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POLYNOMIAL GROWTH OF THE DERIVATIVE FOR
DIFFEOMORPHISMS ON TORI
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ul. Chopina 12/18, 87-100 Toruni, Poland

Abstract. We consider area—preserving zero entropy ergodic diffeomorphisms on
tori. We classify such diffeomorphisms for which the sequence {D f™} has a polyno-
mial growth on the 3—torus: they are necessary of the form

T3 5 (21,22, 23) — (21 + a,ex2 + B(z1), z3 + y(21,22)) € T?,

where ¢ = +1. We also indicate why there is no 4—dimensional analogue of the above
result. Random diffeomorphisms on the 2-torus are studied as well.

1. Introduction. Let M be a compact Riemannian smooth manifold and let u be
a probability Borel measure on M having full topological support. Let f : (M, u) —
(M, i) be a smooth measure-preserving diffeomorphism. An important question
of smooth ergodic theory is the following: whether there is a relation between
asymptotic properties of the sequence {Df"},ecn and dynamical properties of the
dynamical system f : (M, ) — (M, u). There are results describing a close relation
in the case where M is the torus. For example, if f is homotopic to the identity, the
coordinates of the rotation vector of f are rationally independent and the sequence
{Df"} en is uniformly bounded, then f is C°-conjugate to an ergodic rotation
(see [8] p.181). Moreover, if {Df"},en is bounded in the C"—norm (r € NU {c0}),
then f and the ergodic rotation are C"—conjugated (see [8] p.182). On the other
hand, if {Df"},cn has an “exponential growth”, more precisely if f is an Anosov
diffeomorphism, then f is C°—conjugate to an algebraic automorphism of the torus
(see [11]).

A natural question is what can happen between the above extreme cases? The
aim of this paper is to classify measure—preserving tori diffeomorphisms f for which
the sequence {Df"},en has polynomial growth. The first definition of polynomial
growth of the derivative was proposed in [4]. In [4], the following result has been
proved.

Proposition 1.1. Let f : T2 — T? be an ergodic area—preserving C?-diffeomor-
phism. If the sequence {n~"Df"},en converges a.e. (T > 0) to a nonzero function,
then 7 =1 and f is algebraically (i.e. via a group automorphism) conjugate to the
skew product of an irrational rotation on the circle and a circle cocycle with nonzero
topological degree.
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Moreover, the author in [5] showed that if f : T? — T? is an ergodic area—
preserving C3—diffeomorphism for which the sequence {n='Df"},cn is C'—separa-
ted from 0 and oo and it is bounded in the C?-norm, then f is also algebraically
conjugate to the skew product of an irrational rotation on the circle and a circle
cocycle with nonzero topological degree.

We also recall the main result of [13] asserting that if f : T? — T? is a homotopic
to the identity symplectic diffeomorphism with a fixed point, then f is equals the
identity map or there exists ¢ > 0 such that

max([| D f"*[|oo; [Df " [loc) = en

for any natural n (see [14] for some generalizations).

In the present paper some versions of Proposition 1.1 are discussed. In Section 2
we consider the random case. In Section 3 we classify area—preserving ergodic C%—
diffeomorphisms of a polynomial uniform growth of the derivative on the 3—torus,
i.e. diffeomorphisms for which the sequence {n~"Df"},cn converges uniformly to
a non-zero function. It is shown that if the limit function is of class C!, then 7
is 1 or 2, and the diffeomorphism is C?-conjugate to a 2-step skew product. We
indicate why there is no 4-dimensional analogue of Proposition 1.1 in Section 4.

2. Random diffeomorphism on the 2—torus. Throughout this section we will
consider smooth random dynamical systems over an abstract dynamical system
(Q,F,P,T), where (Q, F, P) is a Lebesgue space and T : (Q, F,P) — (Q, F,P)
is an ergodic measure—preserving automorphism. We will consider a compact Rie-
mannian C'°°—manifold M equipped with its Borel o-algebra B as a phase space
for smooth random diffeomorphisms. A measurable map f

ZxQAxM>(nwz)— fleeM

satisfying for P—a.e. w € € the following conditions

o fO= Idy, fmtn = fm o f7 for all m,n € Z,
o f: M — M is a smooth function for all n € Z,

is called a smooth random dynamical system (RDS). Of course, the smooth RDS is
generated by the random diffeomorphism f,, = f. in the sense that

frn-1ig,0...0fp,of, for n>0
fIr= Idy;, for n=0

-1 -1 -1
Jrnw © frngr, 0 0 fro, for n<O.

Consider the skew—product transformation Ty : (2 x M, F ® B) — (2 x M, F ® B)
induced naturally by f as follows:

Ti(w,z) = (Tw, fur).

Then T} (w,z) = (T"w, fix) for all n € Z. We call a probability measure x on
(Qx M,F ® B) f-invariant if p is invariant under Ty and has marginal P on Q.
Such measures can also be characterized in terms of their disintegrations p,,, w € §2
by fultw = 1w P-a.e. A measure i is said to be ergodicif Ty : (Ax M, F®B, p) —
(Qx M,F ® B, pu) is ergodic. We say that u has full support, if supp(u,) = M for
P-ae we.

In this section we will deal with almost everywhere diffentiable and C"-random
dynamical systems with polynomial growth of the derivative. Suppose that f :
ZxQx M — MisaC'-RDS and yu is an f-invariant measure on Q x M. The
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RDS f is called py—almost everywhere diffentiable if for every integer n and for
pa.e. (w,r) € @ x M there exists the derivative Df})(x) : T,M — Tyn M and

/ DS (@) i) < o0
M

for every n € Z and P-ae. w € Q, where || - || w0 IS the operator norm in
L(T, M, Ty, M).

In the paper we will discuss in details random diffeomorphisms on tori. Let d
be a natural number. By T¢ we denote the d-dimensional torus {(z1,...,24) €
C?: |z | = ... =|z4| = 1} which most often will be treated as the quotient group
R?/Z%; A\®? will denote Lebesgue measure on T¢. We will identify functions on T%
with Z4periodic functions (i.e. periodic of period 1 in each coordinate) on R%. Let
f: T? — T4 be a smooth diffeomorphism. We will identify f with a diffeomorphism
f:R? — R? such that

flee,. oz +1,..0,2q) = f(z,...,2q) + (@1, - - -, Cgj)

for every (z1,...,24) € R, where A = [a;;]1<ij<a € GLa(Z). We call A the linear

part of the diffeomorphism f. Then there exist smooth functions f; : T¢ — R such
that

d
fi(xl,...,a:d) = Za”xj +fi($1,...7$d),

j=1
where f; : R* — R is the i-th coordinate functions of f fori =1,...,d.

Definition 2.1. We say that a pu—almost everywhere diffentiable RDS f on T¢ over
(Q,F, P,T) has 7—polynomial (T > 0) growth of the derivative if

1
Fng(x) — g(w,z) for pa.e. (w,x) € Qx T

where g :  x T¢ — My(R) is g non-zero, i.e. there exists a set A € F ® B such
that pu(A) > 0 and g(z) # 0 for all x € A. Moreover, if additionally D f™ belongs
to L1((Q x T4, u), My(R)) for all n € N and the sequence {n="Df"} converges
in L1((Q x T9, u), My(R)) then we say that f has 7-polynomial L'—growth of the
derivative.

We now give an example of an ergodic RDS on T? with linear L'-growth of
the derivative. Before we do it let us introduce a standard notation. Let 7 :
(X,B, 1) — (X, B, 1) be a measure—preserving ergodic automorphism of a standard
Borel space and let G be a compact metric Abelian group. Then each measurable
map ¢ : X — G determines a measurable cocycle over 7 given by

o(x) + o(tx) + ...+ p(r" 1) for n>0
90(")(37) — e for n=0
—(p(r"x) + (" 2) + ...+ p(r7tz)) for n<O.
which will be identified with the function . We say that the cocycle ¢ is a cobound-
ary if there exists a measurable map g : X — G such that ¢ = g —go 7. We call
the cocycle ¢ ergodic if the skew product

Tot (X X G u®Aa) = (X X G, u®@Ag), To(x,9) = (T2,9 + ()

is ergodic, where \g is the Haar measure on G.
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Let us consider an almost everywhere diffentiable RDS f on T? over (2, F, P,T)
(called the random Anzai skew product) of the form

fu(1,22) = (21 + a(w), 22 + p(w, 1)),

where the skew product T, : (QxT,PRA) —» (X T,PRN), To(w,z) = (Tw,z+
a(w)) is ergodic and ¢ : @ x T — T is an absolutely continuous random mapping of
the circle such that Do € L' (2 x T, P ® A) and [, d(¢u,)dP(w) # 0 (d(¢.) stands
for the topological degree of ¢,, : T — T). Then the product measure P @ A\®? is
f—invariant. The following lemma is a little generalization of Lemma 3 in [9)].

Lemma 2.1. The RDS f is ergodic and has linear L' —growth of the derivative.
Proof. First, note that

fo(@r,az) = (21 + o™ (W), 0 + o™ (w,21))
for all n € N. Therefore

n

[ (1/n) X52o Do(Th(w, 1) 1/n

By the ergodicity of T,

—ZD@Tkwm —>//wa )dy dP(w /dgpw )dP(w) # 0

for P ® Ma.e. (w,x) € Q x T and in the L'-norm, which implies linear L'-growth
of the derivatives of f.

To proof the ergodicity of f, we consider the family of unitary operators {U,,
L*’QAxT,P®\) — L*(Qx T,P®\),m € Z} given by

Ung(w,z) = ™m0 g(Tw 2 + a(w)).
‘We will show that

(U g,g) = / e2mime ™ (@) g (T4, 7))5(w, 2) dP(w) dz — 0 as n — oo (2.1)
QxT

forall g € L>(Q x T,P ® A) and m € Z\ {0}. Let A denote the set of all g €
L?(2 x T, P ® \) satisfying (2.1). It is easy to check that A is a closed linear
subspace of L?(Q2 x T, P® \). Therefore it suffices to show (2.1) for all functions of
the form g(w,z) = h(w)e?™** where h € L>((2, P) and k € Z. For such g we have

n n mika™ (w mim w,T
(Uhaa)l = | [ Brah)eeie @ [ im0 ) ap(e)

Ih]2 / / 2rime ™) @) g AP(w).

Let ¢ : X T — R be an absolutely continuous random function such that ¢(w, z) =
@(w, z)+d(p,) x. Without loss of generality we can assume that [, d(¢,,) dP(w) =
a > 0. For any natural n let A,, = {w € Q: (d(p,))™ /n > a/2}. By the ergodicity

IN
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of T, P(Q\ A,) — 0 as n — oo. Applying integration by parts we obtain

1
WKUQQ,QW

" 2rim(d(ew))™ z
< PR\ A) / / 2rim@ 0wt | dP(w)
2mim(d(p.))™
i ( L) n) g wim@(™) w,T
< P(Q\An) 7T|m|an/ / 2 (d(pw)) de? P( )|dP( )

< P@\A)+—— [ | [ DEw0)dol aP()

< P(Q\An)+%/g T|D¢(")(w7x)/n|dP(w)dx.

As foT D@(w,z) dP(w)dx = 0, applying the Birkhoff ergodic theorem for T, we
conclude that [, . | D@ (w, ) /n| dP(w) dz tends to zero, which proves our claim.

Now suppose, contrary to our assertion, that f is not ergodic. Since the skew
product T, is ergodic, there exists a measurable function g : Q@ x T — T and
m € Z \ {0} such that e>7"¢(«:?) = g(w, 2)g(Ts(w,x)). Then (Ug,g) =1 for all
n € N, contrary to (2.1). O

The aim of this section is to classify C"-random dynamical systems on the 2—
torus that have polynomial (L') growth of the derivative and are ergodic with
respect to an invariant measure having full support. We say that two random
dynamical systems f and g on T? over (2, F, P,T) are smoothly conjugate if there
exists a smooth random diffeomorphism h : QxT¢ — T¢ such that f, oh, = h7,0g.
for P-a.e. w € Q. If additionally there exists a group automorphism A : T¢ — T¢
such that h,, = A for P-a.e. w € ), we say that f and g are algebraically conjugate.
Given a smooth RDS f on T? over (Q,F, P,T) let us denote by ¢ : Q — Zy the
measurable cocycle over the automorphism 7' : 2 — 2 given by

- 1 if f preserves orientation,
@ —1 otherwise.

We will prove the following theorems.
Theorem 2.2. Let f be a C"—random dynamical system on T? over (Q,F, P,T)
(r > 1). Let p be an f-invariant ergodic measure having full support on €2 x T2.

Suppose that f has T—polynomial growth of the derivative. Then T > 1 and f is
algebraically conjugate to a random skew product of the form

fw(ﬂfl, x2) = (Fi(21), 22 + @u(x1)),

where F' : Q@ X T — T is a C"-random diffeomorphism of the circle. Moreover,
there exist a random homeomorphism of the circle £ : Q2 x T — T and a measurable
function a : Q@ — T such that

¢rw o Fu(2) = euéu(z) + a, P-a.e.
and consequently f is topologically conjugate to the random skew product
T2 3 (21, 22) — (eu®1 + Qu, T2 + @, 0 &, (1)) € T2

Theorem 2.3. Under the hypothesis of Theorem 2.2, if additionally f has 7—
polynomial L' —growth of the derivative and u is equivalent to the measure P @ \®?
with du/d(P @ A®2), d(P ® \%?)/dp € L>®(Q x T?) , then
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o T=1,

e there exist a Lipschitz random diffeomorphism of the circle & : Q@ x T — T
with D&, DETY € L®(Q x T, P ® \) and a measurable function o : Q — T
such that

&rwo F,(x) = &(x) + o P-a.e. and

d fQ d(@w Ogc:l)dp(w> #0.

For convenience of the reader the proofs of the above theorems are divided
into a sequence of lemmas. Let f be a C"-random dynamical system on T¢ over
(Q,F,P,T). Let u be an f-invariant ergodic measure having full support on  x T<.
Suppose that f has 7-polynomial growth of the derivative. Let g : @ x T? — My(R)
denote the limit of the sequence {n="Df"}.

Lemma 2.4. For p-a.e. (w,z) € 2 x T and all n € Z we have

glw,z) #0, g(w,x)*> =0 and (2.2)
g(w,z) = g(T"w, fJz) D f2 (). (2.3)

For p @ p—a.e. (w,z,v,y) € 2 x T? x Q x T we have
9w, z) g(v,y) =0 and g(w,z) = Df,(y) g(w, z). (2.4)

Proof. Let A C Q x T be a Ty—invariant subset having full y—measure such that
(w,z) € A implies lim,,_,oo n~ "D f () = g(w, x). Assume that (w,z) € A. Since

T 1
(m;”) (m+n)TDfL"+"($) = %ch[%/w(fﬁx) Df;(z)

and (T"w, fl'x) € A for all m,n € N, letting m — oo we obtain
g(w,z) =g(T"w, flz) Dfl(x) for all (w,z) € A and n € N.

Let B = {(w,z) € A: g(w,x) # 0}. By the above remark, B is Ty—invariant. Since
g is ¢ non-zero, p(B) = 1, by the ergodicity of T.

By the Jewett—Krieger theorem, we can assume that € is a compact metric space,
T :Q — Q is a uniquely ergodic homeomorphism and P is the unique T—invariant
measure. Now choose a sequence {Aj}ren of measurable subsets of A such that
the functions g, Df : Ay — My(R) are continuous, all non-empty open subsets of
Ap (in the induced topology) have positive measure and p(Ax) > 1 — 1/k for any
natural k. Since the transformation (T)a, : (A, ta,) — (A, pta,) induced by T}
on Ay is ergodic, for every natural £ we can find a measurable subset By C Ag
such that every orbit {(7})%, (w, ) }nen, (W, ) € By, is dense in Ay, in the induced
topology and u(By) = u(Ax).

Assume that (w,z),(v,y) € Bg. Then there exists an increasing sequence
{mi}ien of natural numbers such that (7))} (w,x) — (v,y). Hence there exists
an increasing sequence {n;}ien of natural numbers such that T} (w,z) — (v,y)
and T} (w,z) € Ay for all ¢ € N. Since g,Df : Ay — My(R) are continuous,
g(Tniwa f:}lx) - g(’U,y) and DfT”zw(f:}lx) - g(Ua y) Since
glw,w) = g(T™w, f1'a) ~-DfI(2),

7

L

letting ¢ — oo we obtain g(v,y) g(w,x) = 0. Since

LD ) = Do ([) DI (),

(3 (3
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letting i — oo we obtain g(w,z) = Df,(y) g(w,z). Therefore

1 2
p @ p{(w,,0,9) € AX T x AxT: g(v,y) g(w,z) = 0}) > (1——> :

k
d 2 1
p{w,z) e A xT: g(w,z)*=0}) >1— %
and
1\ 2
Ho {2, 0) €QX T X QX T glo0) = DM g0 > (1- 1)
for any natural k, which proves the lemma. O

Let us return to case d = 2. Suppose that A, B are non-zero real 2 X 2-matrixes
such that A? = B2 = AB = 0. Then (see Lemma 4 in [4]) there exist real numbers
a,b# 0 and ¢ such that

A:a[i}[l ] and B:b{i}[l e ]

: A:a[ﬂ[ﬂl] and B:b[(l)][o 1].

It follows that g can be represented as

g:h[ﬂ[l —c ],

where h : Q x T2 — R is a measurable function which is non-zero at p—a.e. point
and ¢ € R. We can omit the second case where

gh[ﬂ[o 1,

because it reduces to case ¢ = 0 after interchanging the coordinates, which is an
algebraic isomorphism. Then by (2.4) we obtain

HEZIN 25)

for P-a.e. w €  and for all x € T?, because p has full support. From (2.3) we
obtain

hw,z) [ 1 —c]=h(Tw, fox)[ 1 —c |Df,(z) (2.6)
for pa.e. (w,r) € Q x T2
Lemma 2.5. If ¢ is irrational, then f,(x1,22) = (1 + a(w),z2 + y(w)), where

a,v: 2 — T are measurable functions. Consequently, the sequence n™" D f™ tends
uniformly to zero.

Proof. From (2.5) we have

_ 0(fu)r | 0(fu) _ O(fu)2 | O(fw)2
c=c 61'1 + 8x2 and 1 =c 8:1;‘1 + 8952

for P-a.e. w € €. It follows that for ¢ = 1,2 there exists a C"t!-random function
u; + 0 x R — R such that

filw,z1,22) = 23 + wi(w, 1 — cw2).
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Represent f as
filw,z1,22) = ar(w)zy + ara(w)zs + ﬁ(w,xl,xg),
fa(w,x1,22) = ag1(w)z1 + aga(w)ze + ]?g(w,xl,xg),
where {a;;j(w)}i j=1,2 € GL2(Z) and fi,f2: Q2 x T2 — R. Then
up(w,z+1) = (a1(w) = D(z+1) + ﬁ(ww +1,0) =u(w,z) + a1 (w) — 1
and
ur(w,x + ¢) = (a11(w) — 1)x — a12(w) + filw,z,—1) = ur(w, x) — aja(w).

Therefore a11(w) — 1 = limy 4 oo 1 (w, )/ = —a12(w)/c for p—a.e. w € Q. Since
¢ is irrational, we conclude that a11(w) — 1 = a12(w) = 0, hence that ui(w,-) is 1
and ¢ periodic, and finally wu;(w,-) is a constant for p—a.e. w € Q. It is clear that
the same conclusion can be obtained for us, which completes the proof. O

Lemma 2.6. If c is rational, then there exist a group automorphism A : T? — T2, a
C" —-random diffeomorphism of the circle F': QX T — T and a C"-random function
p: QA XxT—T such that

Ao f,o0 A Nz, x0) = (Fuxy, 20 + @u(21)).
Moreover,
hry o A™HF,(21), 72 + 0o (21)) - DE,(z1) = hy o A7 (21, 29) (2.7)
for fi—a.e. (w,x1,72) € Q x T2, where ji := (Idg x A)p and h, o A=t : T? - R
depends only on the first coordinate.

Proof. Let p and ¢ be integers such that ¢ > 0, ged(p,¢) = 1 and ¢ = p/q. Choose
a,b € Z such that ap — bg = 1. Consider the group automorphism A : T? — T2

associated to the matrix A = 4 7P Then A=t = | ¢ P | Set fo =
—b a b q

Ao f, oAl Then i is an f-invariant measure and
Df,(x)=A- (Df,(A'2)) - A7L.

>From (2.5) we have

1] -o00:]

q q
for P-a.e. w € Q and all z € T2. Consequently,

]-oi 2]

for P-a.e. w € Q and all z € T2, From (2.6) we have
ho()[ ¢ —p | =hro(for)[ ¢ —p | Dfu(@)
for p—a.e. (w,r) € Q x T2 Consequently,
hoo A @) [1 0] =hrooA (fox)[ 1 0]Dfu(z)

for ia.e. (w,x) € Q x T2. Tt follows that d(f,)1/0zs = 0 and (f,,)2/dxs = 1 for
P-ae. we Q2 and

(hTw oA 1o fw> (x) 3(fw)1

Gt (@) = hyo A7 @)
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for ji-a.e. (w,r) € Q x T2 Therefore
fw(xla 172) = (Fumla T2 + (Pw(zl))7
where F, ¢ : Q2 x T — T are C"-random functions and
hrw o AN F,(21), 29 + @u(21)) - DF,(21) = hy 0 A™ (21, 22)
for fi-a.e. (w,x1,22) € Q x T2. Since f, : T2 — T? is a C"diffeomorphism, we
conclude that F, : T — T is a C"—diffeomorphism for P-a.e. w € §2. Since
1
LDf3) )| " [0 -ofa ]
for p—a.e. (w,r1,22) € Q x T2,
L en ~1.5,2] 0 0

for i-a.e. (w,r1,22) € Q x T?. Set h, = hy, o A~L. Then
n—1

Z Dy, (FE(x1)) - DEX (1) — h(1,22)/?

for ji—a.e. (w,r1,72) € Q x T2, Tt follows that iLw depends only on the first coordi-
nate. O

Proof of Theorem 2.2. By Lemmas 2.5 and 2.6, to prove the first claim of the
theorem it is enough to show that 7 > 1. Suppose that 7 < 1. Let v := (Idg x 7)1,
where 7 : T? — T is the projection onto the first coordinate. Then v is an F-—
invariant ergodic measure of full support on 2 x T. By Lemma 2.6,

hrro(FE(x)) - DFS(x) = hy(x)
and
— Z Dorw,(Fh(x)) - DFS(2) — ho(2)/q° (2.8)

k=0
for v-a.e. (w,z) € Q x T. Therefore

ZDsDTk 2))/hruy (F5(x)) = 1/¢° (2.9)

and consequently
L ZDSDTk 2)) [ (FE(x)) = 0

for v-a.e. (w,z) € Q x T. It follows that the measurable cocycle Dp/h : Q@ x T — R
over the skew product T is recurrent (see [15]). Consequently, for v—a.e. (w,z) €
Q) x T there exists an increasing sequence of natural numbers {n; };en such that

n;—1

| Z Dy (F5 () /hw (F5 (2))] < 1.

It follows that

n;—1

LN D (FE@) e (FE () — 0,

7'k0
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contrary to (2.9).

Now let us decompose v, = v + v¢, where v is the discrete and v¢ is the
continuous part of the measure v,,. As this decomp051t10n is measurable we can
consider the measures v? = [, v? dP(w) and v¢ = [, v dP(w) on Q x T. It is easy
to check that v? and v°® are F-invariant. By the ergodicity of v, either v = v or
v ="

We now show that v = v°. Suppose the contrary, that v = v%. Let A: Q x T —
[0,1] denote the measurable function given by A(w,z) = v,({z}). As v is F-
invariant we have

A(Tw, Fyr) = vro({For}) = F vro({a}) = vu({2}) = A(w, 2)

and consequently A is Tr—invariant. By the ergodicity of T, the function A is v
constant. It follows that the measure v, has only finitely many of atoms for P—a.e.
w € Q, which contradicts the fact that v has full support.

Define &, () := [ dv, for all z € R. Then &,(z + 1) = &, (x) + 1, because

f;“ dv, = 1. Since v,, is continuous and v has full support, the function &, :
R — R is continuous and strictly increasing. Therefore £ : 2 x T — T is a random
homeomorphism. As v is F—invariant we have

Fyx F,0 F,x
gTw(wa) = / dVTw = / dVTcu + / deVw
0 0

F,0

xr
= aw+5w/ quzswgw(I)+aw
0

for P-a.e. w € ), where o, = fOF“O dvr,,. O

Proof of Theorem 2.3. Suppose that f has 7-polynomial L!-growth of the derivative
and p is equivalent to P ® A®2. Then DF, Dy € L*(2 x T,v) and /i is equivalent
to P® A®2. Let 6 € L'(Q x T?, P ® A®?) denote the Radon—Nikodym derivative of
[v with respect to P ® A®2. Then

w01 (Fu(z1), 02 + pu(21)) - DE,(71) = O (21, 72)

for P ® A®%-a.e. (w,z1,22) € Q x T2, By (2.7), there exists a non—zero constant C
such that 0, (x1, x2) = Clhy(x1)] for P © A®2-a.e. (w 9517m2) € Q x T2 Then the
random homeomorphism &, : T — T given by &, (z) = [ dv, = [ 0,(t)dt is a
Lipschitz random diffeomorphism, because 6 and 1/ 9 are bounded. It follows that
f is Lipschitz conjugate to the random skew product

(Te)w(®1,22) = (Ew1 + u, T2 + Yo (1)),

where v, := @, 0 &, . From (2.8) we conclude that T, . , has 7-polynomial L'-
growth of the derivative and

n—1

3 BID(TE () = hule) £0 (2.10)

k=0

in L'(Q x T, P ® ), where

he(z) = hy, o &) - DESH )/ and  (Th:)w(z) = (e0t + ).
It follows immediately that 7 = 1.
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Now suppose that € is a coboundary over T. Then there exists a measurable
function 7 : @ — Zsy such that € = n/(noT) and the random diffeomorphism

QxT> (w,z) — (W,n,z) €EQXXT

C*°—conjugates the skew products T, . and T(;07).q,1, Which is just our assertion.

Otherwise, the cocycle € is ergodic over T'. Then the cocycle € : Qx T — Zs must
be a coboundary over the automorphism 7, . :  x T — Q x T. Indeed, suppose,
contrary to our claim, that the skew product

OXTxXZo > (w,z,y) — (Tw, et + ayp,euy) € XX T X Zoy
is ergodic. By the Birkhoff ergodic theorem,

n—1
1
= § e®) Ly DY(TE (w,2)) — y - DY(w',t) dP(w') dt d)gz,(y') =0
L ’ QXTxZy

in LY(Q x T x Zy, P® A ® \z,), contrary to (2.10). Consequently, there exists a
measurable function g : Q@ x T — Zj such that ¢, g(w,z) = g(Tw, e, + ay,). It
follows that e, [ g(w,t)dt = [ g(Tw,t)dt. By the ergod1c1ty of € over T, we have
Jrg(w,t)dt =0. Let G : Q x T — [~1,1] be given by G,,(z) := [; g(w,t) dt. Then

DGry,(ewx + ay) = g(Tw, epx + ay,) = eu9(w, a:) = ewDGw(as).
Consequently, there exists a measurable function 3 : €2 — R such that
GTw(eww +ay,) = Gu(z) + Bo.
Therefore [ Gr.,(t)dt = [, Go(t)dt + ., and

G(Tn(w,7)) — / Gro(t) dt = G(w,z) — / G (t) dt

Consequently, G f1r t)dt + ¢, by the ergodicity of T, .. It follows that
0= DG, (z) = g(w x) +1 for a.e. (w,z) € Q x T, which is impossible. Therefore
€ is a coboundary over 7', and the proof is complete. ([l

3. Area—preserving diffeomorphisms of the 3—torus. In this section we give
a classification of area—preserving ergodic diffeomorphisms of a polynomial uniform
growth of the derivative on the 3-torus. A C'-diffeomorphism f : T2 — T2 has 7
polynomial uniform growth of the derivative if the sequence {n~"D ™}, cn converges
uniformly to a non—zero function. We first present a sequence of essential examples
of such diffeomorphisms. We will consider 2-step skew products Ty g~ : T2 — T3
given by

Togye(®1,x2,23) = (1 + a,exa + B(x1), 23 + y(21,22)),

where « is irrational, e = +1 and 8: T — T, v : T2 — T are of class C'. We will
denote by d;(y) the topological degree of v with respect to the i-th coordinate for
i =1,2. Here and subsequently, h,, stands for the partial derivative Oh/0x;.

Example 3.1. Assume that ¢ = 1, § is a constant function, «, 3,1 are rationally
independent and (dy(7),dz2(7y)) # 0. Then

) 0 0 0
~DT7 00 = 0 0 0| #0
di(y) da(y) O

uniformly and T, g,,1 is ergodic, by Lemma 2.1.
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Ezample 3.2. Assume that ¢ = 1, d(5) # 0 and da(y) # 0. By Lemma 2.1, T, 5.~1
is ergodic. Moreover, Ti, g.~,1 has square uniform growth of the derivative, more
precisely,

) 0 0 0
DT, — 0 0 0 |#0
d(B)d2(7)/2 0 0

uniformly.

Ezample 3.3. Assume that ¢ = —1, v depends only on the first coordinate, d(y) # 0
and the factor map T? 3 (z1,22) — (21 + a, —22 + B3(x1)) € T? is ergodic. Then

1 0 0 0
“DIZs, = | 00 0| #0
div) 0 0

uniformly and T, g,,—1 is ergodic, by Lemma 2.1.
The main result of this section is the following theorem.

Theorem 3.1. Let f: T2 — T2 be an area—preserving ergodic C?—diffeomorphism
with T—polynomial uniform growth of the derivative (T > 0). Suppose that the limit
function lim,_,.c n~ "D f™ is of class C*. Then T is 1 or 2, and f is C?—conjugate
to a diffeomorphism of the form

T 5 (21,22, 23) — (21 + @, €22 + B(71), 23 + (21, 72)) € T?,
where e =det Df = £1.

As in the previous section, the proof of the main theorem is divided into several
lemmas. Suppose that f : T — T2 is an area-preserving ergodic diffeomorphism
with 7—polynomial growth of the derivative. Assume that the limit of the se-
quence {n~"Df"},en, denoted by g : T3 — M3(R), is of class C''. By Lemma 2.4,
9(z) g(y) = 0 and g(z)? = 0 for all Z,y € T3.

Lemma 3.2. Suppose that A, B are non-—zero real 3 x 3—matrizes such that A% =
B? = AB = BA = 0. Then there exist three non-zero vectors (real 1 X 3-matrizes)
a, b, ¢ such that

o A=a"b and B=a" ¢ where ba’ =0 and ¢a’ =0 or

o A=a"¢ and B=0b"¢, where ca’ =0 and ¢b” = 0.

Proof. Suppose that z € C? is an eigenvector of A with the eigenvalue A € C. Then
A2z = A%%Z = 0 and consequently A = 0. It follows that the Jordan canonical form
of A equals either

0 0 O

1 00

010

But the latter case can not occur because the square of the latter matrix is non—zero.
It follows that there exists C' € GL3(R) such that

0
1
0

o O O

0
0 or
0

0 0 O C12
A=C|1 0 0 |C =] co [ 01_11 01_21 01_31 ] .
0 0 O €32

Therefore we can find non-zero real 1 x 3-matrixes a;, a such that A = a? as. A_s
A% =0 we have_&l_J_ as. §imila_r1y, we can find non—zero real 1 X 3—matrixes by, by
such that B = b{ by and b; L by. Let 6 € R3 be a non—zero vector orthogonal to
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both @; and G@s. As AB = BA = 0 we have @, L by and as L by. It follows that
there exists a real matrix [d;;]; j=1,2 such that

by = dy1a; + d120 and by = do1a2 + do20.
Then 0 = <51,Bg> = d12d22||§||2. If dis = 0, then dy; # 0 and we put a := aq,
b:= ag, ¢ 1= d11bz. Then a’lb = A and ale=DB. If d22 = 0, then do1 # 0 and we
put @ := @y /da1, b := by, € := by. Then @’ ¢ = A and b" ¢ = B, which completes
the proof. O

By the above lemma, there exists ¢ € R3 such that for any two linearly inde-
pendent vectors @, b € R orthogonal to ¢ there exist C'—functions hy, hy : T> — R
such that ¢g(Z) equals

¢L(hy(Z)a + ho(Z)b) or (hi(Z)a + ho(z)b)T e

for all £ € T?. We first treat the special case of Theorem 3.1 where the limit
function g is constant.

Lemma 3.3. Let f : T3 — T® be an area—preserving ergodic C*—diffeomorphism
with T—polynomial uniform growth of the derivative (T > 0). Suppose that the limit
function g = limy, oo n™ "D f" is constant. Then 7 is 1 or 2, and f is algebraically
conjugate to a diffeomorphism of the form

T? 5 (w1, %2, 23) — (21 + o, ex2 + B(21), 33 + y(21,32)) € T,
where e =det Df = £1.

Before we pass to the proof we introduce some notation. Let A € GL3(R).
Denote by T3 the quotient group R3/(Z3AT), which is a model of the 3-torus as
well. Then the map

AT - T3, Az=zAT
establishes a smooth isomorphism between T2 and T%. Suppose that & : T% — T3
is a diffeomorphism. Then A~! o ¢ o A is a diffeomorphism of the torus T3. Let
N € GL3(Z) be its linear part. Then

&z +mAT) = £(z) + mNT AT

for all m € Z>. Moreover, we can write

£(@) = 2(ANATHT + {(2)
and ANA~! (resp. £) we will be called the A-linear (resp. the A-periodic) part of
¢. The name A-periodic is justified by £(z + mAT) = £(z) for all m € Z3.

Suppose that f : T3 — T3 is a smooth diffeomorphism with 7-polynomial
uniform growth of the derivative and g : T — M3(R) is the limit of the se-

quence {n""Df"},en. Let us consider the diffeomorphism f : T3 — T3 given by
fi=AofoA ! Then

%Df"@) _ %A- (Df" (A1) A1 — A g(A~1z) - AL (3.11)

uniformly on T%. Let us denote by g : T% — M;3(R) the function §(z) := A -
g(A=1z) - A7L. Lemma 2.4 now gives
9(x) =g(fz)- Df(2)

for all Z,7 € T3, and consequently
§() = g(fz)-Df(®) and §(y) = D (x)- §(p) (3.13)

nd  g(y) = Df(z)-9(1) (3.12)

Q
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for all z,7 € T%,.

Throughout this paper we denote by G(&) the subgroup of all m € Z3 such that
m L ¢. Of course, if ¢ € R?\ {0}, then the rank of G(¢) can be equal 0, 1 or 2. The
reader can find further useful properties of the group G(¢) in Appendix B.

Suppose that f : T? — T3 is an area—preserving ergodic C'—diffeomorphism with
T—polynomial uniform growth of the derivative and the limit function g is constant.
By Lemma 3.2, there exist mutually orthogonal vectors @, ¢ € R? such that g = ¢’ a.

Lemma 3.4. Let f: T2 — T2 be an area—preserving C' —diffeomorphism. Suppose
that f preserves orientation, has T—polynomial uniform growth of the derivative and
the limit function ¢ = lim,, oo n~"Df™ equals ¢*a, where @ L & Then the rank of
G(a) equals 2. Moreover, T equals either 1 or 2.

Proof. Let b € R3 be a vector orthogonal to both @ and ¢ such that det(A4) = 1,
where

A:

o oKl

Consider f : T% — T3, given by f :=AofoA™ ! Then

0
g=A-c"a-A'=|0|[1 0 0].
1
>From (3.13) we obtain
X 0 10
[1 0 0]=[1 0 0]Df and 0|=Df| 0
1 1
Consequently,
0 o » . o 4,
8—xlf1( ) =1, a—@fl(x)_oa 8—fn3f1(x)_0’
0 ., _ o .. _ o 5,
8—:173f1( ) =0, 3—953f2(33)—0, 6—x3f3(3?)—1

for all z € T3. It follows that

flxr, e, 23) = (21 + o, 22 + B(x1), 23 + V(21,22)),

where 8 : R — R, v : R? — R are C''-functions. Let N € GL3(Z) stand for the
linear part of f. Then the A-linear part of f equals

1 0 0
ANA™'=| Kyy 1 0
Kz Kz 1
It follows that
aN = a (3.14)
bN = Koa+b (3.15)

¢N = Kza+ Kzb+e. (3.16)
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Let f: T3 — R® stand for the periodic part of f, i.e. f(z) = ZNT + f(z). Then

F(@) = 2T + 3 F(P) (1T
k=0

Since [rs D(f o f*)(z) dz = 0 for all natural k,

1 1
—N"=— [ Df*(z)dz — g. (3.17)
n’ n” Jrs
It follows that
1 1 o o1" 000
— | K 1 0| —g=|00 0]. (3.18)
" K31 K3 1 1 00

Suppose, contrary to our claim, that rank G(a) < 2.

First, suppose that rank G(a) = 0. From (3.14) we have N = Id. Consequently,
n~TN™ tends to zero, contrary to (3.17).

Now suppose that rank G(a) = 1. Let m € Z> be a generator of G(@). Then
there exists a vector 7 € Q3 such that N —Id = m”7, by (3.14). From (3.15) we
have
Suppose that K31 # 0. Then rank G(EL) = rank G(7) = 2, which contradicts our
assumption. Consequently, K51 = 0. It follows that

n

1 0 0 1 0 0
Koy 1 0| =] o0 1 0
K31 K3 1 nKz; nKs 1
>From (3.18) it follows that 7 =1 and K3; = 1, K32 = 0. Then
T

eml 7 =¢e(N —1d) =a
by (3.16). It follows that rank G(a) = rank G(¥) = 2, which contradicts our
assumption.

Finally, we have to prove that 7 equals either 1 or 2. >From (3.18) we obtain

1-1
n'"" Ky — 0, n'""Ks + 5 /nn2_7K21K32 —1, n'""Kj3 —0.

If Ko7 =0, then 7 = 1 and K37 = 1. Otherwise, 7 = 2 and K5y K32 = 2, which
completes the proof. O

Proof of Lemma 3.3. First, notice that f? preserves area and orientation, and
n~7Df*" tends uniformly to 27¢’a. By Lemma 3.4, rank G(a) = 2. It follows that
a = am € aZ?, by Lemma B.1 (see Appendix B). Now choose 7, k € Z* such that
the determinant of

A=

>33

equals 1. Let us consider the diffeomorphism f : T3 — T3 given by f = AofoA~L
Then

0
g=A-g-A'=aln” |[1 0 0].

kel
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>From (3.13) we have

0 0
[1 0 0]Df(@)=[1 0 0] and nc’ | = Df(z) | ac’
ket keT

It follows that

f(@1, @2, 23) = (1 + @, o, (22, 23)),
where ¢ : T x T? — T? is an area—preserving random diffeomorphism over the
rotation by an irrational number «. Then
nel nel
[ BT | T Dy, (x2,23) kel
for all (zy,29,23) € T®
Suppose that n¢’ and k¢! are rationally independent. Then by Lemma 2.5,
Ou, (T2, 23) = (29 + B(21), 23 +(71)), where 3, : T — T are C'—functions, which
is our claim.

Otherwise, by Lemma 2.6, there exist a group automorphism B : T? — T? and
C'—functions 8 : T — T, v : T2 — T such that

Bo ¢, 0 B (2, 23) = (ex2 + B(21), 23 + v(21, 22)),
where € = det D f, which proves the claim. ([

Proof of Theorem 5.1. is divided into a few cases. -
Case 1. Suppose that g = ¢’ (hya+ hab), where @ and b are orthogonal to & and
the matrix

A:

o UKl

is nonsingular. Let f : T% — T3 be given by f :=Ao foA™!. Then
A~ ~ — [ O ~ ~
Gg=A-c"(hma+hd)- A =0 |[h hy 0],
1

where h;(z) := h;(A~'Z) for i = 1,2. From (3.13) we obtain
[ @) he(@) 0] = [(fz) ho(fz) 0]Df@),  (319)

0 A 0
0| = Df@ | o0
1 1

for all # € T%. Consequently, df(z)/0x3 = 0, dfo(T)/dx3 = 0 and df3(Z)/dxs = 1
for all € T%. It follows that
flar, wa, w3) = (F(21,22), 3 + y(21, 22)),

where v : R? - R is a gmooth fur}ction and F : R? — R? is the diffeomorphism
given by F(z1,z2) = (fi(x1,x2), f2(x1,22)). Let K stand for the A-linear part
of f, K= AN A= where N € GL3(Z) is the linear part of f. Then det K =
det N = 51 = +1 and Kj3 = 0,Kz3 = 0,K33 = 1. Moreover, there exist %
functions F': R? — R2, 7 : R? — R which are (am?T, bmT)-periodic for all m € Z3
such that

F(z)= 13‘(9?) + zK'T and Y(x1,x2) = F(21, T2) + K311 + K3229,
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where K" = K1 2yx 11,2y € GL2(R) and det K" = ¢’. From (3.11) we have

n—1
1 1 A .
FDF (o) =0 and o3 Dl P (arsee) — | (@) ha(®)

uniformly on T%. Therefore hi, hs depend only on the first two coordinates. Let

H : R? — R? be given by H(xq,15) = |:iL1((E1,LL'2,O) ﬁg(xl,xg,O)}. Then H is

(@mT, bm™ )—periodic for all m € Z3 and is of class C'. From (3.19) we have
H(Fz)-DF(z) = H(Z) (3.20)

for all z € R2. Set y, := n~" Z:;éfy o F*. Since Dy, — H uniformly on R?
Xn (21, 22) = Xn(21,0) — [o° Ha(z1,t) dt, Xn(21,22) — Xn(0,22) — [5 " Hi(t, x2)dt
for all (x1,75) € R%. Let & : R? — R be defined by

E(x1,20) = hm (Xn(xl,xg) xn(0,0)) / Hy(t, o dt—l—/ H,(0,t) dt

/ H2 xy,t dt+/ HltO dt

Then 0¢/0x1 = Hy, 06/0xy = Ho and € is of class C2. By (3.20), there exists
a € R such that
E(FZ) =€£(T) + a. (3.21)

By Lemma B.1 (see Appendix B), there exists a C*—function 5 : R? — R which is
(amT, bin™)-periodic for all 7 € Z?® and d;, dy € R such that &(z1, z0) = (1, z2)+
dyx1 + daxo. Since H # 0, it is easy to see that (dy,d2) # (0,0). Moreover, from
(3.21) we have

[d1 dy] K' = [d; do] (3.22)
and

&z)+a (3.23)
= E(F1(Z) + Knwy + Kiaxa, Fa(Z) + Korxy + Kagwa) + di F1(T) + da Fa (7).

Case la. Suppose that rank G(¢) = 0. By Lemma B.1, Df is constant. It
follows that Df and g are constant. Therefore ¢ = ¢'a, where a is orthogonal
to é. From (3.12) we obtain ¢/ = Df(z)c? for all z € T3. As G(¢) = {0} and
Df(z) € GL*(Z) we have Df(x) =Id for all Z € T®. Consequently, f is a rotation
on the 3—torus, which is impossible.

Case 1b. Suppose that rank G(¢) = 1. By Lemma B.1, there exist real numbers
Iy, I such that m = l1a + lyb generates G(¢) and C?functions F : T — R2
£:T—R,7:T — R such that

F(z1,22) = F(lizy+loxa), £(z1,22) = E(liz1+Hams) and H(w1, 22) = Y(liz1+l2ws).
From (3.23) we obtain
5_(11581 +lhx)+ta = f_(llpl(lliﬂl + laxo) + 12F2(11991 + laxa) + 5121 + S272)
+d1F1 (11331 + 121‘2) + dgFQ(llﬂh + 121‘2),

where [s1 s2] = [l1 lo] K'. If (s1, s2) and (I, l2) are linearly independent, then ¢ is
constant. It follows that H is constant which reduces the problem to Lemma 3.3.
Otherwise, there exists a real number s such that (s1,s2) = s(l1,1l2) and

E(SIJ) +a= g(llﬁ‘l(x) + ZQFQ(LC) + SLU) + dlpl((ﬁ) + szQ(CL’)
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for any real . Since f preserves area det DF(z) = e = +1 for all € T3. It follows
that

llDl?l(l‘) +K11 lgDEl(x) +K12
llDFQ(IE) +K21 lQDFQ(LE) +K22

(llKQQ — nggl)DF1(.%') + (L K2+ ZQKH)DFQ(CL') + det K
= (ILDF(x) +laDFy(z))det K/s + det K

e = det

for any real . Since Fy, F, are 1-periodic, we have I1DFy(x) + lsDFy(x) = 0
and det K = . Therefore the function [y F} + 5 F5 is constant. Let us choose real
numbers 71,79 such that the determinant of the matrix

L I 0
L= r To 0
0 0 1

equals 1. Now consider the diffeomorphism f : T3 , — T3 , given by f = Lo foL~!.
Then

]E(l”l,l’za z3) = (sz1+0a,e/swat+rei+ri By (z1) +r2Fo(21), 23+ (1) +p1o1 +paxa).

As Of/0x; = s" and Ofy /dxy = (¢/5)™ we obtain s = +1, because f has polyno-
mial uniform growth of the derivative. Moreover,

m —
LA = r1a + 1r2b
c

and Lo Ao f = foLo A. Therefore f(z)m” = szm” + a. Observe that s = 1.
Indeed, suppose, contrary to our claim, that s = —1. Consider the smooth function
Kk : T — C given by x(Z) = e2mi#m"  Then ko f2 = k. Since & is smooth, we
conclude that it is constant, by the ergodicity of f. Consequently, m = 0, which is
impossible. Now choose 71, k € Z3 such that the determinant of

A=

>33

equals 1. Let us consider the diffeomorphism f : T3 — T3 given by f := Ao foA~L.
From (3.13) we have

0 A 0
ne’ | =Df(z) | ne"
ke” ket

Moreover,
fi@) = fEA YR =z2(A Y o =11+
Our claim now follows by the same arguments as in the proof of Lemma 3.3.
Case lc. Suppose that rank G(¢) = 2. Then we can assume that a,b,¢ € Z*
and @, b generates G(¢). Set ¢ = det A € N. Then the A-linear part of f (which is
equal K = AN A1) belongs to M3(g~'Z). Moreover, the functions F : R? — R?
7 :R? —» R and ¢ : R? — R are Z?periodic, by Lemma B.2 (see Appendix B).
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Case 1c(i). Suppose that di/ds is irrational. From (3.22) we obtain K’ =

1 0
[0 1].Set

1/¢ 0 O
L=| 0 1/g 0
0 0 1

Consider the diffeomorphism f : T3 , — T3 , given by f = Lo f o L. Then
f(@1, w0, 03) = (F(21,m2), 33 + §(21, 22)),
where F(z1,22) = ¢~ ' F(gr1,qr2) and §(21,22) = 7(g21, g22). Then

F(z+m)—F@) =m and 5+ m) —5(Z) = ¢Kzimi + ¢Kzomg € Z

for all m € 72. Therefore, f can also be treated as a diffeomorphism of the torus
T3. Let (21, 72) = £(g71,qx2). Then

EoF =+, (3.24)

D¢ : R?2 — R is Z?—periodic and non—zero at each point. Moreover, f : T3 — T3
has 7—polynomial uniform growth of the derivative. More precisely,

L 0 0 0
—Df"— {0 00 (3.25)
" D¢ 0

uniformly.
Let us denote by ¢* the Hamiltonian C?-flow on T? defined by the Hamiltonian

equation

d i [ Eas (#1(T)) ]

—p'(Z) = 4 _ .

Al IO
Since ¢! has no fixed point and [, &, (2)dZ/ [1a o, (2)dZ = dy /dy is irrational, it
follows that ¢! is C%2-conjugate to the special flow constructed over the rotation by
an irrational number a and under a positive C?—function b : T — R, (see for instance

[2, Ch. 16]) i.e. there exists an area—preserving C?—diffeomorphism p : R? — R?
and a matrix N € GLy(Z) such that

detDpE—i):—/b(x)dx, alop=poyt,
T

where ot(z1, 1) = (71,72 +t) and
o+ 1) = (p1(2) + (N1 + (7N )0, paE) — KNy (2)))

for all m € Z2. Let T, : T x R — T x R denote by the skew product given
by To,—p(x1,22) = (x1 + a,z2 — b(x1)). Let us consider the quotient space M =
M, =T xR/ ~, where the relation ~ is defined by (z1,z2) ~ (y1,y2) if and only
if (x1,22) = T(ﬁ_b(yl, y2) for an integer k. Then the quotient flow of, , of the action
ot modulo the relation ~ is the special flow constructed over the rotation by a and
under the function b. Moreover, p : T2 — M conjugates flows ! and O’Z’b. Let
F : M — M stand for the C?>diffeomorphism F := po F' o p~'. Since the map
R >t +— £(¢!'Z) € R is constant for each Z € R? we see that the map

R3t+—Eop (0" (w1, 22)) =0 p~ (w1, 22+ 1) €R
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is constant for each (z,z2) € R2. It follows that the function £ o p~! : R? — R
depends only on the first coordinate. Moreover,

E -
- [

Consequently, dp; ' /0wy = (9€/022) 0 p~' and Opy ' /0xe = —(0€/0x1) 0 p~'. Tt
follows that

_1,..] 0 d _ _ d 1,
pp@)| | = Grtoo @lhoo= o @l

d - 4 0§y Opt  9&  _y 9py! 151
@ =% s W P2 et Dpl = bl
dml (gop ) 81‘1 °r 6331 + 8$2 °r 8$1 ¢ p
Therefore
EopMay,x2) = b '0z1 +c. (3.26)

We see by (3.24) that op~toF = op~!+a and consequently Fy (1, 22) = x1+ba.
For abbreviation, we will write « instead of ba. Since F : R? — R2 preserves area,
we conclude that

F(x1,22) = (21 + a,ex2 + B(21)),
where 3 : R — R is a C?function and ¢ = det DF' = £1. As F is a diffeomorphism
of M, there exist my, mo € Z such that

(r1+ 14+ a,exq + B(z1 + 1))

= F(z1+122) =T," F(z1,22) + (m1,0)
= (214 a+my+maa, ey + Blar) — 0™ (21 + ).

It follows that mq = 1, my = 0, hence §: T — R. Moreover, there exist ny,ny € Z
such that

(x1 +a+ a,exy — eb(xy) + B(x1 + a))
= FoTs p(x1,29) =T, F(21,22) + (11,0)
= (214 a+ny +nga,exy + B(z1) — b (21 + ).
It follows that n; = 0, ng = 1, hence f(x) — b(x + o) = —eb(x) + B(x + a).
Consequently,

(1—e)h = /T(b(x +a) - eb(x))dz = /T(B(x) — A&+ a))dz =0,

Therefore F(l’llll'g) = (21 + o, 22 + B(1)) and the skew products F' and T, _,
commute. Let f: M x T — M x T denote by the diffeomorphism
fi=(pxIdr)o fo(px Idp)~L.
Then
flar, 22, 23) = (F(21,22), 23 + 3(21, 22)),
where 4 : M — T is given by 4 = ¥ o p~!'. Therefore there exist ki,ks € Z such
that

F(x1 4+ 1, 29) = F(z1,22) + k1 and F(x1 + a, 29 — b(x1)) = F(21, T2) + ko.
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Moreover,
1 _
—Df"
_ | peFrot ) “(FYept o || DY
i 0 0 1 n~(D(F™))op~t nT 00 1
_ 0 0 0 _ 0 0 0 0 0 00
Dp~!
— 0 0 0 0 = 0 0 0 0 00
| (D op™t 0O 0 0 1 D(op™t) 0 b 0 0
uniformly on M x T, by (3.25) and (3.26). It follows that
1 n—1 _ )
F (’711 (Fk(mth)) +7w2(F (‘Tl 372)) ﬁ(k)@jl)) —b
k=0
and -1 >707 éf‘yxz( *(x1,72)) — 0 uniformly for (z1,72) € M. Consequently,
1 n—1 B B
o Z/ (Yar (F* (1, 22)) + Yo (F* (w1, 22)) DEP (21)) dvy dary — 1,
=0/ M
1 n—1 B _
— Z Vs (F5 (21, 22)) dzy dzg — 0. (3.27)
n oM

We now show that

n—1

_Z/ ’le x17x2))+712(F (xlam2))Dﬁ(k)(‘xl))d‘rldl?_)kli)

This implies 7 = 1 and k; # 0. To prove this, note that
— Z/ Ty (FF (21, 29)) dy dazo

3?1)
// Var (21, T2) do dy
b(x1)
/— / F(x1, 22) dxs | daxy — /Db (21)¥(x1,b(z1)) d2y
0 dl‘l 0

b(1) b(0)
/ 5(1,22) dzs — / (0, 22) dvs — / Db(a) (31 + a,0) — ks) day
0

0

= ]{31 / Db 3?1 1‘1 + a, 0) dx.



510 KRZYSZTOF FRACZEK

Let u : T — R be given by u(x) = (z) — k12. Now observe that

n—1
1 _
I / Son(F* (21, 22)) - DB (1) day dery
N0/ M

1 n—1 1 b(z1)
_Z/ / ’3/932('7)17:1:2) Dﬁ(k)(xl _ka) d.'L'Q d.’I}l
=00 Jo

1 n—1 1
HZ/O (:Y(xhb(xl)) 7;)/(1'1,0))D6(k)(x1 *kOé) dl’l
k=0
1 n—1 1
= n Z/ ((@1 +a,0) = k2 = 3(21,0)) - DAY (21 — ka) dary
k=00
1 n—1 1
= g}j/)Mm+wXDﬂ“@1—mw—Dﬂmul—m%ﬂmdm
k=00

1 n—1 1
= - u(zy + a)(Db(z1) — Db(z1 — ka)) dzy
X,
1 1 1 n—1
= /0 u(xzy + a)Db(x1)dzy — /0 u(zy + a)ﬁ Z Db(z1 — ka) dzy

k=0

1
— / u(zy + a)Db(x1) dzq
0

1 1
= / ¥(z1 + a,0)Db(z1) day — k1/ x1 - Db(x1) da;.
0 0

Moreover, fol z-Db(z) dz = b(1) — [} b(x) dx, which proves the required conclusion.
From (3.27) we have fol blan) 5

0 ey (21, T2)dxodry = 0. However
1 pb(z1)
/ / Ny (X1, T2)dwoday
o Jo

/O (Y1, b)) — (21, 0))dry

1
- / (V1 + a,0) — 3(z1,0) — ky)dey
0
= kla—k2.

It follows that kya = k2, which contradicts the fact that k; # 0 and a is irrational.
Consequently, d;/dy must be rational.

Case 1c(ii). Suppose that (di,ds) = d(l1,l2), where I, 1y are relatively prime
integers. Since K’ € M(q~'Z) and det k' = ¢ = +1, there exist M € GLy(Z) and

m € Z such that
K:M*[l O}M
m/q €
by (3.22). Then there exists an even number r > 0 such that K" € GLy(Z). There-
fore the diffcomorphism F" : R* — R? can be treated as an area—preserving diffeo-
morphism of the torus T?. Let £ : T2 — T be given by &(z1,22) = d~1¢(21, 22). It
follows by (3.21) that

EoF"=&+rafd and  (di(€),d2(€)) = (In, 1) # 0.
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Note that a//d is irrational. Indeed, suppose that a/d = k/I, where k € Z and | € N.
Let = : T3 — C be defined by Z(z1, 29, 73) = exp 2milé (w1, 22). As o F =€+ k/1
we have
E(f(z1,22,23)) = exp 2mil{(F (z1,22)) = E(x1, 22, 3).

By the ergodicity of f , 2 and also ¢ is constant, which is impossible.

By Theorem A.1 (see Appendix A), there is an area—preserving C?—diffeomor-
phism 1 : T? — T2 such that

wfloFTow:TQHTZ
is a skew product and £ o Y(x1,x9) = k1 + ¢, where k € N and ¢ € R. Therefore
D(€ov) =[dk 0]. Let L € GLy(Z) stand for the linear part of 9. Set

0
L:= L 0
0 0 1

€ GLs (Z)

Let us consider the area—preserving C?—isomorphism p : T% — T%,l 4 defined by

p(z1, 22, 3) = (¥~ (21, 22), 73).

Let f : ']I‘%,lA — T%,IA be given by f = pofo p~t. Then

LD]E”

nT

_ (Dyy=Y o F"or 8 n~"(DF™) o 8 Dy 8
i 0 0 1 n~T(D(y™)) oy nT 0 0 1
[0 0 0 0 00 0 [0 0 0

— 00 0 by 00 O0Of|=|0 00
| Déoyp 0 0 0 1 D(€ot) 0 | dk 0 0

uniformly. Let f : T3 — T3 stand for the diffeomorphism f := A~*oLo foL 1o A.
It is easy to see that
1 - 00 0
—Df*— A" L-|0 00 |-L7"A
" d 0 0
uniformly and that f and f are conjugate via the areapreserving C2-diffeomor-
phism A=' o Lopo A: T? — T3. An application of Lemma 3.3 for f proves the
claim.
Case 2. Suppose that g = (h1a’ +heb")E, where @ and b are orthogonal to ¢ and
the determinant of the matrix A=' = [ ¢& @’ b” | equals 1. Let fiT3 - T3
be given by f := Ao fo A=l. Then

0
g=A-(ha" +hd")e- A =1 hy [[1 0 0],
ho
where h;(z) := his(A~'z) for i = 1,2. From (3.13) we get
~ 0 ~ 0/\
hi() | [1 0 0]=]| hi(fz) |[1 0 0]Df(z)
o (2) ha(f)
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for all 7 € T3. Consequently

o o . o . 9
%lfl(f)hi(ﬁ):hi(f), aixzfl(f):ai%fl(f)io and afmfl(f)?éo

for all z € T3 and @ = 1,2. Now observe that le,fzg are linearly dependent.
Indeed, without loss of generality we can assume that hs is AX®3-non-zero. Then
ho(z) # 0 for ae. T € T3, by the ergodicity of f. Therefore the measurable
function ﬁl /fzg : ']I‘?;‘ — R is ffinvariant. Hence there is a real constant ¢ such
that ﬁl(i) = chy (z) for a.e. T € T3, by ergodicity. Consequently, h1 = chg, which
reduces the consideration to Case 1, and the proof is complete. (]

4. 4—dimensional case. In this section we indicate why there is no 4-dimensional
analogue of classifications of area—preserving diffeomorphisms of polynomial growth
of the derivative presented in previous sections. More precisely, we construct an
ergodic area—preserving diffeomorphism of the 4-dimensional torus with linear uni-
form growth of the derivative which is not even metrically isomorphic to any 3—step
skew product, i.e. to any automorphism of T* of the form

(@1, @2, 3, x4) — (1 + o, €122 + B(21), €223 + (@1, X2), €324 + 0(21, T2, 3)),

where ¢; = +1 for ¢ = 1,2,3. Before we pass to the construction we should
mention area—preserving diffeomorphisms of the 2—-torus with a sublinear growth of
the derivative. We say that a C'-diffeomorphism f : T? — T? has sublinear growth
of the derivative if the sequence {D f™/n} tends uniformly to zero.

Suppose that f : T2 — T? is an areapreserving weakly mixing C'*°—diffeomor-
phism with sublinear growth of the derivative. The examples of such diffeomor-
phisms will be given later. Let T}, : T> — T? be an Anzai skew product of an
ergodic rotation Tr = x + « on the circle and a C*°—function ¢ : T — T with
non—zero topological degree.

Theorem 4.1. The product diffeomorphism f x T, : T* — T* is ergodic and has
linear uniform growth of the derivative. Moreover, it is not metrically isomorphic
to any 3—step skew product.

Proof. The former claim of the theorem is obvious. Now suppose, contrary to latter
claim, that fx T, is metrically isomorphic to a 3—step skew product. Then f x T, is
measure theoretically distal (has generalized discrete spectrum in the terminology
of [17]). However, f x T, has a weakly mixing factor, which contradicts the fact that
measure theoretically distal are disjoint from all weakly mixing dynamical systems
(see [7]). O

In the remainder of this section we present two examples of area—preserving
weakly mixing diffeomorphisms with sublinear growth of the derivative.

Given o« € T and f : T — R we denote by T, 3 : T x R — T x R the skew
product T, g(z1,22) = (1 + @, 2 + B(z1)). Let a € T be an irrational number
and let b : T — R be a positive C*°—function. By Lemma 2 in [3] and Theorem
1 in [12], the special flow UZ,b built over the rotation by a and under the function
b is C*°—conjugate to a Hamiltonian C*°-flow ¢! which has no fixed point on
the torus. Therefore there exists a C'*°-diffeomorphism p : M, — T? such that
@' = poal,op ! and there exists C®function ¢ : R* — R such that D¢ is



POLYNOMIAL GROWTH OF THE DERIVATIVE 513

Z2-periodic, non-zero at each point and

)
We will identify p with a diffeomorphism p : R? — R? such that
p(x1+1,22) = p(x1,22) + (N11, N12),
plxr+a,xz2 —b(z1)) = p(x1,22) + (Nag, Nag)
for any (z1,22) € R?, where N € GLy(Z). Then
Dp(zy +1,22) = Dp(zy,32) (4.28)
Dp(T?_ (1, 22)) : | = Dplerz) (4.29)

—Db™ (z) 1
for any integer n.

Let T3 : T xR — T x R be a skew product commuting with T;, _;, where
B:T — Ris of class C*. Then T, g can be treated as a C'*°~diffeomorphism of
Mgyp. Let f: T? — T2 stand for the area—preserving C*°—diffeomorphism f :=
poTypgo p L.

Lemma 4.2. The diffeomorphism f : T? — T? has sublinear growth of the deriva-
tive.

Proof. Since

D) = Doy o™ )| g

it suffices to show that

1 . 1 0

1
pi!

0 1/

uniformly on the set M’ = {(z1,22) : 21 € R,0 < 25 < b(z1)}. Given (71, 22) € R?
let us denote by n(x1,x3) the unique integer such that T(Z(fg’“)(ml, x2) € M, ie.
b@nm2)) (1) < pg < BM@ELE)F) (1), Let ¢, C be positive constants such that
0 <e<blx) <C for every x € T. Then
c|n(zy, 22)| < |z2| < Cln(ay, z2)| + C.
Since
1 1 0
—Dp(T5 (w1, 22)) { DB (z1) 1 }
n(T? 5(z1,x n
= DT, T () x
l 1 0
n | —DbTas@22)) (1) 4 na) + DA (21) 1
(by (4.29)), Dp is bounded on M’ (by (4.28)) and n~'D3" tends uniformly to

zero, it suffices to show that

lDb(n(T;lyﬁ(Iha:z)))(xl + na) =0
n

uniformly on M’. To prove this, observe that

(T, 5(w1,22))] < c Yoy + 5(n)($1)| < k1 + kan,
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for any natural n and every (x1,z2) € M’, where k; = C/c and ks = ||3||co/c. Fix
e > 0. Let ng be a natural number such that |n| > ny implies

1

ﬂHDb(”)HOO <e/2ky and ki 4 kon < 2k

n

for any integer n. Assume that n is a natural number such that n > ||bl|cing/e.

Let (w1,22) € M". If [n(T} 5(z1,22))[[b]lc1 /1 < €, then

(T 5(21, 22))|
n

Otherwise, [n(T} 5(z1,22))| > en/|[bllcr > no. Then

1 n
|5Db(”(Taﬁ(“’“)))(x1 +na)| < [bller <e.

1L Dp™(Ts@e2) () 4 )|
n

In(T7 5(1,22)) 1 DB G|
- n (T3 (1, 22))] ~
]fl + an S
n 2ky &
which completes the proof. O

Proposition 4.3. (see [1]) For every C*—function 8 : T — R with zero mean,
which is not a trigonometric polynomial there exists a dense G5 set of irrational
numbers o € T such that the corresponding skew product To 3 : T xR — T x R is
ergodic.

>From the proof of the Main Theorem in [16] and the nature of the weak mixing
property, we have the following:

Proposition 4.4. For every positive real analytic function b : T — R which is not
a trigonometric polynomial there exists a dense G set of irrational numbers a € T
such that the corresponding special flow Ufz,b is weakly mixing.

FEzample 4.1. Suppose that ofl’b is a weakly mixing special flow whose roof function
is real analytic. Let ' be a Hamiltonian flow on T? which is C°°-conjugate to the
special flow o, ;. Then the area-preserving diffeomorphism ' : T?> — T? is weakly
mixing and has sublinear growth of the derivative, by Lemma 4.2.

FEzample 4.2. By Propositions 4.3 and 4.4, there exist a C*°—function g : T — R
with zero mean and an irrational numbers a € T such that the corresponding skew
product T, 3 : T x R — T x R is ergodic and there is no real r # 0 for which there
exist ¢ € T and a measurable function ¢, : T — T satisfying

cr(z+a) 2@ — c.c(x).

Using a standard construction we can find in the weak closer of {17} 5 : n € Z} a
skew product T}, such that a is an irrational number with a # no for all n € Z
and b; : T — R is a C*°—function. Let us consider the special flow ofw on Mg,
where b = —by + ||b1]|oc + 1. Since Ty, g commutes with T, _;, it can be treated as
a C*°—diffeomorphism of M, ;. Moreover, Ty g : My — M, is ergodic, by the
ergodicity of T,, g : TXR — T xR. It is quite easy to prove that T g : My — May
is also weakly mixing (see [6]). Let ¢! be a Hamiltonian flow on T? which is C>°—
conjugate to the special flow o, ,, via a C*°~diffeomorphism p : M, — T?. Then
the area-preserving C°°~diffeomorphism po T, 5o p~! of T? is weakly mixing and
has sublinear growth of the derivative, by Lemma 4.2.
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Appendix A.

Theorem A.l. Let f: T? — T? be an area—preserving C?—diffeomorphism. Sup-
pose that there exist an irrational number o and a C%—function & : T?> — T such
that

DE(z) # 0 for any T € T2, (A.30)
fof=¢(+a (A.31)

Then there exist an area—preserving C?—diffeomorphism ¢ : T? - T2, k€N, c€ R
and a C%—cocycle o : T — T such that £ o (x1,72) = kxy + ¢ and

1/)71 ° f O'I/J(mlva) = (:El + o, exg + 50(1'1))7
where e =det Df.

Proof. By (A.30), £ is a submersion of T? to T and therefore defines a fibration
with the circle as a fiber. Moreover, the cohomology class defined by the closed
form D¢ is py dxy + pa dzo, where pq, pa are integers such that (pq, p2) # (0,0). By
taking £/ ged(p1, p2) instead of £, we can assume that p; and py are relatively prime.
Let us consider the symplectic vector field X associated to D& by the symplectic
form dx; A dzo. Its orbits are the levels curves of £. Consider now the symplectic
vector field X’ associated to D(€ o f). The fact that f is a canonical change of
coordinates (f preserves the area) implies that the flows of X is conjugate via f
to the flow of X’ (or to the flow reversed in the time). Therefore (A.31) asserts
that the level curves £ 1(c) and €71 (c+ a) are periodic curves of X with the same
period. Consequently, by irrationality of «, one remarks that the level curves of &
all have the same period 7. By taking a closed curve transverse to the foliation,
parametrized by the value of £, and then using the flow of X, one gets a natural
diffeomorphism T x R/7Z > (s,t) — (s, t) € T2 Then ¥*(dr1 A dzz) = ds A dt
and therefore 7 = 1. One deduces then that v satisfies the asked conditions. O

Appendix B. The proofs of the following lemmas are straightforward and can
be found in [6].

Lemma B.1. Let ¢ € R? be a non-zero vector and let h : R2 — R be a continuous
function. Assume that a,b € R3 are linearly independent vectors orthogonal to c.
Suppose that there exists a vector d € R? such that

h(xl + dﬁzT, o + l_)mT) = h(iﬂl, ZQ) + d_ﬁlT

for all m € 73. Then there exist ki,ko € R such_that d = kia + kob and the
function h(xy,x2) = h(z1, 22) — k111 — koo is (am™, bm™)—periodic for all m € Z2.
Moreover,

e if rank G(¢)=0, then h is constant;

e ifrank G(é):l, then there existly,ls € R and a continuous function p : T — R

such that h(xy, x2) = p(lixy + laws) and lya + lob € 73 generates G(€);
o ifrank G(¢)=2, then ¢ € cZ® where ¢ # 0. O

Lemma B.2. Let ¢ € Z3 be a non-zero vector. Then for any pair of generators
a,b € Z? of G(¢) we have A(a,b) = {(am™,bm?) € Z* : m € 73} = Z2. O
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