POLYNOMIAL GROWTH OF THE DERIVATIVE FOR DIFFEOMORPHISMS ON TORI

Krzysztof Frączek
Faculty of Mathematics and Computer Science Nicolaus Copernicus University
ul. Chopina 12/18, 87-100 Toruń, Poland

Abstract

We consider area-preserving zero entropy ergodic diffeomorphisms on tori. We classify such diffeomorphisms for which the sequence $\left\{D f^{n}\right\}$ has a polynomial growth on the 3-torus: they are necessary of the form $$
\mathbb{T}^{3} \ni\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}+\alpha, \varepsilon x_{2}+\beta\left(x_{1}\right), x_{3}+\gamma\left(x_{1}, x_{2}\right)\right) \in \mathbb{T}^{3}
$$

where $\varepsilon= \pm 1$. We also indicate why there is no 4-dimensional analogue of the above result. Random diffeomorphisms on the 2-torus are studied as well.

1. Introduction. Let M be a compact Riemannian smooth manifold and let μ be a probability Borel measure on M having full topological support. Let $f:(M, \mu) \rightarrow$ (M, μ) be a smooth measure-preserving diffeomorphism. An important question of smooth ergodic theory is the following: whether there is a relation between asymptotic properties of the sequence $\left\{D f^{n}\right\}_{n \in \mathbb{N}}$ and dynamical properties of the dynamical system $f:(M, \mu) \rightarrow(M, \mu)$. There are results describing a close relation in the case where M is the torus. For example, if f is homotopic to the identity, the coordinates of the rotation vector of f are rationally independent and the sequence $\left\{D f^{n}\right\}_{n \in \mathbb{N}}$ is uniformly bounded, then f is C^{0}-conjugate to an ergodic rotation (see [8] p.181). Moreover, if $\left\{D f^{n}\right\}_{n \in \mathbb{N}}$ is bounded in the C^{r}-norm $(r \in \mathbb{N} \cup\{\infty\})$, then f and the ergodic rotation are C^{r}-conjugated (see [8] p.182). On the other hand, if $\left\{D f^{n}\right\}_{n \in \mathbb{N}}$ has an "exponential growth", more precisely if f is an Anosov diffeomorphism, then f is C^{0}-conjugate to an algebraic automorphism of the torus (see [11]).

A natural question is what can happen between the above extreme cases? The aim of this paper is to classify measure-preserving tori diffeomorphisms f for which the sequence $\left\{D f^{n}\right\}_{n \in \mathbb{N}}$ has polynomial growth. The first definition of polynomial growth of the derivative was proposed in [4]. In [4], the following result has been proved.
Proposition 1.1. Let $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be an ergodic area-preserving C^{2}-diffeomorphism. If the sequence $\left\{n^{-\tau} D f^{n}\right\}_{n \in \mathbb{N}}$ converges a.e. $(\tau>0)$ to a nonzero function, then $\tau=1$ and f is algebraically (i.e. via a group automorphism) conjugate to the skew product of an irrational rotation on the circle and a circle cocycle with nonzero topological degree.

1991 Mathematics Subject Classification. 37A05, 37C05, 37C40.
Key words and phrases. Area-preserving diffeomorphisms, polynomial growth of the derivative, random diffeomorphisms.

Research partly supported by KBN grant 1 P03A 03826.

Moreover, the author in [5] showed that if $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is an ergodic areapreserving C^{3}-diffeomorphism for which the sequence $\left\{n^{-1} D f^{n}\right\}_{n \in \mathbb{N}}$ is C^{0}-separated from 0 and ∞ and it is bounded in the $C^{2}-$ norm, then f is also algebraically conjugate to the skew product of an irrational rotation on the circle and a circle cocycle with nonzero topological degree.

We also recall the main result of [13] asserting that if $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is a homotopic to the identity symplectic diffeomorphism with a fixed point, then f is equals the identity map or there exists $c>0$ such that

$$
\max \left(\left\|D f^{n}\right\|_{\infty},\left\|D f^{-n}\right\|_{\infty}\right) \geq c n
$$

for any natural n (see [14] for some generalizations).
In the present paper some versions of Proposition 1.1 are discussed. In Section 2 we consider the random case. In Section 3 we classify area-preserving ergodic C^{2} diffeomorphisms of a polynomial uniform growth of the derivative on the 3 -torus, i.e. diffeomorphisms for which the sequence $\left\{n^{-\tau} D f^{n}\right\}_{n \in \mathbb{N}}$ converges uniformly to a non-zero function. It is shown that if the limit function is of class C^{1}, then τ is 1 or 2 , and the diffeomorphism is C^{2}-conjugate to a 2 -step skew product. We indicate why there is no 4 -dimensional analogue of Proposition 1.1 in Section 4.
2. Random diffeomorphism on the 2 -torus. Throughout this section we will consider smooth random dynamical systems over an abstract dynamical system $(\Omega, \mathcal{F}, P, T)$, where (Ω, \mathcal{F}, P) is a Lebesgue space and $T:(\Omega, \mathcal{F}, P) \rightarrow(\Omega, \mathcal{F}, P)$ is an ergodic measure-preserving automorphism. We will consider a compact Riemannian C^{∞}-manifold M equipped with its Borel σ-algebra \mathcal{B} as a phase space for smooth random diffeomorphisms. A measurable map f

$$
\mathbb{Z} \times \Omega \times M \ni(n, \omega, x) \longmapsto f_{\omega}^{n} x \in M
$$

satisfying for P-a.e. $\omega \in \Omega$ the following conditions

- $f_{\omega}^{0}=\operatorname{Id}_{M}, f_{\omega}^{m+n}=f_{T^{n} \omega}^{m} \circ f_{\omega}^{n}$ for all $m, n \in \mathbb{Z}$,
- $f_{\omega}^{n}: M \rightarrow M$ is a smooth function for all $n \in \mathbb{Z}$,
is called a smooth random dynamical system (RDS). Of course, the smooth RDS is generated by the random diffeomorphism $f_{\omega}=f_{\omega}^{1}$ in the sense that

$$
f_{\omega}^{n}=\left\{\begin{array}{rrr}
f_{T^{n-1} \omega} \circ \ldots \circ f_{T \omega} \circ f_{\omega} & \text { for } & n>0 \\
\operatorname{Id}_{M} & \text { for } & n=0 \\
f_{T^{n} \omega}^{-1} \circ f_{T^{n+1} \omega}^{-1} \circ \ldots \circ f_{T^{-1} \omega}^{-1} & \text { for } & n<0
\end{array}\right.
$$

Consider the skew-product transformation $T_{f}:(\Omega \times M, \mathcal{F} \otimes \mathcal{B}) \rightarrow(\Omega \times M, \mathcal{F} \otimes \mathcal{B})$ induced naturally by f as follows:

$$
T_{f}(\omega, x)=\left(T \omega, f_{\omega} x\right)
$$

Then $T_{f}^{n}(\omega, x)=\left(T^{n} \omega, f_{\omega}^{n} x\right)$ for all $n \in \mathbb{Z}$. We call a probability measure μ on $(\Omega \times M, \mathcal{F} \otimes \mathcal{B}) f$-invariant if μ is invariant under T_{f} and has marginal P on Ω. Such measures can also be characterized in terms of their disintegrations $\mu_{\omega}, \omega \in \Omega$ by $f_{\omega} \mu_{\omega}=\mu_{T \omega} P$-a.e. A measure μ is said to be ergodic if $T_{f}:(\Omega \times M, \mathcal{F} \otimes \mathcal{B}, \mu) \rightarrow$ $(\Omega \times M, \mathcal{F} \otimes \mathcal{B}, \mu)$ is ergodic. We say that μ has full support, if $\operatorname{supp}\left(\mu_{\omega}\right)=M$ for $P-$ a.e. $\omega \in \Omega$.

In this section we will deal with almost everywhere diffentiable and C^{r}-random dynamical systems with polynomial growth of the derivative. Suppose that f : $\mathbb{Z} \times \Omega \times M \rightarrow M$ is a $C^{0}-\mathrm{RDS}$ and μ is an f-invariant measure on $\Omega \times M$. The

RDS f is called μ-almost everywhere diffentiable if for every integer n and for μ-a.e. $(\omega, x) \in \Omega \times M$ there exists the derivative $D f_{\omega}^{n}(x): T_{x} M \rightarrow T_{f_{\omega}^{n}} M$ and

$$
\int_{M}\left\|D f_{\omega}^{n}(x)\right\|_{n, \omega, x} d \mu_{\omega}(x)<\infty
$$

for every $n \in \mathbb{Z}$ and P-a.e. $\omega \in \Omega$, where $\|\cdot\|_{n, \omega, x}$ is the operator norm in $\mathcal{L}\left(T_{x} M, T_{f_{\omega}^{n} x} M\right)$.

In the paper we will discuss in details random diffeomorphisms on tori. Let d be a natural number. By \mathbb{T}^{d} we denote the d-dimensional torus $\left\{\left(z_{1}, \ldots, z_{d}\right) \in\right.$ $\left.\mathbb{C}^{d}:\left|z_{1}\right|=\ldots=\left|z_{d}\right|=1\right\}$ which most often will be treated as the quotient group $\mathbb{R}^{d} / \mathbb{Z}^{d} ; \lambda^{\otimes d}$ will denote Lebesgue measure on \mathbb{T}^{d}. We will identify functions on \mathbb{T}^{d} with \mathbb{Z}^{d}-periodic functions (i.e. periodic of period 1 in each coordinate) on \mathbb{R}^{d}. Let $f: \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ be a smooth diffeomorphism. We will identify f with a diffeomorphism $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that

$$
f\left(x_{1}, \ldots, x_{j}+1, \ldots, x_{d}\right)=f\left(x_{1}, \ldots, x_{d}\right)+\left(a_{1 j}, \ldots, a_{d j}\right)
$$

for every $\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, where $A=\left[a_{i j}\right]_{1 \leq i, j \leq d} \in G L_{d}(\mathbb{Z})$. We call A the linear part of the diffeomorphism f. Then there exist smooth functions $\tilde{f}_{i}: \mathbb{T}^{d} \rightarrow \mathbb{R}$ such that

$$
f_{i}\left(x_{1}, \ldots, x_{d}\right)=\sum_{j=1}^{d} a_{i j} x_{j}+\tilde{f}_{i}\left(x_{1}, \ldots, x_{d}\right)
$$

where $f_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the i-th coordinate functions of f for $i=1, \ldots, d$.
Definition 2.1. We say that a μ-almost everywhere diffentiable RDS f on \mathbb{T}^{d} over $(\Omega, \mathcal{F}, P, T)$ has τ-polynomial $(\tau>0)$ growth of the derivative if

$$
\frac{1}{n^{\tau}} D f_{\omega}^{n}(x) \rightarrow g(\omega, x) \text { for } \mu \text {-a.e. }(\omega, x) \in \Omega \times \mathbb{T}^{d}
$$

where $g: \Omega \times \mathbb{T}^{d} \rightarrow M_{d}(\mathbb{R})$ is μ non-zero, i.e. there exists a set $A \in \mathcal{F} \otimes \mathcal{B}$ such that $\mu(A)>0$ and $g(x) \neq 0$ for all $x \in A$. Moreover, if additionally $D f^{n}$ belongs to $L^{1}\left(\left(\Omega \times \mathbb{T}^{d}, \mu\right), M_{d}(\mathbb{R})\right)$ for all $n \in \mathbb{N}$ and the sequence $\left\{n^{-\tau} D f^{n}\right\}$ converges in $L^{1}\left(\left(\Omega \times \mathbb{T}^{d}, \mu\right), M_{d}(\mathbb{R})\right)$ then we say that f has τ-polynomial L^{1}-growth of the derivative.

We now give an example of an ergodic RDS on \mathbb{T}^{2} with linear L^{1}-growth of the derivative. Before we do it let us introduce a standard notation. Let τ : $(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ be a measure-preserving ergodic automorphism of a standard Borel space and let G be a compact metric Abelian group. Then each measurable $\operatorname{map} \varphi: X \rightarrow G$ determines a measurable cocycle over τ given by

$$
\varphi^{(n)}(x)=\left\{\begin{array}{cc}
\varphi(x)+\varphi(\tau x)+\ldots+\varphi\left(\tau^{n-1} x\right) & \text { for } \quad n>0 \\
e & \text { for } \quad n=0 \\
-\left(\varphi\left(\tau^{n} x\right)+\varphi\left(\tau^{n+1} x\right)+\ldots+\varphi\left(\tau^{-1} x\right)\right) & \text { for }
\end{array} \quad n<0\right.
$$

which will be identified with the function φ. We say that the cocycle φ is a coboundary if there exists a measurable map $g: X \rightarrow G$ such that $\varphi=g-g \circ \tau$. We call the cocycle φ ergodic if the skew product

$$
\tau_{\varphi}:\left(X \times G, \mu \otimes \lambda_{G}\right) \rightarrow\left(X \times G, \mu \otimes \lambda_{G}\right), \quad \tau_{\varphi}(x, g)=(\tau x, g+\varphi(x))
$$

is ergodic, where λ_{G} is the Haar measure on G.

Let us consider an almost everywhere diffentiable $\operatorname{RDS} f$ on \mathbb{T}^{2} over $(\Omega, \mathcal{F}, P, T)$ (called the random Anzai skew product) of the form

$$
f_{\omega}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha(\omega), x_{2}+\varphi\left(\omega, x_{1}\right)\right),
$$

where the skew product $T_{\alpha}:(\Omega \times \mathbb{T}, P \otimes \lambda) \rightarrow(\Omega \times \mathbb{T}, P \otimes \lambda), T_{\alpha}(\omega, x)=(T \omega, x+$ $\alpha(\omega))$ is ergodic and $\varphi: \Omega \times \mathbb{T} \rightarrow \mathbb{T}$ is an absolutely continuous random mapping of the circle such that $D \varphi \in L^{1}(\Omega \times \mathbb{T}, P \otimes \lambda)$ and $\int_{\Omega} d\left(\varphi_{\omega}\right) d P(\omega) \neq 0\left(d\left(\varphi_{\omega}\right)\right.$ stands for the topological degree of $\varphi_{\omega}: \mathbb{T} \rightarrow \mathbb{T}$). Then the product measure $P \otimes \lambda^{\otimes 2}$ is f-invariant. The following lemma is a little generalization of Lemma 3 in [9].

Lemma 2.1. The $R D S f$ is ergodic and has linear $L^{1}-$ growth of the derivative.
Proof. First, note that

$$
f_{\omega}^{n}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha^{(n)}(\omega), x_{2}+\varphi^{(n)}\left(\omega, x_{1}\right)\right)
$$

for all $n \in \mathbb{N}$. Therefore

$$
\frac{1}{n} D f_{\omega}^{n}\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
1 / n & 0 \\
(1 / n) \sum_{k=0}^{n-1} D \varphi\left(T_{\alpha}^{k}\left(\omega, x_{1}\right)\right) & 1 / n
\end{array}\right] .
$$

By the ergodicity of T_{α},

$$
\frac{1}{n} \sum_{k=0}^{n-1} D \varphi\left(T_{\alpha}^{k}(\omega, x)\right) \rightarrow \int_{\Omega} \int_{\mathbb{T}} D \varphi_{\omega}(y) d y d P(\omega)=\int_{\Omega} d\left(\varphi_{\omega}\right) d P(\omega) \neq 0
$$

for $P \otimes \lambda$-a.e. $(\omega, x) \in \Omega \times \mathbb{T}$ and in the L^{1}-norm, which implies linear L^{1} - growth of the derivatives of f.

To proof the ergodicity of f, we consider the family of unitary operators $\left\{U_{m}\right.$: $\left.L^{2}(\Omega \times \mathbb{T}, P \otimes \lambda) \rightarrow L^{2}(\Omega \times \mathbb{T}, P \otimes \lambda), m \in \mathbb{Z}\right\}$ given by

$$
U_{m} g(\omega, x)=e^{2 \pi i m \varphi(\omega, x)} g(T \omega, x+\alpha(\omega))
$$

We will show that

$$
\begin{equation*}
\left\langle U_{m}^{n} g, g\right\rangle=\int_{\Omega \times \mathbb{T}} e^{2 \pi i m \varphi^{(n)}(\omega, x)} g\left(T_{\alpha}^{n}(\omega, x)\right) \bar{g}(\omega, x) d P(\omega) d x \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

for all $g \in L^{2}(\Omega \times \mathbb{T}, P \otimes \lambda)$ and $m \in \mathbb{Z} \backslash\{0\}$. Let Λ denote the set of all $g \in$ $L^{2}(\Omega \times \mathbb{T}, P \otimes \lambda)$ satisfying (2.1). It is easy to check that Λ is a closed linear subspace of $L^{2}(\Omega \times \mathbb{T}, P \otimes \lambda)$. Therefore it suffices to show (2.1) for all functions of the form $g(\omega, x)=h(\omega) e^{2 \pi i k x}$, where $h \in L^{\infty}(\Omega, P)$ and $k \in \mathbb{Z}$. For such g we have

$$
\begin{aligned}
\left|\left\langle U_{m}^{n} g, g\right\rangle\right| & =\left|\int_{\Omega} h\left(T^{n} \omega\right) \bar{h}(\omega) e^{2 \pi i k \alpha^{(n)}(\omega)}\left(\int_{\mathbb{T}} e^{2 \pi i m \varphi^{(n)}(\omega, x)} d x\right) d P(\omega)\right| \\
& \leq\|h\|_{L^{\infty}}^{2} \int_{\Omega}\left|\int_{\mathbb{T}} e^{2 \pi i m \varphi^{(n)}(\omega, x)} d x\right| d P(\omega)
\end{aligned}
$$

Let $\tilde{\varphi}: \Omega \times \mathbb{T} \rightarrow \mathbb{R}$ be an absolutely continuous random function such that $\varphi(\omega, x)=$ $\tilde{\varphi}(\omega, x)+d\left(\varphi_{\omega}\right) x$. Without loss of generality we can assume that $\int_{\Omega} d\left(\varphi_{\omega}\right) d P(\omega)=$ $a>0$. For any natural n let $A_{n}=\left\{\omega \in \Omega:\left(d\left(\varphi_{\omega}\right)\right)^{(n)} / n>a / 2\right\}$. By the ergodicity
of $T, P\left(\Omega \backslash A_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Applying integration by parts we obtain

$$
\begin{aligned}
& \frac{1}{\|h\|_{L^{\infty}}^{2}}\left|\left\langle U_{m}^{n} g, g\right\rangle\right| \\
& \leq P\left(\Omega \backslash A_{n}\right)+\int_{A_{n}}\left|\int_{\mathbb{T}} e^{2 \pi i m \tilde{\varphi}^{(n)}(\omega, x)} d \frac{e^{2 \pi i m\left(d\left(\varphi_{\omega}\right)\right)^{(n)} x}}{2 \pi i m\left(d\left(\varphi_{\omega}\right)\right)^{(n)}}\right| d P(\omega) \\
& \leq P\left(\Omega \backslash A_{n}\right)+\frac{1}{\pi|m| a n} \int_{A_{n}}\left|\int_{\mathbb{T}} e^{2 \pi i m\left(d\left(\varphi_{\omega}\right)\right)^{(n)} x} d e^{2 \pi i m \tilde{\varphi}^{(n)}(\omega, x)}\right| d P(\omega) \\
& \leq P\left(\Omega \backslash A_{n}\right)+\frac{2}{\pi a n} \int_{A_{n}}\left|\int_{\mathbb{T}} D \tilde{\varphi}^{(n)}(\omega, x) d x\right| d P(\omega) \\
& \leq P\left(\Omega \backslash A_{n}\right)+\frac{2}{\pi a} \int_{\Omega \times \mathbb{T}}\left|D \tilde{\varphi}^{(n)}(\omega, x) / n\right| d P(\omega) d x .
\end{aligned}
$$

As $\int_{\Omega \times \mathbb{T}} D \tilde{\varphi}(\omega, x) d P(\omega) d x=0$, applying the Birkhoff ergodic theorem for T_{α} we conclude that $\int_{\Omega \times \mathbb{T}}\left|D \tilde{\varphi}^{(n)}(\omega, x) / n\right| d P(\omega) d x$ tends to zero, which proves our claim.

Now suppose, contrary to our assertion, that f is not ergodic. Since the skew product T_{α} is ergodic, there exists a measurable function $g: \Omega \times \mathbb{T} \rightarrow \mathbb{T}$ and $m \in \mathbb{Z} \backslash\{0\}$ such that $e^{2 \pi i m \varphi(\omega, x)}=g(\omega, x) \bar{g}\left(T_{\alpha}(\omega, x)\right)$. Then $\left\langle U_{m}^{n} g, g\right\rangle=1$ for all $n \in \mathbb{N}$, contrary to (2.1).

The aim of this section is to classify C^{r}-random dynamical systems on the $2-$ torus that have polynomial $\left(L^{1}\right)$ growth of the derivative and are ergodic with respect to an invariant measure having full support. We say that two random dynamical systems f and g on \mathbb{T}^{d} over $(\Omega, \mathcal{F}, P, T)$ are smoothly conjugate if there exists a smooth random diffeomorphism $h: \Omega \times \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ such that $f_{\omega} \circ h_{\omega}=h_{T \omega} \circ g_{\omega}$ for P-a.e. $\omega \in \Omega$. If additionally there exists a group automorphism $A: \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ such that $h_{\omega}=A$ for P-a.e. $\omega \in \Omega$, we say that f and g are algebraically conjugate. Given a smooth RDS f on \mathbb{T}^{2} over $(\Omega, \mathcal{F}, P, T)$ let us denote by $\varepsilon: \Omega \rightarrow \mathbb{Z}_{2}$ the measurable cocycle over the automorphism $T: \Omega \rightarrow \Omega$ given by

$$
\varepsilon_{\omega}=\left\{\begin{aligned}
1 & \text { if } f \text { preserves orientation } \\
-1 & \text { otherwise }
\end{aligned}\right.
$$

We will prove the following theorems.
Theorem 2.2. Let f be a C^{r}-random dynamical system on \mathbb{T}^{2} over $(\Omega, \mathcal{F}, P, T)$ $(r \geq 1)$. Let μ be an f-invariant ergodic measure having full support on $\Omega \times \mathbb{T}^{2}$. Suppose that f has τ-polynomial growth of the derivative. Then $\tau \geq 1$ and f is algebraically conjugate to a random skew product of the form

$$
\hat{f}_{\omega}\left(x_{1}, x_{2}\right)=\left(F_{\omega}\left(x_{1}\right), x_{2}+\varphi_{\omega}\left(x_{1}\right)\right)
$$

where $F: \Omega \times \mathbb{T} \rightarrow \mathbb{T}$ is a C^{r}-random diffeomorphism of the circle. Moreover, there exist a random homeomorphism of the circle $\xi: \Omega \times \mathbb{T} \rightarrow \mathbb{T}$ and a measurable function $\alpha: \Omega \rightarrow \mathbb{T}$ such that

$$
\xi_{T \omega} \circ F_{\omega}(x)=\varepsilon_{\omega} \xi_{\omega}(x)+\alpha_{\omega} P-a . e .
$$

and consequently f is topologically conjugate to the random skew product

$$
\mathbb{T}^{2} \ni\left(x_{1}, x_{2}\right) \longmapsto\left(\varepsilon_{\omega} x_{1}+\alpha_{\omega}, x_{2}+\varphi_{\omega} \circ \xi_{\omega}^{-1}\left(x_{1}\right)\right) \in \mathbb{T}^{2} .
$$

Theorem 2.3. Under the hypothesis of Theorem 2.2, if additionally f has $\tau-$ polynomial $L^{1}-$ growth of the derivative and μ is equivalent to the measure $P \otimes \lambda^{\otimes 2}$ with $d \mu / d\left(P \otimes \lambda^{\otimes 2}\right), d\left(P \otimes \lambda^{\otimes 2}\right) / d \mu \in L^{\infty}\left(\Omega \times \mathbb{T}^{2}\right)$, then

- $\tau=1$,
- there exist a Lipschitz random diffeomorphism of the circle $\xi: \Omega \times \mathbb{T} \rightarrow \mathbb{T}$ with $D \xi, D \xi^{-1} \in L^{\infty}(\Omega \times \mathbb{T}, P \otimes \lambda)$ and a measurable function $\alpha: \Omega \rightarrow \mathbb{T}$ such that

$$
\xi_{T \omega} \circ F_{\omega}(x)=\xi_{\omega}(x)+\alpha_{\omega} P-\text { a.e. and }
$$

- $\int_{\Omega} d\left(\varphi_{\omega} \circ \xi_{\omega}^{-1}\right) d P(\omega) \neq 0$.

For convenience of the reader the proofs of the above theorems are divided into a sequence of lemmas. Let f be a C^{r}-random dynamical system on \mathbb{T}^{d} over $(\Omega, \mathcal{F}, P, T)$. Let μ be an f-invariant ergodic measure having full support on $\Omega \times \mathbb{T}^{d}$. Suppose that f has τ-polynomial growth of the derivative. Let $g: \Omega \times \mathbb{T}^{d} \rightarrow M_{d}(\mathbb{R})$ denote the limit of the sequence $\left\{n^{-\tau} D f^{n}\right\}$.

Lemma 2.4. For μ-a.e. $(\omega, x) \in \Omega \times \mathbb{T}^{d}$ and all $n \in \mathbb{Z}$ we have

$$
\begin{align*}
& g(\omega, x) \neq 0, \quad g(\omega, x)^{2}=0 \text { and } \tag{2.2}\\
& g(\omega, x)=g\left(T^{n} \omega, f_{\omega}^{n} x\right) D f_{\omega}^{n}(x) \tag{2.3}
\end{align*}
$$

For $\mu \otimes \mu$-a.e. $(\omega, x, v, y) \in \Omega \times \mathbb{T}^{d} \times \Omega \times \mathbb{T}^{d}$ we have

$$
\begin{equation*}
g(\omega, x) g(v, y)=0 \text { and } g(\omega, x)=D f_{v}(y) g(\omega, x) \tag{2.4}
\end{equation*}
$$

Proof. Let $A \subset \Omega \times \mathbb{T}^{d}$ be a T_{f}-invariant subset having full μ-measure such that $(\omega, x) \in A$ implies $\lim _{n \rightarrow \infty} n^{-\tau} D f_{\omega}^{n}(x)=g(\omega, x)$. Assume that $(\omega, x) \in A$. Since

$$
\left(\frac{m+n}{m}\right)^{\tau} \frac{1}{(m+n)^{\tau}} D f_{\omega}^{m+n}(x)=\frac{1}{m^{\tau}} D f_{T^{n} \omega}^{m}\left(f_{\omega}^{n} x\right) D f_{\omega}^{n}(x)
$$

and $\left(T^{n} \omega, f_{\omega}^{n} x\right) \in A$ for all $m, n \in \mathbb{N}$, letting $m \rightarrow \infty$ we obtain

$$
g(\omega, x)=g\left(T^{n} \omega, f_{\omega}^{n} x\right) D f_{\omega}^{n}(x) \quad \text { for all }(\omega, x) \in A \text { and } n \in \mathbb{N}
$$

Let $B=\{(\omega, x) \in A: g(\omega, x) \neq 0\}$. By the above remark, B is T_{f}-invariant. Since g is μ non-zero, $\mu(B)=1$, by the ergodicity of T_{f}.

By the Jewett-Krieger theorem, we can assume that Ω is a compact metric space, $T: \Omega \rightarrow \Omega$ is a uniquely ergodic homeomorphism and P is the unique T-invariant measure. Now choose a sequence $\left\{A_{k}\right\}_{k \in \mathbb{N}}$ of measurable subsets of A such that the functions $g, D f: A_{k} \rightarrow M_{d}(\mathbb{R})$ are continuous, all non-empty open subsets of A_{k} (in the induced topology) have positive measure and $\mu\left(A_{k}\right)>1-1 / k$ for any natural k. Since the transformation $\left(T_{f}\right)_{A_{k}}:\left(A_{k}, \mu_{A_{k}}\right) \rightarrow\left(A_{k}, \mu_{A_{k}}\right)$ induced by T_{f} on A_{k} is ergodic, for every natural k we can find a measurable subset $B_{k} \subset A_{k}$ such that every orbit $\left\{\left(T_{f}\right)_{A_{k}}^{n}(\omega, x)\right\}_{n \in \mathbb{N}},(\omega, x) \in B_{k}$, is dense in A_{k} in the induced topology and $\mu\left(B_{k}\right)=\mu\left(A_{k}\right)$.

Assume that $(\omega, x),(v, y) \in B_{k}$. Then there exists an increasing sequence $\left\{m_{i}\right\}_{i \in \mathbb{N}}$ of natural numbers such that $\left(T_{f}\right)_{A_{k}}^{m_{i}}(\omega, x) \rightarrow(v, y)$. Hence there exists an increasing sequence $\left\{n_{i}\right\}_{i \in \mathbb{N}}$ of natural numbers such that $T_{f}^{n_{i}}(\omega, x) \rightarrow(v, y)$ and $T_{f}^{n_{i}}(\omega, x) \in A_{k}$ for all $i \in \mathbb{N}$. Since $g, D f: A_{k} \rightarrow M_{d}(\mathbb{R})$ are continuous, $g\left(T^{n_{i}} \omega, f_{\omega}^{n_{i}} x\right) \rightarrow g(v, y)$ and $D f_{T^{n_{i}} \omega}\left(f_{\omega}^{n_{i}} x\right) \rightarrow g(v, y)$. Since

$$
\frac{1}{n_{i}^{\tau}} g(\omega, x)=g\left(T^{n_{i}} \omega, f_{\omega}^{n_{i}} x\right) \frac{1}{n_{i}^{\tau}} D f_{\omega}^{n_{i}}(x)
$$

letting $i \rightarrow \infty$ we obtain $g(v, y) g(\omega, x)=0$. Since

$$
\frac{1}{n_{i}^{\tau}} D f_{\omega}^{n_{i}+1}(x)=D f_{T^{n_{i}} \omega}\left(f_{\omega}^{n_{i}} x\right) \frac{1}{n_{i}^{\tau}} D f_{\omega}^{n_{i}}(x)
$$

letting $i \rightarrow \infty$ we obtain $g(\omega, x)=D f_{v}(y) g(\omega, x)$. Therefore

$$
\begin{gathered}
\left.\mu \otimes \mu\left\{(\omega, x, v, y) \in \Omega \times \mathbb{T}^{d} \times \Omega \times \mathbb{T}^{d}: g(v, y) g(\omega, x)=0\right\}\right)>\left(1-\frac{1}{k}\right)^{2} \\
\left.\mu\left\{(\omega, x) \in \Omega \times \mathbb{T}^{d}: g(\omega, x)^{2}=0\right\}\right)>1-\frac{1}{k}
\end{gathered}
$$

and

$$
\left.\mu \otimes \mu\left\{(\omega, x, v, y) \in \Omega \times \mathbb{T}^{d} \times \Omega \times \mathbb{T}^{d}: g(\omega, x)=D f_{v}(y) g(\omega, x)\right\}\right)>\left(1-\frac{1}{k}\right)^{2}
$$

for any natural k, which proves the lemma.
Let us return to case $d=2$. Suppose that A, B are non-zero real 2×2-matrixes such that $A^{2}=B^{2}=A B=0$. Then (see Lemma 4 in [4]) there exist real numbers $a, b \neq 0$ and c such that

$$
A=a\left[\begin{array}{l}
c \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & -c
\end{array}\right] \quad \text { and } \quad B=b\left[\begin{array}{l}
c \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & -c
\end{array}\right]
$$

or

$$
A=a\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad \text { and } \quad B=b\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
0 & 1
\end{array}\right] .
$$

It follows that g can be represented as

$$
g=h\left[\begin{array}{l}
c \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & -c
\end{array}\right]
$$

where $h: \Omega \times \mathbb{T}^{2} \rightarrow \mathbb{R}$ is a measurable function which is non-zero at μ-a.e. point and $c \in \mathbb{R}$. We can omit the second case where

$$
g=h\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
0 & 1
\end{array}\right]
$$

because it reduces to case $c=0$ after interchanging the coordinates, which is an algebraic isomorphism. Then by (2.4) we obtain

$$
\left[\begin{array}{l}
c \tag{2.5}\\
1
\end{array}\right]=D f_{\omega}(x)\left[\begin{array}{l}
c \\
1
\end{array}\right]
$$

for P-a.e. $\omega \in \Omega$ and for all $x \in \mathbb{T}^{2}$, because μ has full support. From (2.3) we obtain

$$
h(\omega, x)\left[\begin{array}{ll}
1 & -c
\end{array}\right]=h\left(T \omega, f_{\omega} x\right)\left[\begin{array}{ll}
1 & -c \tag{2.6}
\end{array}\right] D f_{\omega}(x)
$$

for μ-a.e. $(\omega, x) \in \Omega \times \mathbb{T}^{2}$.
Lemma 2.5. If c is irrational, then $f_{\omega}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha(\omega), x_{2}+\gamma(\omega)\right)$, where $\alpha, \gamma: \Omega \rightarrow \mathbb{T}$ are measurable functions. Consequently, the sequence $n^{-\tau} D f^{n}$ tends uniformly to zero.
Proof. From (2.5) we have

$$
c=c \frac{\partial\left(f_{\omega}\right)_{1}}{\partial x_{1}}+\frac{\partial\left(f_{\omega}\right)_{1}}{\partial x_{2}} \text { and } 1=c \frac{\partial\left(f_{\omega}\right)_{2}}{\partial x_{1}}+\frac{\partial\left(f_{\omega}\right)_{2}}{\partial x_{2}}
$$

for P-a.e. $\omega \in \Omega$. It follows that for $i=1,2$ there exists a C^{r+1}-random function $u_{i}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f_{i}\left(\omega, x_{1}, x_{2}\right)=x_{i}+u_{i}\left(\omega, x_{1}-c x_{2}\right)
$$

Represent f as

$$
\begin{aligned}
& f_{1}\left(\omega, x_{1}, x_{2}\right)=a_{11}(\omega) x_{1}+a_{12}(\omega) x_{2}+\widetilde{f}_{1}\left(\omega, x_{1}, x_{2}\right) \\
& f_{2}\left(\omega, x_{1}, x_{2}\right)=a_{21}(\omega) x_{1}+a_{22}(\omega) x_{2}+\widetilde{f}_{2}\left(\omega, x_{1}, x_{2}\right)
\end{aligned}
$$

where $\left\{a_{i j}(\omega)\right\}_{i, j=1,2} \in G L_{2}(\mathbb{Z})$ and $\tilde{f}_{1}, \tilde{f}_{2}: \Omega \times \mathbb{T}^{2} \rightarrow \mathbb{R}$. Then

$$
u_{1}(\omega, x+1)=\left(a_{11}(\omega)-1\right)(x+1)+\widetilde{f}_{1}(\omega, x+1,0)=u_{1}(\omega, x)+a_{11}(\omega)-1
$$

and

$$
u_{1}(\omega, x+c)=\left(a_{11}(\omega)-1\right) x-a_{12}(\omega)+\tilde{f}_{1}(\omega, x,-1)=u_{1}(\omega, x)-a_{12}(\omega)
$$

Therefore $a_{11}(\omega)-1=\lim _{x \rightarrow+\infty} u_{1}(\omega, x) / x=-a_{12}(\omega) / c$ for $\mu-$ a.e. $\omega \in \Omega$. Since c is irrational, we conclude that $a_{11}(\omega)-1=a_{12}(\omega)=0$, hence that $u_{1}(\omega, \cdot)$ is 1 and c periodic, and finally $u_{1}(\omega, \cdot)$ is a constant for $\mu-$ a.e. $\omega \in \Omega$. It is clear that the same conclusion can be obtained for u_{2}, which completes the proof.

Lemma 2.6. If c is rational, then there exist a group automorphism $A: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}, a$ C^{r}-random diffeomorphism of the circle $F: \Omega \times \mathbb{T} \rightarrow \mathbb{T}$ and a C^{r}-random function $\varphi: \Omega \times \mathbb{T} \rightarrow \mathbb{T}$ such that

$$
A \circ f_{\omega} \circ A^{-1}\left(x_{1}, x_{2}\right)=\left(F_{\omega} x_{1}, x_{2}+\varphi_{\omega}\left(x_{1}\right)\right)
$$

Moreover,

$$
\begin{equation*}
h_{T \omega} \circ A^{-1}\left(F_{\omega}\left(x_{1}\right), x_{2}+\varphi_{\omega}\left(x_{1}\right)\right) \cdot D F_{\omega}\left(x_{1}\right)=h_{\omega} \circ A^{-1}\left(x_{1}, x_{2}\right) \tag{2.7}
\end{equation*}
$$

for $\hat{\mu}$-a.e. $\left(\omega, x_{1}, x_{2}\right) \in \Omega \times \mathbb{T}^{2}$, where $\hat{\mu}:=\left(\operatorname{Id}_{\Omega} \times A\right) \mu$ and $h_{\omega} \circ A^{-1}: \mathbb{T}^{2} \rightarrow \mathbb{R}$ depends only on the first coordinate.
Proof. Let p and q be integers such that $q>0, \operatorname{gcd}(p, q)=1$ and $c=p / q$. Choose $a, b \in \mathbb{Z}$ such that $a p-b q=1$. Consider the group automorphism $A: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ associated to the matrix $A=\left[\begin{array}{rr}q & -p \\ -b & a\end{array}\right]$. Then $A^{-1}=\left[\begin{array}{ll}a & p \\ b & q\end{array}\right]$. Set $\hat{f}_{\omega}:=$ $A \circ f_{\omega} \circ A^{-1}$. Then $\hat{\mu}$ is an \hat{f}-invariant measure and

$$
D \hat{f}_{\omega}(x)=A \cdot\left(D f_{\omega}\left(A^{-1} x\right)\right) \cdot A^{-1}
$$

$>$ From (2.5) we have

$$
\left[\begin{array}{c}
p \\
q
\end{array}\right]=D f_{\omega}(x)\left[\begin{array}{l}
p \\
q
\end{array}\right]
$$

for P-a.e. $\omega \in \Omega$ and all $x \in \mathbb{T}^{2}$. Consequently,

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]=D \hat{f}_{\omega}(x)\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

for P-a.e. $\omega \in \Omega$ and all $x \in \mathbb{T}^{2}$. From (2.6) we have

$$
h_{\omega}(x)\left[\begin{array}{ll}
q & -p
\end{array}\right]=h_{T \omega}\left(f_{\omega} x\right)\left[\begin{array}{ll}
q & -p
\end{array}\right] D f_{\omega}(x)
$$

for μ-a.e. $(\omega, x) \in \Omega \times \mathbb{T}^{2}$. Consequently,

$$
h_{\omega} \circ A^{-1}(x)\left[\begin{array}{ll}
1 & 0
\end{array}\right]=h_{T \omega} \circ A^{-1}\left(\hat{f}_{\omega} x\right)\left[\begin{array}{ll}
1 & 0
\end{array}\right] D \hat{f}_{\omega}(x)
$$

for $\hat{\mu}$-a.e. $(\omega, x) \in \Omega \times \mathbb{T}^{2}$. It follows that $\partial\left(\hat{f}_{\omega}\right)_{1} / \partial x_{2}=0$ and $\partial\left(\hat{f}_{\omega}\right)_{2} / \partial x_{2}=1$ for P-a.e. $\omega \in \Omega$ and

$$
\left(h_{T \omega} \circ A^{-1} \circ \hat{f}_{\omega}\right)(x) \frac{\partial\left(\hat{f}_{\omega}\right)_{1}}{\partial x_{1}}(x)=h_{\omega} \circ A^{-1}(x)
$$

for $\hat{\mu}$-a.e. $(\omega, x) \in \Omega \times \mathbb{T}^{2}$. Therefore

$$
\hat{f}_{\omega}\left(x_{1}, x_{2}\right)=\left(F_{\omega} x_{1}, x_{2}+\varphi_{\omega}\left(x_{1}\right)\right)
$$

where $F, \varphi: \Omega \times \mathbb{T} \rightarrow \mathbb{T}$ are C^{r}-random functions and

$$
h_{T \omega} \circ A^{-1}\left(F_{\omega}\left(x_{1}\right), x_{2}+\varphi_{\omega}\left(x_{1}\right)\right) \cdot D F_{\omega}\left(x_{1}\right)=h_{\omega} \circ A^{-1}\left(x_{1}, x_{2}\right)
$$

for $\hat{\mu}$-a.e. $\left(\omega, x_{1}, x_{2}\right) \in \Omega \times \mathbb{T}^{2}$. Since $\hat{f}_{\omega}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is a C^{r}-diffeomorphism, we conclude that $F_{\omega}: \mathbb{T} \rightarrow \mathbb{T}$ is a C^{r}-diffeomorphism for P-a.e. $\omega \in \Omega$. Since

$$
\frac{1}{n^{\tau}} D f_{\omega}^{n}(x) \rightarrow h_{\omega}(x)\left[\begin{array}{c}
p / q \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & -p / q
\end{array}\right]
$$

for μ-a.e. $\left(\omega, x_{1}, x_{2}\right) \in \Omega \times \mathbb{T}^{2}$,

$$
\frac{1}{n^{\tau}} D \hat{f}_{\omega}^{n}(x) \rightarrow h_{\omega}\left(A^{-1} x\right) / q^{2}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

for $\hat{\mu}-$ a.e. $\left(\omega, x_{1}, x_{2}\right) \in \Omega \times \mathbb{T}^{2}$. Set $\hat{h}_{\omega}:=h_{\omega} \circ A^{-1}$. Then

$$
\frac{1}{n^{\tau}} \sum_{k=0}^{n-1} D \varphi_{T^{k} \omega}\left(F_{\omega}^{k}\left(x_{1}\right)\right) \cdot D F_{\omega}^{k}\left(x_{1}\right) \rightarrow \hat{h}_{\omega}\left(x_{1}, x_{2}\right) / q^{2}
$$

for $\hat{\mu}$-a.e. $\left(\omega, x_{1}, x_{2}\right) \in \Omega \times \mathbb{T}^{2}$. It follows that \hat{h}_{ω} depends only on the first coordinate.

Proof of Theorem 2.2. By Lemmas 2.5 and 2.6, to prove the first claim of the theorem it is enough to show that $\tau \geq 1$. Suppose that $\tau<1$. Let $\nu:=\left(\operatorname{Id}_{\Omega} \times \pi\right) \hat{\mu}$, where $\pi: \mathbb{T}^{2} \rightarrow \mathbb{T}$ is the projection onto the first coordinate. Then ν is an F invariant ergodic measure of full support on $\Omega \times \mathbb{T}$. By Lemma 2.6,

$$
\hat{h}_{T^{k} \omega}\left(F_{\omega}^{k}(x)\right) \cdot D F_{\omega}^{k}(x)=\hat{h}_{\omega}(x)
$$

and

$$
\begin{equation*}
\frac{1}{n^{\tau}} \sum_{k=0}^{n-1} D \varphi_{T^{k} \omega}\left(F_{\omega}^{k}(x)\right) \cdot D F_{\omega}^{k}(x) \rightarrow \hat{h}_{\omega}(x) / q^{2} \tag{2.8}
\end{equation*}
$$

for ν-a.e. $(\omega, x) \in \Omega \times \mathbb{T}$. Therefore

$$
\begin{equation*}
\frac{1}{n^{\tau}} \sum_{k=0}^{n-1} D \varphi_{T^{k} \omega}\left(F_{\omega}^{k}(x)\right) / \hat{h}_{T^{k} \omega}\left(F_{\omega}^{k}(x)\right) \rightarrow 1 / q^{2} \tag{2.9}
\end{equation*}
$$

and consequently

$$
\frac{1}{n} \sum_{k=0}^{n-1} D \varphi_{T^{k} \omega}\left(F_{\omega}^{k}(x)\right) / \hat{h}_{T^{k} \omega}\left(F_{\omega}^{k}(x)\right) \rightarrow 0
$$

for ν-a.e. $(\omega, x) \in \Omega \times \mathbb{T}$. It follows that the measurable cocycle $D \varphi / \hat{h}: \Omega \times \mathbb{T} \rightarrow \mathbb{R}$ over the skew product T_{F} is recurrent (see [15]). Consequently, for ν-a.e. $(\omega, x) \in$ $\Omega \times \mathbb{T}$ there exists an increasing sequence of natural numbers $\left\{n_{i}\right\}_{i \in \mathbb{N}}$ such that

$$
\left|\sum_{k=0}^{n_{i}-1} D \varphi_{T^{k} \omega}\left(F_{\omega}^{k}(x)\right) / \hat{h}_{T^{k} \omega}\left(F_{\omega}^{k}(x)\right)\right| \leq 1
$$

It follows that

$$
\frac{1}{n_{i}^{\tau}} \sum_{k=0}^{n_{i}-1} D \varphi_{T^{k} \omega}\left(F_{\omega}^{k}(x)\right) / \hat{h}_{T^{k} \omega}\left(F_{\omega}^{k}(x)\right) \rightarrow 0
$$

contrary to (2.9).
Now let us decompose $\nu_{\omega}=\nu_{\omega}^{d}+\nu_{\omega}^{c}$, where ν_{ω}^{d} is the discrete and ν_{ω}^{c} is the continuous part of the measure ν_{ω}. As this decomposition is measurable we can consider the measures $\nu^{d}=\int_{\Omega} \nu_{\omega}^{d} d P(\omega)$ and $\nu^{c}=\int_{\Omega} \nu_{\omega}^{c} d P(\omega)$ on $\Omega \times \mathbb{T}$. It is easy to check that ν^{d} and ν^{c} are F-invariant. By the ergodicity of ν, either $\nu=\nu^{d}$ or $\nu=\nu^{c}$.

We now show that $\nu=\nu^{c}$. Suppose the contrary, that $\nu=\nu^{d}$. Let $\Delta: \Omega \times \mathbb{T} \rightarrow$ $[0,1]$ denote the measurable function given by $\Delta(\omega, x)=\nu_{\omega}(\{x\})$. As ν is $F-$ invariant we have

$$
\Delta\left(T \omega, F_{\omega} x\right)=\nu_{T \omega}\left(\left\{F_{\omega} x\right\}\right)=F_{\omega}^{-1} \nu_{T \omega}(\{x\})=\nu_{\omega}(\{x\})=\Delta(\omega, x)
$$

and consequently Δ is T_{F}-invariant. By the ergodicity of T_{F}, the function Δ is ν constant. It follows that the measure ν_{ω} has only finitely many of atoms for P-a.e. $\omega \in \Omega$, which contradicts the fact that ν has full support.

Define $\xi_{\omega}(x):=\int_{0}^{x} d \nu_{\omega}$ for all $x \in \mathbb{R}$. Then $\xi_{\omega}(x+1)=\xi_{\omega}(x)+1$, because $\int_{x}^{x+1} d \nu_{\omega}=1$. Since ν_{ω} is continuous and ν has full support, the function ξ_{ω} : $\mathbb{R} \rightarrow \mathbb{R}$ is continuous and strictly increasing. Therefore $\xi: \Omega \times \mathbb{T} \rightarrow \mathbb{T}$ is a random homeomorphism. As ν is F-invariant we have

$$
\begin{aligned}
\xi_{T \omega}\left(F_{\omega} x\right) & =\int_{0}^{F_{\omega} x} d \nu_{T \omega}=\int_{0}^{F_{\omega} 0} d \nu_{T \omega}+\int_{F_{\omega} 0}^{F_{\omega} x} d F_{\omega} \nu_{\omega} \\
& =\alpha_{\omega}+\varepsilon_{\omega} \int_{0}^{x} d \nu_{\omega}=\varepsilon_{\omega} \xi_{\omega}(x)+\alpha_{\omega}
\end{aligned}
$$

for P-a.e. $\omega \in \Omega$, where $\alpha_{\omega}=\int_{0}^{F_{\omega} 0} d \nu_{T \omega}$.
Proof of Theorem 2.3. Suppose that f has τ-polynomial L^{1}-growth of the derivative and μ is equivalent to $P \otimes \lambda^{\otimes 2}$. Then $D F, D \varphi \in L^{1}(\Omega \times \mathbb{T}, \nu)$ and $\hat{\mu}$ is equivalent to $P \otimes \lambda^{\otimes 2}$. Let $\theta \in L^{1}\left(\Omega \times \mathbb{T}^{2}, P \otimes \lambda^{\otimes 2}\right)$ denote the Radon-Nikodym derivative of $\hat{\mu}$ with respect to $P \otimes \lambda^{\otimes 2}$. Then

$$
\varepsilon_{\omega} \cdot \theta_{T \omega}\left(F_{\omega}\left(x_{1}\right), x_{2}+\varphi_{\omega}\left(x_{1}\right)\right) \cdot D F_{\omega}\left(x_{1}\right)=\theta_{\omega}\left(x_{1}, x_{2}\right)
$$

for $P \otimes \lambda^{\otimes 2}{ }^{-}$a.e. $\left(\omega, x_{1}, x_{2}\right) \in \Omega \times \mathbb{T}^{2}$. By (2.7), there exists a non-zero constant C
 random homeomorphism $\xi_{\omega}: \mathbb{T} \rightarrow \mathbb{T}$ given by $\xi_{\omega}(x):=\int_{0}^{x} d \nu_{\omega}=\int_{0}^{x} \theta_{\omega}(t) d t$ is a Lipschitz random diffeomorphism, because θ and $1 / \theta$ are bounded. It follows that f is Lipschitz conjugate to the random skew product

$$
\left(T_{\alpha, \varepsilon, \psi}\right)_{\omega}\left(x_{1}, x_{2}\right)=\left(\varepsilon_{\omega} x_{1}+\alpha_{\omega}, x_{2}+\psi_{\omega}\left(x_{1}\right)\right),
$$

where $\psi_{\omega}:=\varphi_{\omega} \circ \xi_{\omega}^{-1}$. From (2.8) we conclude that $T_{\alpha, \varepsilon, \psi}$ has τ-polynomial $L^{1}-$ growth of the derivative and

$$
\begin{equation*}
\frac{1}{n^{\tau}} \sum_{k=0}^{n-1} \varepsilon_{\omega}^{(k)} D \psi\left(T_{\alpha, \varepsilon}^{k}(\omega, x)\right) \rightarrow \tilde{h}_{\omega}(x) \neq 0 \tag{2.10}
\end{equation*}
$$

in $L^{1}(\Omega \times \mathbb{T}, P \otimes \lambda)$, where

$$
\tilde{h}_{\omega}(x)=\hat{h}_{\omega} \circ \xi_{\omega}^{-1}(x) \cdot D \xi_{\omega}^{-1}(x) / q^{2} \quad \text { and } \quad\left(T_{\alpha, \varepsilon}\right)_{\omega}(x)=\left(\varepsilon_{\omega} x+\alpha_{\omega}\right) .
$$

It follows immediately that $\tau=1$.

Now suppose that ε is a coboundary over T. Then there exists a measurable function $\eta: \Omega \rightarrow \mathbb{Z}_{2}$ such that $\varepsilon=\eta /(\eta \circ T)$ and the random diffeomorphism

$$
\Omega \times \mathbb{T} \ni(\omega, x) \longmapsto\left(\omega, \eta_{\omega} x\right) \in \Omega \times \mathbb{T}
$$

C^{∞}-conjugates the skew products $T_{\alpha, \varepsilon}$ and $T_{(\eta \circ T) \cdot \alpha, 1}$, which is just our assertion.
Otherwise, the cocycle ε is ergodic over T. Then the cocycle $\varepsilon: \Omega \times \mathbb{T} \rightarrow \mathbb{Z}_{2}$ must be a coboundary over the automorphism $T_{\alpha, \varepsilon}: \Omega \times \mathbb{T} \rightarrow \Omega \times \mathbb{T}$. Indeed, suppose, contrary to our claim, that the skew product

$$
\Omega \times \mathbb{T} \times \mathbb{Z}_{2} \ni(\omega, x, y) \longmapsto\left(T \omega, \varepsilon_{\omega} x+\alpha_{\omega}, \varepsilon_{\omega} y\right) \in \Omega \times \mathbb{T} \times \mathbb{Z}_{2}
$$

is ergodic. By the Birkhoff ergodic theorem,

$$
\frac{1}{n} \sum_{k=0}^{n-1} \varepsilon_{\omega}^{(k)} \cdot y \cdot D \psi\left(T_{\alpha, \varepsilon}^{k}(\omega, x)\right) \rightarrow \int_{\Omega \times \mathbb{T} \times \mathbb{Z}_{2}} y^{\prime} \cdot D \psi\left(\omega^{\prime}, t\right) d P\left(\omega^{\prime}\right) d t d \lambda_{\mathbb{Z}_{2}}\left(y^{\prime}\right)=0
$$

in $L^{1}\left(\Omega \times \mathbb{T} \times \mathbb{Z}_{2}, P \otimes \lambda \otimes \lambda_{\mathbb{Z}_{2}}\right)$, contrary to (2.10). Consequently, there exists a measurable function $g: \Omega \times \mathbb{T} \rightarrow \mathbb{Z}_{2}$ such that $\varepsilon_{\omega} g(\omega, x)=g\left(T \omega, \varepsilon_{\omega} x+\alpha_{\omega}\right)$. It follows that $\varepsilon_{\omega} \int_{\mathbb{T}} g(\omega, t) d t=\int_{\mathbb{T}} g(T \omega, t) d t$. By the ergodicity of ε over T, we have $\int_{\mathbb{T}} g(\omega, t) d t=0$. Let $G: \Omega \times \mathbb{T} \rightarrow[-1,1]$ be given by $G_{\omega}(x):=\int_{0}^{x} g(\omega, t) d t$. Then

$$
D G_{T \omega}\left(\varepsilon_{\omega} x+\alpha_{\omega}\right)=g\left(T \omega, \varepsilon_{\omega} x+\alpha_{\omega}\right)=\varepsilon_{\omega} g(\omega, x)=\varepsilon_{\omega} D G_{\omega}(x)
$$

Consequently, there exists a measurable function $\beta: \Omega \rightarrow \mathbb{R}$ such that

$$
G_{T \omega}\left(\varepsilon_{\omega} x+\alpha_{\omega}\right)=G_{\omega}(x)+\beta_{\omega} .
$$

Therefore $\int_{\mathbb{T}} G_{T \omega}(t) d t=\int_{\mathbb{T}} G_{\omega}(t) d t+\beta_{\omega}$ and

$$
G\left(T_{\alpha, \varepsilon}(\omega, x)\right)-\int_{\mathbb{T}} G_{T \omega}(t) d t=G(\omega, x)-\int_{\mathbb{T}} G_{\omega}(t) d t
$$

Consequently, $G(\omega, x)=\int_{\mathbb{T}} G_{\omega}(t) d t+c$, by the ergodicity of $T_{\alpha, \varepsilon}$. It follows that $0=D G_{\omega}(x)=g(\omega, x)= \pm 1$ for a.e. $(\omega, x) \in \Omega \times \mathbb{T}$, which is impossible. Therefore ε is a coboundary over T, and the proof is complete.
3. Area-preserving diffeomorphisms of the 3 -torus. In this section we give a classification of area-preserving ergodic diffeomorphisms of a polynomial uniform growth of the derivative on the 3 -torus. A C^{1}-diffeomorphism $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ has τ polynomial uniform growth of the derivative if the sequence $\left\{n^{-\tau} D f^{n}\right\}_{n \in \mathbb{N}}$ converges uniformly to a non-zero function. We first present a sequence of essential examples of such diffeomorphisms. We will consider 2 -step skew products $T_{\alpha, \beta, \gamma, \varepsilon}: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ given by

$$
T_{\alpha, \beta, \gamma, \varepsilon}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+\alpha, \varepsilon x_{2}+\beta\left(x_{1}\right), x_{3}+\gamma\left(x_{1}, x_{2}\right)\right),
$$

where α is irrational, $\varepsilon= \pm 1$ and $\beta: \mathbb{T} \rightarrow \mathbb{T}, \gamma: \mathbb{T}^{2} \rightarrow \mathbb{T}$ are of class C^{1}. We will denote by $d_{i}(\gamma)$ the topological degree of γ with respect to the i-th coordinate for $i=1,2$. Here and subsequently, $h_{x_{i}}$ stands for the partial derivative $\partial h / \partial x_{i}$.

Example 3.1. Assume that $\varepsilon=1, \beta$ is a constant function, $\alpha, \beta, 1$ are rationally independent and $\left(d_{1}(\gamma), d_{2}(\gamma)\right) \neq 0$. Then

$$
\frac{1}{n} D T_{\alpha, \beta, \gamma, 1}^{n} \rightarrow\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
d_{1}(\gamma) & d_{2}(\gamma) & 0
\end{array}\right] \neq 0
$$

uniformly and $T_{\alpha, \beta, \gamma, 1}$ is ergodic, by Lemma 2.1.

Example 3.2. Assume that $\varepsilon=1, d(\beta) \neq 0$ and $d_{2}(\gamma) \neq 0$. By Lemma 2.1, $T_{\alpha, \beta, \gamma, 1}$ is ergodic. Moreover, $T_{\alpha, \beta, \gamma, 1}$ has square uniform growth of the derivative, more precisely,

$$
\frac{1}{n^{2}} D T_{\alpha, \beta, \gamma, 1}^{n} \rightarrow\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
d(\beta) d_{2}(\gamma) / 2 & 0 & 0
\end{array}\right] \neq 0
$$

uniformly.
Example 3.3. Assume that $\varepsilon=-1, \gamma$ depends only on the first coordinate, $d(\gamma) \neq 0$ and the factor map $\mathbb{T}^{2} \ni\left(x_{1}, x_{2}\right) \longmapsto\left(x_{1}+\alpha,-x_{2}+\beta\left(x_{1}\right)\right) \in \mathbb{T}^{2}$ is ergodic. Then

$$
\frac{1}{n} D T_{\alpha, \beta, \gamma,-1}^{n} \rightarrow\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
d(\gamma) & 0 & 0
\end{array}\right] \neq 0
$$

uniformly and $T_{\alpha, \beta, \gamma,-1}$ is ergodic, by Lemma 2.1.
The main result of this section is the following theorem.
Theorem 3.1. Let $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ be an area-preserving ergodic C^{2}-diffeomorphism with τ-polynomial uniform growth of the derivative $(\tau>0)$. Suppose that the limit function $\lim _{n \rightarrow \infty} n^{-\tau} D f^{n}$ is of class C^{1}. Then τ is 1 or 2 , and f is C^{2}-conjugate to a diffeomorphism of the form

$$
\mathbb{T}^{3} \ni\left(x_{1}, x_{2}, x_{3}\right) \longmapsto\left(x_{1}+\alpha, \varepsilon x_{2}+\beta\left(x_{1}\right), x_{3}+\gamma\left(x_{1}, x_{2}\right)\right) \in \mathbb{T}^{3}
$$

where $\varepsilon=\operatorname{det} D f= \pm 1$.
As in the previous section, the proof of the main theorem is divided into several lemmas. Suppose that $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ is an area-preserving ergodic diffeomorphism with τ-polynomial growth of the derivative. Assume that the limit of the sequence $\left\{n^{-\tau} D f^{n}\right\}_{n \in \mathbb{N}}$, denoted by $g: \mathbb{T}^{3} \rightarrow M_{3}(\mathbb{R})$, is of class C^{1}. By Lemma 2.4, $g(\bar{x}) g(\bar{y})=0$ and $g(\bar{x})^{2}=0$ for all $\bar{x}, \bar{y} \in \mathbb{T}^{3}$.
Lemma 3.2. Suppose that A, B are non-zero real 3×3-matrixes such that $A^{2}=$ $B^{2}=A B=B A=0$. Then there exist three non-zero vectors (real 1×3-matrixes) $\bar{a}, \bar{b}, \bar{c}$ such that

- $A=\bar{a}^{T} \bar{b}$ and $B=\bar{a}^{T} \bar{c}$, where $\bar{b} \bar{a}^{T}=0$ and $\bar{c} \bar{a}^{T}=0$ or
- $A=\bar{a}^{T} \bar{c}$ and $B=\bar{b}^{T} \bar{c}$, where $\bar{c} \bar{a}^{T}=0$ and $\bar{c} \bar{b}^{T}=0$.

Proof. Suppose that $\bar{x} \in \mathbb{C}^{3}$ is an eigenvector of A with the eigenvalue $\lambda \in \mathbb{C}$. Then $\lambda^{2} \bar{x}=A^{2} \bar{x}=0$ and consequently $\lambda=0$. It follows that the Jordan canonical form of A equals either

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { or }\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

But the latter case can not occur because the square of the latter matrix is non-zero. It follows that there exists $C \in G L_{3}(\mathbb{R})$ such that

$$
A=C\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] C^{-1}=\left[\begin{array}{l}
c_{12} \\
c_{22} \\
c_{32}
\end{array}\right]\left[\begin{array}{lll}
c_{11}^{-1} & c_{12}^{-1} & c_{13}^{-1}
\end{array}\right] .
$$

Therefore we can find non-zero real 1×3-matrixes \bar{a}_{1}, \bar{a}_{2} such that $A=\bar{a}_{1}^{T} \bar{a}_{2}$. As $A^{2}=0$ we have $\bar{a}_{1} \perp \bar{a}_{2}$. Similarly, we can find non-zero real 1×3-matrixes \bar{b}_{1}, \bar{b}_{2} such that $B=\bar{b}_{1}^{T} \bar{b}_{2}$ and $\bar{b}_{1} \perp \bar{b}_{2}$. Let $\bar{o} \in \mathbb{R}^{3}$ be a non-zero vector orthogonal to
both \bar{a}_{1} and \bar{a}_{2}. As $A B=B A=0$ we have $\bar{a}_{1} \perp \bar{b}_{2}$ and $\bar{a}_{2} \perp \bar{b}_{1}$. It follows that there exists a real matrix $\left[d_{i j}\right]_{i, j=1,2}$ such that

$$
\bar{b}_{1}=d_{11} \bar{a}_{1}+d_{12} \bar{o} \text { and } \bar{b}_{2}=d_{21} \bar{a}_{2}+d_{22} \bar{o}
$$

Then $0=\left\langle\bar{b}_{1}, \bar{b}_{2}\right\rangle=d_{12} d_{22}\|\bar{o}\|^{2}$. If $d_{12}=0$, then $d_{11} \neq 0$ and we put $\bar{a}:=\bar{a}_{1}$, $\bar{b}:=\bar{a}_{2}, \bar{c}:=d_{11} \bar{b}_{2}$. Then $\bar{a}^{T} \bar{b}=A$ and $\bar{a}^{T} \bar{c}=B$. If $d_{22}=0$, then $d_{21} \neq 0$ and we put $\bar{a}:=\bar{a}_{1} / d_{21}, \bar{b}:=\bar{b}_{1}, \bar{c}:=\bar{b}_{2}$. Then $\bar{a}^{T} \bar{c}=A$ and $\bar{b}^{T} \bar{c}=B$, which completes the proof.

By the above lemma, there exists $\bar{c} \in \mathbb{R}^{3}$ such that for any two linearly independent vectors $\bar{a}, \bar{b} \in \mathbb{R}^{3}$ orthogonal to \bar{c} there exist C^{1}-functions $h_{1}, h_{2}: \mathbb{T}^{3} \rightarrow \mathbb{R}$ such that $g(\bar{x})$ equals

$$
\bar{c}^{T}\left(h_{1}(\bar{x}) \bar{a}+h_{2}(\bar{x}) \bar{b}\right) \text { or }\left(h_{1}(\bar{x}) \bar{a}+h_{2}(\bar{x}) \bar{b}\right)^{T} \bar{c}
$$

for all $\bar{x} \in \mathbb{T}^{3}$. We first treat the special case of Theorem 3.1 where the limit function g is constant.

Lemma 3.3. Let $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ be an area-preserving ergodic C^{1}-diffeomorphism with τ-polynomial uniform growth of the derivative $(\tau>0)$. Suppose that the limit function $g=\lim _{n \rightarrow \infty} n^{-\tau} D f^{n}$ is constant. Then τ is 1 or 2 , and f is algebraically conjugate to a diffeomorphism of the form

$$
\mathbb{T}^{3} \ni\left(x_{1}, x_{2}, x_{3}\right) \longmapsto\left(x_{1}+\alpha, \varepsilon x_{2}+\beta\left(x_{1}\right), x_{3}+\gamma\left(x_{1}, x_{2}\right)\right) \in \mathbb{T}^{3}
$$

where $\varepsilon=\operatorname{det} D f= \pm 1$.
Before we pass to the proof we introduce some notation. Let $A \in G L_{3}(\mathbb{R})$. Denote by \mathbb{T}_{A}^{3} the quotient group $\mathbb{R}^{3} /\left(\mathbb{Z}^{3} A^{T}\right)$, which is a model of the 3 -torus as well. Then the map

$$
A: \mathbb{T}^{3} \rightarrow \mathbb{T}_{A}^{3}, \quad A \bar{x}=\bar{x} A^{T}
$$

establishes a smooth isomorphism between \mathbb{T}^{3} and \mathbb{T}_{A}^{3}. Suppose that $\xi: \mathbb{T}_{A}^{3} \rightarrow \mathbb{T}_{A}^{3}$ is a diffeomorphism. Then $A^{-1} \circ \xi \circ A$ is a diffeomorphism of the torus \mathbb{T}^{3}. Let $N \in G L_{3}(\mathbb{Z})$ be its linear part. Then

$$
\xi\left(\bar{x}+\bar{m} A^{T}\right)=\xi(\bar{x})+\bar{m} N^{T} A^{T}
$$

for all $\bar{m} \in \mathbb{Z}^{3}$. Moreover, we can write

$$
\xi(\bar{x})=\bar{x}\left(A N A^{-1}\right)^{T}+\tilde{\xi}(\bar{x})
$$

and $A N A^{-1}$ (resp. $\tilde{\xi}$) we will be called the A-linear (resp. the A-periodic) part of ξ. The name A-periodic is justified by $\tilde{\xi}\left(\bar{x}+\bar{m} A^{T}\right)=\tilde{\xi}(\bar{x})$ for all $\bar{m} \in \mathbb{Z}^{3}$.

Suppose that $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ is a smooth diffeomorphism with τ-polynomial uniform growth of the derivative and $g: \mathbb{T}^{3} \rightarrow M_{3}(\mathbb{R})$ is the limit of the sequence $\left\{n^{-\tau} D f^{n}\right\}_{n \in \mathbb{N}}$. Let us consider the diffeomorphism $\hat{f}: \mathbb{T}_{A}^{3} \rightarrow \mathbb{T}_{A}^{3}$ given by $\hat{f}:=A \circ f \circ A^{-1}$. Then

$$
\begin{equation*}
\frac{1}{n^{\tau}} D \hat{f}^{n}(\bar{x})=\frac{1}{n^{\tau}} A \cdot\left(D f^{n}\left(A^{-1} \bar{x}\right)\right) \cdot A^{-1} \rightarrow A \cdot g\left(A^{-1} \bar{x}\right) \cdot A^{-1} \tag{3.11}
\end{equation*}
$$

uniformly on \mathbb{T}_{A}^{3}. Let us denote by $\hat{g}: \mathbb{T}_{A}^{3} \rightarrow M_{3}(\mathbb{R})$ the function $\hat{g}(\bar{x}):=A$. $g\left(A^{-1} \bar{x}\right) \cdot A^{-1}$. Lemma 2.4 now gives

$$
\begin{equation*}
g(\bar{x})=g(f \bar{x}) \cdot D f(\bar{x}) \quad \text { and } \quad g(\bar{y})=D f(\bar{x}) \cdot g(\bar{y}) \tag{3.12}
\end{equation*}
$$

for all $\bar{x}, \bar{y} \in \mathbb{T}^{3}$, and consequently

$$
\begin{equation*}
\hat{g}(\bar{x})=\hat{g}(\hat{f} \bar{x}) \cdot D \hat{f}(\bar{x}) \quad \text { and } \quad \hat{g}(\bar{y})=D \hat{f}(\bar{x}) \cdot \hat{g}(\bar{y}) \tag{3.13}
\end{equation*}
$$

for all $\bar{x}, \bar{y} \in \mathbb{T}_{A}^{3}$.
Throughout this paper we denote by $G(\bar{c})$ the subgroup of all $\bar{m} \in \mathbb{Z}^{3}$ such that $\bar{m} \perp \bar{c}$. Of course, if $\bar{c} \in \mathbb{R}^{3} \backslash\{0\}$, then the rank of $G(\bar{c})$ can be equal 0,1 or 2 . The reader can find further useful properties of the group $G(\bar{c})$ in Appendix B.

Suppose that $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ is an area-preserving ergodic C^{1}-diffeomorphism with τ-polynomial uniform growth of the derivative and the limit function g is constant. By Lemma 3.2, there exist mutually orthogonal vectors $\bar{a}, \bar{c} \in \mathbb{R}^{3}$ such that $g=\bar{c}^{T} \bar{a}$.

Lemma 3.4. Let $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ be an area-preserving C^{1}-diffeomorphism. Suppose that f preserves orientation, has τ-polynomial uniform growth of the derivative and the limit function $g=\lim _{n \rightarrow \infty} n^{-\tau} D f^{n}$ equals $\bar{c}^{T} \bar{a}$, where $\bar{a} \perp \bar{c}$. Then the rank of $G(\bar{a})$ equals 2. Moreover, τ equals either 1 or 2.

Proof. Let $\bar{b} \in \mathbb{R}^{3}$ be a vector orthogonal to both \bar{a} and $\bar{c} \operatorname{such}$ that $\operatorname{det}(A)=1$, where

$$
A=\left[\begin{array}{c}
\bar{a} \\
\bar{b} \\
\bar{c}
\end{array}\right]
$$

Consider $\hat{f}: \mathbb{T}_{A}^{3} \rightarrow \mathbb{T}_{A}^{3}$ given by $\hat{f}:=A \circ f \circ A^{-1}$. Then

$$
\hat{g}=A \cdot \bar{c}^{T} \bar{a} \cdot A^{-1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] .
$$

$>$ From (3.13) we obtain

$$
\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] D \hat{f} \quad \text { and } \quad\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=D \hat{f}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Consequently,

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}} \hat{f}_{1}(\bar{x}) & =1, & \frac{\partial}{\partial x_{2}} \hat{f}_{1}(\bar{x}) & =0,
\end{aligned} \begin{array}{ll}
\frac{\partial}{\partial x_{3}} \hat{f}_{1}(\bar{x}) & =0 \\
\frac{\partial}{\partial x_{3}} \hat{f}_{1}(\bar{x}) & =0,
\end{array} \quad \frac{\partial}{\partial x_{3}} \hat{f}_{2}(\bar{x})=0, \quad \frac{\partial}{\partial x_{3}} \hat{f}_{3}(\bar{x})=1
$$

for all $\bar{x} \in \mathbb{T}_{A}^{3}$. It follows that

$$
\hat{f}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+\alpha, x_{2}+\beta\left(x_{1}\right), x_{3}+\gamma\left(x_{1}, x_{2}\right)\right)
$$

where $\beta: \mathbb{R} \rightarrow \mathbb{R}, \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are C^{1}-functions. Let $N \in G L_{3}(\mathbb{Z})$ stand for the linear part of f. Then the A-linear part of \hat{f} equals

$$
A N A^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
K_{21} & 1 & 0 \\
K_{31} & K_{32} & 1
\end{array}\right]
$$

It follows that

$$
\begin{align*}
\bar{a} N & =\bar{a} \tag{3.14}\\
\bar{b} N & =K_{21} \bar{a}+\bar{b} \tag{3.15}\\
\bar{c} N & =K_{31} \bar{a}+K_{32} \bar{b}+\bar{c} \tag{3.16}
\end{align*}
$$

Let $\tilde{f}: \mathbb{T}^{3} \rightarrow \mathbb{R}^{3}$ stand for the periodic part of f, i.e. $f(\bar{x})=\bar{x} N^{T}+\tilde{f}(\bar{x})$. Then

$$
f^{n}(\bar{x})=\bar{x}\left(N^{n}\right)^{T}+\sum_{k=0}^{n-1} \tilde{f}\left(f^{k} \bar{x}\right)\left(N^{n-1-k}\right)^{T}
$$

Since $\int_{\mathbb{T}^{3}} D\left(\tilde{f} \circ f^{k}\right)(\bar{x}) d \bar{x}=0$ for all natural k,

$$
\begin{equation*}
\frac{1}{n^{\tau}} N^{n}=\frac{1}{n^{\tau}} \int_{\mathbb{T}^{3}} D f^{n}(\bar{x}) d \bar{x} \rightarrow g \tag{3.17}
\end{equation*}
$$

It follows that

$$
\frac{1}{n^{\tau}}\left[\begin{array}{ccc}
1 & 0 & 0 \tag{3.18}\\
K_{21} & 1 & 0 \\
K_{31} & K_{32} & 1
\end{array}\right]^{n} \rightarrow \hat{g}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Suppose, contrary to our claim, that rank $G(\bar{a})<2$.
First, suppose that $\operatorname{rank} G(\bar{a})=0$. From (3.14) we have $N=$ Id. Consequently, $n^{-\tau} N^{n}$ tends to zero, contrary to (3.17).

Now suppose that $\operatorname{rank} G(\bar{a})=1$. Let $\bar{m} \in \mathbb{Z}^{3}$ be a generator of $G(\bar{a})$. Then there exists a vector $\bar{r} \in \mathbb{Q}^{3}$ such that $N-\mathrm{Id}=\bar{m}^{T} \bar{r}$, by (3.14). From (3.15) we have

$$
\bar{b} \bar{m}^{T} \bar{r}=\bar{b}(N-\mathrm{Id})=K_{21} \bar{a}
$$

Suppose that $K_{21} \neq 0$. Then $\operatorname{rank} G(\bar{a})=\operatorname{rank} G(\bar{r})=2$, which contradicts our assumption. Consequently, $K_{21}=0$. It follows that

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
K_{21} & 1 & 0 \\
K_{31} & K_{32} & 1
\end{array}\right]^{n}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
n K_{31} & n K_{32} & 1
\end{array}\right]
$$

$>$ From (3.18) it follows that $\tau=1$ and $K_{31}=1, K_{32}=0$. Then

$$
\bar{c} \bar{m}^{T} \bar{r}=\bar{c}(N-\mathrm{Id})=\bar{a}
$$

by (3.16). It follows that $\operatorname{rank} G(\bar{a})=\operatorname{rank} G(\bar{r})=2$, which contradicts our assumption.

Finally, we have to prove that τ equals either 1 or 2 . $>$ From (3.18) we obtain

$$
n^{1-\tau} K_{21} \rightarrow 0, \quad n^{1-\tau} K_{31}+\frac{1-1 / n}{2} n^{2-\tau} K_{21} K_{32} \rightarrow 1, \quad n^{1-\tau} K_{32} \rightarrow 0
$$

If $K_{21}=0$, then $\tau=1$ and $K_{31}=1$. Otherwise, $\tau=2$ and $K_{21} K_{32}=2$, which completes the proof.

Proof of Lemma 3.3. First, notice that f^{2} preserves area and orientation, and $n^{-\tau} D f^{2 n}$ tends uniformly to $2^{\tau} \bar{c}^{T} \bar{a}$. By Lemma $3.4, \operatorname{rank} G(\bar{a})=2$. It follows that $\bar{a}=a \bar{m} \in a \mathbb{Z}^{3}$, by Lemma B. 1 (see Appendix B). Now choose $\bar{n}, \bar{k} \in \mathbb{Z}^{3}$ such that the determinant of

$$
A:=\left[\begin{array}{c}
\bar{m} \\
\bar{n} \\
\bar{k}
\end{array}\right]
$$

equals 1 . Let us consider the diffeomorphism $\hat{f}: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ given by $\hat{f}:=A \circ f \circ A^{-1}$. Then

$$
\hat{g}=A \cdot g \cdot A^{-1}=a\left[\begin{array}{c}
0 \\
\bar{n} \bar{c}^{T} \\
\bar{k} \bar{c}^{T}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] .
$$

$>$ From (3.13) we have

$$
\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] D \hat{f}(\bar{x})=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
0 \\
\bar{n} \bar{c}^{T} \\
\bar{k} \bar{c}^{T}
\end{array}\right]=D \hat{f}(\bar{x})\left[\begin{array}{c}
0 \\
\bar{n} \bar{c}^{T} \\
\bar{k} \bar{c}^{T}
\end{array}\right]
$$

It follows that

$$
\hat{f}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+\alpha, \varphi_{x_{1}}\left(x_{2}, x_{3}\right)\right)
$$

where $\varphi: \mathbb{T} \times \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is an area-preserving random diffeomorphism over the rotation by an irrational number α. Then

$$
\left[\begin{array}{c}
\bar{n} \bar{c}^{T} \\
\bar{k} \bar{c}^{T}
\end{array}\right]=D \varphi_{x_{1}}\left(x_{2}, x_{3}\right)\left[\begin{array}{l}
\bar{n} \bar{c}^{T} \\
\bar{k} \bar{c}^{T}
\end{array}\right]
$$

for all $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{T}^{3}$
Suppose that $\bar{n} \bar{c}^{T}$ and $\bar{k} \bar{c}^{T}$ are rationally independent. Then by Lemma 2.5, $\varphi_{x_{1}}\left(x_{2}, x_{3}\right)=\left(x_{2}+\beta\left(x_{1}\right), x_{3}+\gamma\left(x_{1}\right)\right)$, where $\beta, \gamma: \mathbb{T} \rightarrow \mathbb{T}$ are C^{1}-functions, which is our claim.

Otherwise, by Lemma 2.6, there exist a group automorphism $B: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ and C^{1}-functions $\beta: \mathbb{T} \rightarrow \mathbb{T}, \gamma: \mathbb{T}^{2} \rightarrow \mathbb{T}$ such that

$$
B \circ \varphi_{x_{1}} \circ B^{-1}\left(x_{2}, x_{3}\right)=\left(\varepsilon x_{2}+\beta\left(x_{1}\right), x_{3}+\gamma\left(x_{1}, x_{2}\right)\right),
$$

where $\varepsilon=\operatorname{det} D f$, which proves the claim.
Proof of Theorem 3.1. is divided into a few cases.
Case 1. Suppose that $g=\bar{c}^{T}\left(h_{1} \bar{a}+h_{2} \bar{b}\right)$, where \bar{a} and \bar{b} are orthogonal to \bar{c} and the matrix

$$
A=\left[\begin{array}{c}
\bar{a} \\
\bar{b} \\
\bar{c}
\end{array}\right]
$$

is nonsingular. Let $\hat{f}: \mathbb{T}_{A}^{3} \rightarrow \mathbb{T}_{A}^{3}$ be given by $\hat{f}:=A \circ f \circ A^{-1}$. Then

$$
\hat{g}=A \cdot \bar{c}^{T}\left(\hat{h}_{1} \bar{a}+\hat{h}_{2} \bar{b}\right) \cdot A^{-1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{lll}
\hat{h}_{1} & \hat{h}_{2} & 0
\end{array}\right]
$$

where $\hat{h}_{i}(\bar{x}):=h_{i}\left(A^{-1} \bar{x}\right)$ for $i=1,2$. From (3.13) we obtain

$$
\begin{align*}
{\left[\begin{array}{ll}
\hat{h}_{1}(\bar{x}) \hat{h}_{2}(\bar{x}) & 0
\end{array}\right] } & =\left[\begin{array}{lll}
\hat{h}_{1}(\hat{f} \bar{x}) & \hat{h}_{2}(\hat{f} \bar{x}) & 0
\end{array}\right] D \hat{f}(\bar{x}) \tag{3.19}\\
{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] } & =D \hat{f}(\bar{x})\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{align*}
$$

for all $\bar{x} \in \mathbb{T}_{A}^{3}$. Consequently, $\partial \hat{f}_{1}(\bar{x}) / \partial x_{3}=0, \partial \hat{f}_{2}(\bar{x}) / \partial x_{3}=0$ and $\partial \hat{f}_{3}(\bar{x}) / \partial x_{3}=1$ for all $\bar{x} \in \mathbb{T}_{A}^{3}$. It follows that

$$
\hat{f}\left(x_{1}, x_{2}, x_{3}\right)=\left(F\left(x_{1}, x_{2}\right), x_{3}+\gamma\left(x_{1}, x_{2}\right)\right)
$$

where $\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a smooth function and $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the diffeomorphism given by $F\left(x_{1}, x_{2}\right)=\left(\hat{f}_{1}\left(x_{1}, x_{2}\right), \hat{f}_{2}\left(x_{1}, x_{2}\right)\right)$. Let K stand for the A-linear part of $\hat{f}, K=A N A^{-1}$, where $N \in G L_{3}(\mathbb{Z})$ is the linear part of f. Then $\operatorname{det} K=$ $\operatorname{det} N=\varepsilon^{\prime}= \pm 1$ and $K_{13}=0, K_{23}=0, K_{33}=1$. Moreover, there exist $C^{2}-$ functions $\tilde{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \tilde{\gamma}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which are $\left(\bar{a} \bar{m}^{T}, \bar{b} \bar{m}^{T}\right)$-periodic for all $\bar{m} \in \mathbb{Z}^{3}$ such that

$$
F(\bar{x})=\tilde{F}(\bar{x})+\bar{x} K^{\prime T} \text { and } \gamma\left(x_{1}, x_{2}\right)=\tilde{\gamma}\left(x_{1}, x_{2}\right)+K_{31} x_{1}+K_{32} x_{2}
$$

where $K^{\prime}=\left.K\right|_{\{1,2\} \times\{1,2\}} \in G L_{2}(\mathbb{R})$ and $\operatorname{det} K^{\prime}=\varepsilon^{\prime}$. From (3.11) we have

$$
\frac{1}{n^{\tau}} D F^{n}\left(x_{1}, x_{2}\right) \rightarrow 0 \quad \text { and } \quad \frac{1}{n^{\tau}} \sum_{k=0}^{n-1} D\left(\gamma \circ F^{k}\right)\left(x_{1}, x_{2}\right) \rightarrow\left[\hat{h}_{1}(\bar{x}) \hat{h}_{2}(\bar{x})\right]
$$

uniformly on \mathbb{T}_{A}^{3}. Therefore \hat{h}_{1}, \hat{h}_{2} depend only on the first two coordinates. Let $H: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $H\left(x_{1}, x_{2}\right)=\left[\hat{h}_{1}\left(x_{1}, x_{2}, 0\right) \hat{h}_{2}\left(x_{1}, x_{2}, 0\right)\right]$. Then H is $\left(\bar{a} \bar{m}^{T}, \bar{b} \bar{m}^{T}\right)$-periodic for all $\bar{m} \in \mathbb{Z}^{3}$ and is of class C^{1}. From (3.19) we have

$$
\begin{equation*}
H(F \bar{x}) \cdot D F(\bar{x})=H(\bar{x}) \tag{3.20}
\end{equation*}
$$

for all $\bar{x} \in \mathbb{R}^{2}$. Set $\chi_{n}:=n^{-\tau} \sum_{k=0}^{n-1} \gamma \circ F^{k}$. Since $D \chi_{n} \rightarrow H$ uniformly on \mathbb{R}^{2}, $\chi_{n}\left(x_{1}, x_{2}\right)-\chi_{n}\left(x_{1}, 0\right) \rightarrow \int_{0}^{x_{2}} H_{2}\left(x_{1}, t\right) d t, \chi_{n}\left(x_{1}, x_{2}\right)-\chi_{n}\left(0, x_{2}\right) \rightarrow \int_{0}^{x_{1}} H_{1}\left(t, x_{2}\right) d t$ for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Let $\xi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
\begin{aligned}
\xi\left(x_{1}, x_{2}\right) & :=\lim _{n \rightarrow \infty}\left(\chi_{n}\left(x_{1}, x_{2}\right)-\chi_{n}(0,0)\right)=\int_{0}^{x_{1}} H_{1}\left(t, x_{2}\right) d t+\int_{0}^{x_{2}} H_{2}(0, t) d t \\
& =\int_{0}^{x_{2}} H_{2}\left(x_{1}, t\right) d t+\int_{0}^{x_{1}} H_{1}(t, 0) d t
\end{aligned}
$$

Then $\partial \xi / \partial x_{1}=H_{1}, \partial \xi / \partial x_{2}=H_{2}$ and ξ is of class C^{2}. By (3.20), there exists $\alpha \in \mathbb{R}$ such that

$$
\begin{equation*}
\xi(F \bar{x})=\xi(\bar{x})+\alpha . \tag{3.21}
\end{equation*}
$$

By Lemma B. 1 (see Appendix B), there exists a C^{2}-function $\tilde{\xi}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which is $\left(\bar{a} \bar{m}^{T}, \bar{b} \bar{m}^{T}\right)$-periodic for all $\bar{m} \in \mathbb{Z}^{3}$ and $d_{1}, d_{2} \in \mathbb{R}$ such that $\xi\left(x_{1}, x_{2}\right)=\tilde{\xi}\left(x_{1}, x_{2}\right)+$ $d_{1} x_{1}+d_{2} x_{2}$. Since $H \neq 0$, it is easy to see that $\left(d_{1}, d_{2}\right) \neq(0,0)$. Moreover, from (3.21) we have

$$
\left[\begin{array}{ll}
d_{1} & d_{2}
\end{array}\right] K^{\prime}=\left[\begin{array}{ll}
d_{1} & d_{2} \tag{3.22}
\end{array}\right]
$$

and

$$
\begin{align*}
& \tilde{\xi}(\bar{x})+\alpha \tag{3.23}\\
& \quad=\tilde{\xi}\left(\tilde{F}_{1}(\bar{x})+K_{11} x_{1}+K_{12} x_{2}, \tilde{F}_{2}(\bar{x})+K_{21} x_{1}+K_{22} x_{2}\right)+d_{1} \tilde{F}_{1}(\bar{x})+d_{2} \tilde{F}_{2}(\bar{x}) .
\end{align*}
$$

Case 1a. Suppose that rank $G(\bar{c})=0$. By Lemma B.1, $D \hat{f}$ is constant. It follows that $D f$ and g are constant. Therefore $g=\bar{c}^{T} \bar{a}$, where \bar{a} is orthogonal to \bar{c}. From (3.12) we obtain $\bar{c}^{T}=D f(\bar{x}) \bar{c}^{T}$ for all $\bar{x} \in \mathbb{T}^{3}$. As $G(\bar{c})=\{0\}$ and $D f(\bar{x}) \in G L^{3}(\mathbb{Z})$ we have $D f(x)=$ Id for all $\bar{x} \in \mathbb{T}^{3}$. Consequently, f is a rotation on the 3 -torus, which is impossible.

Case 1b. Suppose that $\operatorname{rank} G(\bar{c})=1$. By Lemma B.1, there exist real numbers l_{1}, l_{2} such that $\bar{m}=l_{1} \bar{a}+l_{2} \bar{b}$ generates $G(\bar{c})$ and C^{2}-functions $\bar{F}: \mathbb{T} \rightarrow \mathbb{R}^{2}$, $\bar{\xi}: \mathbb{T} \rightarrow \mathbb{R}, \bar{\gamma}: \mathbb{T} \rightarrow \mathbb{R}$ such that
$\tilde{F}\left(x_{1}, x_{2}\right)=\bar{F}\left(l_{1} x_{1}+l_{2} x_{2}\right), \tilde{\xi}\left(x_{1}, x_{2}\right)=\bar{\xi}\left(l_{1} x_{1}+l_{2} x_{2}\right)$ and $\tilde{\gamma}\left(x_{1}, x_{2}\right)=\bar{\gamma}\left(l_{1} x_{1}+l_{2} x_{2}\right)$.
From (3.23) we obtain

$$
\begin{aligned}
\bar{\xi}\left(l_{1} x_{1}+l_{2} x_{2}\right)+\alpha= & \bar{\xi}\left(l_{1} \bar{F}_{1}\left(l_{1} x_{1}+l_{2} x_{2}\right)+l_{2} \bar{F}_{2}\left(l_{1} x_{1}+l_{2} x_{2}\right)+s_{1} x_{1}+s_{2} x_{2}\right) \\
& +d_{1} \bar{F}_{1}\left(l_{1} x_{1}+l_{2} x_{2}\right)+d_{2} \bar{F}_{2}\left(l_{1} x_{1}+l_{2} x_{2}\right)
\end{aligned}
$$

where $\left[s_{1} s_{2}\right]=\left[l_{1} l_{2}\right] K^{\prime}$. If $\left(s_{1}, s_{2}\right)$ and $\left(l_{1}, l_{2}\right)$ are linearly independent, then $\bar{\xi}$ is constant. It follows that H is constant which reduces the problem to Lemma 3.3. Otherwise, there exists a real number s such that $\left(s_{1}, s_{2}\right)=s\left(l_{1}, l_{2}\right)$ and

$$
\bar{\xi}(x)+\alpha=\bar{\xi}\left(l_{1} \bar{F}_{1}(x)+l_{2} \bar{F}_{2}(x)+s x\right)+d_{1} \bar{F}_{1}(x)+d_{2} \bar{F}_{2}(x)
$$

for any real x. Since f preserves area $\operatorname{det} D F(\bar{x})=\varepsilon= \pm 1$ for all $\bar{x} \in \mathbb{T}^{3}$. It follows that

$$
\begin{aligned}
\varepsilon & =\operatorname{det}\left[\begin{array}{cc}
l_{1} D \bar{F}_{1}(x)+K_{11} & l_{2} D \bar{F}_{1}(x)+K_{12} \\
l_{1} D \bar{F}_{2}(x)+K_{21} & l_{2} D \bar{F}_{2}(x)+K_{22}
\end{array}\right] \\
& =\left(l_{1} K_{22}-l_{2} K_{21}\right) D \bar{F}_{1}(x)+\left(-l_{1} K_{12}+l_{2} K_{11}\right) D \bar{F}_{2}(x)+\operatorname{det} K \\
& =\left(l_{1} D \bar{F}_{1}(x)+l_{2} D \bar{F}_{2}(x)\right) \operatorname{det} K / s+\operatorname{det} K
\end{aligned}
$$

for any real x. Since \bar{F}_{1}, \bar{F}_{2} are 1-periodic, we have $l_{1} D \bar{F}_{1}(x)+l_{2} D \bar{F}_{2}(x)=0$ and $\operatorname{det} K=\varepsilon$. Therefore the function $l_{1} \bar{F}_{1}+l_{2} \bar{F}_{2}$ is constant. Let us choose real numbers r_{1}, r_{2} such that the determinant of the matrix

$$
L=\left[\begin{array}{ccc}
l_{1} & l_{2} & 0 \\
r_{1} & r_{2} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

equals 1 . Now consider the diffeomorphism $\check{f}: \mathbb{T}_{L A}^{3} \rightarrow \mathbb{T}_{L A}^{3}$ given by $\check{f}=L \circ \hat{f} \circ L^{-1}$. Then
$\check{f}\left(x_{1}, x_{2}, x_{3}\right)=\left(s x_{1}+\alpha, \varepsilon / s x_{2}+r x_{1}+r_{1} \bar{F}_{1}\left(x_{1}\right)+r_{2} \bar{F}_{2}\left(x_{1}\right), x_{3}+\bar{\gamma}\left(x_{1}\right)+p_{1} x_{1}+p_{2} x_{2}\right)$.
As $\partial \check{f}_{1}^{n} / \partial x_{1}=s^{n}$ and $\partial \check{f}_{2}^{n} / \partial x_{2}=(\varepsilon / s)^{n}$ we obtain $s= \pm 1$, because \check{f} has polynomial uniform growth of the derivative. Moreover,

$$
L A=\left[\begin{array}{c}
\bar{m} \\
r_{1} \bar{a}+r_{2} \bar{b} \\
\bar{c}
\end{array}\right]
$$

and $L \circ A \circ f=\check{f} \circ L \circ A$. Therefore $f(\bar{x}) \bar{m}^{T}=s \bar{x} \bar{m}^{T}+\alpha$. Observe that $s=1$. Indeed, suppose, contrary to our claim, that $s=-1$. Consider the smooth function $\kappa: \mathbb{T}^{3} \rightarrow \mathbb{C}$ given by $\kappa(\bar{x})=e^{2 \pi i \bar{x} \bar{m}^{T}}$. Then $\kappa \circ f^{2}=\kappa$. Since κ is smooth, we conclude that it is constant, by the ergodicity of f. Consequently, $\bar{m}=0$, which is impossible. Now choose $\bar{n}, \bar{k} \in \mathbb{Z}^{3}$ such that the determinant of

$$
A:=\left[\begin{array}{c}
\bar{m} \\
\bar{n} \\
\bar{k}
\end{array}\right]
$$

equals 1. Let us consider the diffeomorphism $\hat{f}: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ given by $\hat{f}:=A \circ f \circ A^{-1}$. From (3.13) we have

$$
\left[\begin{array}{c}
0 \\
\bar{n} \bar{c}^{T} \\
\bar{k} \bar{c}^{T}
\end{array}\right]=D \hat{f}(\bar{x})\left[\begin{array}{c}
0 \\
\bar{n} \bar{c}^{T} \\
\bar{k} \bar{c}^{T}
\end{array}\right]
$$

Moreover,

$$
\hat{f}_{1}(\bar{x})=f\left(\bar{x}\left(A^{-1}\right)^{T}\right) \bar{m}^{T}=\bar{x}\left(A^{-1}\right)^{T} \bar{m}^{T}+\alpha=x_{1}+\alpha
$$

Our claim now follows by the same arguments as in the proof of Lemma 3.3.
Case 1c. Suppose that $\operatorname{rank} G(\bar{c})=2$. Then we can assume that $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}^{3}$ and \bar{a}, \bar{b} generates $G(\bar{c})$. Set $q=\operatorname{det} A \in \mathbb{N}$. Then the A-linear part of \hat{f} (which is equal $\left.K=A N A^{-1}\right)$ belongs to $M_{3}\left(q^{-1} \mathbb{Z}\right)$. Moreover, the functions $\tilde{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, $\tilde{\gamma}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\tilde{\xi}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are \mathbb{Z}^{2}-periodic, by Lemma B. 2 (see Appendix B).

Case $\mathbf{1 c} \mathbf{c}(\mathbf{i})$. Suppose that d_{1} / d_{2} is irrational. From (3.22) we obtain $K^{\prime}=$ $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Set

$$
L:=\left[\begin{array}{ccc}
1 / q & 0 & 0 \\
0 & 1 / q & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Consider the diffeomorphism $\check{f}: \mathbb{T}_{L A}^{3} \rightarrow \mathbb{T}_{L A}^{3}$ given by $\check{f}=L \circ \hat{f} \circ L^{-1}$. Then

$$
\check{f}\left(x_{1}, x_{2}, x_{3}\right)=\left(\check{F}\left(x_{1}, x_{2}\right), x_{3}+\check{\gamma}\left(x_{1}, x_{2}\right)\right),
$$

where $\check{F}\left(x_{1}, x_{2}\right)=q^{-1} F\left(q x_{1}, q x_{2}\right)$ and $\check{\gamma}\left(x_{1}, x_{2}\right)=\gamma\left(q x_{1}, q x_{2}\right)$. Then

$$
\check{F}(\bar{x}+\bar{m})-\check{F}(\bar{x})=\bar{m} \quad \text { and } \quad \check{\gamma}(\bar{x}+\bar{m})-\check{\gamma}(\bar{x})=q K_{31} m_{1}+q K_{32} m_{2} \in \mathbb{Z}
$$

for all $\bar{m} \in \mathbb{Z}^{2}$. Therefore, \check{f} can also be treated as a diffeomorphism of the torus \mathbb{T}^{3}. Let $\check{\xi}\left(x_{1}, x_{2}\right)=\xi\left(q x_{1}, q x_{2}\right)$. Then

$$
\begin{equation*}
\check{\xi} \circ \check{F}=\check{\xi}+\alpha, \tag{3.24}
\end{equation*}
$$

$D \check{\xi}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is \mathbb{Z}^{2}-periodic and non-zero at each point. Moreover, $\check{f}: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ has τ-polynomial uniform growth of the derivative. More precisely,

$$
\frac{1}{n^{\tau}} D \check{f}^{n} \rightarrow\left[\begin{array}{ccc}
0 & 0 & 0 \tag{3.25}\\
0 & 0 & 0 \\
D \check{\xi} & 0
\end{array}\right]
$$

uniformly.
Let us denote by φ^{t} the Hamiltonian C^{2}-flow on \mathbb{T}^{2} defined by the Hamiltonian equation

$$
\frac{d}{d t} \varphi^{t}(\bar{x})=\left[\begin{array}{r}
\check{\xi}_{x_{2}}\left(\varphi^{t}(\bar{x})\right) \\
-\check{\xi}_{x_{1}}\left(\varphi^{t}(\bar{x})\right)
\end{array}\right] .
$$

Since φ^{t} has no fixed point and $\int_{\mathbb{T}^{2}} \check{\xi}_{x_{1}}(\bar{x}) d \bar{x} / \int_{\mathbb{T}^{2}} \check{\xi}_{x_{2}}(\bar{x}) d \bar{x}=d_{1} / d_{2}$ is irrational, it follows that φ^{t} is C^{2}-conjugate to the special flow constructed over the rotation by an irrational number a and under a positive C^{2}-function $b: \mathbb{T} \rightarrow \mathbb{R}$, (see for instance $\left[2\right.$, Ch. 16]) i.e. there exists an area-preserving C^{2}-diffeomorphism $\rho: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and a matrix $N \in G L_{2}(\mathbb{Z})$ such that

$$
\operatorname{det} D \rho \equiv-\hat{b}=-\int_{\mathbb{T}} b(x) d x, \quad \sigma^{t} \circ \rho=\rho \circ \varphi^{t}
$$

where $\sigma^{t}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}+t\right)$ and

$$
\rho(\bar{x}+\bar{m})=\left(\rho_{1}(\bar{x})+(\bar{m} N)_{1}+(\bar{m} N)_{2} a, \rho_{2}(\bar{x})-b^{\left((\bar{m} N)_{2}\right)}\left(\rho_{1}(\bar{x})\right)\right)
$$

for all $\bar{m} \in \mathbb{Z}^{2}$. Let $T_{a,-b}: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{T} \times \mathbb{R}$ denote by the skew product given by $T_{a,-b}\left(x_{1}, x_{2}\right)=\left(x_{1}+a, x_{2}-b\left(x_{1}\right)\right)$. Let us consider the quotient space $M=$ $M_{a, b}=\mathbb{T} \times \mathbb{R} / \sim$, where the relation \sim is defined by $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right)$ if and only if $\left(x_{1}, x_{2}\right)=T_{a,-b}^{k}\left(y_{1}, y_{2}\right)$ for an integer k. Then the quotient flow $\sigma_{a, b}^{t}$ of the action σ^{t} modulo the relation \sim is the special flow constructed over the rotation by a and under the function b. Moreover, $\rho: \mathbb{T}^{2} \rightarrow M$ conjugates flows φ^{t} and $\sigma_{a, b}^{t}$. Let $\bar{F}: M \rightarrow M$ stand for the C^{2}-diffeomorphism $\bar{F}:=\rho \circ \check{F} \circ \rho^{-1}$. Since the map $\mathbb{R} \ni t \longmapsto \check{\xi}\left(\varphi^{t} \bar{x}\right) \in \mathbb{R}$ is constant for each $\bar{x} \in \mathbb{R}^{2}$ we see that the map

$$
\mathbb{R} \ni t \longmapsto \check{\xi} \circ \rho^{-1}\left(\sigma^{t}\left(x_{1}, x_{2}\right)\right)=\check{\xi} \circ \rho^{-1}\left(x_{1}, x_{2}+t\right) \in \mathbb{R}
$$

is constant for each $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. It follows that the function $\check{\xi} \circ \rho^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ depends only on the first coordinate. Moreover,

$$
\begin{aligned}
D \rho^{-1}(\bar{x})\left[\begin{array}{l}
0 \\
1
\end{array}\right] & =\left.\frac{d}{d t} \rho^{-1} \circ \sigma^{t}(\bar{x})\right|_{t=0}=\left.\frac{d}{d t} \varphi^{t} \circ \rho^{-1}(\bar{x})\right|_{t=0} \\
& =\left[\begin{array}{r}
\check{\xi}_{x_{2}}\left(\rho^{-1}(\bar{x})\right) \\
-\tilde{\xi}_{x_{1}}\left(\rho^{-1}(\bar{x})\right)
\end{array}\right] .
\end{aligned}
$$

Consequently, $\partial \rho_{1}^{-1} / \partial x_{2}=\left(\partial \check{\xi} / \partial x_{2}\right) \circ \rho^{-1}$ and $\partial \rho_{2}^{-1} / \partial x_{2}=-\left(\partial \check{\xi} / \partial x_{1}\right) \circ \rho^{-1}$. It follows that

$$
\frac{d}{d x_{1}}\left(\check{\xi} \circ \rho^{-1}\right)=\frac{\partial \check{\xi}}{\partial x_{1}} \circ \rho^{-1} \cdot \frac{\partial \rho_{1}^{-1}}{\partial x_{1}}+\frac{\partial \check{\xi}}{\partial x_{2}} \circ \rho^{-1} \cdot \frac{\partial \rho_{2}^{-1}}{\partial x_{1}}=-\operatorname{det} D \rho^{-1}=\hat{b}^{-1} .
$$

Therefore

$$
\begin{equation*}
\check{\xi} \circ \rho^{-1}\left(x_{1}, x_{2}\right)=\hat{b}^{-1} \delta x_{1}+c . \tag{3.26}
\end{equation*}
$$

We see by (3.24) that $\check{\xi} \circ \rho^{-1} \circ \bar{F}=\check{\xi} \circ \rho^{-1}+\alpha$ and consequently $\bar{F}_{1}\left(x_{1}, x_{2}\right)=x_{1}+\hat{b} \alpha$. For abbreviation, we will write α instead of $\hat{b} \alpha$. Since $\bar{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ preserves area, we conclude that

$$
\bar{F}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha, \varepsilon x_{2}+\beta\left(x_{1}\right)\right),
$$

where $\beta: \mathbb{R} \rightarrow \mathbb{R}$ is a $C^{2}-$ function and $\varepsilon=\operatorname{det} D \bar{F}= \pm 1$. As \bar{F} is a diffeomorphism of M, there exist $m_{1}, m_{2} \in \mathbb{Z}$ such that

$$
\begin{aligned}
& \left(x_{1}+1+\alpha, \varepsilon x_{2}+\beta\left(x_{1}+1\right)\right) \\
& \quad=\bar{F}\left(x_{1}+1, x_{2}\right)=T_{a,-b}^{m_{2}} \bar{F}\left(x_{1}, x_{2}\right)+\left(m_{1}, 0\right) \\
& \quad=\left(x_{1}+\alpha+m_{1}+m_{2} a, \varepsilon x_{2}+\beta\left(x_{1}\right)-b^{\left(m_{2}\right)}\left(x_{1}+\alpha\right)\right) .
\end{aligned}
$$

It follows that $m_{1}=1, m_{2}=0$, hence $\beta: \mathbb{T} \rightarrow \mathbb{R}$. Moreover, there exist $n_{1}, n_{2} \in \mathbb{Z}$ such that

$$
\begin{aligned}
& \left(x_{1}+a+\alpha, \varepsilon x_{2}-\varepsilon b\left(x_{1}\right)+\beta\left(x_{1}+a\right)\right) \\
& \quad=\bar{F} \circ T_{a,-b}\left(x_{1}, x_{2}\right)=T_{a,-b}^{n_{2}} \bar{F}\left(x_{1}, x_{2}\right)+\left(n_{1}, 0\right) \\
& \quad=\left(x_{1}+\alpha+n_{1}+n_{2} a, \varepsilon x_{2}+\beta\left(x_{1}\right)-b^{\left(n_{2}\right)}\left(x_{1}+\alpha\right)\right)
\end{aligned}
$$

It follows that $n_{1}=0, n_{2}=1$, hence $\beta(x)-b(x+\alpha)=-\varepsilon b(x)+\beta(x+a)$. Consequently,

$$
(1-\varepsilon) \hat{b}=\int_{\mathbb{T}}(b(x+\alpha)-\varepsilon b(x)) d x=\int_{\mathbb{T}}(\beta(x)-\beta(x+a)) d x=0
$$

Therefore $\bar{F}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha, x_{2}+\beta\left(x_{1}\right)\right)$ and the skew products \bar{F} and $T_{a,-b}$ commute. Let $\bar{f}: M \times \mathbb{T} \rightarrow M \times \mathbb{T}$ denote by the diffeomorphism

$$
\bar{f}:=\left(\rho \times \mathrm{Id}_{\mathbb{T}}\right) \circ \check{f} \circ\left(\rho \times \mathrm{Id}_{\mathbb{T}}\right)^{-1}
$$

Then

$$
\bar{f}\left(x_{1}, x_{2}, x_{3}\right)=\left(\bar{F}\left(x_{1}, x_{2}\right), x_{3}+\bar{\gamma}\left(x_{1}, x_{2}\right)\right)
$$

where $\bar{\gamma}: M \rightarrow \mathbb{T}$ is given by $\bar{\gamma}=\check{\gamma} \circ \rho^{-1}$. Therefore there exist $k_{1}, k_{2} \in \mathbb{Z}$ such that

$$
\bar{\gamma}\left(x_{1}+1, x_{2}\right)=\bar{\gamma}\left(x_{1}, x_{2}\right)+k_{1} \text { and } \bar{\gamma}\left(x_{1}+a, x_{2}-b\left(x_{1}\right)\right)=\bar{\gamma}\left(x_{1}, x_{2}\right)+k_{2}
$$

Moreover,

$$
\begin{aligned}
& \frac{1}{n^{\tau}} D \bar{f}^{n} \\
& \quad=\left[\begin{array}{ccc}
(D \rho) \circ \check{F}^{n} \circ \rho^{-1} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
n^{-\tau}\left(D \check{F}^{n}\right) \circ \rho^{-1} & 0 \\
n^{-\tau}\left(D\left(\check{\gamma}^{(n)}\right)\right) \circ \rho^{-1} & n^{-\tau}
\end{array}\right]\left[\begin{array}{cc}
D\left(\rho^{-1}\right) & 0 \\
0 & 0 \\
0
\end{array}\right] \\
& \\
& \rightarrow\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
(D \check{\xi}) \circ \rho^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
D \rho^{-1} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
D\left(\check{\xi} \circ \rho^{-1}\right) & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
\hat{b} & 0 & 0
\end{array}\right]
\end{aligned}
$$

uniformly on $M \times \mathbb{T}$, by (3.25) and (3.26). It follows that

$$
\frac{1}{n^{\tau}} \sum_{k=0}^{n-1}\left(\bar{\gamma}_{x_{1}}\left(\bar{F}^{k}\left(x_{1}, x_{2}\right)\right)+\bar{\gamma}_{x_{2}}\left(\bar{F}^{k}\left(x_{1}, x_{2}\right)\right) \cdot D \beta^{(k)}\left(x_{1}\right)\right) \rightarrow \hat{b}
$$

and $\frac{1}{n^{\tau}} \sum_{k=0}^{n-1} \bar{\gamma}_{x_{2}}\left(\bar{F}^{k}\left(x_{1}, x_{2}\right)\right) \rightarrow 0$ uniformly for $\left(x_{1}, x_{2}\right) \in M$. Consequently,

$$
\begin{gather*}
\frac{1}{n^{\tau}} \sum_{k=0}^{n-1} \int_{M}\left(\bar{\gamma}_{x_{1}}\left(\bar{F}^{k}\left(x_{1}, x_{2}\right)\right)+\bar{\gamma}_{x_{2}}\left(\bar{F}^{k}\left(x_{1}, x_{2}\right)\right) D \beta^{(k)}\left(x_{1}\right)\right) d x_{1} d x_{2} \rightarrow 1 \\
\frac{1}{n^{\tau}} \sum_{k=0}^{n-1} \int_{M} \bar{\gamma}_{x_{2}}\left(\bar{F}^{k}\left(x_{1}, x_{2}\right)\right) d x_{1} d x_{2} \rightarrow 0 \tag{3.27}
\end{gather*}
$$

We now show that

$$
\frac{1}{n} \sum_{k=0}^{n-1} \int_{M}\left(\bar{\gamma}_{x_{1}}\left(\bar{F}^{k}\left(x_{1}, x_{2}\right)\right)+\bar{\gamma}_{x_{2}}\left(\bar{F}^{k}\left(x_{1}, x_{2}\right)\right) \cdot D \beta^{(k)}\left(x_{1}\right)\right) d x_{1} d x_{2} \rightarrow k_{1} \hat{b}
$$

This implies $\tau=1$ and $k_{1} \neq 0$. To prove this, note that

$$
\begin{aligned}
\frac{1}{n} & \sum_{k=0}^{n-1} \int_{M} \bar{\gamma}_{x_{1}}\left(\bar{F}^{k}\left(x_{1}, x_{2}\right)\right) d x_{1} d x_{2} \\
& =\int_{0}^{1} \int_{0}^{b\left(x_{1}\right)} \bar{\gamma}_{x_{1}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1} \\
& =\int_{0}^{1} \frac{d}{d x_{1}}\left(\int_{0}^{b\left(x_{1}\right)} \bar{\gamma}\left(x_{1}, x_{2}\right) d x_{2}\right) d x_{1}-\int_{0}^{1} D b\left(x_{1}\right) \bar{\gamma}\left(x_{1}, b\left(x_{1}\right)\right) d x_{1} \\
& =\int_{0}^{b(1)} \bar{\gamma}\left(1, x_{2}\right) d x_{2}-\int_{0}^{b(0)} \bar{\gamma}\left(0, x_{2}\right) d x_{2}-\int_{0}^{1} D b\left(x_{1}\right)\left(\bar{\gamma}\left(x_{1}+a, 0\right)-k_{2}\right) d x_{1} \\
& =b(0) k_{1}-\int_{0}^{1} D b\left(x_{1}\right) \bar{\gamma}\left(x_{1}+a, 0\right) d x_{1}
\end{aligned}
$$

Let $u: \mathbb{T} \rightarrow \mathbb{R}$ be given by $u(x)=\bar{\gamma}(x)-k_{1} x$. Now observe that

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=0}^{n-1} \int_{M} \bar{\gamma}_{x_{2}}\left(\bar{F}^{k}\left(x_{1}, x_{2}\right)\right) \cdot D \beta^{(k)}\left(x_{1}\right) d x_{1} d x_{2} \\
& \quad=\frac{1}{n} \sum_{k=0}^{n-1} \int_{0}^{1} \int_{0}^{b\left(x_{1}\right)} \bar{\gamma}_{x_{2}}\left(x_{1}, x_{2}\right) \cdot D \beta^{(k)}\left(x_{1}-k \alpha\right) d x_{2} d x_{1} \\
& \quad=\frac{1}{n} \sum_{k=0}^{n-1} \int_{0}^{1}\left(\bar{\gamma}\left(x_{1}, b\left(x_{1}\right)\right)-\bar{\gamma}\left(x_{1}, 0\right)\right) \cdot D \beta^{(k)}\left(x_{1}-k \alpha\right) d x_{1} \\
& =\frac{1}{n} \sum_{k=0}^{n-1} \int_{0}^{1}\left(\bar{\gamma}\left(x_{1}+a, 0\right)-k_{2}-\bar{\gamma}\left(x_{1}, 0\right)\right) \cdot D \beta^{(k)}\left(x_{1}-k \alpha\right) d x_{1} \\
& =\frac{1}{n} \sum_{k=0}^{n-1} \int_{0}^{1} u\left(x_{1}+a\right)\left(D \beta^{(k)}\left(x_{1}-k \alpha\right)-D \beta^{(k)}\left(x_{1}-k \alpha+a\right)\right) d x_{1} \\
& =\frac{1}{n} \sum_{k=0}^{n-1} \int_{0}^{1} u\left(x_{1}+a\right)\left(D b\left(x_{1}\right)-D b\left(x_{1}-k \alpha\right)\right) d x_{1} \\
& =\quad \int_{0}^{1} u\left(x_{1}+a\right) D b\left(x_{1}\right) d x_{1}-\int_{0}^{1} u\left(x_{1}+a\right) \frac{1}{n} \sum_{k=0}^{n-1} D b\left(x_{1}-k \alpha\right) d x_{1} \\
& \quad \rightarrow \int_{0}^{1} u\left(x_{1}+a\right) D b\left(x_{1}\right) d x_{1} \\
& \quad=\int_{0}^{1} \bar{\gamma}\left(x_{1}+a, 0\right) D b\left(x_{1}\right) d x_{1}-k_{1} \int_{0}^{1} x_{1} \cdot D b\left(x_{1}\right) d x_{1} .
\end{aligned}
$$

Moreover, $\int_{0}^{1} x \cdot D b(x) d x=b(1)-\int_{\mathbb{T}} b(x) d x$, which proves the required conclusion. From (3.27) we have $\int_{0}^{1} \int_{0}^{b\left(x_{1}\right)} \bar{\gamma}_{x_{2}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}=0$. However

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{b\left(x_{1}\right)} \bar{\gamma}_{x_{2}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1} & =\int_{0}^{1}\left(\bar{\gamma}\left(x_{1}, b\left(x_{1}\right)\right)-\bar{\gamma}\left(x_{1}, 0\right)\right) d x_{1} \\
& =\int_{0}^{1}\left(\bar{\gamma}\left(x_{1}+a, 0\right)-\bar{\gamma}\left(x_{1}, 0\right)-k_{2}\right) d x_{1} \\
& =k_{1} a-k_{2}
\end{aligned}
$$

It follows that $k_{1} a=k_{2}$, which contradicts the fact that $k_{1} \neq 0$ and a is irrational. Consequently, d_{1} / d_{2} must be rational.

Case $\mathbf{1 c}$ (ii). Suppose that $\left(d_{1}, d_{2}\right)=d\left(l_{1}, l_{2}\right)$, where l_{1}, l_{2} are relatively prime integers. Since $K^{\prime} \in M\left(q^{-1} \mathbb{Z}\right)$ and $\operatorname{det} k^{\prime}=\varepsilon= \pm 1$, there exist $M \in G L_{2}(\mathbb{Z})$ and $m \in \mathbb{Z}$ such that

$$
K^{\prime}=M^{-1}\left[\begin{array}{cc}
1 & 0 \\
m / q & \varepsilon
\end{array}\right] M
$$

by (3.22). Then there exists an even number $r>0$ such that $K^{\prime r} \in G L_{2}(\mathbb{Z})$. Therefore the diffeomorphism $F^{r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ can be treated as an area-preserving diffeomorphism of the torus \mathbb{T}^{2}. Let $\check{\xi}: \mathbb{T}^{2} \rightarrow \mathbb{T}$ be given by $\check{\xi}\left(x_{1}, x_{2}\right)=d^{-1} \xi\left(x_{1}, x_{2}\right)$. It follows by (3.21) that

$$
\check{\xi} \circ F^{r}=\check{\xi}+r \alpha / d \quad \text { and } \quad\left(d_{1}(\check{\xi}), d_{2}(\check{\xi})\right)=\left(l_{1}, l_{2}\right) \neq 0 .
$$

Note that α / d is irrational. Indeed, suppose that $\alpha / d=k / l$, where $k \in \mathbb{Z}$ and $l \in \mathbb{N}$. Let $\Xi: \mathbb{T}_{A}^{3} \rightarrow \mathbb{C}$ be defined by $\Xi\left(x_{1}, x_{2}, x_{3}\right)=\exp 2 \pi i l \check{\xi}\left(x_{1}, x_{2}\right)$. As $\check{\xi} \circ F=\check{\xi}+k / l$ we have

$$
\Xi\left(\hat{f}\left(x_{1}, x_{2}, x_{3}\right)\right)=\exp 2 \pi i l \check{\xi}\left(F\left(x_{1}, x_{2}\right)\right)=\Xi\left(x_{1}, x_{2}, x_{3}\right) .
$$

By the ergodicity of \hat{f}, Ξ and also $\check{\xi}$ is constant, which is impossible.
By Theorem A. 1 (see Appendix A), there is an area-preserving C^{2}-diffeomorphism $\psi: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ such that

$$
\psi^{-1} \circ F^{r} \circ \psi: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}
$$

is a skew product and $\check{\xi} \circ \psi\left(x_{1}, x_{2}\right)=k x_{1}+c$, where $k \in \mathbb{N}$ and $c \in \mathbb{R}$. Therefore $D(\xi \circ \psi)=\left[\begin{array}{ll}d k & 0\end{array}\right]$. Let $L \in G L_{2}(\mathbb{Z})$ stand for the linear part of ψ. Set

$$
\bar{L}:=\left[\begin{array}{ccc}
& L & 0 \\
& & 0 \\
0 & 0 & 1
\end{array}\right] \in G L_{3}(\mathbb{Z}) .
$$

Let us consider the area-preserving C^{2}-isomorphism $\rho: \mathbb{T}_{A}^{3} \rightarrow \mathbb{T}_{L^{-1} A}^{3}$ defined by

$$
\rho\left(x_{1}, x_{2}, x_{3}\right)=\left(\psi^{-1}\left(x_{1}, x_{2}\right), x_{3}\right) .
$$

Let $\check{f}: \mathbb{T}_{L^{-1} A}^{3} \rightarrow \mathbb{T}_{L^{-1} A}^{3}$ be given by $\check{f}=\rho \circ \hat{f} \circ \rho^{-1}$. Then

$$
\left.\left.\begin{array}{l}
\frac{1}{n^{\tau}} D \mathscr{f}^{n} \\
=\left[\begin{array}{ccc}
\left(D \psi^{-1}\right) \circ F^{n} \circ \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
n^{-\tau}\left(D F^{n}\right) \circ \psi & 0 \\
n^{-\tau}\left(D\left(\gamma^{(n)}\right)\right) \circ \psi & 0 \\
n^{-\tau}
\end{array}\right]\left[\begin{array}{cc}
D \psi & 0 \\
0 & 0
\end{array} 1\right.
\end{array}\right]\right)
$$

uniformly. Let $\bar{f}: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ stand for the diffeomorphism $\bar{f}:=A^{-1} \circ \bar{L} \circ \check{f} \circ \bar{L}^{-1} \circ A$. It is easy to see that

$$
\frac{1}{n^{\tau}} D \bar{f}^{n} \rightarrow A^{-1} \cdot \bar{L} \cdot\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
d & 0 & 0
\end{array}\right] \cdot \bar{L}^{-1} \cdot A
$$

uniformly and that \bar{f} and f are conjugate via the area-preserving C^{2}-diffeomorphism $A^{-1} \circ \bar{L} \circ \rho \circ A: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$. An application of Lemma 3.3 for \bar{f} proves the claim.

Case 2. Suppose that $g=\left(h_{1} \bar{a}^{T}+h_{2} \bar{b}^{T}\right) \bar{c}$, where \bar{a} and \bar{b} are orthogonal to \bar{c} and the determinant of the matrix $A^{-1}=\left[\begin{array}{ccc}\bar{c}^{T} & \bar{a}^{T} & \bar{b}^{T}\end{array}\right]$ equals 1 . Let $\hat{f}: \mathbb{T}_{A}^{3} \rightarrow \mathbb{T}_{A}^{3}$ be given by $\hat{f}:=A \circ f \circ A^{-1}$. Then

$$
\hat{g}=A \cdot\left(h_{1} \bar{a}^{T}+h_{2} \bar{b}^{T}\right) \bar{c} \cdot A^{-1}=\left[\begin{array}{c}
0 \\
\hat{h}_{1} \\
\hat{h}_{2}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right],
$$

where $\hat{h}_{i}(\bar{x}):=h_{i}\left(A^{-1} \bar{x}\right)$ for $i=1$, 2. From (3.13) we get

$$
\left[\begin{array}{c}
0 \\
\hat{h}_{1}(\bar{x}) \\
\hat{h}_{2}(\bar{x})
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{c}
0 \\
\hat{h}_{1}(\hat{f} \bar{x}) \\
\hat{h}_{2}(\hat{f} \bar{x})
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] D \hat{f}(\bar{x})
$$

for all $\bar{x} \in \mathbb{T}_{A}^{3}$. Consequently

$$
\frac{\partial}{\partial x_{1}} \hat{f}_{1}(\bar{x}) \hat{h}_{i}(\hat{f} \bar{x})=\hat{h}_{i}(\bar{x}), \quad \frac{\partial}{\partial x_{2}} \hat{f}_{1}(\bar{x})=\frac{\partial}{\partial x_{3}} \hat{f}_{1}(\bar{x})=0 \quad \text { and } \quad \frac{\partial}{\partial x_{1}} \hat{f}_{1}(\bar{x}) \neq 0
$$

for all $\bar{x} \in \mathbb{T}_{A}^{3}$ and $i=1,2$. Now observe that \hat{h}_{1}, \hat{h}_{2} are linearly dependent. Indeed, without loss of generality we can assume that \hat{h}_{2} is $A \lambda^{\otimes 3-n o n-z e r o . ~ T h e n ~}$ $\hat{h}_{2}(\bar{x}) \neq 0$ for a.e. $\bar{x} \in \mathbb{T}_{A}^{3}$, by the ergodicity of \hat{f}. Therefore the measurable function $\hat{h}_{1} / \hat{h}_{2}: \mathbb{T}_{A}^{3} \rightarrow \mathbb{R}$ is \hat{f}-invariant. Hence there is a real constant c such that $\hat{h}_{1}(\bar{x})=c \hat{h}_{2}(\bar{x})$ for a.e. $\bar{x} \in \mathbb{T}_{A}^{3}$, by ergodicity. Consequently, $h_{1}=c h_{2}$, which reduces the consideration to Case 1 , and the proof is complete.
4. 4-dimensional case. In this section we indicate why there is no 4-dimensional analogue of classifications of area-preserving diffeomorphisms of polynomial growth of the derivative presented in previous sections. More precisely, we construct an ergodic area-preserving diffeomorphism of the 4-dimensional torus with linear uniform growth of the derivative which is not even metrically isomorphic to any 3 -step skew product, i.e. to any automorphism of \mathbb{T}^{4} of the form

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \longmapsto\left(x_{1}+\alpha, \varepsilon_{1} x_{2}+\beta\left(x_{1}\right), \varepsilon_{2} x_{3}+\gamma\left(x_{1}, x_{2}\right), \varepsilon_{3} x_{4}+\delta\left(x_{1}, x_{2}, x_{3}\right)\right)
$$

where $\varepsilon_{i}= \pm 1$ for $i=1,2,3$. Before we pass to the construction we should mention area-preserving diffeomorphisms of the 2 -torus with a sublinear growth of the derivative. We say that a C^{1}-diffeomorphism $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ has sublinear growth of the derivative if the sequence $\left\{D f^{n} / n\right\}$ tends uniformly to zero.

Suppose that $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is an area-preserving weakly mixing C^{∞}-diffeomorphism with sublinear growth of the derivative. The examples of such diffeomorphisms will be given later. Let $T_{\varphi}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be an Anzai skew product of an ergodic rotation $T x=x+\alpha$ on the circle and a C^{∞}-function $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ with non-zero topological degree.

Theorem 4.1. The product diffeomorphism $f \times T_{\varphi}: \mathbb{T}^{4} \rightarrow \mathbb{T}^{4}$ is ergodic and has linear uniform growth of the derivative. Moreover, it is not metrically isomorphic to any 3-step skew product.

Proof. The former claim of the theorem is obvious. Now suppose, contrary to latter claim, that $f \times T_{\varphi}$ is metrically isomorphic to a 3 -step skew product. Then $f \times T_{\varphi}$ is measure theoretically distal (has generalized discrete spectrum in the terminology of [17]). However, $f \times T_{\varphi}$ has a weakly mixing factor, which contradicts the fact that measure theoretically distal are disjoint from all weakly mixing dynamical systems (see [7]).

In the remainder of this section we present two examples of area-preserving weakly mixing diffeomorphisms with sublinear growth of the derivative.

Given $\alpha \in \mathbb{T}$ and $\beta: \mathbb{T} \rightarrow \mathbb{R}$ we denote by $T_{\alpha, \beta}: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{T} \times \mathbb{R}$ the skew product $T_{\alpha, \beta}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha, x_{2}+\beta\left(x_{1}\right)\right)$. Let $a \in \mathbb{T}$ be an irrational number and let $b: \mathbb{T} \rightarrow \mathbb{R}$ be a positive C^{∞}-function. By Lemma 2 in [3] and Theorem 1 in [12], the special flow $\sigma_{a, b}^{t}$ built over the rotation by a and under the function b is C^{∞}-conjugate to a Hamiltonian C^{∞}-flow φ^{t} which has no fixed point on the torus. Therefore there exists a C^{∞}-diffeomorphism $\rho: M_{a, b} \rightarrow \mathbb{T}^{2}$ such that $\varphi^{t}=\rho \circ \sigma_{a, b}^{t} \circ \rho^{-1}$ and there exists C^{∞}-function $\xi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $D \xi$ is
\mathbb{Z}^{2}-periodic, non-zero at each point and

$$
\frac{d}{d t} \varphi^{t}(\bar{x})=\left[\begin{array}{r}
\xi_{x_{2}}\left(\varphi^{t}(\bar{x})\right) \\
-\xi_{x_{1}}\left(\varphi^{t}(\bar{x})\right)
\end{array}\right]
$$

We will identify ρ with a diffeomorphism $\rho: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{aligned}
\rho\left(x_{1}+1, x_{2}\right) & =\rho\left(x_{1}, x_{2}\right)+\left(N_{11}, N_{12}\right) \\
\rho\left(x_{1}+a, x_{2}-b\left(x_{1}\right)\right) & =\rho\left(x_{1}, x_{2}\right)+\left(N_{21}, N_{22}\right)
\end{aligned}
$$

for any $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, where $N \in G L_{2}(\mathbb{Z})$. Then

$$
\begin{align*}
D \rho\left(x_{1}+1, x_{2}\right) & =D \rho\left(x_{1}, x_{2}\right) \tag{4.28}\\
D \rho\left(T_{a,-b}^{n}\left(x_{1}, x_{2}\right)\right)\left[\begin{array}{cc}
1 & 0 \\
-D b^{(n)}\left(x_{1}\right) & 1
\end{array}\right] & =D \rho\left(x_{1}, x_{2}\right) \tag{4.29}
\end{align*}
$$

for any integer n.
Let $T_{\alpha, \beta}: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{T} \times \mathbb{R}$ be a skew product commuting with $T_{a,-b}$, where $\beta: \mathbb{T} \rightarrow \mathbb{R}$ is of class C^{∞}. Then $T_{\alpha, \beta}$ can be treated as a C^{∞}-diffeomorphism of $M_{a, b}$. Let $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ stand for the area-preserving C^{∞}-diffeomorphism $f:=$ $\rho \circ T_{\alpha, \beta} \circ \rho^{-1}$.

Lemma 4.2. The diffeomorphism $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ has sublinear growth of the derivative.

Proof. Since

$$
D f^{n}(\bar{x})=D \rho\left(T_{\alpha, \beta}^{n} \circ \rho^{-1}(\bar{x})\right)\left[\begin{array}{cc}
1 & 0 \\
D \beta^{(n)}\left(\rho_{1}^{-1}(\bar{x})\right) & 1
\end{array}\right] D \rho^{-1}(\bar{x})
$$

it suffices to show that

$$
\frac{1}{n} D \rho\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\left[\begin{array}{cc}
1 & 0 \\
D \beta^{(n)}\left(x_{1}\right) & 1
\end{array}\right] \rightarrow 0
$$

uniformly on the set $M^{\prime}=\left\{\left(x_{1}, x_{2}\right): x_{1} \in \mathbb{R}, 0 \leq x_{2} \leq b\left(x_{1}\right)\right\}$. Given $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ let us denote by $n\left(x_{1}, x_{2}\right)$ the unique integer such that $T_{a,-b}^{n\left(x_{1}, x_{2}\right)}\left(x_{1}, x_{2}\right) \in M^{\prime}$, i.e. $b^{\left(n\left(x_{1}, x_{2}\right)\right)}\left(x_{1}\right) \leq x_{2} \leq b^{\left(n\left(x_{1}, x_{2}\right)+1\right)}\left(x_{1}\right)$. Let c, C be positive constants such that $0<c \leq b(x) \leq C$ for every $x \in \mathbb{T}$. Then

$$
c\left|n\left(x_{1}, x_{2}\right)\right| \leq\left|x_{2}\right| \leq C\left|n\left(x_{1}, x_{2}\right)\right|+C
$$

Since

$$
\begin{aligned}
& \frac{1}{n} D \rho\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\left[\begin{array}{cc}
1 & 0 \\
D \beta^{(n)}\left(x_{1}\right) & 1
\end{array}\right] \\
& \quad=D \rho\left(T_{a,-b}^{n\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)}\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\right) \times \\
& \quad \frac{1}{n}\left[\begin{array}{cc}
1 & 0 \\
-D b^{\left(n\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\right)}\left(x_{1}+n \alpha\right)+D \beta^{(n)}\left(x_{1}\right) & 1
\end{array}\right]
\end{aligned}
$$

(by (4.29)), $D \rho$ is bounded on M^{\prime} (by (4.28)) and $n^{-1} D \beta^{(n)}$ tends uniformly to zero, it suffices to show that

$$
\frac{1}{n} D b^{\left(n\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\right)}\left(x_{1}+n \alpha\right) \rightarrow 0
$$

uniformly on M^{\prime}. To prove this, observe that

$$
\left|n\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\right| \leq c^{-1}\left|x_{2}+\beta^{(n)}\left(x_{1}\right)\right| \leq k_{1}+k_{2} n
$$

for any natural n and every $\left(x_{1}, x_{2}\right) \in M^{\prime}$, where $k_{1}=C / c$ and $k_{2}=\|\beta\|_{\infty} / c$. Fix $\varepsilon>0$. Let n_{0} be a natural number such that $|n| \geq n_{0}$ implies

$$
\frac{1}{|n|}\left\|D b^{(n)}\right\|_{\infty}<\varepsilon / 2 k_{2} \quad \text { and } \quad k_{1}+k_{2} n \leq 2 k_{2}
$$

for any integer n. Assume that n is a natural number such that $n \geq\|b\|_{C^{1}} n_{0} / \varepsilon$. Let $\left(x_{1}, x_{2}\right) \in M^{\prime}$. If $\left|n\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\right|\|b\|_{C^{1}} / n<\varepsilon$, then

$$
\left|\frac{1}{n} D b^{\left(n\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\right)}\left(x_{1}+n \alpha\right)\right| \leq \frac{\left|n\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\right|}{n}\|b\|_{C^{1}}<\varepsilon
$$

Otherwise, $\left|n\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\right| \geq \varepsilon n /\|b\|_{C^{1}} \geq n_{0}$. Then

$$
\begin{aligned}
& \left|\frac{1}{n} D b^{\left(n\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\right)}\left(x_{1}+n \alpha\right)\right| \\
& \quad \leq \frac{\left|n\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\right|}{n} \frac{1}{\left|n\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\right|}\left\|D b^{\left(n\left(T_{\alpha, \beta}^{n}\left(x_{1}, x_{2}\right)\right)\right)}\right\|_{\infty} \\
& \quad<\frac{k_{1}+k_{2} n}{n} \frac{\varepsilon}{2 k_{2}} \leq \varepsilon
\end{aligned}
$$

which completes the proof.
Proposition 4.3. (see [1]) For every C^{2}-function $\beta: \mathbb{T} \rightarrow \mathbb{R}$ with zero mean, which is not a trigonometric polynomial there exists a dense G_{δ} set of irrational numbers $\alpha \in \mathbb{T}$ such that the corresponding skew product $T_{\alpha, \beta}: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{T} \times \mathbb{R}$ is ergodic.
$>$ From the proof of the Main Theorem in [16] and the nature of the weak mixing property, we have the following:
Proposition 4.4. For every positive real analytic function $b: \mathbb{T} \rightarrow \mathbb{R}$ which is not a trigonometric polynomial there exists a dense G_{δ} set of irrational numbers $a \in \mathbb{T}$ such that the corresponding special flow $\sigma_{a, b}^{t}$ is weakly mixing.
Example 4.1. Suppose that $\sigma_{a, b}^{t}$ is a weakly mixing special flow whose roof function is real analytic. Let φ^{t} be a Hamiltonian flow on \mathbb{T}^{2} which is C^{∞}-conjugate to the special flow $\sigma_{a, b}^{t}$. Then the area-preserving diffeomorphism $\varphi^{1}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is weakly mixing and has sublinear growth of the derivative, by Lemma 4.2.
Example 4.2. By Propositions 4.3 and 4.4, there exist a C^{∞}-function $\beta: \mathbb{T} \rightarrow \mathbb{R}$ with zero mean and an irrational numbers $\alpha \in \mathbb{T}$ such that the corresponding skew product $T_{\alpha, \beta}: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{T} \times \mathbb{R}$ is ergodic and there is no real $r \neq 0$ for which there exist $c \in \mathbb{T}$ and a measurable function $c_{r}: \mathbb{T} \rightarrow \mathbb{T}$ satisfying

$$
c_{r}(x+\alpha) \cdot e^{2 \pi i r \beta(x)}=c \cdot c_{r}(x)
$$

Using a standard construction we can find in the weak closer of $\left\{T_{\alpha, \beta}^{n}: n \in \mathbb{Z}\right\}$ a skew product $T_{a, b_{1}}$ such that a is an irrational number with $a \neq n \alpha$ for all $n \in \mathbb{Z}$ and $b_{1}: \mathbb{T} \rightarrow \mathbb{R}$ is a C^{∞}-function. Let us consider the special flow $\sigma_{a, b}^{t}$ on $M_{a, b}$, where $b=-b_{1}+\left\|b_{1}\right\|_{\infty}+1$. Since $T_{\alpha, \beta}$ commutes with $T_{a,-b}$, it can be treated as a C^{∞}-diffeomorphism of $M_{a, b}$. Moreover, $T_{\alpha, \beta}: M_{a, b} \rightarrow M_{a, b}$ is ergodic, by the ergodicity of $T_{\alpha, \beta}: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{T} \times \mathbb{R}$. It is quite easy to prove that $T_{\alpha, \beta}: M_{a, b} \rightarrow M_{a, b}$ is also weakly mixing (see [6]). Let φ^{t} be a Hamiltonian flow on \mathbb{T}^{2} which is $C^{\infty_{-}}$ conjugate to the special flow $\sigma_{a, b}^{t}$, via a C^{∞}-diffeomorphism $\rho: M_{a, b} \rightarrow \mathbb{T}^{2}$. Then the area-preserving C^{∞}-diffeomorphism $\rho \circ T_{\alpha, \beta} \circ \rho^{-1}$ of \mathbb{T}^{2} is weakly mixing and has sublinear growth of the derivative, by Lemma 4.2.

Appendix A.

Theorem A.1. Let $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be an area-preserving C^{2}-diffeomorphism. Suppose that there exist an irrational number α and a C^{2}-function $\xi: \mathbb{T}^{2} \rightarrow \mathbb{T}$ such that

$$
\begin{gather*}
D \xi(\bar{x}) \neq 0 \text { for any } \bar{x} \in \mathbb{T}^{2} \tag{A.30}\\
\xi \circ f=\xi+\alpha . \tag{A.31}
\end{gather*}
$$

Then there exist an area-preserving C^{2}-diffeomorphism $\psi: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}, k \in \mathbb{N}, c \in \mathbb{R}$ and a C^{2}-cocycle $\varphi: \mathbb{T} \rightarrow \mathbb{T}$ such that $\xi \circ \psi\left(x_{1}, x_{2}\right)=k x_{1}+c$ and

$$
\psi^{-1} \circ f \circ \psi\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha, \varepsilon x_{2}+\varphi\left(x_{1}\right)\right)
$$

where $\varepsilon=\operatorname{det} D f$.
Proof. By (A.30), ξ is a submersion of \mathbb{T}^{2} to \mathbb{T} and therefore defines a fibration with the circle as a fiber. Moreover, the cohomology class defined by the closed form $D \xi$ is $p_{1} d x_{1}+p_{2} d x_{2}$, where p_{1}, p_{2} are integers such that $\left(p_{1}, p_{2}\right) \neq(0,0)$. By taking $\xi / \operatorname{gcd}\left(p_{1}, p_{2}\right)$ instead of ξ, we can assume that p_{1} and p_{2} are relatively prime. Let us consider the symplectic vector field X associated to $D \xi$ by the symplectic form $d x_{1} \wedge d x_{2}$. Its orbits are the levels curves of ξ. Consider now the symplectic vector field X^{\prime} associated to $D(\xi \circ f)$. The fact that f is a canonical change of coordinates (f preserves the area) implies that the flows of X is conjugate via f to the flow of X^{\prime} (or to the flow reversed in the time). Therefore (A.31) asserts that the level curves $\xi^{-1}(c)$ and $\xi^{-1}(c+\alpha)$ are periodic curves of X with the same period. Consequently, by irrationality of α, one remarks that the level curves of ξ all have the same period τ. By taking a closed curve transverse to the foliation, parametrized by the value of ξ, and then using the flow of X, one gets a natural diffeomorphism $\mathbb{T} \times \mathbb{R} / \tau \mathbb{Z} \ni(s, t) \mapsto \psi(s, t) \in \mathbb{T}^{2}$. Then $\psi^{*}\left(d x_{1} \wedge d x_{2}\right)=d s \wedge d t$ and therefore $\tau=1$. One deduces then that ψ satisfies the asked conditions.

Appendix B. The proofs of the following lemmas are straightforward and can be found in [6].

Lemma B.1. Let $\bar{c} \in \mathbb{R}^{3}$ be a non-zero vector and let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a continuous function. Assume that $\bar{a}, \bar{b} \in \mathbb{R}^{3}$ are linearly independent vectors orthogonal to \bar{c}. Suppose that there exists a vector $\bar{d} \in \mathbb{R}^{3}$ such that

$$
h\left(x_{1}+\bar{a} \bar{m}^{T}, x_{2}+\bar{b} \bar{m}^{T}\right)=h\left(x_{1}, x_{2}\right)+\bar{d} \bar{m}^{T}
$$

for all $\bar{m} \in \mathbb{Z}^{3}$. Then there exist $k_{1}, k_{2} \in \mathbb{R}$ such that $\bar{d}=k_{1} \bar{a}+k_{2} \bar{b}$ and the function $\tilde{h}\left(x_{1}, x_{2}\right)=h\left(x_{1}, x_{2}\right)-k_{1} x_{1}-k_{2} x_{2}$ is $\left(\bar{a} \bar{m}^{T}, \bar{b} \bar{m}^{T}\right)$-periodic for all $\bar{m} \in \mathbb{Z}^{3}$. Moreover,

- if rank $G(\bar{c})=0$, then \tilde{h} is constant;
- if $\operatorname{rank} G(\bar{c})=1$, then there exist $l_{1}, l_{2} \in \mathbb{R}$ and a continuous function $\rho: \mathbb{T} \rightarrow \mathbb{R}$ such that $\tilde{h}\left(x_{1}, x_{2}\right)=\rho\left(l_{1} x_{1}+l_{2} x_{2}\right)$ and $l_{1} \bar{a}+l_{2} \bar{b} \in \mathbb{Z}^{3}$ generates $G(\bar{c})$;
- if $\operatorname{rank} G(\bar{c})=2$, then $\bar{c} \in c \mathbb{Z}^{3}$ where $c \neq 0$.

Lemma B.2. Let $\bar{c} \in \mathbb{Z}^{3}$ be a non-zero vector. Then for any pair of generators $\bar{a}, \bar{b} \in \mathbb{Z}^{3}$ of $G(\bar{c})$ we have $\Lambda(\bar{a}, \bar{b})=\left\{\left(\bar{a} \bar{m}^{T}, \bar{b} \bar{m}^{T}\right) \in \mathbb{Z}^{2}: \bar{m} \in \mathbb{Z}^{3}\right\}=\mathbb{Z}^{2}$.
Acknowledgement. I would like to thank the referee for some remarks that improved the presentation.

REFERENCES

[1] J. Aaronson, M. Lemańczyk, C. Mauduit, H. Nakada, Koksma's inequality and group extensions of Kroneker transformations, in: Algorithms, Fractals and Dynamics (Okayama and Kyoto, 1992), Y. Takahashi (ed.), Plenum, New York, 1995, 27-50.
[2] I.P. Cornfeld, S.W. Fomin, J.G. Sinai, Ergodic Theory, Springer, Berlin, 1982.
[3] B. Fayad, A. Katok, A. Windsor, Mixed spectrum reparameterizations of linear flows on \mathbb{T}^{2}, Mosc. Math. J. 1 (2001), 521-537.
[4] K. Frączek, Linear growth of the derivative for measure-preserving diffeomorphism, Coll. Math. 84/85 Part 1 (2000), 147-157.
[5] K. Frączek, Measure-preserving diffeomorphisms of the torus, Ergod. Th. \& Dynam. Sys. 21 (2001), 1759-1781.
[6] K. Frączek, Polynomial growth of the derivative for diffeomorphisms on tori, preprint math.DS/0205044.
[7] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Math. Systems Theory 1 (1967), 1-49.
[8] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Mat. IHES 49 (1979), 5-234.
[9] A. Iwanik, M. Lemańczyk, D. Rudolph, Absolutely continuous cocycles over irrational rotations, Isr. J. Math. 83 (1993), 73-95.
[10] A.B. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems. With a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995.
[11] A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math. 96 (1974), 422-429.
[12] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294.
[13] L. Polterovich, J.-C. Sikorav, A linear isoperimetric inequality for the punctured Euclidean plane, preprint math.GR/0106216.
[14] L. Polterovich, Growth of maps, distortion in groups and symplectic geometry, Invent. Math. 150 (2002), 1521-1536.
[15] K. Schmidt, On Recurrence, Z. Wahrsch. Verw. Gebiete 68 (1984), 75-95.
[16] M.D. Shklover, On classical dynamical systems on the torus with continuous spectrum, Izv. Vyssh. Uchebn. Zaved., Mat. 10 (1967), 113-124.
[17] R.J. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math. 20 (1975), 555-588.

Received August 2002; revised July 2003; final version February 2004.
E-mail address: fraczek@mat.uni.torun.pl

