , Ak}
pairwise disjoint minimal sets in S such that µ

( ⋃k
i=1 Ak

) = 1. Therefore AT is generated
by the sets A1, . . . , Ak . ✷

LEMMA 10. If AT is finite, then AT m is finite for any natural m.

Proof. Let {A1, . . . , Ak} be a collection of pairwise disjoint sets, which generates the
σ -algebra AT . Suppose that A ∈ AT m and µ(A) > 0. Then

⋃m−1
i=0 T iA ∈ AT . Hence

µ(A) ≥ 1

m
µ

(m−1⋃
i=0

T iA

)
≥ 1

m
min

1≤j≤k µ(Aj) > 0.

Lemma 9 now shows that AT m is finite, which completes the proof. ✷
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Let f : (T2, λ)→ (T2, λ) be a smooth measure-preserving diffeomorphism. Represent
f as

f (x1, x2) = (a11x1 + a12x2 + f̃1(x1, x2), a21x1 + a22x2 + f̃2(x1, x2)),

where [aij ]i,j=1,2 ∈ GL2(Z) and f̃1, f̃2 : T2 → R. Then

f̂ (x1, x2) = (a11x1 + a12x2 + 1
2 f̃1(2x1, 2x2), a21x1 + a22x2 + 1

2 f̃2(2x1, 2x2)).

Let σ1, σ2 : T2 → T2 denote the diffeomorphisms σ1(x1, x2) = (x1+ 1
2 , x2), σ2(x1, x2) =

(x1, x2 + 1
2 ). Then σi ◦ σi = Id, σ1 ◦ σ2 = σ2 ◦ σ1 and ρ ◦ σi = ρ for i = 1, 2.

Let ε ∈ M2(Z/2Z) be defined by εij = 2{aij /2} for i, j ∈ {1, 2}. Then

f̂ ◦ σj = σ
ε1j
1 ◦ σε2j

2 ◦ f̂
for j = 1, 2. We have det ε �= 0, because f̂ is a bijection. It follows that the matrix ε is
equal to[

1 0
0 1

]
or

[
0 1
1 0

]
or

[
1 0
1 1

]
or

[
1 1
0 1

]
or

[
0 1
1 1

]
or

[
1 1
1 0

]
.

Therefore ε6 = Id over the field Z/2Z. Hence

f̂ 6 ◦ σε1
1 ◦ σε2

2 = σ
ε1
1 ◦ σε2

2 ◦ f̂ 6 (6)

for any ε1, ε2 ∈ {−1, 1}.
LEMMA 11. If f : (T2, λ)→ (T2, λ) is ergodic, then the σ -algebra Af̂ is finite.

Proof. Let A ∈ Af̂ with λ(A) > 0. Set A′ = A ∪ σ1A ∪ σ2A ∪ σ1σ2A. Then

A′ ∈ Af̂ and σ1A
′ = σ2A

′ = A′. Next set A′′ = A′ ∩ [0, 1
2 ) × [0, 1

2 ). Then
A′ = A′′ ∪ σ1A

′′ ∪ σ2A
′′ ∪ σ1σ2A

′′ and

f (ρA′′) = ρ ◦ f̂ (A′′) = ρ(f̂ (A′′) ∪ σ1f̂ (A
′′) ∪ σ2f̂ (A

′′) ∪ σ1σ2f̂ (A
′′))

= ρ ◦ f̂ (A′′ ∪ σ1A
′′ ∪ σ2A

′′ ∪ σ1σ2A
′′) = ρ ◦ f̂ (A′) = ρ(A′)

= ρ(A′′ ∪ σ1A
′′ ∪ σ2A

′′ ∪ σ1σ2A
′′) = ρA′′.

By the ergodicity of f , λ(ρA′′) = 1. Therefore

λ(A ∪ σ1A ∪ σ2A ∪ σ1σ2A) = λ(A′) = λ(ρ−1(ρA′′)) = λ(ρA′′) = 1.

It follows that λ(A) ≥ 1/4. Now we can apply Lemma 9 and the proof is complete. ✷

LEMMA 12. If f : (T2, λ)→ (T2, λ) is ergodic, then there exists a dense subset A ⊂ T2

and an increasing sequence {ni}i∈N of natural numbers such that f̂ ni x̄ → x̄ for every
x̄ ∈ A.

Proof. By Lemmas 10 and 11, the σ -algebraAf̂ 6 is finite. Let {A1, . . . , As} be a collection
of measurable pairwise disjoint sets (with positive measure), which generates Af̂ 6 . Let

U1 = {U ∈ U : λ(U ∩ A1) = 0}, where U is the family all open subsets of T2. Set

B1 = A1

∖ ⋃
U∈U1

U.
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Then λ(B1) = λ(A1) and f̂ 6B1 = B1 mod λ. Next set B = ⋂
n∈Z f̂ 6nB1. Then f̂ 6B = B

and B ∩ U �= ∅, U ∈ U implies λ(B ∩ U) > 0. Now consider the measure-
preserving homeomorphism f̂ 6 : (B, λ|B) → (B, λ|B) (with the induced topology).
Since f̂ 6 : (B, λ|B) → (B, λ|B) and f : (T2, λ) → (T2, λ) are ergodic, there exists
x̄0 ∈ B such that the sequence {f̂ 6nx̄0}n∈N is dense in B and the sequence {f nρx̄0}n∈N is
dense in T2. Choose an increasing sequence {mi}i∈N such that f̂ 6mi x̄0 → x̄0. Define

A = {σε1
1 σ

ε2
2 f̂ n(x̄0) : ε1, ε2 ∈ {−1, 1}, n ∈ N}

and ni = 6mi for any i ∈ N. First note that f̂ ni x̄ → x̄ for every x̄ ∈ A. Indeed, let
x̄ = σ

ε1
1 σ

ε2
2 f̂ n(x̄0), where ε1, ε2 ∈ {−1, 1} and n ∈ N. From (6), it follows that

f̂ ni x̄ = f̂ 6miσ
ε1
1 σ

ε2
2 f̂ nx̄0 = σ

ε1
1 σ

ε2
2 f̂ nf̂ 6mi x̄0 → σ

ε1
1 σ

ε2
2 f̂ nx̄0 = x̄.

Next we show that A is dense in T2. First observe that ρA = {f nρx̄0 : n ∈ N} is
dense in T2 and σ1A = σ2A = A. Let ȳ ∈ T2. By the density of ρA, there exists a
sequence {ȳn}n∈N in A such that ρȳn → ρȳ. Let {ȳsi }i∈N be a convergent subsequence
with ȳ ′ = limi→∞ ȳsi . Then

ρȳ = lim
i→∞ ρȳsi = ρȳ ′.

Therefore there exist ε1, ε2 ∈ {−1, 1} such that ȳ = σ
ε1
1 σ

ε2
2 ȳ ′. Hence

ȳ = lim
i→∞ σ

ε1
1 σ

ε2
2 ȳsi and σ

ε1
1 σ

ε2
2 ȳsi ∈ σ

ε1
1 σ

ε2
2 A = A,

which completes the proof. ✷

5. Proof of the Main theorem
We will use the symbol hxi to denote the partial derivative ∂h/∂xi . Let ε ∈ {−1, 1} be a
number such that ε = detDf (x̄) for any x̄ ∈ T2. In this section we will show the following
result, which leads to the Main theorem.

THEOREM 13. Let f : (T2, λ) → (T2, λ) be a measure-preserving C3-diffeomorphism.
Assume that:
• the σ -algebra Af is finite;
• there exists a dense subset A ⊂ T2 and an increasing sequence {si}i∈N of natural

numbers such that f si x̄ → x̄ for every x̄ ∈ A;
• f has linear growth of the derivative;
• the sequence {n−1Df n}n∈N is bounded in C2(T2,M2(R)); and
• there exist Lipschitz functions u, v : T2 → S1 such that u(x̄) ⊥ v(x̄) and

lim
n→∞

1

n
(‖Df n(x̄)u(x̄)‖ − ‖Df n(x̄)‖) = lim

n→∞
1

n
‖Df n(x̄)v(x̄)‖ = 0

for every x̄ ∈ T2.
Then f is algebraically conjugate to a skew product of an irrational rotation on the circle
and a circle C3-cocycle with non-zero degree.

This immediately gives the following.
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Proof of Theorem 3. By Corollary 8, Lemmas 11 and 12 and Theorem 13, there exists a
group automorphism B : T2 → T2 such that

B ◦ f̂ ◦ B−1(x1, x2) = Tα,ϕ(x1, x2) = (x1 + α, x2 + ϕ(x1)),

where α is irrational and ϕ : T → T is a C3-cocycle with non-zero degree. Since ρ

commutes with B and B−1 ◦ σ1 = σ
ε1
1 ◦ σε2

2 ◦ B−1, where ε1, ε2 ∈ {−1, 1}, we have

(2x1 + 2α, 2x2 + 2ϕ(x1 + 1
2 )) = ρ ◦ Tα,ϕ ◦ σ1(x1, x2)

= B ◦ f ◦ ρ ◦ σε1
1 ◦ σε2

2 ◦ B−1(x1, x2)

= B ◦ f ◦ ρ ◦ B−1(x1, x2) = ρ ◦ Tα,ϕ(x1, x2)

= (2x1 + 2α, 2x2 + 2ϕ(x1)).

It follows that ϕ(x + 1/2) = ϕ(x)+ d(ϕ)/2. Define

ϕ̃(x) = 2ϕ( 1
2x).

Then ϕ̃ : T → T and d(ϕ̃) = d(ϕ) �= 0. Moreover,

̂B ◦ f ◦ B−1 = B ◦ f̂ ◦ B−1 = Tα,ϕ = T̂2α,ϕ̃.

Therefore B ◦ f ◦ B−1 = T2α,ϕ̃ . ✷

Remark. In the remainder of the paper assume that the system [u(x̄), v(x̄)] has a positive
orientation, i.e. there exist Lipschitz functions a, b : T2 → R such that

u(x̄) =
[
a(x̄)

b(x̄)

]
, v(x̄) =

[−b(x̄)
a(x̄)

]

and a2(x̄)+ b2(x̄) = 1 for any x̄ ∈ T2.

To prove Theorem 13, we need the following lemmas.

LEMMA 14. Under the assumptions of Theorem 13, u, v ∈ C1(T2,R2).

Proof. Since the sequence {n−1Df n}n∈N is bounded in C2(T2,M2(R)), there exists a
subsequence {n−1

i Df ni }i∈N convergent to a function h in C1(T2,M2(R)). Then 0 < c ≤
‖h(x̄)‖ ≤ C for any x̄ ∈ T2. Since n−1Df n(x̄)v(x̄)→ 0, we have h(x̄)v(x̄) = 0 for any
x̄ ∈ T2. Therefore

h(x̄) =
[
c(x̄)a(x̄) c(x̄)b(x̄)

d(x̄)a(x̄) d(x̄)b(x̄)

]
,

where c, d : T2 → R are Lipschitz functions given by[
c(x̄)

d(x̄)

]
= h(x̄)

[
a(x̄)

b(x̄)

]
.

Then ‖h(x̄)‖2 = c2(x̄) + d2(x̄). Let g : T2 → R be given by g(x̄) = ‖h(x̄)‖.

Since g(x̄) = ‖h(x̄)‖ =
√∑

i,j∈{1,2}(hij (x̄))2 (h = [hij ]i,j∈{1,2}) and 0 < c ≤ g(x̄) ≤ C,

g is a C1-function.
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Fix x̃2 ∈ R. Since a, c, d : T2 → R are Lipschitz, for almost all x1 ∈ R there exist
partial derivatives ax1(x1, x̃2), cx1(x1, x̃2), dx1(x1, x̃2) and ax1( · , x̃2) ∈ L1(T). Moreover,
a(x1, x̃2)− a(0, x̃2) =

∫ x1
0 ax1(x, x̃2) dx for any x1 ∈ R. Then

h11
x1
(x1, x̃2) = ∂

∂x1
(c · a)(x1, x̃2) = (cx1 · a + c · ax1)(x1, x̃2)

and

h21
x1
(x1, x̃2) = ∂

∂x1
(d · a)(x1, x̃2) = (dx1 · a + d · ax1)(x1, x̃2)

for almost all x1 ∈ R. Hence

(h11
x1
· c + h21

x1
· d)(x1, x̃2) = ((cx1 · c + dx1 · d) · a)(x1, x̃2)+ ((c2 + d2) · ax1)(x1, x̃2)

= ((g2)x1 · a)(x1, x̃2)+ (g2 · ax1)(x1, x̃2)

and

ax1(x1, x̃2) =
h11
x1
· c + h21

x1
· d − (g2)x1 · a
g2

(x1, x̃2)

for almost all x1 ∈ R. It follows that there exists a continuous function e : T2 → R such
that ax1(x1, x̃2) = e(x1, x̃2) for almost all x1 ∈ R. Therefore

a(x1, x̃2)− a(0, x̃2) =
∫ x1

0
ax1(x, x̃2) dx =

∫ x1

0
e(x, x̃2) dx

for any x1 ∈ R. Hence for every x1 ∈ R there exists ax1(x1, x̃2) and is equal to e(x1, x̃2).
Therefore, for every x̄ ∈ R there exists ax1(x̄) and ax1 : T2 → R is continuous. Similarly,
we can prove that ax2, bx1, bx2 : T2 → R are continuous. It follows that a, b ∈ C1(T2,R)

and finally that u, v ∈ C1(T2,R2). ✷

Let 〈B, ‖ · ‖〉 be a Banach space and let r ∈ N ∪ {0}. Consider the space

Cr+L(T2, B) =
{
f ∈ Cr(T2, B) : sup

x̄,ȳ∈T2,
x̄ �=ȳ

‖Drf (x̄)−Drf (ȳ)‖
‖x̄ − ȳ‖ <∞

}

endowed with the norm given by

‖f ‖r+L = max

{
‖f ‖r , sup

x̄,ȳ∈T2,
x̄ �=ȳ

‖Drf (x̄)−Drf (ȳ)‖
‖x̄ − ȳ‖

}
.

Applying the Ascoli theorem, we get immediately the following lemma.

LEMMA 15. Let r be a natural number and let {fn}n∈N be a bounded sequence in
Cr+L(T2, B). Then there exists a subsequence {ni}i∈N such that fni → f in Cr(T2, B).
Moreover, f ∈ Cr+L(T2, B) and ‖f ‖r+L ≤ lim supn→∞ ‖fn‖r+L.

This gives the following result by the diagonal process.



1772 K. Fr ↪aczek

LEMMA 16. Under the assumptions of Theorem 13, there exists an increasing sequence
{ni}i∈N of natural numbers such that f ni x̄ → x̄ for every x̄ ∈ A and

lim
i→∞

1

ni
Df ni+k = hk

in C1(T2,M2(R)) for any integer k. Moreover, hk ∈ C1+L(T2,M2(R)) and

‖hk‖1+L ≤ lim sup
n→∞

1

n
‖Df n‖1+L ≤ lim sup

n→∞
1

n
‖Df n‖2

for any integer k.

Let {ni}i∈N be an increasing sequence of natural numbers such that f ni x̄ → x̄ for every
x̄ ∈ A and

lim
i→∞

1

ni
Df ni+k = hk

in C1(T2,M2(R)) for any natural k. It follows that the sequence {hk}k∈Z is bounded
in C1+L(T2,M2(R)) and 0 < c ≤ ‖hk(x̄)‖ ≤ C for any x̄ ∈ T2 and k ∈ Z. Since

n−1Df n(x̄)v(x̄) → 0, we have hk(x̄)v(x̄) = 0. Then ‖hk(x̄)‖ =
√∑

i,j∈{1,2}(h
ij
k (x̄))

2

(hk = [hijk ]i,j∈{1,2}), by dethk(x̄) = 0. For every integer k, let gk : T2 → R be given by
gk(x̄) = ‖hk(x̄)‖. Then gk ∈ C1+L(T2,R). Moreover, the sequence {gk}k∈Z is bounded
in C1+L(T2,R).

LEMMA 17. For every integer k there exist sk : T2 → R and εk ∈ {−1, 1} such that

[u(f kx̄) v(f kx̄)]
[
εkgk(x̄)/g0(f

kx̄) 0
sk(x̄) εkεkg0(f

kx̄)/gk(x̄)

]
= Df k(x̄)[u(x̄) v(x̄)]

for any x̄ ∈ T2.

Proof. Fix k ∈ Z. Since

lim
n→∞

1

n
(‖Df n(x̄)u(x̄)‖ − ‖Df n(x̄)‖) = lim

n→∞
1

n
‖Df n(x̄)v(x̄)‖ = 0,

we have

lim
i→∞

1

ni
‖Df ni (f kx̄)u(f kx̄)‖ = g0(f

kx̄), lim
i→∞

1

ni
‖Df ni (f kx̄)v(f kx̄)‖ = 0.

Let e1, e2 : T2 → R be functions such that

‖(gk(x̄)/g0(f
kx̄))(Df k(x̄))−1u(f kx̄)+ e1(x̄)v(x̄)‖ = 1,

‖e2(x̄)(Df
k(x̄))−1v(f kx̄)‖ = 1.

Set

u′(x̄) = (gk(x̄)/g0(f
kx̄))(Df k(x̄))−1u(f kx̄)+ e1(x̄)v(x̄),

v′(x̄) = e2(x̄)(Df
k(x̄))−1v(f kx̄).
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Then

lim
i→∞

1

ni + k
(‖Df ni+k(x̄)u′(x̄)‖ − ‖Df ni+k(x̄)‖)

= lim
i→∞

∥∥∥∥(gk(x̄)/g0(f
kx̄))

1

ni
Df ni (f kx̄)u(f kx̄)+e1(x̄)

1

ni
Df ni+k(x̄)v(x̄)

∥∥∥∥−gk(x̄)
= (gk(x̄)/g0(f

kx̄))‖h0(f
kx̄)‖ − gk(x̄) = 0

and

lim
i→∞

1

ni + k
‖Df ni+k(x̄)v′(x̄)‖ = lim

i→∞‖e2(x̄)
1

ni
Df ni (f kx̄)v(f kx̄)‖ = 0.

By Lemma 5, there exist functions ε1k, ε2k : T2 → {−1, 1} such that u′ = ε1ku and
v′ = ε2kv. Therefore

Df k(x̄)−1[u(f kx̄) v(f kx̄)] = [u(x̄) v(x̄)]
[
ε1k(x̄)g0(f

kx̄)/gk(x̄) 0
−e1(x̄)g0(f

kx̄)/gk(x̄) ε2k(x̄)/e2(x̄)

]
.

It follows that ε1k is continuous, hence that it is constant. Let εk ∈ {−1, 1} be a number
such that εk = ε1k(x̄) for any x̄ ∈ T2. Since det[u(x̄)v(x̄)] = 1 and detDf k(x̄) = εk for
any x̄ ∈ T2, we have

ε2k(x̄)/e2(x̄) = εkεk gk(x̄)/g0(f
kx̄).

Set sk(x̄) = εk e1(x̄)g0(f
kx̄)/gk(x̄). Then

Df k(x̄)−1[u(f kx̄)v(f kx̄)] = [u(x̄)v(x̄)]
[
εk g0(f

kx̄)/gk(x̄) 0
−εksk(x̄) εkεk gk(x̄)/g0(f

kx̄)

]
and finally

[u(f kx̄)v(f kx̄)]
[
εk gk(x̄)/g0(f

kx̄) 0
sk(x̄) εkεk g0(f

kx̄)/gk(x̄)

]
= Df k(x̄)[u(x̄)v(x̄)]. ✷

LEMMA 18. There exists a function g : T2 → R+ of class C1+L such that

gk(x̄)/g0(f
kx̄) = g(x̄)/g(f kx̄)

and εk = εk1 for any integer k.

Proof. For all k, n ∈ Z we have

Df n+k[uv] = Df n ◦ f k ·Df k[uv]

= Df n ◦ f k[u ◦ f k v ◦ f k]

εk

gk

g0 ◦ f k
0

sk εkεk
g0 ◦ f k

gk




= [u ◦ f n+k v ◦ f n+k]



εn

gn ◦ f k

g0 ◦ f n+k 0

sn ◦ f k εnεn
g0 ◦ f n+k

gn ◦ f k




×

εk

gk

g0 ◦ f k
0

sk εkεk
g0 ◦ f k

gk


 .
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However,

Df n+k[uv] = [u ◦ f n+k v ◦ f n+k]

εn+k

gn+k
g0 ◦ f n+k 0

sn+k εn+kεn+k
g0 ◦ f n+k

gn+k


 .

It follows that εn+k = εnεk and

gn+k
g0 ◦ f n+k =

gn ◦ f k

g0 ◦ f n+k
gk

g0 ◦ f k
.

Hence εk = εk1 and gk/g0 ◦ f k = gn+k/gn ◦ f k . Let ζ : T2 → R+ be given by

ζ(x̄) = g1(x̄)/g0(f x̄) = gn+1(x̄)/gn(f x̄).

Then ζ ∈ C1+L(T2,R), ζ(x̄) ≥ c/C > 0 for any x̄ ∈ T2 and

gn = ζ · ζ ◦ f · . . . · ζ ◦ f n−1 · g0 ◦ f n

for any natural n. Define ζ̃ = log ζ and g̃n = log gn for any integer n. Then ζ̃ , g̃n ∈
C1+L(T2,R). Since the sequence {gn}n∈Z is bounded in C1+L(T2,R) and 0 < c ≤ gn(x̄)

for any n ∈ Z and x̄ ∈ T2, the sequence {g̃n}n∈Z is bounded in C1+L(T2,R), too.
Moreover,

g̃n =
n−1∑
k=0

ζ̃ ◦ f k + g̃0 ◦ f n

for any natural n. Set ζ̃ (n) = ∑n−1
k=0 ζ̃ ◦ f k for any natural n. Then

ζ̃ − 1

n
ζ̃ (n) = 1

n

n−1∑
k=0

(ζ̃ − ζ̃ ◦ f k) = 1

n

n−1∑
k=0

(ζ̃ (k) − ζ̃ (k) ◦ f ) = 1

n

n−1∑
k=0

ζ̃ (k) − 1

n

n−1∑
k=0

ζ̃ (k) ◦ f

= 1

n

n−1∑
k=0

(g̃k − g̃0 ◦ f k)− 1

n

n−1∑
k=0

(g̃k ◦ f − g̃0 ◦ f k+1)

= 1

n

n−1∑
k=0

g̃k − 1

n

n−1∑
k=0

g̃k ◦ f + g̃0 ◦ f n − g̃0

n
.

Since the sequence {n−1 ∑n−1
k=0 g̃k}n∈N is bounded in C1+L(T2,R), there exists

a subsequence {m−1
i

∑mi−1
k=0 g̃k}i∈N convergent in C1(T2,R) to a function g̃ ∈

C1+L (T2,R), by Lemma 15. By the ergodic theorem, the sequence {n−1ζ̃ (n)}n∈N
converges a.e. to a Af -measurable function ζ̃0 : T2 → R. It follows that

ζ̃ (x̄)− ζ̃0(x̄) = g̃(x̄)− g̃(f x̄)

for a.e. x̄ ∈ T2. Since the function ζ̃ − g̃ + g̃ ◦ f is Af -measurable and continuous and
the σ -algebra Af is finite, we conclude that ζ̃ − g̃ + g̃ ◦ f is constant. Hence

ζ̃ − g̃ + g̃ ◦ f =
∫
T2
ζ̃0 dλ =

∫
T2

ζ̃ dλ.
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Since g̃n = ζ̃ (n) + g̃0 ◦ f n, we have∫
T2
g̃n dλ = n

∫
T2

ζ̃ dλ+
∫
T2
g̃0 dλ.

As the sequence {∫
T2 g̃n dλ}n∈N is bounded, we obtain

∫
T2 ζ̃ dλ = 0. This gives

ζ̃ = g̃ − g̃ ◦ f and

g̃k − g̃0 ◦ f k = ζ̃ (k) = g̃ − g̃ ◦ f k

for any natural k. Define g = exp g̃. Then

gk/g0 ◦ f k = g/g ◦ f k. ✷

Lemmas 17 and 18 now show that

[u ◦ f k v ◦ f k]
[
εk1 g/g ◦ f k 0

sk (εε1)
k g ◦ f k/g

]
= Df k[uv].

Therefore

(g · v) ◦ f k = (ε1ε)
kDf k(g · v) (7)

and [
εk1 g/g ◦ f k 0

sk (εε1)
k g ◦ f k/g

] [
uT

vT

]
=

[
uT ◦ f k

vT ◦ f k

]
Df k.

Hence

(g · uT ) ◦ f k Df k = εk1(g · uT ). (8)

LEMMA 19. For every integer k there exists δk ∈ {−1, 1} such that

hk = δk gk

[−a · b ◦ f k −b · b ◦ f k

a · a ◦ f k b · a ◦ f k

]
= δk gk · v ◦ f k · uT .

Proof. Recall that {ni}i∈N is the sequence for which f ni x̄ → x̄ for every x̄ ∈ A and

lim
i→∞

1

ni
Df ni+k = hk

in C1(T2,M2(R)). Therefore hk · v = 0. Let ck, dk ∈ C1(T2,R) be given by[
ck

dk

]
= 1

gk
hk · u.

Then c2
k + d2

k = 1 and

hk = gk

[
ck

dk

]
uT . (9)
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Suppose that x̄ ∈ A. From (8),

1

ni
uT (f ni+kx̄)Df ni+k(x̄) = ε

ni+k
1

ni
(g(x̄)/g(f ni+kx̄)) uT (x̄)→ 0.

Since f ni+k x̄ → f kx̄, we have uT (f kx̄) · hk(x̄) = 0. From (9), it follows that

uT (f kx̄)

[
ck(x̄)

dk(x̄)

]
uT (x̄) = 0,

hence that

uT (f kx̄)

[
ck(x̄)

dk(x̄)

]
= 0 (10)

for any x̄ ∈ A. Since the set A is dense in T2, we see that the equality (10) holds for any
x̄ ∈ T2. It follows that there exists a function δk : T2 → {−1, 1} such that[

ck(x̄)

dk(x̄)

]
= δk(x̄) v(f

kx̄).

Since

δk(x̄) = vT (f kx̄)

[
ck(x̄)

dk(x̄)

]
,

we conclude that δk is continuous, hence that it is constant. Therefore

hk = δk gk · v ◦ f k · uT ,
by (9). ✷

LEMMA 20. ax1 + bx2 = 0 and gx1b = gx2a.

Proof. Since n−1
i Df ni → h0 in C1(T2,M2(R)), it follows that n−1

i D2f ni → Dh0

uniformly. Let ṽ = g · v. Then

D

(
1

ni
Df ni · ṽ

)
= 1

ni
D2f ni · ṽ + 1

ni
Df ni ·Dṽ → Dh0 · ṽ + h0 ·Dṽ = D(h0 · ṽ) = 0

(11)

uniformly, because h0 · ṽ = g · h0 · v = 0. However, ṽ ◦ f k = (ε1ε)
kDf k · ṽ (see (7))

implies (ε1ε)
kD(Df kṽ) = Dṽ ◦ f k ·Df k . Let x̄ ∈ A. Then

(ε1ε)
niD

(
1

ni
Df ni (x̄)ṽ(x̄)

)
= Dṽ(f ni x̄)

1

ni
Df ni (x̄)→ Dṽ(x̄)h0(x̄).

From (11), we obtain Dṽ(x̄)h0(x̄) = 0 for any x̄ ∈ A. Since A is dense in T2, it follows
that Dṽ · h0 = 0. Hence[−(g · b)x1 −(g · b)x2

(g · a)x1 (g · a)x2

] [−b
a

]
= (δ0/g0)Dṽ · h0 · u = 0.
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Since ax1a + bx1b = 0 and ax2a + bx2b = 0, we conclude that

0 = (g · b)x1b − (g · b)x2a

= g(bx1b − bx2a)+ b(gx1b − gx2a)

= −ga(ax1 + bx2)+ b(gx1b − gx2a)

and

0 = −(g · a)x1b + (g · a)x2a

= g(−ax1b + ax2a)− a(gx1b − gx2a)

= −gb(ax1 + bx2)− a(gx1b − gx2a).

Therefore [−ga b

−gb −a
] [

ax1 + bx2

gx1b − gx2a

]
= 0.

It follows that ax1 + bx2 = 0 and gx1b = gx2a. ✷

LEMMA 21. (g · a)x2 = (g · b)x1 .

Proof. Let k be an integer number. Since n−1
i Df ni+k → hk in C1(T2,M2(R)) and

hk = δkgk

[−a · b ◦ f k −b · b ◦ f k

a · a ◦ f k b · a ◦ f k

]

(by Lemma 19), we have

(gk · a · b ◦ f k)x2 = −δk lim
i→∞

1

ni
(f

ni+k
1 )x1x2

= −δk lim
i→∞

1

ni
(f

ni+k
1 )x2x1

= (gk · b · b ◦ f k)x1

and

(gk · a · a ◦ f k)x2 = δk lim
i→∞

1

ni
(f

ni+k
2 )x1x2

= δk lim
i→∞

1

ni
(f

ni+k
2 )x2x1

= (gk · b · a ◦ f k)x1 .

Suppose that e : T2 → R is a C1-function satisfying

(gk · a · e ◦ f k)x2 = (gk · b · e ◦ f k)x1 (12)

and De · v = 0. Observe that the functions a and b satisfy these properties. Indeed, by
Lemma 20,

Da · v = [ax1 ax2]
[−b
a

]
= −ax1b + ax2a = bx2b + ax2a = 0
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and

Db · v = [bx1 bx2]
[−b
a

]
= −bx1b + bx2a = −bx1b − ax1a = 0.

Since gk/g0 ◦ f k = g/g ◦ f k , (12) shows that

(ga · (g0g
−1e) ◦ f k)x2 = (gb · (g0g

−1e) ◦ f k)x1 .

Hence

((gb)x1 − (ga)x2) · (g0g
−1e) ◦ f k = g(−b((g0g

−1e) ◦ f k)x1 + a((g0g
−1e) ◦ f k)x2)

= gD((g0g
−1e) ◦ f k) · v

= D(g0g
−1e) ◦ f k ·Df k · (gv).

Since (g · v) ◦ f k = (ε1ε)
kDf k(g · v) (see (7)), we have

((gb)x1 − (ga)x2) · (g0g
−1e) ◦ f k = (ε1ε)

k(D(g0g
−1e) · gv) ◦ f k

= (ε1ε)
k(D(g0g

−1) · egv + g0De · v) ◦ f k

= (ε1ε)
k(D(g0g

−1) · egv) ◦ f k.

Letting c = a and c = b we obtain

(gb)x1 − (ga)x2 = (ε1ε)
k(D(g0g

−1) · g−1
0 g2v) ◦ f k.

Therefore, the function |(gb)x1−(ga)x2 | is Af -measurable. Since Af is finite, the function
(gb)x1 − (ga)x2 is constant. However,∫

T2
((gb)x1 − (ga)x2) dλ = 0.

Hence (gb)x1 = (ga)x2 . ✷

Proof of Theorem 13. By the previous lemmas, there exists g ∈ C1+L(T2,R) such that:
• 0 < c ≤ g(x̄) for any x̄ ∈ T2;
• (g · uT ) ◦ f Df = ε1(g · uT ); and
• (g · b)x1 = (g · a)x2 , ax1 + bx2 = 0 and gx1b = gx2a.
It follows that there exists a C2+L-function ξ : R2 → R such that

Dξ = [g · a g · b] = g · uT .
Consider the map

(x1, x2) "−→ ξ(x1 + 1, x2)− ξ(x1, x2).

Since its derivative is equal to zero, we see that it is constant. Similarly

(x1, x2) "−→ ξ(x1, x2 + 1)− ξ(x1, x2).

is constant. Therefore, ξ can be represented as

ξ(x1, x2) = p1x1 + p2x2 + ξ̃ (x1, x2), (13)
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where p1, p2 ∈ R and ξ̃ : T2 → R is a C2-function. Note that p2
1 + p2

2 > 0.
Indeed, since ξ̃ is Z2-periodic, there exists x̄0 ∈ T2 such that Dξ̃(x̄0) = 0. Then p1 =
ξx1(x̄0) = (g · a)(x̄0), p2 = ξx2(x̄0) = (g · b)(x̄0) and p2

1 + p2
2 = g2(x̄0) > 0.

Since (g·uT )◦f ·Df = ε1(g·uT ), we haveDξ◦f ·Df = ε1Dξ . HenceD(ξ◦f−ε1ξ) = 0.
Therefore there exists β ∈ R such that

ξ ◦ f = ε1ξ + β. (14)

Represent f as

f (x1, x2) = (a11x1 + a12x2 + f̃1(x1, x2), a21x1 + a22x2 + f̃2(x1, x2)),

where [aij ]i,j=1,2 ∈ GL2(Z) and f̃1, f̃2 : T2 → R. From (14),

p1a11 + p2a21 = ε1p1 and p1a12 + p2a22 = ε1p2.

Observe that there exists a real number d �= 0 such that

p1d, p2d ∈ Z and gcd(p1d, p2d) = 1.

If one of the numbers p1, p2 is equal to zero, then d = 1/(p1 + p2). If p1, p2 �= 0, then
set d1 = p1/p2. Hence

a11 + 1

d1
a21 = ε1 and d1a12 + a22 = ε1.

Note that d1 is rational. Indeed, suppose that d1 is irrational. Then
[
a11 a12
a21 a22

] = ε1Id.
Therefore f 2 can be represented as

f 2(x1, x2) = (x1 + ψ1(x1, x2), x2 + ψ2(x1, x2)),

where ψ1, ψ2 : T2 → R are C3-functions. Then

f 2n(x1, x2) =
(
x1 +

n−1∑
k=0

ψ1(f
2k(x1, x2)), x2 +

n−1∑
k=0

ψ2(f
2k(x1, x2))

)

and

1

n
(f 2n − Id) =

(
1

n

n−1∑
k=0

ψ1 ◦ f 2k,
1

n

n−1∑
k=0

ψ2 ◦ f 2k
)
. (15)

Since the sequence {n−1Df 2n}n∈N is bounded in C2(T2,M2(R)) and 0 < 2c ≤
‖n−1Df 2n(x̄)‖ ≤ 2C, there exists an increasing sequence {mk}k∈N of naturals and
ψ ∈ C1(T2,R2) such that

1

mk

(f 2mk − Id)→ ψ,
1

mk

(Df 2mk − Id)→ Dψ

uniformly and 0 < 2c ≤ ‖Dψ(x̄)‖. From (15), ψ is Af 2 -measurable. By Lemma 10, the
σ -algebra Af 2 is finite. Hence ψ is constant. This gives Dψ = 0, which contradicts the
fact that 0 < 2c ≤ ‖Dψ(x̄)‖ for any x̄ ∈ T2. Therefore d1 is rational. Let d1 = p/q

where p ∈ Z, q ∈ N and gcd(p, q) = 1. Set d = p/p1. Then p1d = p and p2d = q .
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Next note that ε1 = 1. Suppose, contrary to our claim, that ε1 = −1. Let ξ̂ : T2 → S1

be given by ξ̂ = exp 2πiξ/d . From (14), ξ̂ ◦ f = e2πiβ/d ξ̂ . Hence

ξ̂ ◦ f 2 = e2πiβ/d ξ̂ ◦ f = ξ̂ .

Since ξ̂ is Af 2 -measurable and the σ -algebra Af 2 is finite, it follows that ξ̂ is constant,
hence that ξ is constant, which contradicts the fact that 0 < c ≤ ‖Dξ(x̄)‖ for any x̄ ∈ T2.

However, bx1 = ax2 . Since

aax1 + bax2 = aax1 + bbx1 = 0,

−bax1 + aax2 = bbx2 + aax2 = 0,

we have Da = 0 and similarly Db = 0. Consequently a and b are constants and g satisfies
the partial linear equation with constant coefficients gx1b − gx2a = 0. It follows that there
exists a strictly increasing C2-function w : R → R such that

g(x1, x2) = Dw(ax1 + bx2).

Hence

ξx1(x1, x2) = Dw(ax1 + bx2)a and ξx2(x1, x2) = Dw(ax1 + bx2)b.

Therefore we can assume that ξ(x1, x2) = w(ax1 + bx2). It follows that

w(x + a) = p1(x/a + 1)+ ξ̃ (x/a + 1, 0) = w(x)+ p1,

w(x + b) = p2(x/b + 1)+ ξ̃ (0, x/b + 1) = w(x)+ p2,

by (13). Consequently

w(x + qa) = qp1 = pp2 = w(x + pb)

and qa = pb. Define w̃(x) = dw(bx/q). Then dw(ax1 + bx2) = w̃(px1 + qx2) and
w̃(x + 1) = w̃(x)+ 1. Moreover,

w̃(pf1(x)+ qf2(x)) = w̃(px1 + qx2)+ β ′,

by (14). Let r, s be integer numbers such that ps − qr = 1. Consider the group
automorphism B : T2 → T2 defined by B(x1, x2) = (px1 + qx2, rx1 + sx2). Let f̌ =
B ◦ f ◦ B−1 and πi : T2 → T be the projection on the ith coordinate for i = 1, 2. Then

w̃(f̌1(x1, x2)) = w̃(p f1 ◦ B−1(x1, x2)+ q f2 ◦ B−1(x1, x2))

= w̃(p π1 ◦ B−1(x1, x2)+ q π2 ◦ B−1(x1, x2))+ β ′

= w̃(x1)+ β ′.

Therefore, f̌1 depends only on the first variable. Then

Df̌ =



∂f̌1

∂x1
0

∂f̌2

∂x1

∂f̌2

∂x2


 and

∂f̌1

∂x1

∂f̌2

∂x2
= detDf̌ = ε.
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Since (∂f̌2/∂x2)(x1, x2) = ε/(∂f̌1/∂x1)(x1, 0), there exists a C3-function ϕ : T → T

such that

f̌2(x1, x2) = ε

(∂f̌1/∂x1)(x1, 0)
x2 + ϕ(x1)

and ε/(∂f̌1/∂x1)(x1, 0) is an integer constant. As the map T $ x "−→ f̌1(x, 0) ∈ T is
continuous and increasing, it follows that (∂f̌1/∂x1)(x1, 0) = 1. Therefore

f̌ (x1, x2) = (x1 + α, εx2 + ϕ(x1)),

where α is irrational, by the ergodicity of f . Next note that ε = 1. Indeed, suppose that
ε = −1. Then

1

2n
Df̌ 2n(x1, x2) =




1

2n
0

1

2n

n−1∑
k=0

(Dϕ(x1 + α + 2kα)−Dϕ(x1 + 2kα))
1

2n


 .

By the ergodic theorem,

1

2n

n−1∑
k=0

(Dϕ(x1 + α + 2kα)−Dϕ(x1 + 2kα))→ 1

2

∫
T

(Dϕ(x + α) −Dϕ(x)) dx = 0

uniformly, which contradicts the fact that f has linear growth of the derivative. ✷
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