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ERGODIC AUTOMORPHISMS WHOSE WEAK CLOSUREOF OFF-DIAGONAL MEASURES CONSISTS OF ERGODICSELF-JOININGSBYY. DERRIENNIC (Brest), K. FR�CZEK (Toru« and Warszawa),M. LEMA�CZYK (Toru« and Warszawa) and F. PARREAU (Paris)Abstrat. Basi ergodi properties of the ELF lass of automorphisms, i.e. of thelass of ergodi automorphisms whose weak losure of measures supported on the graphs ofiterates of T onsists of ergodi self-joinings are investigated. Disjointness of the ELF lasswith: 2-fold simple automorphisms, interval exhange transformations given by a speialtype permutations and time-one maps of measurable �ows is disussed. All ergodi Poissonsuspension automorphisms as well as dynamial systems determined by stationary ergodisymmetri α-stable proesses are shown to belong to the ELF lass.Introdution. The notion of disjointness between measure-preservingautomorphisms of standard probability Borel spaes was introdued byFurstenberg [9℄ in 1967. Sine then many results showing disjointness ofsome lasses have been proved (see e.g. [9℄, [12℄, [14℄, [19℄, [21℄, [26℄, [28℄,[29℄, [46℄, [47℄).In [6℄ the seond and the third named authors of this paper introduedthe notion of ELF (1) �ow. An ELF �ow is, by de�nition, an ergodi �owsuh that when we pass to the weak losure of its time-t maps onsidered asMarkov operators of the underlying L2-spae, then all the weak limits areindeomposable Markov operators. The ELF property is interesting only inthe non-mixing ase, and indeed in ontrast with this property, some lassialweakly mixing but non-mixing speial �ows over irrational rotations or, moregenerally, over interval exhange transformations turn out to have in theweak losure of Markov operators given by their time-t maps �su�iently�deomposable Markov operators. Suh �ows are often speial representationsof some smooth �ows on surfaes and a motivation to introdue the ELFproperty was to prove disjointness (in the sense of Furstenberg) of suh �ows2000 Mathematis Subjet Classi�ation: 37A05, 37A50.Key words and phrases: joinings, ELF property, disjointness.Researh partially supported by KBN grant 1 P03A 03826 and Marie Curie �Transferof Knowledge� program, projet MTKD-CT-2005-030042 (TODEQ).(1) The aronym ELF omes from the Frenh abbreviation of �ergodiité des limitesfaibles�. [81℄ © Instytut Matematyzny PAN, 2008



82 Y. DERRIENNIC ET AL.from the ELF lass (see [6℄, [7℄, [8℄). In partiular, some lassial smoothweakly mixing �ows on surfaes (e.g. onsidered in [25℄) turn out to bedisjoint from the ELF lass.On the other hand, the ELF property was also introdued in the hope ofexpressing the fat that a given �ow is of �probabilisti origin�. Indeed, a �rstattempt to de�ne a system to be �of probabilisti origin� might be via theKolmogorov group property of the spetrum. However, eah weakly mixingsystem has an ergodi extension whih has the Kolmogorov group property,simply by taking the in�nite diret produt of the system. Therefore thisspetral property is too weak to single out systems of �probabilisti origin�.As notied in [6℄ Gaussian �ows enjoy the ELF property (this result alsofollows from some earlier results of [29℄). The present paper and, indepen-dently, the PhD thesis of E. Roy [36℄ are a further on�rmation of the fatthat dynamial systems whose origin are well-known lasses of stationaryproesses (see below) are inside the ELF lass. We also mention that in thegeneral ase, inluding mixing, another joining property (satis�ed for exam-ple by �ows with Ratner's property [35℄) has been introdued in [43℄ to showdisjointness from Gaussian systems.In this paper, instead of �ows, we onsider the ELF property for au-tomorphisms. One of the main results of the paper states that all ergodiPoisson suspension automorphisms enjoy the ELF property. This result is aonsequene of Theorem 1 below saying that Poissonian joinings of ergodiPoisson automorphisms remain ergodi; the same result is also proved inthe reent, independent paper [36℄. Moreover, we onsider so alled α-stableautomorphisms, i.e. ergodi automorphisms ating on a spae whose mea-surable struture is determined by an invariant real subspae in whih allvariables are symmetri α-stable (0 < α < 2, for α = 2 we ome bak to theGaussian ase). We prove (Theorem 3 below) that α-stable self-joinings ofsuh automorphisms must neessarily be ergodi, from whih the ELF prop-erty diretly follows. In the aforementioned thesis [36℄, a further step forwardis even made: it is proved that given an ergodi stationary in�nitely divisibleproess, eah in�nitely divisible self-joining of the orresponding measure-preserving automorphism remains ergodi, and in partiular we also obtainthe ELF property in this most general ase.Furthermore, we show (Proposition 12 below) that weakly mixing butnon-mixing 2-fold simple automorphisms are disjoint from the ELF lass. It isalso shown that the time-one maps of �ows onsidered in [8℄ are disjoint fromany ELF automorphism, and therefore the time-one maps of Kohergin'ssmooth �ows from [25℄ are disjoint from any ELF automorphism.Reently, some attention has been devoted to joining properties of in-terval exhange transformations (see e.g. [4℄, [5℄). Here we are able to prove(see Proposition 15 below) that for almost all hoies of parameters de�n-



ELF AUTOMORPHISMS 83ing a three-interval exhange transformation we obtain disjointness from theELF lass. In fat, this result is a onsequene of a more general statementproved in the paper. Namely given k ≥ 3 we onsider speial permutations of
{1, . . . , k} and we prove that for a.a. hoies of lengths of partition intervals of
[0, 1) the resulting automorphisms are disjoint from all ELF automorphisms.Some results in this paper have been obtained during the visit of thefourth-named author at Niolaus Copernius University in September 2003and during the visit of the third-named author at Université de BretagneOidentale in the Spring 2004.1. Preliminaries1.1. Fators, joinings and Markov operators. Assume that T is an er-godi automorphism of a standard probability Borel spae (X,B, µ). Theassoiated unitary ation of T on L2(X,B, µ) is given by UT (f) = f ◦T (butwe will often write T (f) instead of f ◦T ). We denote by C(T ) the entralizerof T , that is, the set of all automorphisms of (X,B, µ) ommuting with T .Endowed with the strong operator topology of U(L2(X,B, µ)) the entralizerbeomes a Polish group. Any T -invariant sub-σ-algebra A ⊂ B is alled afator of T . The quotient ation of T on the quotient spae (X/A,A, µ|A)will be denoted by T |A or even by A if no onfusion arises. We say that
T is rigid if the set {Tn : n ∈ Z} has an aumulation point in C(T ). Itfollows that in the rigidity ase the entralizer is unountable and for someinreasing sequene (qn), T qn → Id. Automorphisms whih have no rigidityat all are alled mildly mixing (see [11℄). More preisely, T is alled mildlymixing if its only rigid fator is the one-point fator.Assume now that S is another ergodi automorphism of a standard prob-ability Borel spae (Y, C, ν). By a joining of T and S we mean any T × S-invariant measure ̺ on (X × Y,B ⊗ C) whose marginals ̺X and ̺Y satisfy
̺X = ̺|X = µ and ̺Y = ̺|Y = ν respetively. The set of joinings between Tand S is denoted by J(T, S). Whenever the automorphism T × S ating on
(X×Y,B⊗C, ̺) (for short we will also write (T ×S, ̺)) is ergodi, the joining
̺ is alled ergodi and the set of ergodi joinings is denoted by Je(T, S). Theformula \

X×Y

f ⊗ g d̺ =
\
Y

Φ̺(f) · g dνestablishes a one-to-one orrespondene between the set J(T, S) and the set
J (T, S) of all Markov operators from L2(X,B, µ) to L2(Y, C, ν) intertwining
UT and US (see e.g. [42℄, [29℄ for more details). Reall that a positive linearoperator Φ : L2(X,B, µ) → L2(Y, C, ν) is alled Markov if Φ(1X) = 1Y and
Φ∗(1Y ) = 1X , and then Φ = Φ̺ where ̺(A × B) =

T
B Φ(1A) dν for measur-able sets A ∈ B and B ∈ C. The set of Markov operators is losed in theweak operator topology of B(L2(X,B, µ), L2(Y, C, ν)), hene both J (T, S)



84 Y. DERRIENNIC ET AL.and J(T, S) are ompat (on the latter set we transport the topology of
J (T, S)). Ergodi joinings orrespond to so alled indeomposable Markovoperators, i.e. to the extremal points in the set J (T, S), whih has a naturalstruture of a Choquet simplex. Note that the Markov operator orrespond-ing to the produt measure µ⊗ ν equals ΠX,Y (f) =

T
X f dµ. If one more er-godi automorphism R on (Z,D, η) is given and Φ̺ ∈ J (T, S), Φκ ∈ J (S, R)then Φκ ◦ Φ̺ ∈ J (T, R) and the orresponding joining of T and R will bedenoted by κ ◦ ̺.Whenever S = T we will write J2(T ) and Je

2(T ) instead of J(T, T ) and
Je(T, T ) respetively. Note that if W ∈ C(T ) then the formula µW (A × B)
= µ(A ∩ W−1B) determines a self-joining, alled a graph joining , of T ,and moreover µW ∈ Je

2(T ) (for W = Tn we speak about o�-diagonal self-joinings). We say that T is 2-fold simple (see [49℄, [21℄) if the only ergodiself-joinings of T are graph joinings or the produt measure µ ⊗ µ. Themeasure µId will also be denoted by ∆X or ∆µ.We say that T is relatively weakly mixing with respet to a fator A ⊂ B ifthe self-joining λ (alled the relatively independent extension of the diagonalmeasure on A) given by
λ(A × B) =

\
X/A

E(1A | A) · E(1B | A) d(µ|A)

is ergodi. If A1 ⊂ A is another fator and T |A is relatively weakly mixingover A1 then T is still relatively weakly mixing over A1 (for this hain rulesee e.g. [20℄).Following [9℄ we say that two ergodi automorphisms T and S are disjointif J(T, S) = {µ ⊗ ν}. Reall that Je(T, S) = {µ ⊗ ν} implies disjointnessof T and S. Given a lass R of ergodi automorphisms, we denote by R⊥the lass of all ergodi automorphisms disjoint from any member of R. Thenby a multiplier (see [12℄) of R⊥ we mean an ergodi automorphism eah ofwhose ergodi joinings with an automorphism belonging to R⊥ gives riseto another member of R⊥. The lass of multipliers of R⊥ is then denotedby M(R⊥).In what follows, we will need the following.Proposition 1 ([1℄). Let T be an ergodi automorphism of (X,B, µ). If
̺ ∈ Je

2(T ) and also ̺ ◦ ̺ ∈ Je
2(T ) then (T × T, ̺) is relatively weakly mixingover the two marginal fators B ⊗ {∅, X} and {∅, X} ⊗ B.Assume that T is weakly mixing and ̺ ∈ Je

2(T ). Then diretly from thehain rule for the relative weak mixing property we obtain the following.(1) If (T ×T, ̺) is relatively weakly mixing over the marginal fators, then
(T × T, ̺) is weakly mixing.



ELF AUTOMORPHISMS 85We will also need the following simple lemma.Lemma 2. Assume that T is a weakly mixing automorphism of a stan-dard probability Borel spae (X,B, µ). Assume that N0 ⊂ N and the densityof N \ N0 equals zero. Assume moreover that for eah f, g ∈ L2(X,B, µ),
〈f ◦ Tn, g〉 → 〈f, 1〉〈1, g〉as n→∞, n ∈ N0. Assume that ̺∈ J(T ). Then for all f, g, h∈L∞(X,B, µ),\

X×X

f(Tnx)g(x)h(Tny) d̺(x, y) →
\
X

f(x)h(y) d̺(x, y)
\
X

g(x) dµ(x).

Proof. We have\
X×X

f(Tnx)g(x)h(Tny) d̺(x, y) =
\
X

f(Tnx)g(x)Φ∗
̺(h ◦ Tn)(x) dµ(x)

=
\
X

(f · Φ∗
̺(h)) ◦ Tn · g dµ

→
\
X

f · Φ∗
̺(h) dµ

\
X

g dµ =
\

X×X

f ⊗ h d̺
\
X

g dµ.

For more information on joinings we refer the reader to the monograph byE. Glasner [13℄. For the spetral theory of dynamial systems see e.g. [3℄, [33℄.1.2. Sub-joinings and sub-Markov operators in in�nite measure-preserv-ing ase. Given two automorphisms T and S ating on σ-�nite standardBorel spaes (X,B, µ) and (Y, C, ν) respetively, by a sub-joining of T and Swe mean eah positive σ-�nite T × S-invariant measure ̺ on (X × Y,B⊗ C)whose marginals ̺X and ̺Y satisfy ̺X ≤ µ and ̺Y ≤ ν. By the formula\
X×Y

f(x)g(y) d̺(x, y) =
\
Y

V (f) · g dν,

there is a one-to-one orrespondene between the set of sub-joinings andthe set of sub-Markov operators V : L2(X,B, µ) → L2(Y, C, ν) intertwining
UT and US , where by a sub-Markov operator we mean a positive operator
V : L2(X,B, µ) → L2(Y, C, ν) suh that V f ≤ 1 for all f ∈ L2(X,B, µ)satisfying 0 ≤ f ≤ 1, and V ∗g ≤ 1 for all g ∈ L2(Y, C, ν) satisfying 0 ≤ g ≤ 1.Remark 1. Note that even in the ase T = S, although the o�-diagonalmeasures µT n have the property that their marginals are equal to µ (equiva-lently, TX Tn(1A) dµ = µ(A) for eah A ⊂ X of �nite measure), the fat thatthe onstant funtion 1X is not integrable may ause that the marginals ofa weak limit ̺ of a sequene of o�-diagonal measures need not be equal to µ(nevertheless, we will have ̺X ≤ µ).



86 Y. DERRIENNIC ET AL.1.3. Coyles and ompat group extensions. Assume that T is an ergodiautomorphism of a standard probability Borel spae (X,B, µ). Let G bea ompat metri group with the σ-algebra B(G) of Borel sets and Haarmeasure mG. Let ϕ : X → G be a measurable map. It generates a oyle
ϕ( · )( · ) : Z × X → G by the formula

ϕ(n)(x) =





ϕ(Tn−1x) · ϕ(Tn−2x) · . . . · ϕ(x) if n > 0,
1 if n = 0,
(ϕ(T−1x) · . . . · ϕ(Tnx))−1 if n < 0.We denote by Tϕ the skew produt automorphism de�ned on (X × G,

B ⊗ B(G), µ ⊗ mG) by the formula
Tϕ(x, g) = (Tx, ϕ(x) · g).We all Tϕ a ompat group extension of T .Denote by τg the map on X × G given by τg(x, g1) = (x, g1g

−1). Notethat τg ∈ C(Tϕ) for eah g ∈ G.Compat group extensions have the so alled relative unique ergodiity(RUE) property: whenever the produt measure µ ⊗ mG is ergodi, it isthe only Tϕ-invariant measure of (X ×G,B ⊗B(G)) whose projetion on Xequals µ (see e.g. [10℄).We say that a oyle ϕ : X → G is ergodi if Tϕ onsidered with
µ ⊗ mG is ergodi. In this ase ergodi self-joinings of Tϕ whose projetionson X ×X are ∆X are neessarily graph joinings orresponding to τg, g ∈ G(see [21℄).1.4. Gaussian automorphisms. An ergodi automorphism T of a stan-dard probability Borel spae (X,B, µ) is alled Gaussian if there exists a
UT -invariant subspae H ⊂ L2(X,B, µ) of real-valued funtions generating
B and suh that eah non-zero variable from H has a Gaussian distribution.For a joining theory of Gaussian automorphisms we refer the reader to [29℄(see also [3℄ for a general theory of Gaussian automorphisms). In partiular,it is proved in [29℄ that there is a speial subset Jg

2 (T ) ⊂ Je
2(T ) alled theset of Gaussian self-joinings (for ̺ ∈ Jg

2 (T ), (T × T, ̺) remains a Gaussianautomorphism). Roughly speaking, this set orresponds to all ontrations ofthe �rst haos H intertwining the unitary ation of T on H (all o�-diagonalself-joinings µT n are in Jg
2 (T )). It follows that Jg

2 (T ) is losed in the weaktopology of joinings.A Gaussian automorphism T is entirely determined by the spetral mea-sure σ of UT on H(c) = H + iH. Moreover, T is ergodi i� σ is ontinuous.The maximal spetral type of T is the sum of onseutive onvolutions σ(n)of σ, in partiular ergodiity implies weak mixing for Gaussian automor-phisms.



ELF AUTOMORPHISMS 87Eah variable f ∈ H, viewed as a map f : X → R, is alled a Gaussianoyle. It is alled a Gaussian oboundary if f = g − g ◦ T for some g ∈ H.The subspae H onsists entirely of Gaussian oboundaries i� 1 is not inthe topologial support of σ ([27℄). We refer the reader to [27℄ for moreinformation about ergodiity of irle group extensions of the form Te2πif ,where f is a Gaussian oyle.1.5. Integral automorphisms and speial �ows. Let T be an ergodi au-tomorphism of a standard probability Borel spae (X,B, µ). Assume that
f : X → N is a measurable funtion with �nite integral. Let Xf ⊂ X × Nbe given by ⋃

n∈N
Xn × {n}, where Xn = {x ∈ X : f(x) ≤ n}. Let Bfdenote the restrition of the produt σ-algebra of B and the σ-algebra ofall subsets of N to the set Xf . Let µf denote the restrition of the prod-ut measure µ⊗

∑
n∈N

δ{n} to Xf . By the integral transformation built overthe automorphism T and under the funtion f we mean the transformation
Tf : (Xf ,Bf , µf ) → (Xf ,Bf , µf ) de�ned by

Tf (x, k) =

{
(x, k + 1) if f(x) < k,
(Tx, 1) if f(x) = k.Suppose that A ∈ B has positive measure. It is easy to hek that (TA)τA

and
T are metrially isomorphi, where TA : A → A is the indued automorphismand τ : A → N stands for the �rst return time funtion (see [3, Chapter 1℄).Denote by mR the Lebesgue measure on R. Assume that f : X → Ris a measurable positive funtion suh that TX f dµ = 1. The speial�ow T f = {(T f )t}t∈R built from T and f is de�ned on the spae Xf =
{(x, t) ∈ X × R : 0 ≤ t < f(x)} (onsidered with Bf , the restrition of theprodut σ-algebra, and µf , the restrition of the produt measure µ ⊗ mRof X × R). Under the ation of the speial �ow eah point in Xf movesvertially at unit speed, and we identify the point (x, f(x)) with (Tx, 0) (seee.g. [3, Chapter 11℄). In the speial ase where f ≡ 1 the speial �ow T fats on X × [0, 1) and is alled the suspension �ow for the automorphism T .Then we write T̂ instead of T f and (X̂, B̂, µ̂) instead of (Xf ,Bf , µf ). Let
π : X̂ = X × [0, 1) → X denote the natural projetion. Then the σ-algebra
π−1(B) ⊂ B̂ is (T̂ )1-invariant and π : (X̂, π−1(B), µ̂) → (X,B, µ) establishesan isomorphism between automorphisms (T̂ )1 of (X̂, π−1(B), µ̂) and T of
(X,B, µ). Finally, notie that the �ows T̂f and T f are isomorphi whenever
f : X → N.Lemma 3. Let T be an ergodi automorphism of (X,B, µ) and let f :
X → N be a measurable funtion with �nite integral. Suppose that (an) isa sequene of integers suh that (T f )an → p((T f )1) weakly , where p is atrigonometri polynomial. Then T an

f → p(Tf ) weakly.



88 Y. DERRIENNIC ET AL.Proof. Sine the operators (T f )1 ating on L2(Xf ,Bf , µf ) and (T̂f )1ating on L2(X̂f , B̂f , µ̂f ) are unitarily isomorphi,
(T̂f )an → p((T̂f )1)in the weak operator topology on L2(X̂f , B̂f , µ̂f ). Let π : X̂f = Xf × [0, 1) →

Xf be the natural projetion. Sine L2(X̂f , π−1(Bf ), µ̂f ) ⊂ L2(X̂f , B̂f , µ̂f )is an invariant subspae with respet to the operators (T̂f )an (n ∈ N),
(T̂f )an → p((T̂f )1) in the weak operator topology on L2(X̂f , π−1(Bf ), µ̂f ).Sine the operators Tf on L2(Xf ,Bf , µf ) and (T̂f )1 on L2(X̂f , π−1(Bf ), µ̂f )are unitarily isomorphi, T an

f → p(Tf ) in the weak operator topology on
L2(Xf ,Bf , µf ).2. Basi properties of ELF automorphisms. An ergodi automor-phism T of a standard Borel spae (X,B, µ) is said to have the ELF prop-erty if {µT n : n ∈ Z} ⊂ Je

2(T ), or equivalently, the weak losure of the set ofMarkov operators {Tn : n ∈ Z} onsists of indeomposable Markov opera-tors. For short, we will speak about ELF automorphisms .It is lear that ergodi disrete spetrum automorphisms and mixingautomorphisms are examples of ELF automorphisms. By what was said inSetion 1.4, Gaussian automorphisms also enjoy the ELF property (see [6℄for a diret proof of that fat).The following two onsequenes of Proposition 1 have already been no-tied in [6℄.Proposition 4 ([6℄). If T is an ELF automorphism and if ̺ ∈

{µT n : n ∈ Z} then (T × T, ̺) is relatively weakly mixing with respet to thetwo natural marginal σ-algebras.Proposition 5 ([6℄). Assume that T is an ELF automorphism and let
̺ ∈ {µT n : n ∈ Z}. Let S be an ergodi automorphism on (Y, C, ν). Assumethat ̺1 is an ergodi joining of T and S. Then ̺1 ◦ ̺ is still ergodi.2.1. Disjointness of ELF automorphisms from time-one maps of somemeasurable �ows. Proposition 5, similarly to [6℄, allows us to prove disjoint-ness of the lass of ELF automorphisms from automorphisms having a pieeof integral Markov operator in the weak losure of its powers. Indeed, as-sume that S is an automorphism of (Y, C, ν). Let P be a probability measurede�ned on the Borel σ-algebra of C(S). We de�ne a Markov operator MPon L2(Y, C, ν) by putting

MP (f) =
\

C(S)

f ◦ R dP (R).



ELF AUTOMORPHISMS 89The integral on the right hand side is meant in the weak sense, i.e. for eah
f, g ∈ L2(Y, C, ν),

〈 \
C(S)

f ◦ R dP (R), g
〉

=
\

C(S)

〈f ◦ R, g〉 dP (R).

In order to see that this de�nition is orret we de�ne
〈〈f, g〉〉 =

\
C(S)

〈f ◦ R, g〉 dP (R)

and hek that we have obtained a bilinear form on L2(Y, C, ν) whih, by theShwarz inequality, is bounded. Clearly, MP ∈ J2(S).Proposition 6. Let S : (Y, C, ν) → (Y, C, ν) be an ergodi automor-phism. Assume that there exist an inreasing sequene (tn) of natural num-bers and a probability Borel measure P on C(S) suh that
Stn → a

\
C(S)

R dP (R) + (1 − a)Φ

in the weak operator topology on B(L2(Y, C, ν)), where a > 0 and Φ ∈ J2(S).Assume that P ({R ∈ C(S) : R is weakly mixing}) > 0. Then S is weaklymixing. If moreover P is not Dira and either(i) P is onentrated on {Si : i ∈ Z}, or(ii) P is onentrated on {St : t ∈ R}, where S1 = S (i.e. we assume inpartiular that S is embeddable in a measurable �ow),then S is disjoint from all ELF automorphisms.Proof. First, let us show that S is weakly mixing. Indeed, if f is itseigenfuntion then
‖f‖2

L2 = |〈Stnf, f〉| →
∣∣∣a

\
C(S)

〈f ◦ R, f〉 dP (R) + (1 − a)〈Φ(f), f〉
∣∣∣.

Sine |〈f ◦ R, f〉| ≤ ‖f‖2 and |〈Φ(f), f〉| ≤ ‖f‖2, a onvexity argumentshows that we must have 〈f ◦ R, f〉 = ‖f‖2 for P -a.e. R ∈ C(S) (and also
〈Φ(f), f〉 = ‖f‖2 provided a < 1). So for suh an R, we have f ◦ R = c(R)f(c(R) ∈ C), and sine R may be taken weakly mixing, f is onstant.Let T be an ELF automorphism on (X,B, µ). Let Ψ : L2(Y, C, ν) →
L2(X,B, µ) be an indeomposable Markov operator intertwining S and T .Then Ψ ◦Stn = T tn ◦Ψ and by passing to a subsequene of (tn) if neessary,we �nd

Ψ ◦ (aMP + (1 − a)Φ) = Φ̺ ◦ Ψ,where ̺ = limn→∞ µT tn . In view of Proposition 5, Φ̺ ◦ Ψ remains indeom-



90 Y. DERRIENNIC ET AL.posable. On the other hand,
Ψ ◦ (aMP + (1 − a)Φ) = a

\
C(S)

Ψ ◦ R dP (R) + (1 − a)Ψ ◦ Φ,

and hene we must have Ψ ◦ R = Φ̺ ◦ Ψ for P -a.e. R ∈ C(S). This meansthat for a set of full P ⊗ P -measure of (R1, R2) ∈ C(S) × C(S), we have
R2 ◦ R−1

1 ◦ Ψ∗ = Ψ∗. Notie however that both assumptions (i) and (ii) andthe fat that P is not Dira imply that for some weakly mixing element
R ∈ C(S) we have R ◦ Ψ∗ = Ψ∗ and therefore Ψ = ΠY,X .Suppose now that (St)t∈R is a measurable, weakly mixing �ow ating on
(Y, C, ν). Suppose that for a sequene (rn) of real numbers with rn → ∞ wehave(2) Srn → a

\
R

St dQ(t) + (1 − a)Φ,where Q is not Dira. By passing to a subsequene if neessary we an assumethat the sequene ({rn}) of frational parts of rn onverges to 0 ≤ b ≤ 1.Sine the �ow is measurable, S{rn} → Sb in the strong operator topology.It follows that the sequene (S1)
[rn] = Srn ◦ S−{rn} onverges in the weakoperator topology and we have

(S1)
[rn] → a

\
R

St−b dQ(t) + (1 − a)Φ ◦ S−b.We have proved the following.Corollary 7. Assume that (St)t∈R is a measurable, weakly mixing �owfor whih (2) holds with Q whih is not Dira. Then the time-one map S1is disjoint from all ELF automorphisms.Remark 2. The assumptions of Corollary 7 are satis�ed for time-onemaps of some lassial examples of speial �ows over irrational rotationsand over interval exhange transformations (see [6℄�[8℄) and in partiular itis satis�ed for some smooth �ows on surfaes (see [8℄).2.2. Fators and diret produts of ELF automorphisms. The followingproposition shows that the lass of ELF automorphisms is losed under somebasi operations.Proposition 8. The lass of ELF automorphisms is losed under fa-tors and inverse limits. The diret produt of weakly mixing ELF automor-phisms remains an ELF automorphism.Proof. Closedness under taking fators and inverse limits is obvious.Assume that Ti is a weakly mixing ELF automorphism of (Xi,Bi, µi),
i ≥ 1. Consider now T = T1×T2×· · · ating on (X1×X2×· · · , µ1⊗µ2⊗· · · ).



ELF AUTOMORPHISMS 91Suppose that Tni → Φ̺ for some ̺ ∈ J2(T ). By applying the diagonalizingproedure if neessary, we an assume that for eah j ≥ 1, Tni

j → Φ̺j
forsome ̺j ∈ Je

2(Tj). It easily follows that ̺ = ̺1 ⊗̺2 ⊗· · · and beause of (1),
̺ is ergodi, whih ompletes the proof.Remark 3. Note however that an ergodi self-joining of an ELF auto-morphism need not be an ELF automorphism. Indeed, even if T is mixingthen an ergodi self-joining need not give rise to an ELF automorphism. Forexample, by Smorodinsky�Thouvenot's result from [45℄ it follows that givenan ergodi zero entropy automorphism S and a Bernoulli automorphism Twe an �nd an ergodi self-joining ̺ of T suh that (T × T, ̺) has S as itsfator.2.3. Lifting the ELF property to ompat group extensions. We will nowdisuss the possibility of lifting the ELF property by a ompat group ex-tension. So assume that T is an ELF automorphism and let ϕ : X → G be aoyle, where G is a ompat metri group. Reall �rst that if T is mixingand the extension Tϕ is weakly mixing then Tϕ is in fat mixing (see [37℄).A look at a short joining proof (due to A. del Juno) of that fat gives riseto a riterion of lifting the ELF property.Proposition 9. Assume that T has the ELF property and ϕ : X → G isergodi. Assume moreover that for eah ̺ ∈ {µT n : n ∈ Z} the oyle ϕ×ϕover (T × T, ̺) is ergodi. Then Tϕ has the ELF property.Proof. Assume that (Tϕ)mi → Φ˜̺. We must show that ˜̺ is ergodi.We an assume that mi → ∞, otherwise the result is lear. We then have
Tmi → Φ̺, where ̺ is the projetion of ˜̺ on X × X. Now, ˜̺ is a Tϕ × Tϕ-invariant measure whose projetion is ̺. However, by our standing assump-tion the measure ̺⊗mG ⊗mG has the same property and it is ergodi. Theresult now follows from the relative unique ergodiity property for ompatgroup extensions.The above proof suggests that in general we have no hane to lift theELF property and in fat we will loose this property when the base hasdisrete spetrum.Proposition 10. An ergodi isometri extension T̂ of a disrete spe-trum automorphism T has the ELF property i� the extension also has disretespetrum.Proof. We an assume that T is an ergodi rotation (Tx = x + x0) of aompat metri monotheti group X. Moreover assume that ϕ : X → G isan ergodi oyle for whih T is the Kroneker fator and T̂ is the quotientation of Tϕ on X × G/H. All we need to show is that under all theseassumptions T̂ does not have the ELF property.



92 Y. DERRIENNIC ET AL.To this end �rst hoose a sequene (ni) of density 1 suh that(3) Uni

T̂
→ 0 weakly on L2(X × G/H, mX ⊗ mG/H) ⊖ L2(X, mX),whih is possible beause T is the Kroneker fator of T̂ and therefore thespetral type of U

T̂
on L2(X×G/H, mX⊗mG/H)⊖L2(X, mX) is ontinuous.Sine the density of (ni) is 1, there exists a subsequene (mi) of (ni) suhthat Tmi → Id. Indeed, given a neighbourhood W ∋ 0 in X, by the pointwiseergodi theorem for stritly ergodi systems the average time of visiting Wby the orbit of an arbitrary point of X is equal to mX(W ), hene positive.Therefore we an �nd nj = nj(W ) so that njx0 ∈ W . Letting W → {0}proves the laim.It follows from (3) that T̂mi onverges weakly to the operator E( · |X)whih orresponds to the joining ∆X ⊗ mG/H ⊗ mG/H . However, this lastjoining is not ergodi: the funtion F (x, gH, x, g′H) = g−1g′H is not onstantbut it is T̂ × T̂ -invariant ∆X ⊗ mG/H ⊗ mG/H -a.e. Therefore, T̂ does nothave the ELF property and the result follows.The following orollary follows diretly from Proposition 10.Corollary 11. If an extension of a rotation T has the ELF property ,then the extension is relatively weakly mixing over T .Remark 4. In [52℄ there are expliit onstrutions of ELF automor-phisms whih are relatively weakly mixing extensions of some irrational ro-tations.Let us now show however that the riterion of Proposition 9 may workin some ases of mildly mixing ELF automorphisms whih are not mixing.We onsider symmetri probability measures σ on T suh that(4) all weak losure points of the sequene {zn : n ∈ Z} in L2(T, σ) are inthe set {azn : |a| < 1, n ∈ Z}.Sine σ is a symmetri measure, the numbers a in (4) have to be real. Underthe above assumption, the Gaussian automorphism assoiated to σ has tobe mildly mixing. Reall that lassial Riesz produts yield examples of suhmeasures, inluding examples whih are not Rajhman measures so that theset of weak losure points is not trivial (see [16, Ch. II, Set. 7℄).Proposition 12. Assume that T is a mildly mixing Gaussian automor-phism determined by a measure satisfying (4) for whih a ertain a 6= 0 is inthe weak losure of haraters (suh a T is not mixing). Take f from the �rstreal haos. Assume that f is not a Gaussian oboundary. Then T := Te2πifis still an ELF automorphism.



ELF AUTOMORPHISMS 93Proof. Assume that(5) (Te2πif )nt → Φ˜̺for some sequene (nt) with nt → ∞. Then Tnt → Φ̺, where ̺ is the proje-tion of ˜̺ on X×X. Without loss of generality we an assume that znt → a inthe weak topology of L2(T, σ) for some real a with |a| < 1. We have to provethat ˜̺∈ J2(Te2πif ) is ergodi. If now ̺ is the produt measure then so is ˜̺,sine Te2πif is weakly mixing ([27℄) and we may apply the relative unique er-godiity property for ompat group extensions to onlude. Note that ̺ an-not be a graph measure, sine T is assumed to be mildly mixing. Moreover,sine znt → a in the weak topology of L2(T, σ), Tnt restrited to the �rst realhaos tends to multipliation by a, and hene Φ̺ is multipliation by a on the�rst real haos. By Proposition 9 all we need to show is that Te2πif × Te2πifis ergodi as a T×T-extension of (T × T, ̺). Following Proposition 6 in [27℄it is su�ient to show that the oyle lf(x) + mf(y) (with (l, m) 6= (0, 0))is not a Gaussian oboundary (for the Gaussian automorphism (T × T, ̺)).If for eah r ∈ N we put f (r)(x) = f(x) + f(Tx) + · · · + f(T r−1x) then wehave
‖lf (r)(x) + mf (r)(y)‖2

L2(̺) = (l2 + m2)‖f (r)‖2 + 2lm〈f (r)(x), f (r)(y)〉L2(̺)

= (l2 + m2)‖f (r)‖2 + 2lm
\
X

(Φ̺f
(r))(y)f (r)(y) dµ(y)

= (l2 + m2 + 2ml · a)‖f (r)‖2.Now, f is not a Gaussian oboundary, so ‖f (rt)‖ → ∞ along a subsequene
(rt) (see [27℄) and sine |a| < 1,

(l2 + m2 + 2ml · a)‖f (rt)‖ → ∞or equivalently
‖lf (rt)(x) + mf (rt)(y)‖L2(̺) → ∞,whih means (see [27℄) that indeed lf(x)+mf(y) is not a Gaussian obound-ary.3. Poisson automorphisms have the ELF property. In this setionwe will de�ne and study a speial lass of self-joinings for the lass of au-tomorphisms obtained by Poisson suspension of in�nite measure-preservingmaps.3.1. Poisson suspension automorphisms. Assume that T is an automor-phism of a standard Borel spae (X,B, µ), where µ is σ-�nite. We denote by

T̃ the Poisson suspension automorphism ating on (X̃, B̃, µ̃). The points of
X̃ are in�nite ountable subsets x̃ = {xn : n ≥ 1}. Given a set A ∈ B of



94 Y. DERRIENNIC ET AL.�nite measure we de�ne NA : X̃ → N by putting
NA(x̃) = #{n ∈ N : xn ∈ A}.Then we de�ne B̃ as the smallest σ-algebra of subsets of X̃ for whih allvariables NA, µ(A) < ∞, are measurable. The measure µ̃ is de�ned by therequirement that the variables NA satisfy the Poisson law with parameter

µ(A) and moreover that for eah family of pairwise disjoint subsets of Xof �nite measure the orresponding variables are independent (see [24℄ fordetails). Finally, we let T̃ at by the formula T̃ ({xn}) = ({Txn}) to obtain anautomorphism of (X̃, B̃, µ̃). The spae L2(X̃, B̃, µ̃) admits a deompositioninto invariant haos ⊕
n≥0 H(n), where H(0) is the subspae of onstants,

H = HX = H(1) is the subspae generated by the entred variables N0
A =

NA − µ(A) and H(n) is the orthoomplement of the sum of haos H(i),
0 ≤ i ≤ n − 1, in the subspae generated by the produts of n variables ofthe form NA (see [32℄). The map 1A 7→ N0

A an be extended to an isometry Iof L2(X,B, µ) onto H and it onjugates UT with U
T̃
|H . Moreover we obtaina natural isometry between H(n) and the nth symmetri tensor produt

H⊙n of H under whih ⊙n
i=1N

0
Ai

orresponds to the projetion of ∏n
i=1 NAiin H(n).The operator U

T̃
preserves the haos and, for eah n ≥ 0, its restritionto H(n) orresponds to (U

T̃
|H)⊙n by this natural isometry. In suh a ase,we will say that an operator ats well on the haos .If 0 6= f ∈ L2(X,B, µ) is an eigenfuntion of UT orresponding to c(with |c| = 1), then f is an eigenfuntion of UT orresponding to c. Then

I(f) ⊙ I(f ) ∈ H(2) and it is a UT̃ -invariant funtion. Furthermore, if σdenotes the maximal spetral type of U
T̃
on H (whih is equal to the maximalspetral type of UT on L2(X,B, µ)) then the maximal spetral type of U

T̃on the nth haos is equal to the nth onvolution σ(n) = σ ∗ · · · ∗ σ. Reallthat σ(n) is ontinuous i� σ is ontinuous.Therefore the Poisson suspension automorphism T̃ on (X̃, B̃, µ̃) is ergodiif and only if the spetral type of T on L2(X,B, µ) is ontinuous; equivalently,i� there are no T -invariant subsets of X of �nite positive measure or else i�
L2(X,B, µ) does not ontain non-zero T -invariant funtions. In this ase T̃is weakly mixing. Finally, note that, in partiular, if a Poisson suspensionautomorphism is ergodi then neessarily the measure µ is in�nite.3.2. Fators and Poisson joinings. If X1 is a T -invariant subset of X,then T̃ is the diret produt of two Poisson suspensions of T ating on X1 andon X \X1, in partiular, T̃ |X1 is a fator of T̃ . Assume now that S ating onanother σ-�nite standard Borel spae (Y, C, ν) is a fator of (X1, µ|X1 , T |X1)in the sense that there is a measurable map F : X1 → Y suh F∗(µ|X1) = ν
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and F ◦ T = S ◦ F on X1. Then S̃ ating on (Ỹ , C̃, ν̃) is a fator of T̃ |X1 viathe map F̃ : X̃1 → Ỹ given by F̃ ({xn}) = {F (xn)}.Then the assoiated operator V
F̃

: L2(Ỹ , ν̃) → L2(X̃1, µ̃|X1), g 7→ g ◦ F̃ ,ats well on the haos.By Poisson fators of T̃ we will mean fators S̃ obtained as above. Wewill also say that the map F is a partial map of X to Y semi-onjugating Tand S. Note that if F : X1 → Y establishes a semi-onjugation of T and Sthen the assoiated isometry VF is a sub-Markov operator from L2(Y, ν) to
L2(X1, µ|X1).Assume that T and S are automorphisms of σ-�nite spaes (X,B, µ)and (Y, C, ν) respetively. A joining η of T̃ and S̃ is alled a Poisson join-ing if the assoiated Markov operator Ṽ = Φη ats well on the haosand, via the natural isomorphisms of the �rst haos HX of (X̃, B̃, µ̃) and
HY of (Ỹ , C̃, ν̃) with L2(X,B, µ) and L2(Y, C, ν), the operator Ṽ |HX

or-responds to the sub-Markov operator V assoiated to a sub-joining of Tand S.Proposition 13. The lass of Poisson joinings between T̃ and S̃ islosed in the weak topology of joinings , in partiular , the lass of Poissonself-joinings of T̃ ontains the weak losure of {T̃n : n ∈ Z}.Moreover , the relative produt of T̃ over a Poisson fator is a Poissonself-joining.Proof. The �rst part follows diretly from the fat that the set of sub-Markov operators is losed in the weak operator topology.To prove the seond part take a Poisson fator whih is determined by apartial funtion F : X1 ⊂ X → Y . Then the Markov operator orrespondingto the relative produt over this fator is given by V
F̃
◦V ∗

F̃
◦P

L2(X̃1)
. Sine V

F̃
,

V ∗
F̃
, P

L2(X̃1)
at well on the haos and their restritions to the �rst haos annaturally be identi�ed with VF , V ∗

F , L2(X) ∋ f 7→ f |X1 ∈ L2(X1) resp., soare sub-Markov operators, the omposition V
F̃
◦V ∗

F̃
◦P

L2(X̃1)
is the assoiatedMarkov operator of a Poisson self-joining.3.3. Ergodiity of Poisson joinings. Assume that ̺ is a sub-joining of

T and S and denote by V the orresponding sub-Markov operator from
L2(X,B, µ) to L2(Y, C, ν). We will now pass to a onstrution of a Poissonjoining η of T̃ and S̃ orresponding to ̺, i.e. if we put Ṽ = Φη then Ṽ |H ≡ V .This Poisson joining turns out to be unique, so the struture of Poissonjoinings will be understood.Set µ′ = µ− ̺X and ν ′ = ν − ̺Y . Let us de�ne a σ-�nite standard spae
(Z, ̺′) as a formal disjoint union of (X, µ′), (Y, ν ′) and of (X × Y, ̺). Then



96 Y. DERRIENNIC ET AL.we de�ne R on (Z, ̺′) by putting R|X = T , R|Y = S and R|X×Y = T × S.Sine ̺X and ̺Y are T - and S-invariant respetively, ̺′ is R-invariant.We now have the partial mapping F : X ∪ (X × Y ) ⊂ Z → X whih to
x ∈ X or to (x, y) ∈ X×Y assoiates x, and for eah A ⊂ X of �nite measurewe have ̺′(F−1(A)) = µ′(A) + ̺X(A) = µ(A). Clearly, F ◦R = T ◦ F , so Festablishes a semi-onjugation of R and T . The mapping G : Y ∪ (X ×Y ) ⊂
Z → Y whih to y ∈ Y or to (x, y) ∈ X × Y assoiates y has similarproperties. Hene, the two maps F̃ : Z̃ → X̃ and G̃ : Z̃ → Ỹ are fatormappings of R̃ to T̃ and S̃ respetively. It follows that (F̃ , G̃) : Z̃ → X̃ × Ỹde�nes a joining η = (F̃ , G̃)∗( ˜̺′) of T̃ and S̃, that is, for eah f ∈ L2(X̃, B̃, µ̃)and g ∈ L2(Ỹ , C̃, ν̃) we have\

f(x̃)g(ỹ) dη(x̃, ỹ) =
\
f ◦ F̃ · g ◦ G̃ d ˜̺′.It follows that the Markov operator assoiated to η is equal to Ṽ = V ∗

G̃
V

F̃
.Hene, Ṽ ats well on the haos and learly its restrition to HX an benaturally identi�ed with V ∗

GVF . Let us now show that V ∗
GVF = V . Indeed,take A ⊂ X and B ⊂ Y of �nite measure. Notie that 1A ◦ F · 1B ◦ Gequals zero outside of X × Y , and on X × Y this funtion is equal to 1A×B.Therefore\

V ∗
GVF1A · 1B dν =

\
1A ◦ F · 1B ◦ Gd̺′ = ̺(A × B) =

\
V 1A · 1B dν,whene V ∗

GVF = V .Theorem 14. Eah Poisson joining of two ergodi Poisson suspensionautomorphisms remains ergodi. In partiular , eah ergodi Poisson suspen-sion automorphism has the ELF property.Proof. Notie that the seond assertion follows from the �rst one andProposition 13.Assume that T̃ and S̃ are ergodi. It follows that X and Y have noinvariant sets of �nite positive measure. Let us show that in Z there are no
R-invariant sets of �nite positive ̺′-measure. Indeed, suppose that h = 1C ∈
L2(Z, ̺′) is R-invariant. Then V ∗

F h is T -invariant, so equal to zero µ-a.e. Inpartiular for eah subset A ⊂ X of �nite measure we have
0 = 〈V ∗

F h,1A〉 = 〈h, VF (1A)〉 =
\
h · (1A ◦ F ) d̺′that is, ̺′(C ∩ F−1(A)) = 0. Sine F−1(A) is a formal disjoint union of

A and A × Y , ̺′(C ∩ X) = 0 and by a similar argument ̺′(C ∩ Y ) = 0together with ̺′(C ∩ (A×B)) = 0 for eah A ⊂ X, B ⊂ Y of �nite measure.Therefore ̺′(C) = 0. It follows that the Poisson suspension R̃ of R is ergodiand therefore its fator (T̃ × S̃, η) remains ergodi.



ELF AUTOMORPHISMS 97Remark 5. Independently, using di�erent arguments, the result on er-godiity of Poissonian joinings has also been proved by E. Roy in [36℄.4. Self-joinings of symmetri α-stable automorphisms. In thissetion we will de�ne and study α-stable self-joinings for α-stable automor-phisms, i.e. automorphisms given by stationary ergodi symmetri α-stableproesses (see [17℄, [30℄, [44℄). We will show that eah ergodi symmetri
α-stable automorphism has the ELF property.4.1. Auxiliary lemmas. The proofs of the following two elementary in-equalities are slight adaptations of the proofs from [44, pp. 91�92℄.Lemma 15. If 0 < α < 1 then for all x, y ∈ R we have(6) |x|α + |y|α − |x + y|α ≥ (2 − 2α) min(|x|α, |y|α).If 1 ≤ α < 2 then for all x, y ∈ R we have(7) 2(|x|α + |y|α) − (|x + y|α + |x − y|α) ≥ 2(2 − 2α/2) min(|x|α, |y|α).In partiular, (6) implies(8) | |x + y|α − |y|α| ≤ |x|α for x, y ∈ R and 0 < α ≤ 1,and by the Hölder inequality(9) |x + y|α ≤ max(1, 2α−1)(|x|α + |y|α) for x, y ∈ R and 0 < α ≤ 2.The following result is a onsequene of (8) and the Hölder inequality.Lemma 16. Assume that 0 < α ≤ 2. Let (Ω,F , m) be a �nite measurespae. Let (An)n≥1 ⊂ F . Assume that (fn), (gn) ⊂ Lα(Ω, m) satisfy\

An

|fn|
α dm → 0 and \

Ω

|gn|
α dm = O(1) as n → ∞.Then \

An

(|fn + gn|
α − |gn|

α) dm → 0 as n → ∞.

4.2. Symmetri α-stable proesses. Reall that a real random variable
X has a stable distribution if for any a, b > 0 we an �nd c > 0 and a realnumber d suh that the distributions of aX1 + bX2 and of cX + d are thesame, where X1, X2 are independent opies of X (one proves then that thereexists α = α(X), 0 < α ≤ 2, suh that c = (aα + bα)1/α). In what follows wewill onsider only the symmetri ase (i.e. the distribution of X and of −Xare the same, f. the Gaussian ase). In this ase, the harateristi funtionof X 6= 0 is of the form E(eitX) = e−|t|ασ for some positive σ (t ∈ R).Let 0 < α ≤ 2. Let S be an arbitrary ountable set. Let X = (Xs)s∈Sbe a proess de�ned on a probability spae (Ω,F , P ). We say that Xis (symmetri) α-stable if eah �nite linear ombination Y =

∑m
i=1 aiXsi



98 Y. DERRIENNIC ET AL.(ai ∈ R, i = 1, . . . , m) is a symmetri α-stable variable, i.e. there exists
σ ≥ 0 suh that EeitY = e−|t|ασ for all t ∈ R (and σ > 0 whenever Y 6= 0).We then write

((Y ))α = σ1/α.Remark 6. For 1 ≤ α < 2 (α = 2 leads to the Gaussian ase) ((Y ))αturns out to be a norm in the Banah spae ⋂
0<r<α Lr(Ω, P ), and for eah

0 < r < α there exists c = cα,r suh that ((Y ))α = cr,α‖Y ‖r for eah Y whihis α-stable. For 0 < α < 1 in a similar manner we obtain a Fréhet spae.The following theorem has been proved in [30, pp. 127�128℄.Theorem 17. Assume that 0 < α ≤ 2. Assume moreover that X =
(Xs)s∈S is an α-stable proess. Then there exists a �nite positive Borel mea-sure (alled a spetral measure of X) m on RS suh that

E exp
(
i

n∑

j=1

ajXsj

)
= exp

(
−

1

2

\
RS

∣∣∣
n∑

j=1

ajxsj

∣∣∣
α

dm(x)

)

for arbitrary a1, . . . , an ∈ R and s1, . . . , sn ∈ S, where x = (xs)s∈S.Remark 7. It follows that ((
∑n

j=1 ajXsj
))α

α = 1
2

T
RS |

∑n
j=1ajxsj

|αdm(x).Remark 8. When 0 < α < 2, the measure m is not unique.4.3. α-stable automorphisms. We say that an automorphism T of a stan-dard probability Borel spae is α-stable if there exists a linear spae B0 ofreal funtions on X suh that1. B(B0) = B,2. for eah 0 6= f ∈ B0, f is an α-stable variable,3. B0 is T -invariant.The following riterion as well as the method of proof are very lose to theergodiity riteria in [17℄ and [15℄.Proposition 18. T is ergodi i� for eah f, g ∈ B,
((f ◦ Tn − g))α

α → ((f))α
α + ((g))α

αalong a subsequene of n's whose omplement has density zero. Moreover , if
T is ergodi then T is weakly mixing.4.4. Self-joinings of ergodi α-stable automorphisms. From now on weassume that T is an ergodi α-stable automorphism of (X,B, µ) and B is its
α-stable subspae.Assume that ̺ ∈ J(T ). We say that this self-joining is α-stable if thevariable F (x, y) = f(x) + g(y) as a variable on (X × X, ̺) is α-stable foreah f, g ∈ B.



ELF AUTOMORPHISMS 99Remark 9. Aording to the de�nition of ̺ the automorphism T × Tating on (X × X,B ⊗ B, ̺) is α-stable with its α-stable spae being thelosure of B0(̺) = {f(x) + g(y) : f, g ∈ B}.In this setion we will prove that eah ergodi α-stable automorphismhas the ELF property.Proposition 19. Let T be an ergodi α-stable automorphism. Assumethat Φ = limt→∞ UT nt , Φ = Φ̺. Then ̺ is α-stable.Proof. Take f, g ∈ B and s ∈ R. We have\
X×X

eis(f(x)+g(y)) d̺(x, y) =
\

X×X

eisf(x)eisg(y) d̺(x, y)

=
\
X

Φ(eisf )(y)eisg(y) dµ(y) = lim
t→∞

\
X

eisf◦T nt
· eisg dµ

= lim
t→∞

\
X

eis(f◦T nt+g) = lim
t→∞

e−|s|α((f◦T nt+g))α
α .Hene for some σ ≥ 0 and any s ∈ R,

lim
t→∞

e−|s|α((f◦T nt+g))α
α = e−|s|ασ.It follows easily that if σ = 0 then f(x)+g(y) = 0 for ̺-a.e. (x, y) ∈ X×X.From now on we �x N0 ⊂ N suh that N \ N0 has density zero and foreah f, g ∈ B,

((f ◦ Tn − g))α
α → ((f))α

α + ((g))α
αas n → ∞, n ∈ N0 (whih uses the fat that T is weakly mixing).Using Proposition 18 and the de�nition of an α-stable self-joining weobtain the following.Lemma 20. Assume that T is an ergodi α-stable automorphism with Bits α-stable subspae and N0 as above. Assume that ̺ ∈ J(T ) is α-stable.Then ̺ ∈ Je(T ) i� for eah f, g, h, j ∈ B,

((f(Tnx) + g(Tny)−h(x)− j(y)))α
α,̺ → ((f(x) + g(y)))α

α,̺ + ((h(x)+ j(y)))α
α,̺as n → ∞, n ∈ N0.We an now apply Lemma 2 to eif , eig, eih and to eif , eig, eij to obtainthe following.Lemma 21. Assume that T is an ergodi α-stable automorphism with Bits α-stable subspae and N0 as above. Assume that ̺ ∈ J(T ) is α-stable.Then for eah f, g, h, j ∈ B,

((f(Tnx) + g(Tny) − h(x)))α
α,̺ → ((f(x) + g(y)))α

α,̺ + ((h))α
α,(10)

((f(Tnx) + g(Tny) − j(y)))α
α,̺ → ((f(x) + g(y)))α

α,̺ + ((j))α
α,(11)as n → ∞, n ∈ N0.



100 Y. DERRIENNIC ET AL.Theorem 22. Assume that T is an ergodi α-stable automorphism with
B its α-stable subspae and N0 as above. Assume that ̺ ∈ J(T ) is α-stable.Then ̺ ∈ Je

2(T ).Proof. All we need to show is that (see Lemma 20)(12) ((F ◦ (T × T )n − (H + J)))α
α,̺ → ((F ))α

α,̺ + ((H + J))α
α,̺as n → ∞, n ∈ N0, where F (x, y) = f(x) + g(y), H(x, y) = h(x), J(x, y) =

j(y) and f, g, h, j ∈ B. In view of Lemma 21 we already have
((F ◦ (T × T )n ± H))α

α,̺ → ((F ))α
α,̺ + ((H))α

α,̺,(13)

((F ◦ (T × T )n ± J))α
α,̺ → ((F ))α

α,̺ + ((J))α
α,̺,(14)as n → ∞, n ∈ N0. In partiular, for 1 ≤ α < 2 we have

((F ◦(T ×T )n−H))α
α,̺+((F ◦(T ×T )n+H))α

α,̺ → 2(((F ))α
α,̺+((H))α

α,̺),(15)

((F ◦(T ×T )n−J))α
α,̺+((F ◦(T ×T )n +J))α

α,̺ → 2(((F ))α
α,̺+((J))α

α,̺),(16)as n → ∞, n ∈ N0.Let S = Z ∪ {a, b} and put
Xt =





F ◦ (T × T )n if t = n ∈ Z,
H if t = a,
J if t = b.We hene obtain a proess (Xs)s∈S with variables de�ned on (X×X, ̺). Notethat eah �nite linear ombination of these variables has an α-stable law. Itfollows from Theorem 17 that there exists a �nite positive Borel measure mon RS = RZ × Ra × Rb suh that

(( p∑

j=1

ajXsj

))α

α,̺
=

1

2

\
RS

∣∣∣
p∑

j=1

ajxsj

∣∣∣
α

dm(x),

where x ∈ RS , s1, . . . , sp ∈ S and a1, . . . , ap ∈ R.For 1 ≤ α < 2, using Lemma 15, we obtain\
RS

(2(|xn|
α + |xa|

α) − (|xn − xa|
α + |xn + xa|

α)) dm(x)

≥ onst \
RS

min(|xn|
α, |xa|

α) dm(x),while for 0 < α < 1, using Lemma 15 we obtain\
RS

(|xn|
α + |xa|

α − |xn + xa|
α) dm(x) ≥ onst \

RS

min(|xn|
α, |xa|

α) dm(x).Note that both these inequalities are also true if we replae the funtion
x 7→ xa by x 7→ xb, and moreover the left hand sides tend to zero as n → ∞,
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n ∈ N0 (by (15) and (16)). Thus(17) \
RS

min(|xn|
α, |xa|

α) dm(x) → 0 as n → ∞, n ∈ N0and similarly(18) \
RS

min(|xn|
α, |xb|

α) dm(x) → 0 as n → ∞, n ∈ N0.Set
A1,n = {x ∈ RS : |xn| ≤ |xa|},

A2,n = {x ∈ RS : |xa| < |xn| and |xn| ≤ |xb|},

A3,n = {x ∈ RS : |xa| < |xn| and |xb| < |xn|}.In view of (17), \
A1,n

|xn|
α dm(x) → 0 as n → ∞, n ∈ N0.

Using Lemma 16 with An = A1,n, fn(x) = xn and gn(x) = −(xa + xb) weobtain \
A1,n

(|xn − (xa + xb)|
α − |xa + xb|

α) dm(x) → 0,

whene(19) \
A1,n

(|xn − (xa + xb)|
α − (|xn|

α + |xa + xb|
α)) dm(x) → 0

as n → ∞, n ∈ N0.Using (18) we �nd that TA2,n
|xn|

α dm(x) → 0, and it follows by theargument as above that(20) \
A2,n

(|xn − (xa + xb)|
α − (|xn|

α + |xa + xb|
α)) dm(x) → 0

as n → ∞, n ∈ N0.Applying (17) and (18) one more we see that\
A3,n

|xa|
α dm(x) → 0 and \

A3,n

|xb|
α dm(x) → 0,

hene, in view of (9),TA3,n
|xa + xb|

α dm(x) → 0 as n → ∞, n ∈ N0. We nowuse Lemma 16 with An = An,3, fn(x) = −(xa + xb) and gn(x) = xn. Wehene obtain \
A3,n

(|xn − (xa + xb)|
α − |xn|

α) dm(x) → 0,



102 Y. DERRIENNIC ET AL.whene(21) \
A3,n

(|xn − (xa + xb)|
α − (|xn|

α + |xa + xb|
α)) dm(x) → 0as n → ∞, n ∈ N0.Putting together (19), (20) and (21) we onlude that\

RS

(|xn − (xa + xb)|
α − (|xn|

α + |xa + xb|
α)) dm(x) → 0as n → ∞, n ∈ N0. Thus (12) holds and our proof is omplete.Corollary 23. Assume that T is an ergodi α-stable automorphism.Then T has the ELF property.Remark 10. In the reent PhD thesis [36℄, E. Roy onsiders automor-phisms given by stationary in�nitely divisible (ID) proesses (for simpliityof notation here and below we assume that suh a proess has no Gauss-ian part), hene in partiular the lass ontaining all symmetri α-proesses(0 < α < 2). He then studies ID-joinings of suh automorphisms and provesergodiity of suh joinings whenever the joined ID-automorphisms are er-godi. It follows that ergodi ID-automorphisms have the ELF property. Hismethod of studying ergodi properties of ID-automorphisms is ompletelydi�erent from the method presented in this setion, and is based on a deeptheorem of Maruyama (see [31℄): eah ID-proess an be represented as astationary proess given by a ertain stohasti integral in the Poisson sus-pension given by the Lévy measure of the original proess. A study of thePoisson suspension automorphism over the Lévy measure is then the maintool of [36℄. In partiular, it follows from [36℄ that ID-automorphisms arefators of Poisson suspension automorphisms.5. 2-fold simpliity and the ELF property. In this setion we willompare the 2-fold simpliity property and the ELF property. Clearly, the in-teresting ase is when automorphisms under onsideration are weakly mixingbut not mixing. In this ase we will show a disjointness result.Some auxiliary fats are needed.Lemma 24. Assume that T is an ergodi automorphism of (X,B, µ).Assume moreover that the losure of the set of powers of T in the weakoperator topology satis�es(22) {Tn : n ∈ Z} ⊂ C(T ) ∪ {ΠX}.Then either

{Tn : n ∈ Z} ⊂ C(T )and T has disrete spetrum, or Tn → ΠX and T is mixing.



ELF AUTOMORPHISMS 103Proof. Put
G := {Tn : n ∈ Z} ∩ C(T ),whih is a topologial monotheti group (reall that on C(T ) the weak andstrong topologies oinide). Sine G is monotheti, it is either ompat, orisomorphi to Z, or not loally ompat. In the �rst ase it is well-knownthat T has disrete spetrum. Suppose that T is not mixing. Then there is aweak limit point of powers of T di�erent from ΠX . In view of (22) this limitpoint must be a graph joining, and therefore G is not isomorphi to Z. Now,note that by adding ΠX to G we obtain a one-point ompati�ation of G,so G is loally ompat, a ontradition.The assumptions of Lemma 24 are always satis�ed for 2-fold simple ELFmaps and therefore we have proved the following.Lemma 25. Assume that T is weakly mixing. If T is 2-fold simple andhas the ELF property , then T is mixing.Next we turn to fators of a 2-fold simple automorphism. Reall(see [21℄, [49℄) that a 2-fold simple map is a ompat group extension ofany of its non-trivial fators.Lemma 26. Assume that T is a weakly mixing , but non-mixing , 2-foldsimple automorphism. Then no non-trivial fator of T is an ELF automor-phism.Proof. Suppose that {∅, X} ( A ⊂ B and A is an ELF fator. Notethat A is still not mixing by Veeh's theorem ([49℄). Let T |A be the quotientation of T on (X/A,A, µ|A). It is an ELF automorphism, so in view ofProposition 4, eah self-joining λ in the weak losure of powers of T |A isrelatively weakly mixing with respet to the two marginal σ-algebras.On the other hand, by Lemma 25, T |A is not 2-fold simple, and whatis more, in view of Lemma 24, in the weak losure of the powers of T |A wemust �nd a self-joining di�erent from the produt measure and from anygraph measure. However, sine this joining is ergodi, it is the image of agraph joining of T ating on B. In other words, this joining, as an ation, isisomorphi to the ation of T on A∨RA for some R ∈ C(T ). However, sine

B → A is a ompat group extension, A∨RA → A is a non-trivial isometriextension, so it annot be relatively weakly mixing, a ontradition.We are now able to prove a disjointness result.Proposition 27. Assume that T is a weakly mixing 2-fold simple au-tomorphism whih is not mixing. Then T is disjoint from an arbitrary ELFautomorphism.



104 Y. DERRIENNIC ET AL.Proof. Let S be an ELF automorphism ating on (Y, C, ν). Assume that
Φ : L2(X,B, µ) → L2(Y, C, ν) is a non-trivial (Φ 6= ΠX,Y ) indeomposableMarkov operator intertwining T and S. Consider the subalgebraspan{Φ∗(g1) · . . . · Φ

∗(gn) : gi ∈ L∞(Y, C, ν), i = 1, . . . , n, n ≥ 1}of L∞(X,B, µ). By a result of Zimmer ([53℄) there exists A ⊂ B suh that
L2(A) = span{Φ∗(g1) · . . . · Φ

∗(gn) : gi ∈ L∞(Y, C, ν), i = 1, . . . , n, n ≥ 1}and sine the funtion algebra is T -invariant, A is a fator of T . Sine Φ isnon-trivial, A is a non-trivial fator of T . By Veeh's theorem ([21℄, [49℄),
A is given as the �xed points of the ation of a ompat group H = H(A) :=
{R ∈ C(T ) : R|A = Id} on B.We will now show that the ation of T on A has the ELF property, whihis in on�it with Lemma 26. Take any sequene (nt) and suppose that Tnt(weakly) onverges to a self-joining di�erent from ΠX . We have

Tnt → a
\

C(T )

R dP (R) + (1 − a)ΠX ,

where a > 0. By passing to a further subsequene if neessary we obtain
Φ ◦

(
a
\

C(T )

R dP (R) + (1 − a)ΠX

)
= W ◦ Φ,

where by Proposition 5, W ◦Φ is still indeomposable (that is, it orrespondsto an ergodi joining). Sine
Φ ◦

(
a
\

C(T )

R dP (R) + (1 − a)ΠX

)
= a

\
C(T )

Φ ◦ R dP (R) + (1 − a)ΠX,Y ,

we have a = 1 and \
C(T )

Φ ◦ R dP (R) = W ◦ Φ.

It follows that for (R1, R2) belonging to a subset of C(T ) × C(T ) of full
P ⊗ P -measure we have

Φ ◦ R1 ◦ R−1
2 = Φ,or equivalently

R2 ◦ R−1
1 ◦ Φ∗ = Φ∗.But R2 ◦ R−1

1 preserves the produt of funtions, and therefore R2 ◦ R−1
1 |Ais the identity map, i.e. R2 ◦R−1

1 ∈ H. It follows that there exists R′ ∈ C(T )suh that
P (R′H) = 1.



ELF AUTOMORPHISMS 105If now f, g ∈ L∞(A) then
〈f ◦ Tnt , g〉 →

〈( \
C(T )

R dP (R)
)
f, g

〉
=

\
C(T )

〈Rf, g〉 dP (R) = 〈R′f, g〉.We know that the image on A⊗A of the measure determined by the Markovoperator TR dP orresponds to E( · | A)◦R′ and sine the latter is the restri-tion of µR′ to A⊗A, it is indeomposable. Hene A has the ELF property.Remark 11. T. de la Rue [39℄ has shown that Gaussian automorphismsare never of rank 1. Gaussian automorphisms enjoy the ELF property. Weonjeture that no weakly mixing, non-mixing rank 1 automorphism has theELF property.Let us reall that if T is rank 1 then by a result of Ryzhikov ([40,Thm. 3.1℄) for eah ergodi self-joining ̺ of T there exists a sequene (nt)suh that
Tnt → aΦ̺ + (1 − a)Φη,where a > 0 (η ∈ J2(T )). It follows that if T is rank 1 and has the ELFproperty, then (by Proposition 4) T is semisimple (in the sense of [20℄).We �nish this setion by showing that the minimal self-joinings (MSJ)automorphisms (see [37℄ for the de�nition) whih are not mixing are on-tained in the lass of multipliers of ELF⊥. The proof is similar in spirit tothe proof of Theorem 5.3 in [41℄.Proposition 28. Let T be an MSJ automorphism whih is not mixing.Then T belongs to M(ELF⊥).Proof. Sine T has the MSJ property, by the basi lemma on multi-pliers ([28℄) all we need to show is that the Cartesian square T × T is dis-joint from any ELF automorphism. Using now the riterion for disjointnessfrom [29℄ (and the fat that T has the MSJ property) it is enough to showthat no fator of T×∞ has the ELF property. A fator of T×∞ an be ob-tained only from permutations of �nitely many oordinates ([37℄), that is,it is of the form T×k ating on X × · · · × X︸ ︷︷ ︸

k

/Sk for some k ≥ 1, where Skstands for the group of all permutations of k oordinates. Suppose now thatsuh a fator has the ELF property (reall that a fator of an ELF automor-phism remains an ELF automorphism). Denoting by F the fator σ-algebra,we seek a ontradition.Sine T is not mixing, there exists a sequene (nj) suh that
Tnj → a

∞∑

n=−∞

anTn + (1 − a)ΠX ,where 0 < a ≤ 1, an ≥ 0, ∑∞
n=−∞ an = 1 and either



106 Y. DERRIENNIC ET AL.(A) a < 1 and then am0 6= 0 for some m0, or(B) a = 1 and then there are m1 6= m2 suh that am1 6= 0 6= am2 .We now ontinue the proof assuming (B). We have
(T ×· · ·×T )nj → Φ := akak

m1
Tm1 ⊗· · ·⊗Tm1 +akak

m2
Tm2 ⊗· · ·⊗Tm2 +bΘ,where Θ is a Markov operator. Sine (T × · · · × T )ni preserves the subspae

L2(F), so does the weak limit Φ, and sine the �rst two summands of thelimit also preserve L2(F), so does Θ. Therefore,
Φ|L2(F) = akak

m1
Tm1⊗· · ·⊗Tm1 |L2(F)+akak

m2
Tm2⊗· · ·⊗Tm2 |L2(F)+bΘ|L2(F).Sine T×∞ restrited to F has the ELF property, the Markov operator

Φ|L2(F) is indeomposable in J2(T
×∞|F ). It follows that all summands onthe right hand side of the above equality are equal. In partiular,

Tm1 ⊗ · · · ⊗ Tm1 |F = Tm2 ⊗ · · · ⊗ Tm2 |F ,so Tm2−m1 ⊗ · · · ⊗ Tm2−m1 |F = Id, whih is not possible.In ase (A) we proeed in the same way working in the weak limit withthe operators akak
m0

Tm0 ⊗ · · · ⊗ Tm0 and (1 − a)kΠXk .6. Disjointness of interval exhange transformations from ELFautomorphisms. In this setion we will study disjointness of interval ex-hange transformations from the lass of ELF automorphisms.6.1. Interval exhange transformations. Rauzy indution. Reall that(see e.g. [3, Chapter 5℄) an m-interval exhange transformation is a Lebesguemeasure-preserving automorphism of [0, 1) given by a probability vetor
(λ1, . . . , λm) together with a permutation π of {1, . . . , m}. The unit inter-val [0, 1) is partitioned into m subintervals of lengths λ1, . . . , λm whih arerearranged aording to the permutation π. For some basi properties of in-terval exhange transformations (IET) we refer the reader to [3, Chapter 5℄.Katok [22℄ proves that IET's have no mixing fators. In fat, an analysis ofKatok's proof shows that IET's are disjoint from all mixing automorphisms(f. [8℄). An IET an be weakly mixing, and the problem of �how many�IET's are weakly mixing was one of the most important ones in this theory(see [51℄). Quite reently, in a deep paper [2℄ Avila and Forni give a posi-tive answer to Veeh's onjeture: under some neessary restritions on thepermutation, for almost all hoies of probability vetors, the orrespond-ing IET is weakly mixing. Reall also that some IET's an be even 2-foldsimple automorphisms (see [18℄, [4℄, [5℄). In this setion we will prove thatfor some speial permutations almost all IET's are disjoint from all ELFautomorphisms.



ELF AUTOMORPHISMS 107Fix m > 1, and let S0
m denote the set of all irreduible permutations of

{1, . . . , m}, i.e. suh that π{1, . . . , k} = {1, . . . , k} implies k = m. Set
Λm = {λ ∈ Rm : λj > 0, 1 ≤ j ≤ m}.Given λ ∈ Λm put

β0(λ) = 0, βj(λ) =

j∑

i=1

λi,

|λ| =

m∑

i=1

λi, Iλ
j = [βj−1(λ), βj(λ)) ⊂ Iλ = [0, |λ|),for 1 ≤ j ≤ m. We also de�ne a vetor λπ, where λπ

j = λπ−1j , 1 ≤ j ≤ m.With the notation as above, given (λ, π) ∈ Λm×S0
m denote by T = T(λ,π)the orresponding interval exhange transformation of Iλ, i.e.

T(λ,π)x = x + βπ(i)−1(λ
π) − βi−1(λ)whenever x ∈ Iλ

i , 1 ≤ i ≤ m.We will now reall the Rauzy indution (see the original papers [34℄,[48℄, [50℄, [51℄). Let Z(λ, π) = [0, max(βm−1(λ), βm−1(λ
π))). Then the in-dued transformation TZ(λ,π) : Z(λ, π) → Z(λ, π) is an m-interval exhangetransformation determined by a pair I(λ, π) ∈ Λm × S0

m. This de�nes thetransformation I : Λm × S0
m → Λm × S0

m (see [34℄).For eah k = 1, . . . , m de�ne a permutation τk by
τk(j) =





j for 1 ≤ j ≤ k,
j + 1 for k < j < m,
k + 1 for j = m.G. Rauzy [34℄ has de�ned useful maps a, b : S0

m → S0
m by

a(π) = π ◦ τ−1
π−1(m)

, b(π) = τπ(m) ◦ π.These maps generate a group of maps of S0
m, any orbit of whih is alled aRauzy lass. We assoiate to π and c = a or b the m × m matries A(π, c)suh that

A(π, a)λ = (λ1, . . . , λπ−1m−1, λπ−1m +λπ−1m+1, λπ−1m+2, . . . , λm, λπ−1m+1),

A(π, b)λ = (λ1, . . . , λm−1, λm + λπ−1m).De�ne
c(λ, π) =

{
a if λm < λπ−1m,
b if λm > λπ−1m.Then

I(λ, π) = (A−1λ, c(π)),



108 Y. DERRIENNIC ET AL.where c = c(λ, π) and A = A(π, c). Let (λ, π) ∈ Λm × S0
m. Then In(λ, π) =

(λ(n), π(n)), where
π(n) = cn ◦ cn−1 ◦ · · · ◦ c1(π) with ck = ck(λ, π) = c(Ik−1(λ, π))and
λ = A(n)λ(n) with A(n) = A(π, c1)A(π(1), c2) · · ·A(π(n−1), cn).Set ∆m−1 = {λ∈Λm : |λ|= 1}, and de�ne P : ∆m−1×S0

m →∆m−1×S0
mby

P(λ, π) =

(
A−1λ

|A−1λ|
, c(π)

)
,where c = c(λ, π) and A = A(π, c). Then P is essentially two-to-one andnon-singular. Moreover, the inverses of P are given by

P−1
c (λ, π) =

(
A(c−1(π), c)λ

|A(c−1(π), c)λ|
, c−1(π)

)
,where c ∈ {a, b}.Proposition 29 (Veeh [49℄). Let R ⊂ S0

m be a �xed Rauzy lass.On ∆m−1 × R there exists a smooth positive σ-�nite P-invariant measure
M = MR, with respet to whih P is ergodi and onservative.Given (λ, π) ∈ ∆m−1 × S0

m and γ ∈ (0, 1), for β ∈ [0, 1) de�ne
τ−
(λ,π,γ)(β) = max{k ≤ 0 : T k

(λ,π)(β) ∈ [0, γ)}.Sine for a.a. (λ, π) ∈ ∆m−1 × S0
m the transformation T(λ,π) is ergodi,for a.a. (λ, π) ∈ ∆m−1 × S0

m the measurable funtion τ−
(λ,π,γ) : [0, 1) →

−N ∪ {−∞} is almost everywhere �nite. Let us onsider the skew produt
P∗ : ∆m−1 × S0

m × [0, 1) → ∆m−1 × S0
m × [0, 1) given by

P∗(λ, π, β) =

(
P(λ, π),

T
τ−
(λ,π,|Z(λ,π)|)

(β)

(λ,π) (β)

|Z(λ, π)|

)
.Then

Pn
∗ (λ, π, β) =

(
Pn(λ, π),

T
τ−

(λ,π,|(A(n))−1λ|)
(β)

(λ,π) (β)

|(A(n))−1λ|

)
.Let R ⊂ S0

m be a �xed Rauzy lass. Then, as shown in [48, �3℄, thereexist n > 1, π0 ∈ R and c = (c1, . . . , cn) ∈ {a, b}n suh that
B = A(π0, c1)A(π1, c2) · · ·A(πn−1, cn)



ELF AUTOMORPHISMS 109is a positive m × m matrix, where πj = cj ◦ cj−1 ◦ · · · ◦ c1(π0), 1 ≤ j ≤ n. Ifwe now put P−1
c = P−1

c1 ◦ . . . ◦ P−1
cn

then
P−1

c (∆m−1 × {πn}) =

{(
Bλ

|Bλ|
, π0

)
, λ ∈ ∆m−1

}
.Indeed, it is easy to hek that P−1

c (λ, πn) = (Bλ/|Bλ|, π0) for every
λ ∈ ∆m−1.For eah 0 < ε < 1 denote by Yε ⊂ Λm × {πn} the set of all (λ, πn)suh that λ1 > (1 − ε)|λ|. Let ∆ri

m−1 denote the set of all elements from
∆m−1 suh that the only rational relations between λ1, . . . , λm are multiplesof λ1 + · · · + λm = 1. Set
WR = (∆ri

m−1 × R × [0, 1))

∩
⋂

s∈N

⋃

k≥s

⋃

l≥s

((P−l(P−1
c (Y1/k))) × [0, 1)) ∩ P−l−n

∗ (Y1/k × [1/3, 2/3))).

Let m[0,1) stand for the Lebesgue measure on [0, 1).Lemma 30. The set W has full M ⊗ m[0,1)-measure.Proof. By the ergodiity and onservativity of P the set
W ′ = (∆ri

m−1 × R) ∩
⋂

s∈N

⋃

k≥s

⋃

l≥s

P−l(P−1
c Y1/k)

has full M-measure beause M(P−1
c Y1/k) > 0 for every k ∈ N. Sine W ′ isthe projetion of W on ∆m−1×R, it su�es to show that for eah (λ, π) ∈ W ′the setion

W(λ,π) = {β ∈ [0, 1) : (λ, π, β) ∈ W}has full Lebesgue measure.Fix 0 < ε < 1 and l ≥ 1 and suppose that (λ, π) ∈ P−l(P−1
c Yε) and

λ ∈ ∆ri
m−1. Then (λ′, πn) := Jn+l(λ, π) ∈ Yε and

λ = A(n+l)λ′ = A(l)(Bλ′).Write J = Jε,l = Iλ′

1 and q = qε,l =
∑m

i=1 A
(n+l)
i1 . Sine λ ∈ ∆ri

m−1, we have
|λ′| = |(A(n+l))−1λ| → 0 as l → ∞. As shown in [51℄, J and q satisfy thefollowing onditions:

• J ∩ T j
(λ,π)J = ∅ for 1 ≤ j < q,

• T(λ,π) is linear on T j
(λ,π)

J for 0 ≤ j < q,
• |J ∩ T q

(λ,π)J | > (1 − 2ε)|J |,
• |

⋃q−1
j=0 T j

(λ,π)J | > 1 − ν(B) ε
1−ε ,



110 Y. DERRIENNIC ET AL.where ν(B) = max1≤i,j,k≤m Bij/Bik. Next onsider the tower
Ξε,l =

(
T j

(λ,π)

[
1

2
|J |,

2

3
|J |

))

0≤j<q

.Notie that if β ∈ Ξε,l then(23) Pn+l
∗ (λ, π, β) ∈ Yε ×

[
1

2

|Iλ′

1 |

|Iλ′ |
,
2

3

|Iλ′

1 |

|Iλ′ |

)
⊂ Yε ×

[
1

2
(1 − ε),

2

3

)
.Now suppose that (λ, π) ∈ W ′. Then there exist inreasing sequenes

(ks)s∈N, (ls)s∈N of natural numbers suh that (λ, π) ∈ P−ls(P−1
c Y1/ks

). Bythe preeding observation, T(λ,π) has rank 1, hene is ergodi. Moreover, as
lim inf
s→∞

m[0,1)(Ξ1/ks,ls) = 1/6and T(λ,π) is ergodi, there exists a set Θ(λ,π) ⊂ Iλ = [0, 1) of full m[0,1)measure suh that for eah β ∈ Θ(λ,π) there exist in�nitely many s suh that
β ∈ Ξ1/ks,ls (see King [23, Lemma 3.4 and remark after it℄). Then using (23)we obtain Θ(λ,π) ⊂ W(λ,π), whih ompletes the proof.6.2. Disjointness theorem. Denote by Sr

m (resp. Sl
m) the set of all π ∈

S0
m suh that π(j) + 1 6= π(j + 1) for any 1 ≤ j < m and

π(π−1(m) + 1) = π(m) + 1 (resp. π(π−1(1) − 1) = π(1) − 1).In this setion we will prove that if π ∈ Sr
m ∪ Sl

m then for almost every
λ ∈ Λm the interval exhange transformation T(λ,π) is disjoint from all ELFautomorphisms.Suppose that (λ, π, β) ∈ WR (see Setion 6.1) and let f : [0, 1) → R be apositive funtion of bounded variation. For short, we will write T for T(λ,π).In view of the proof of Lemma 30, we an hoose a sequene (Jn) of intervalswhose left end-point equals 0 and an inreasing sequene of natural numbers
(qn) suh that

• the intervals {T lJn, 0 ≤ l < qn} are pairwise disjoint,
• T is linear on T lJn for 0 ≤ l < qn,
• |Jn ∩ T qnJn|/|Jn| → 1,
• |

⋃qn−1
l=0 T lJn| → 1,

• β ∈
⋃qn−1

l=0 T l[(1/4)|Jn|, (3/4)|Jn|).Therefore T is ergodi and (qn) is a rigidity time for T . Set Cn :=
⋃qn−1

l=0 T lJnand bn := |Jn|−1
T
Cn

f(x) dx. Putting In := Jn ∩ T−qnJn (whih is also aninterval) we obtain
• T lIn are intervals for 1 ≤ l < 2qn,
• T kIn ∩ T k+lIn = ∅ for 0 ≤ k < qn and 1 ≤ l < qn,
• T is linear on T lIn for 0 ≤ l < 2qn,
• |In ∩ T qnIn|/|In| → 1,
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• |
⋃qn−1

l=0 T lIn| → 1,
• β ∈

⋃qn−1
l=0 T l+k[(1/5)|In|, (4/5)|In|) for every 0 ≤ k < qn.If x ∈ C ′

n :=
⋃qn−1

l=0 T lIn, then eah element of the orbit T lx, 0 ≤ l < qn, liesin exatly one interval T klJn, 0 ≤ kl < qn. Therefore
|f (qn)(x) − bn| ≤

qn−1∑

l=0

∣∣∣∣f(T lx) −
1

|Jn|

\
T klJn

f(t) dt

∣∣∣∣

≤

qn−1∑

l=0

1

|Jn|

\
T klJn

|f(T lx) − f(t)| dt

≤

qn−1∑

l=0

VarT klJn
f ≤ Var f.Assume again that (λ, π, β) ∈ WR and suppose that β ∈ Iλ

k+1, where
0 ≤ k ≤ m − 1. Consider the funtion f = 1 + χ[βk(λ),β) and put an := [bn].Lemma 31. Let P be a weak limit measure of ((f (qn) − an)∗(m[0,1)))n.Then P is onentrated on Z ∩ [−2, 2] and has at least two atoms.Proof. Sine |f (qn)(x)− an| < Var f + 1 = 3 for x ∈ C ′

n, f (qn) − an takesonly integer values and |C ′
n| → 1, P is onentrated on Z ∩ [−2, 2].Fix n ≥ 1 and take 0 ≤ j < qn. Then βk(λ) /∈

⋃qn−1
l=0 T l(IntT jIn)and β ∈

⋃qn−1
l=0 T j+l[(1/5)|In|, (4/5)|In|). It follows that T jIn splits into twosubintervals K−

j , K+
j of size at least |In|/5 suh that f (qn) − an is onstanton eah of them and the values whih f (qn) − an takes on K−

j and K+
j di�erby 1. Sine f (qn) − an on C ′

n takes values only from the set {−2,−1, 0, 1, 2}there exists a ∈ {−2,−1, 0, 1, 2} suh that the ardinality of An = {0 ≤
j < qn : (f (qn) − an)(K−

j ) = {a}} is at least qn/5 for in�nitely many n.Moreover, there exists ζ = ±1 suh that #{j ∈ An : (f (qn) − an)(K+
j ) =

{a + ζ}} ≥ #An/2 ≥ qn/10 for in�nitely many n. Sine |K−
j |, |K+

j | ≥ |In|/5and qn|In| → 1, we onlude that P ({a}) ≥ 1/25 and P ({a + ζ}) ≥ 1/50,whih ompletes the proof.Proposition 32. Suppose that (λ, π, β) ∈ WR and β ∈ Iλ
k+1 for some

0 ≤ k ≤ m − 1. Then there exists an inreasing sequene (an) of natu-ral numbers and a non-trivial (i.e. with at least two non-zero frequenies)trigonometri polynomial p suh that
(Tf )an → p(Tf )weakly , where f = 1 + χ[βk(λ),β). Moreover , Tf is weakly mixing and it isdisjoint from all ELF automorphisms.



112 Y. DERRIENNIC ET AL.Proof. By Theorem 6 in [8℄ and Lemma 31, passing to a subsequene of
(an) if neessary we have

(T f )an → p((T f )1),where p(z) =
∑2

i=−2 P ({i})z−i and at least two of the numbers P ({i}),
−2 ≤ i ≤ 2, are positive. By Lemma 3, (Tf )an → p(Tf ). Moreover, bythe proof of Lemma 31 there is i ∈ {−2,−1, 0, 1} suh that P ({i}) and
P ({i + 1}) are positive. It now follows from an argument used in the proofof Proposition 6 that Tf is weakly mixing. Using Proposition 6 again, weonlude that Tf is disjoint from all ELF automorphisms.Sine IET's assoiated to permutations from Sl

m are isomorphi via thesymmetry x 7→ 1−x to IET's assoiated to permutations from Sr
m, we fouson the latter family. It is easy to see that if (λ, π) ∈ ∆m−1×Sr

m then TP(λ,π) isan m−1-interval exhange transformation. Indeed, for eah j = 1, . . . , m−1de�ne ij : {1, . . . , m−1} → {1, . . . , m} and pj : {1, . . . , m} → {1, . . . , m−1}by
ij(k) =

{
k for 1 ≤ k ≤ j,
k + 1 for j < k ≤ m − 1and

pj(k) =

{
k for 1 ≤ k ≤ j,
k − 1 for j < k ≤ m.Then TP(λ,π) = TL(λ,π), where L : ∆m−1 ×Sr

m → ∆m−2 ×S0
m−1 is given by

L(λ, π)=





(
(λ1,...,λj−1,λj−λm,λj+1+λm,λj+2,...,λm−1)

1−λm
, pπm ◦ π ◦ im−1

)
, λm < λj ,

(
(λ1,...,λj−1,λj+λj+1,λj+2,...,λm−1,λm−λj)

1−λj
, pm−1 ◦ π ◦ ij−1

)
, λm > λj ,with j = π−1(m). Moreover, by the de�nition of P, T(λ,π) is isomorphi tothe integral transformation (TL(λ,π))f(L(λ,π),β(λ,π))

, where
f(λ,π,β) = 1 + χ[βi−1(λ),β) whenever β ∈ Iλ

i = [βi−1(λ), βi(λ))and
β(λ, π) =





λ1 + · · · + λπ−1(m)

1 − λm
if λm < λπ−1(m),

λ1 + · · · + λπ−1(m)

1 − λπ−1(m)
if λm > λπ−1(m).Consider the map L∗ : ∆m−1 × Sr

m → ∆m−2 × S0
m−1 × [0, 1) with

L∗(λ, π) = (L(λ, π), β(λ, π)).
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L∗ :

(
∆m−1 × Sr

m, Leb∆m−1 ⊗
∑

π∈Sr
m

δπ

)

→
(
L∗(∆m−1 × Sr

m), Leb∆m−2 ⊗
∑

π∈S0
m−1

δπ ⊗ m[0,1)

)

is non-singular. Reall that ⋃
R WR has full Leb∆m−2 ⊗

∑
π∈S0

m−1
δπ⊗m[0,1)-measure. Therefore W = L−1

∗ (
⋃

R WR) has full Leb∆m−1 ⊗
∑

π∈Sr
m

δπ-mea-sure.Theorem 33. If π ∈ Sr
m ∪ Sl

m then for Leb∆m−1-almost every λ in
∆m−1 the interval exhange transformation T(λ,π) is disjoint from all ELFtransformations.Proof. First notie that it su�es to show that if (λ, π) ∈ W then T(λ,π)is disjoint from all ELF transformations. Assume that (λ, π) ∈ W . Then
L∗(λ, π) = (λ′, π′, β) ∈ WR, where R is the Rauzy lass of π′. By Proposi-tion 32, the integral transformation (T(λ′,π′))f(λ′,π′,β)

is disjoint from all ELFtransformations. On the other hand, (T(λ′,π′))f(λ′,π′,β)
is isomorphi to T(λ,π),whih ompletes the proof.
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