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DIFFEOMORPHISMS ON TORI
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Abstract. We consider area–preserving zero entropy ergodic diffeomorphisms on
tori. We classify such diffeomorphisms for which the sequence {Dfn} has a polyno-
mial growth on the 3–torus: they are necessary of the form

T
3 � (x1, x2, x3) �→ (x1 + α, εx2 + β(x1), x3 + γ(x1, x2)) ∈ T

3,

where ε = ±1. We also indicate why there is no 4–dimensional analogue of the above
result. Random diffeomorphisms on the 2–torus are studied as well.

1. Introduction. Let M be a compact Riemannian smooth manifold and let µ be
a probability Borel measure on M having full topological support. Let f : (M,µ) →
(M,µ) be a smooth measure–preserving diffeomorphism. An important question
of smooth ergodic theory is the following: whether there is a relation between
asymptotic properties of the sequence {Dfn}n∈N and dynamical properties of the
dynamical system f : (M,µ) → (M,µ). There are results describing a close relation
in the case where M is the torus. For example, if f is homotopic to the identity, the
coordinates of the rotation vector of f are rationally independent and the sequence
{Dfn}n∈N is uniformly bounded, then f is C0–conjugate to an ergodic rotation
(see [8] p.181). Moreover, if {Dfn}n∈N is bounded in the Cr–norm (r ∈ N∪ {∞}),
then f and the ergodic rotation are Cr–conjugated (see [8] p.182). On the other
hand, if {Dfn}n∈N has an “exponential growth”, more precisely if f is an Anosov
diffeomorphism, then f is C0–conjugate to an algebraic automorphism of the torus
(see [11]).

A natural question is what can happen between the above extreme cases? The
aim of this paper is to classify measure–preserving tori diffeomorphisms f for which
the sequence {Dfn}n∈N has polynomial growth. The first definition of polynomial
growth of the derivative was proposed in [4]. In [4], the following result has been
proved.

Proposition 1.1. Let f : T2 → T2 be an ergodic area–preserving C2–diffeomor-
phism. If the sequence {n−τDfn}n∈N converges a.e. (τ > 0) to a nonzero function,
then τ = 1 and f is algebraically (i.e. via a group automorphism) conjugate to the
skew product of an irrational rotation on the circle and a circle cocycle with nonzero
topological degree.
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Moreover, the author in [5] showed that if f : T2 → T2 is an ergodic area–
preserving C3–diffeomorphism for which the sequence {n−1Dfn}n∈N is C0–separa-
ted from 0 and ∞ and it is bounded in the C2–norm, then f is also algebraically
conjugate to the skew product of an irrational rotation on the circle and a circle
cocycle with nonzero topological degree.

We also recall the main result of [13] asserting that if f : T2 → T2 is a homotopic
to the identity symplectic diffeomorphism with a fixed point, then f is equals the
identity map or there exists c > 0 such that

max(‖Dfn‖∞, ‖Df−n‖∞) ≥ cn

for any natural n (see [14] for some generalizations).
In the present paper some versions of Proposition 1.1 are discussed. In Section 2

we consider the random case. In Section 3 we classify area–preserving ergodic C2–
diffeomorphisms of a polynomial uniform growth of the derivative on the 3–torus,
i.e. diffeomorphisms for which the sequence {n−τDfn}n∈N converges uniformly to
a non–zero function. It is shown that if the limit function is of class C1, then τ
is 1 or 2, and the diffeomorphism is C2–conjugate to a 2–step skew product. We
indicate why there is no 4–dimensional analogue of Proposition 1.1 in Section 4.

2. Random diffeomorphism on the 2–torus. Throughout this section we will
consider smooth random dynamical systems over an abstract dynamical system
(Ω,F , P, T ), where (Ω,F , P ) is a Lebesgue space and T : (Ω,F , P ) → (Ω,F , P )
is an ergodic measure–preserving automorphism. We will consider a compact Rie-
mannian C∞–manifold M equipped with its Borel σ–algebra B as a phase space
for smooth random diffeomorphisms. A measurable map f

Z × Ω × M � (n, ω, x) �−→ fn
ω x ∈ M

satisfying for P–a.e. ω ∈ Ω the following conditions
• f0

ω = IdM , fm+n
ω = fm

T nω ◦ fn
ω for all m,n ∈ Z,

• fn
ω : M → M is a smooth function for all n ∈ Z,

is called a smooth random dynamical system (RDS). Of course, the smooth RDS is
generated by the random diffeomorphism fω = f1

ω in the sense that

fn
ω =


fT n−1ω ◦ . . . ◦ fTω ◦ fω for n > 0

IdM for n = 0
f−1

T nω ◦ f−1
T n+1ω ◦ . . . ◦ f−1

T−1ω for n < 0.

Consider the skew–product transformation Tf : (Ω×M,F ⊗B) → (Ω×M,F ⊗B)
induced naturally by f as follows:

Tf (ω, x) = (Tω, fωx).

Then Tn
f (ω, x) = (Tnω, fn

ω x) for all n ∈ Z. We call a probability measure µ on
(Ω × M,F ⊗ B) f–invariant if µ is invariant under Tf and has marginal P on Ω.
Such measures can also be characterized in terms of their disintegrations µω, ω ∈ Ω
by fωµω = µTω P–a.e. A measure µ is said to be ergodic if Tf : (Ω×M,F⊗B, µ) →
(Ω × M,F ⊗B, µ) is ergodic. We say that µ has full support, if supp(µω) = M for
P–a.e. ω ∈ Ω.

In this section we will deal with almost everywhere diffentiable and Cr–random
dynamical systems with polynomial growth of the derivative. Suppose that f :
Z × Ω × M → M is a C0–RDS and µ is an f–invariant measure on Ω × M . The
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RDS f is called µ–almost everywhere diffentiable if for every integer n and for
µ–a.e. (ω, x) ∈ Ω × M there exists the derivative Dfn

ω (x) : TxM → Tfn
ω
M and∫

M

‖Dfn
ω (x)‖n,ω,xdµω(x) < ∞

for every n ∈ Z and P–a.e. ω ∈ Ω, where ‖ · ‖n,ω,x is the operator norm in
L(TxM,Tfn

ω xM).
In the paper we will discuss in details random diffeomorphisms on tori. Let d

be a natural number. By Td we denote the d–dimensional torus {(z1, . . . , zd) ∈
Cd : |z1| = . . . = |zd| = 1} which most often will be treated as the quotient group
Rd/Zd; λ⊗d will denote Lebesgue measure on Td. We will identify functions on Td

with Zd–periodic functions (i.e. periodic of period 1 in each coordinate) on Rd. Let
f : Td → Td be a smooth diffeomorphism. We will identify f with a diffeomorphism
f : Rd → Rd such that

f(x1, . . . , xj + 1, . . . , xd) = f(x1, . . . , xd) + (a1j , . . . , adj)

for every (x1, . . . , xd) ∈ Rd, where A = [aij ]1≤i,j≤d ∈ GLd(Z). We call A the linear
part of the diffeomorphism f . Then there exist smooth functions f̃i : Td → R such
that

fi(x1, . . . , xd) =
d∑

j=1

aijxj + f̃i(x1, . . . , xd),

where fi : Rd → R is the i–th coordinate functions of f for i = 1, . . . , d.

Definition 2.1. We say that a µ–almost everywhere diffentiable RDS f on Td over
(Ω,F , P, T ) has τ–polynomial (τ > 0) growth of the derivative if

1
nτ

Dfn
ω (x) → g(ω, x) for µ–a.e. (ω, x) ∈ Ω × Td,

where g : Ω × Td → Md(R) is µ non–zero, i.e. there exists a set A ∈ F ⊗ B such
that µ(A) > 0 and g(x) �= 0 for all x ∈ A. Moreover, if additionally Dfn belongs
to L1((Ω × Td, µ),Md(R)) for all n ∈ N and the sequence {n−τDfn} converges
in L1((Ω × Td, µ),Md(R)) then we say that f has τ–polynomial L1–growth of the
derivative.

We now give an example of an ergodic RDS on T2 with linear L1–growth of
the derivative. Before we do it let us introduce a standard notation. Let τ :
(X,B, µ) → (X,B, µ) be a measure–preserving ergodic automorphism of a standard
Borel space and let G be a compact metric Abelian group. Then each measurable
map ϕ : X → G determines a measurable cocycle over τ given by

ϕ(n)(x) =


ϕ(x) + ϕ(τx) + . . . + ϕ(τn−1x) for n > 0

e for n = 0
−(ϕ(τnx) + ϕ(τn+1x) + . . . + ϕ(τ−1x)) for n < 0.

which will be identified with the function ϕ. We say that the cocycle ϕ is a cobound-
ary if there exists a measurable map g : X → G such that ϕ = g − g ◦ τ . We call
the cocycle ϕ ergodic if the skew product

τϕ : (X × G,µ ⊗ λG) → (X × G,µ ⊗ λG), τϕ(x, g) = (τx, g + ϕ(x))

is ergodic, where λG is the Haar measure on G.
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Let us consider an almost everywhere diffentiable RDS f on T2 over (Ω,F , P, T )
(called the random Anzai skew product) of the form

fω(x1, x2) = (x1 + α(ω), x2 + ϕ(ω, x1)),

where the skew product Tα : (Ω×T, P ⊗ λ) → (Ω×T, P ⊗ λ), Tα(ω, x) = (Tω, x +
α(ω)) is ergodic and ϕ : Ω×T → T is an absolutely continuous random mapping of
the circle such that Dϕ ∈ L1(Ω × T, P ⊗ λ) and

∫
Ω

d(ϕω)dP (ω) �= 0 (d(ϕω) stands
for the topological degree of ϕω : T → T). Then the product measure P ⊗ λ⊗2 is
f–invariant. The following lemma is a little generalization of Lemma 3 in [9].

Lemma 2.1. The RDS f is ergodic and has linear L1–growth of the derivative.

Proof. First, note that

fn
ω (x1, x2) = (x1 + α(n)(ω), x2 + ϕ(n)(ω, x1))

for all n ∈ N. Therefore

1
n

Dfn
ω (x1, x2) =

[
1/n 0

(1/n)
∑n−1

k=0 Dϕ(T k
α(ω, x1)) 1/n

]
.

By the ergodicity of Tα,

1
n

n−1∑
k=0

Dϕ(T k
α(ω, x)) →

∫
Ω

∫
T

Dϕω(y) dy dP (ω) =
∫

Ω

d(ϕω) dP (ω) �= 0

for P ⊗ λ–a.e. (ω, x) ∈ Ω × T and in the L1–norm, which implies linear L1–growth
of the derivatives of f .

To proof the ergodicity of f , we consider the family of unitary operators {Um :
L2(Ω × T, P ⊗ λ) → L2(Ω × T, P ⊗ λ),m ∈ Z} given by

Umg(ω, x) = e2πimϕ(ω,x)g(Tω, x + α(ω)).

We will show that

〈Un
mg, g〉 =

∫
Ω×T

e2πimϕ(n)(ω,x)g(Tn
α (ω, x))ḡ(ω, x) dP (ω) dx → 0 as n → ∞ (2.1)

for all g ∈ L2(Ω × T, P ⊗ λ) and m ∈ Z \ {0}. Let Λ denote the set of all g ∈
L2(Ω × T, P ⊗ λ) satisfying (2.1). It is easy to check that Λ is a closed linear
subspace of L2(Ω×T, P ⊗λ). Therefore it suffices to show (2.1) for all functions of
the form g(ω, x) = h(ω)e2πikx, where h ∈ L∞(Ω, P ) and k ∈ Z. For such g we have

|〈Un
mg, g〉| = |

∫
Ω

h(Tnω)h̄(ω)e2πikα(n)(ω)(
∫

T

e2πimϕ(n)(ω,x) dx) dP (ω)|

≤ ‖h‖2
L∞

∫
Ω

|
∫

T

e2πimϕ(n)(ω,x) dx| dP (ω).

Let ϕ̃ : Ω×T → R be an absolutely continuous random function such that ϕ(ω, x) =
ϕ̃(ω, x)+d(ϕω)x. Without loss of generality we can assume that

∫
Ω

d(ϕω) dP (ω) =
a > 0. For any natural n let An = {ω ∈ Ω : (d(ϕω))(n)/n > a/2}. By the ergodicity
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of T , P (Ω \ An) → 0 as n → ∞. Applying integration by parts we obtain
1

‖h‖2
L∞

|〈Un
mg, g〉|

≤ P (Ω \ An) +
∫

An

|
∫

T

e2πimϕ̃(n)(ω,x)d
e2πim(d(ϕω))(n) x

2πim(d(ϕω))(n)
| dP (ω)

≤ P (Ω \ An) +
1

π|m|an

∫
An

|
∫

T

e2πim(d(ϕω))(n) xde2πimϕ̃(n)(ω,x)| dP (ω)

≤ P (Ω \ An) +
2

πan

∫
An

|
∫

T

Dϕ̃(n)(ω, x) dx| dP (ω)

≤ P (Ω \ An) +
2
πa

∫
Ω×T

|Dϕ̃(n)(ω, x)/n| dP (ω) dx.

As
∫
Ω×T

Dϕ̃(ω, x) dP (ω)dx = 0, applying the Birkhoff ergodic theorem for Tα we
conclude that

∫
Ω×T

|Dϕ̃(n)(ω, x)/n| dP (ω) dx tends to zero, which proves our claim.
Now suppose, contrary to our assertion, that f is not ergodic. Since the skew

product Tα is ergodic, there exists a measurable function g : Ω × T → T and
m ∈ Z \ {0} such that e2πimϕ(ω,x) = g(ω, x)ḡ(Tα(ω, x)). Then 〈Un

mg, g〉 = 1 for all
n ∈ N, contrary to (2.1).

The aim of this section is to classify Cr–random dynamical systems on the 2–
torus that have polynomial (L1) growth of the derivative and are ergodic with
respect to an invariant measure having full support. We say that two random
dynamical systems f and g on Td over (Ω,F , P, T ) are smoothly conjugate if there
exists a smooth random diffeomorphism h : Ω×Td → Td such that fω◦hω = hTω◦gω

for P–a.e. ω ∈ Ω. If additionally there exists a group automorphism A : Td → Td

such that hω = A for P–a.e. ω ∈ Ω, we say that f and g are algebraically conjugate.
Given a smooth RDS f on T2 over (Ω,F , P, T ) let us denote by ε : Ω → Z2 the
measurable cocycle over the automorphism T : Ω → Ω given by

εω =
{

1 if f preserves orientation,
−1 otherwise.

We will prove the following theorems.

Theorem 2.2. Let f be a Cr–random dynamical system on T2 over (Ω,F , P, T )
(r ≥ 1). Let µ be an f–invariant ergodic measure having full support on Ω × T2.
Suppose that f has τ–polynomial growth of the derivative. Then τ ≥ 1 and f is
algebraically conjugate to a random skew product of the form

f̂ω(x1, x2) = (Fω(x1), x2 + ϕω(x1)),

where F : Ω × T → T is a Cr–random diffeomorphism of the circle. Moreover,
there exist a random homeomorphism of the circle ξ : Ω×T → T and a measurable
function α : Ω → T such that

ξTω ◦ Fω(x) = εωξω(x) + αω P–a.e.

and consequently f is topologically conjugate to the random skew product

T2 � (x1, x2) �−→ (εωx1 + αω, x2 + ϕω ◦ ξ−1
ω (x1)) ∈ T2.

Theorem 2.3. Under the hypothesis of Theorem 2.2, if additionally f has τ–
polynomial L1–growth of the derivative and µ is equivalent to the measure P ⊗ λ⊗2

with dµ/d(P ⊗ λ⊗2), d(P ⊗ λ⊗2)/dµ ∈ L∞(Ω × T2) , then
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• τ = 1,
• there exist a Lipschitz random diffeomorphism of the circle ξ : Ω × T → T

with Dξ,Dξ−1 ∈ L∞(Ω × T, P ⊗ λ) and a measurable function α : Ω → T

such that
ξTω ◦ Fω(x) = ξω(x) + αω P–a.e. and

• ∫
Ω

d(ϕω ◦ ξ−1
ω ) dP (ω) �= 0.

For convenience of the reader the proofs of the above theorems are divided
into a sequence of lemmas. Let f be a Cr–random dynamical system on Td over
(Ω,F , P, T ). Let µ be an f–invariant ergodic measure having full support on Ω×Td.
Suppose that f has τ–polynomial growth of the derivative. Let g : Ω×Td → Md(R)
denote the limit of the sequence {n−τDfn}.
Lemma 2.4. For µ–a.e. (ω, x) ∈ Ω × Td and all n ∈ Z we have

g(ω, x) �= 0, g(ω, x)2 = 0 and (2.2)

g(ω, x) = g(Tnω, fn
ω x)Dfn

ω (x). (2.3)
For µ ⊗ µ–a.e. (ω, x, υ, y) ∈ Ω × Td × Ω × Td we have

g(ω, x) g(υ, y) = 0 and g(ω, x) = Dfυ(y) g(ω, x). (2.4)

Proof. Let A ⊂ Ω × Td be a Tf–invariant subset having full µ–measure such that
(ω, x) ∈ A implies limn→∞ n−τDfn

ω (x) = g(ω, x). Assume that (ω, x) ∈ A. Since(
m + n

m

)τ 1
(m + n)τ

Dfm+n
ω (x) =

1
mτ

Dfm
T nω(fn

ω x)Dfn
ω (x)

and (Tnω, fn
ω x) ∈ A for all m,n ∈ N, letting m → ∞ we obtain

g(ω, x) = g(Tnω, fn
ω x) Dfn

ω (x) for all (ω, x) ∈ A and n ∈ N.

Let B = {(ω, x) ∈ A : g(ω, x) �= 0}. By the above remark, B is Tf–invariant. Since
g is µ non–zero, µ(B) = 1, by the ergodicity of Tf .

By the Jewett–Krieger theorem, we can assume that Ω is a compact metric space,
T : Ω → Ω is a uniquely ergodic homeomorphism and P is the unique T–invariant
measure. Now choose a sequence {Ak}k∈N of measurable subsets of A such that
the functions g,Df : Ak → Md(R) are continuous, all non-empty open subsets of
Ak (in the induced topology) have positive measure and µ(Ak) > 1 − 1/k for any
natural k. Since the transformation (Tf )Ak

: (Ak, µAk
) → (Ak, µAk

) induced by Tf

on Ak is ergodic, for every natural k we can find a measurable subset Bk ⊂ Ak

such that every orbit {(Tf )n
Ak

(ω, x)}n∈N, (ω, x) ∈ Bk, is dense in Ak in the induced
topology and µ(Bk) = µ(Ak).

Assume that (ω, x), (υ, y) ∈ Bk. Then there exists an increasing sequence
{mi}i∈N of natural numbers such that (Tf )mi

Ak
(ω, x) → (υ, y). Hence there exists

an increasing sequence {ni}i∈N of natural numbers such that Tni

f (ω, x) → (υ, y)
and Tni

f (ω, x) ∈ Ak for all i ∈ N. Since g,Df : Ak → Md(R) are continuous,
g(Tniω, fni

ω x) → g(υ, y) and DfT niω(fni
ω x) → g(υ, y). Since

1
nτ

i

g(ω, x) = g(Tniω, fni
ω x)

1
nτ

i

Dfni
ω (x),

letting i → ∞ we obtain g(υ, y) g(ω, x) = 0. Since
1
nτ

i

Dfni+1
ω (x) = DfT niω(fni

ω x)
1
nτ

i

Dfni
ω (x),
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letting i → ∞ we obtain g(ω, x) = Dfυ(y) g(ω, x). Therefore

µ ⊗ µ{(ω, x, υ, y) ∈ Ω × Td × Ω × Td : g(υ, y) g(ω, x) = 0}) >

(
1 − 1

k

)2

,

µ{(ω, x) ∈ Ω × Td : g(ω, x)2 = 0}) > 1 − 1
k

and

µ ⊗ µ{(ω, x, υ, y) ∈ Ω × Td × Ω × Td : g(ω, x) = Dfυ(y) g(ω, x)}) >

(
1 − 1

k

)2

for any natural k, which proves the lemma.

Let us return to case d = 2. Suppose that A,B are non–zero real 2× 2–matrixes
such that A2 = B2 = AB = 0. Then (see Lemma 4 in [4]) there exist real numbers
a, b �= 0 and c such that

A = a

[
c
1

] [
1 −c

]
and B = b

[
c
1

] [
1 −c

]
or

A = a

[
1
0

] [
0 1

]
and B = b

[
1
0

] [
0 1

]
.

It follows that g can be represented as

g = h

[
c
1

] [
1 −c

]
,

where h : Ω × T2 → R is a measurable function which is non–zero at µ–a.e. point
and c ∈ R. We can omit the second case where

g = h

[
1
0

] [
0 1

]
,

because it reduces to case c = 0 after interchanging the coordinates, which is an
algebraic isomorphism. Then by (2.4) we obtain[

c
1

]
= Dfω(x)

[
c
1

]
(2.5)

for P–a.e. ω ∈ Ω and for all x ∈ T2, because µ has full support. From (2.3) we
obtain

h(ω, x)
[

1 −c
]

= h(Tω, fωx)
[

1 −c
]
Dfω(x) (2.6)

for µ–a.e. (ω, x) ∈ Ω × T2.

Lemma 2.5. If c is irrational, then fω(x1, x2) = (x1 + α(ω), x2 + γ(ω)), where
α, γ : Ω → T are measurable functions. Consequently, the sequence n−τDfn tends
uniformly to zero.

Proof. From (2.5) we have

c = c
∂(fω)1
∂x1

+
∂(fω)1
∂x2

and 1 = c
∂(fω)2
∂x1

+
∂(fω)2
∂x2

for P–a.e. ω ∈ Ω. It follows that for i = 1, 2 there exists a Cr+1–random function
ui : Ω × R → R such that

fi(ω, x1, x2) = xi + ui(ω, x1 − cx2).
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Represent f as

f1(ω, x1, x2) = a11(ω)x1 + a12(ω)x2 + f̃1(ω, x1, x2),

f2(ω, x1, x2) = a21(ω)x1 + a22(ω)x2 + f̃2(ω, x1, x2),

where {aij(ω)}i,j=1,2 ∈ GL2(Z) and f̃1, f̃2 : Ω × T2 → R. Then

u1(ω, x + 1) = (a11(ω) − 1)(x + 1) + f̃1(ω, x + 1, 0) = u1(ω, x) + a11(ω) − 1

and

u1(ω, x + c) = (a11(ω) − 1)x − a12(ω) + f̃1(ω, x,−1) = u1(ω, x) − a12(ω).

Therefore a11(ω) − 1 = limx→+∞ u1(ω, x)/x = −a12(ω)/c for µ–a.e. ω ∈ Ω. Since
c is irrational, we conclude that a11(ω) − 1 = a12(ω) = 0, hence that u1(ω, ·) is 1
and c periodic, and finally u1(ω, ·) is a constant for µ–a.e. ω ∈ Ω. It is clear that
the same conclusion can be obtained for u2, which completes the proof.

Lemma 2.6. If c is rational, then there exist a group automorphism A : T2 → T2, a
Cr–random diffeomorphism of the circle F : Ω×T → T and a Cr–random function
ϕ : Ω × T → T such that

A ◦ fω ◦ A−1(x1, x2) = (Fωx1, x2 + ϕω(x1)).

Moreover,

hTω ◦ A−1(Fω(x1), x2 + ϕω(x1)) · DFω(x1) = hω ◦ A−1(x1, x2) (2.7)

for µ̂–a.e. (ω, x1, x2) ∈ Ω × T2, where µ̂ := (IdΩ × A)µ and hω ◦ A−1 : T2 → R

depends only on the first coordinate.

Proof. Let p and q be integers such that q > 0, gcd(p, q) = 1 and c = p/q. Choose
a, b ∈ Z such that ap − bq = 1. Consider the group automorphism A : T2 → T2

associated to the matrix A =
[

q −p
−b a

]
. Then A−1 =

[
a p
b q

]
. Set f̂ω :=

A ◦ fω ◦ A−1. Then µ̂ is an f̂–invariant measure and

Df̂ω(x) = A · (Dfω(A−1x)) · A−1.

>From (2.5) we have [
p
q

]
= Dfω(x)

[
p
q

]
for P–a.e. ω ∈ Ω and all x ∈ T2. Consequently,[

0
1

]
= Df̂ω(x)

[
0
1

]
for P–a.e. ω ∈ Ω and all x ∈ T2. From (2.6) we have

hω(x)
[

q −p
]

= hTω(fωx)
[

q −p
]
Dfω(x)

for µ–a.e. (ω, x) ∈ Ω × T2. Consequently,

hω ◦ A−1(x)
[

1 0
]

= hTω ◦ A−1(f̂ωx)
[

1 0
]
Df̂ω(x)

for µ̂–a.e. (ω, x) ∈ Ω × T2. It follows that ∂(f̂ω)1/∂x2 = 0 and ∂(f̂ω)2/∂x2 = 1 for
P–a.e. ω ∈ Ω and(

hTω ◦ A−1 ◦ f̂ω

)
(x)

∂(f̂ω)1
∂x1

(x) = hω ◦ A−1(x)
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for µ̂–a.e. (ω, x) ∈ Ω × T2. Therefore

f̂ω(x1, x2) = (Fωx1, x2 + ϕω(x1)),

where F,ϕ : Ω × T → T are Cr–random functions and

hTω ◦ A−1(Fω(x1), x2 + ϕω(x1)) · DFω(x1) = hω ◦ A−1(x1, x2)

for µ̂–a.e. (ω, x1, x2) ∈ Ω × T2. Since f̂ω : T2 → T2 is a Cr–diffeomorphism, we
conclude that Fω : T → T is a Cr–diffeomorphism for P–a.e. ω ∈ Ω. Since

1
nτ

Dfn
ω (x) → hω(x)

[
p/q
1

] [
1 −p/q

]
for µ–a.e. (ω, x1, x2) ∈ Ω × T2,

1
nτ

Df̂n
ω (x) → hω(A−1x)/q2

[
0 0
1 0

]
for µ̂–a.e. (ω, x1, x2) ∈ Ω × T2. Set ĥω := hω ◦ A−1. Then

1
nτ

n−1∑
k=0

DϕT kω(F k
ω (x1)) · DF k

ω (x1) → ĥω(x1, x2)/q2

for µ̂–a.e. (ω, x1, x2) ∈ Ω× T2. It follows that ĥω depends only on the first coordi-
nate.

Proof of Theorem 2.2. By Lemmas 2.5 and 2.6, to prove the first claim of the
theorem it is enough to show that τ ≥ 1. Suppose that τ < 1. Let ν := (IdΩ ×π)µ̂,
where π : T2 → T is the projection onto the first coordinate. Then ν is an F–
invariant ergodic measure of full support on Ω × T. By Lemma 2.6,

ĥT kω(F k
ω (x)) · DF k

ω (x) = ĥω(x)

and
1
nτ

n−1∑
k=0

DϕT kω(F k
ω (x)) · DF k

ω (x) → ĥω(x)/q2 (2.8)

for ν–a.e. (ω, x) ∈ Ω × T. Therefore

1
nτ

n−1∑
k=0

DϕT kω(F k
ω (x))/ĥT kω(F k

ω (x)) → 1/q2 (2.9)

and consequently

1
n

n−1∑
k=0

DϕT kω(F k
ω (x))/ĥT kω(F k

ω (x)) → 0

for ν–a.e. (ω, x) ∈ Ω×T. It follows that the measurable cocycle Dϕ/ĥ : Ω×T → R

over the skew product TF is recurrent (see [15]). Consequently, for ν–a.e. (ω, x) ∈
Ω × T there exists an increasing sequence of natural numbers {ni}i∈N such that

|
ni−1∑
k=0

DϕT kω(F k
ω (x))/ĥT kω(F k

ω (x))| ≤ 1.

It follows that
1
nτ

i

ni−1∑
k=0

DϕT kω(F k
ω (x))/ĥT kω(F k

ω (x)) → 0,
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contrary to (2.9).
Now let us decompose νω = νd

ω + νc
ω, where νd

ω is the discrete and νc
ω is the

continuous part of the measure νω. As this decomposition is measurable we can
consider the measures νd =

∫
Ω

νd
ω dP (ω) and νc =

∫
Ω

νc
ω dP (ω) on Ω×T. It is easy

to check that νd and νc are F–invariant. By the ergodicity of ν, either ν = νd or
ν = νc.

We now show that ν = νc. Suppose the contrary, that ν = νd. Let ∆ : Ω×T →
[0, 1] denote the measurable function given by ∆(ω, x) = νω({x}). As ν is F–
invariant we have

∆(Tω, Fωx) = νTω({Fωx}) = F−1
ω νTω({x}) = νω({x}) = ∆(ω, x)

and consequently ∆ is TF –invariant. By the ergodicity of TF , the function ∆ is ν
constant. It follows that the measure νω has only finitely many of atoms for P–a.e.
ω ∈ Ω, which contradicts the fact that ν has full support.

Define ξω(x) :=
∫ x

0
dνω for all x ∈ R. Then ξω(x + 1) = ξω(x) + 1, because∫ x+1

x
dνω = 1. Since νω is continuous and ν has full support, the function ξω :

R → R is continuous and strictly increasing. Therefore ξ : Ω × T → T is a random
homeomorphism. As ν is F–invariant we have

ξTω(Fωx) =
∫ Fωx

0

dνTω =
∫ Fω0

0

dνTω +
∫ Fωx

Fω0

dFωνω

= αω + εω

∫ x

0

dνω = εωξω(x) + αω

for P–a.e. ω ∈ Ω, where αω =
∫ Fω0

0
dνTω. �

Proof of Theorem 2.3. Suppose that f has τ–polynomial L1–growth of the derivative
and µ is equivalent to P ⊗ λ⊗2. Then DF,Dϕ ∈ L1(Ω × T, ν) and µ̂ is equivalent
to P ⊗λ⊗2. Let θ ∈ L1(Ω×T2, P ⊗λ⊗2) denote the Radon–Nikodym derivative of
µ̂ with respect to P ⊗ λ⊗2. Then

εω · θTω(Fω(x1), x2 + ϕω(x1)) · DFω(x1) = θω(x1, x2)

for P ⊗ λ⊗2–a.e. (ω, x1, x2) ∈ Ω×T2. By (2.7), there exists a non–zero constant C

such that θω(x1, x2) = C|ĥω(x1)| for P ⊗ λ⊗2–a.e. (ω, x1, x2) ∈ Ω × T2. Then the
random homeomorphism ξω : T → T given by ξω(x) :=

∫ x

0
dνω =

∫ x

0
θω(t)dt is a

Lipschitz random diffeomorphism, because θ and 1/θ are bounded. It follows that
f is Lipschitz conjugate to the random skew product

(Tα,ε,ψ)ω(x1, x2) = (εωx1 + αω, x2 + ψω(x1)),

where ψω := ϕω ◦ ξ−1
ω . From (2.8) we conclude that Tα,ε,ψ has τ–polynomial L1–

growth of the derivative and

1
nτ

n−1∑
k=0

ε(k)
ω Dψ(T k

α,ε(ω, x)) → h̃ω(x) �= 0 (2.10)

in L1(Ω × T, P ⊗ λ), where

h̃ω(x) = ĥω ◦ ξ−1
ω (x) · Dξ−1

ω (x)/q2 and (Tα,ε)ω(x) = (εωx + αω).

It follows immediately that τ = 1.
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Now suppose that ε is a coboundary over T . Then there exists a measurable
function η : Ω → Z2 such that ε = η/(η ◦ T ) and the random diffeomorphism

Ω × T � (ω, x) �−→ (ω, ηωx) ∈ Ω × T

C∞–conjugates the skew products Tα,ε and T(η◦T )·α,1, which is just our assertion.
Otherwise, the cocycle ε is ergodic over T . Then the cocycle ε : Ω×T → Z2 must

be a coboundary over the automorphism Tα,ε : Ω × T → Ω × T. Indeed, suppose,
contrary to our claim, that the skew product

Ω × T × Z2 � (ω, x, y) �−→ (Tω, εωx + αω, εωy) ∈ Ω × T × Z2

is ergodic. By the Birkhoff ergodic theorem,

1
n

n−1∑
k=0

ε(k)
ω · y · Dψ(T k

α,ε(ω, x)) →
∫

Ω×T×Z2

y′ · Dψ(ω′, t) dP (ω′) dt dλZ2(y
′) = 0

in L1(Ω × T × Z2, P ⊗ λ ⊗ λZ2), contrary to (2.10). Consequently, there exists a
measurable function g : Ω × T → Z2 such that εω g(ω, x) = g(Tω, εωx + αω). It
follows that εω

∫
T

g(ω, t) dt =
∫

T
g(Tω, t) dt. By the ergodicity of ε over T , we have∫

T
g(ω, t)dt = 0. Let G : Ω × T → [−1, 1] be given by Gω(x) :=

∫ x

0
g(ω, t) dt. Then

DGTω(εωx + αω) = g(Tω, εωx + αω) = εωg(ω, x) = εωDGω(x).

Consequently, there exists a measurable function β : Ω → R such that

GTω(εωx + αω) = Gω(x) + βω.

Therefore
∫

T
GTω(t) dt =

∫
T

Gω(t) dt + βω and

G(Tα,ε(ω, x)) −
∫

T

GTω(t) dt = G(ω, x) −
∫

T

Gω(t) dt.

Consequently, G(ω, x) =
∫

T
Gω(t)dt + c, by the ergodicity of Tα,ε. It follows that

0 = DGω(x) = g(ω, x) = ±1 for a.e. (ω, x) ∈ Ω×T, which is impossible. Therefore
ε is a coboundary over T , and the proof is complete. �

3. Area–preserving diffeomorphisms of the 3–torus. In this section we give
a classification of area–preserving ergodic diffeomorphisms of a polynomial uniform
growth of the derivative on the 3–torus. A C1–diffeomorphism f : T3 → T3 has τ–
polynomial uniform growth of the derivative if the sequence {n−τDfn}n∈N converges
uniformly to a non–zero function. We first present a sequence of essential examples
of such diffeomorphisms. We will consider 2–step skew products Tα,β,γ,ε : T3 → T3

given by

Tα,β,γ,ε(x1, x2, x3) = (x1 + α, εx2 + β(x1), x3 + γ(x1, x2)),

where α is irrational, ε = ±1 and β : T → T, γ : T2 → T are of class C1. We will
denote by di(γ) the topological degree of γ with respect to the i-th coordinate for
i = 1, 2. Here and subsequently, hxi

stands for the partial derivative ∂h/∂xi.

Example 3.1. Assume that ε = 1, β is a constant function, α, β, 1 are rationally
independent and (d1(γ), d2(γ)) �= 0. Then

1
n

DTn
α,β,γ,1 →

 0 0 0
0 0 0

d1(γ) d2(γ) 0

 �= 0

uniformly and Tα,β,γ,1 is ergodic, by Lemma 2.1.
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Example 3.2. Assume that ε = 1, d(β) �= 0 and d2(γ) �= 0. By Lemma 2.1, Tα,β,γ,1

is ergodic. Moreover, Tα,β,γ,1 has square uniform growth of the derivative, more
precisely,

1
n2

DTn
α,β,γ,1 →

 0 0 0
0 0 0

d(β)d2(γ)/2 0 0

 �= 0

uniformly.

Example 3.3. Assume that ε = −1, γ depends only on the first coordinate, d(γ) �= 0
and the factor map T2 � (x1, x2) �−→ (x1 + α,−x2 + β(x1)) ∈ T2 is ergodic. Then

1
n

DTn
α,β,γ,−1 →

 0 0 0
0 0 0

d(γ) 0 0

 �= 0

uniformly and Tα,β,γ,−1 is ergodic, by Lemma 2.1.

The main result of this section is the following theorem.

Theorem 3.1. Let f : T3 → T3 be an area–preserving ergodic C2–diffeomorphism
with τ–polynomial uniform growth of the derivative (τ > 0). Suppose that the limit
function limn→∞ n−τDfn is of class C1. Then τ is 1 or 2, and f is C2–conjugate
to a diffeomorphism of the form

T3 � (x1, x2, x3) �−→ (x1 + α, εx2 + β(x1), x3 + γ(x1, x2)) ∈ T3,

where ε = det Df = ±1.

As in the previous section, the proof of the main theorem is divided into several
lemmas. Suppose that f : T3 → T3 is an area–preserving ergodic diffeomorphism
with τ–polynomial growth of the derivative. Assume that the limit of the se-
quence {n−τDfn}n∈N, denoted by g : T3 → M3(R), is of class C1. By Lemma 2.4,
g(x̄) g(ȳ) = 0 and g(x̄)2 = 0 for all x̄, ȳ ∈ T3.

Lemma 3.2. Suppose that A,B are non–zero real 3 × 3–matrixes such that A2 =
B2 = AB = BA = 0. Then there exist three non–zero vectors (real 1× 3–matrixes)
ā, b̄, c̄ such that

• A = āT b̄ and B = āT c̄, where b̄ āT = 0 and c̄ āT = 0 or
• A = āT c̄ and B = b̄T c̄, where c̄ āT = 0 and c̄ b̄T = 0.

Proof. Suppose that x̄ ∈ C3 is an eigenvector of A with the eigenvalue λ ∈ C. Then
λ2x̄ = A2x̄ = 0 and consequently λ = 0. It follows that the Jordan canonical form
of A equals either  0 0 0

1 0 0
0 0 0

 or

 0 0 0
1 0 0
0 1 0

 .

But the latter case can not occur because the square of the latter matrix is non–zero.
It follows that there exists C ∈ GL3(R) such that

A = C

 0 0 0
1 0 0
0 0 0

C−1 =

 c12

c22

c32

 [
c−1
11 c−1

12 c−1
13

]
.

Therefore we can find non–zero real 1× 3–matrixes ā1, ā2 such that A = āT
1 ā2. As

A2 = 0 we have ā1 ⊥ ā2. Similarly, we can find non–zero real 1× 3–matrixes b̄1, b̄2

such that B = b̄T
1 b̄2 and b̄1 ⊥ b̄2. Let ō ∈ R3 be a non–zero vector orthogonal to
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both ā1 and ā2. As AB = BA = 0 we have ā1 ⊥ b̄2 and ā2 ⊥ b̄1. It follows that
there exists a real matrix [dij ]i,j=1,2 such that

b̄1 = d11ā1 + d12ō and b̄2 = d21ā2 + d22ō.

Then 0 = 〈b̄1, b̄2〉 = d12d22‖ō‖2. If d12 = 0, then d11 �= 0 and we put ā := ā1,
b̄ := ā2, c̄ := d11b̄2. Then āT b̄ = A and āT c̄ = B. If d22 = 0, then d21 �= 0 and we
put ā := ā1/d21, b̄ := b̄1, c̄ := b̄2. Then āT c̄ = A and b̄T c̄ = B, which completes
the proof.

By the above lemma, there exists c̄ ∈ R3 such that for any two linearly inde-
pendent vectors ā, b̄ ∈ R3 orthogonal to c̄ there exist C1–functions h1, h2 : T3 → R

such that g(x̄) equals

c̄T (h1(x̄)ā + h2(x̄)b̄) or (h1(x̄)ā + h2(x̄)b̄)T c̄

for all x̄ ∈ T3. We first treat the special case of Theorem 3.1 where the limit
function g is constant.

Lemma 3.3. Let f : T3 → T3 be an area–preserving ergodic C1–diffeomorphism
with τ–polynomial uniform growth of the derivative (τ > 0). Suppose that the limit
function g = limn→∞ n−τDfn is constant. Then τ is 1 or 2, and f is algebraically
conjugate to a diffeomorphism of the form

T3 � (x1, x2, x3) �−→ (x1 + α, εx2 + β(x1), x3 + γ(x1, x2)) ∈ T3,

where ε = det Df = ±1.

Before we pass to the proof we introduce some notation. Let A ∈ GL3(R).
Denote by T3

A the quotient group R3/(Z3AT ), which is a model of the 3–torus as
well. Then the map

A : T3 → T3
A, Ax̄ = x̄AT

establishes a smooth isomorphism between T3 and T3
A. Suppose that ξ : T3

A → T3
A

is a diffeomorphism. Then A−1 ◦ ξ ◦ A is a diffeomorphism of the torus T3. Let
N ∈ GL3(Z) be its linear part. Then

ξ(x̄ + m̄AT ) = ξ(x̄) + m̄NT AT

for all m̄ ∈ Z3. Moreover, we can write

ξ(x̄) = x̄(ANA−1)T + ξ̃(x̄)

and ANA−1 (resp. ξ̃) we will be called the A–linear (resp. the A–periodic) part of
ξ. The name A–periodic is justified by ξ̃(x̄ + m̄AT ) = ξ̃(x̄) for all m̄ ∈ Z3.

Suppose that f : T3 → T3 is a smooth diffeomorphism with τ–polynomial
uniform growth of the derivative and g : T3 → M3(R) is the limit of the se-
quence {n−τDfn}n∈N. Let us consider the diffeomorphism f̂ : T3

A → T3
A given by

f̂ := A ◦ f ◦ A−1. Then
1
nτ

Df̂n(x̄) =
1
nτ

A · (Dfn(A−1x̄)) · A−1 → A · g(A−1x̄) · A−1 (3.11)

uniformly on T3
A. Let us denote by ĝ : T3

A → M3(R) the function ĝ(x̄) := A ·
g(A−1x̄) · A−1. Lemma 2.4 now gives

g(x̄) = g(fx̄) · Df(x̄) and g(ȳ) = Df(x̄) · g(ȳ) (3.12)

for all x̄, ȳ ∈ T3, and consequently

ĝ(x̄) = ĝ(f̂ x̄) · Df̂(x̄) and ĝ(ȳ) = Df̂(x̄) · ĝ(ȳ) (3.13)
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for all x̄, ȳ ∈ T3
A.

Throughout this paper we denote by G(c̄) the subgroup of all m̄ ∈ Z3 such that
m̄ ⊥ c̄. Of course, if c̄ ∈ R3 \ {0}, then the rank of G(c̄) can be equal 0, 1 or 2. The
reader can find further useful properties of the group G(c̄) in Appendix B.

Suppose that f : T3 → T3 is an area–preserving ergodic C1–diffeomorphism with
τ–polynomial uniform growth of the derivative and the limit function g is constant.
By Lemma 3.2, there exist mutually orthogonal vectors ā, c̄ ∈ R3 such that g = c̄T ā.

Lemma 3.4. Let f : T3 → T3 be an area–preserving C1–diffeomorphism. Suppose
that f preserves orientation, has τ–polynomial uniform growth of the derivative and
the limit function g = limn→∞ n−τDfn equals c̄T ā, where ā ⊥ c̄. Then the rank of
G(ā) equals 2. Moreover, τ equals either 1 or 2.

Proof. Let b̄ ∈ R3 be a vector orthogonal to both ā and c̄ such that det(A) = 1,
where

A =

 ā
b̄
c̄

 .

Consider f̂ : T3
A → T3

A given by f̂ := A ◦ f ◦ A−1. Then

ĝ = A · c̄T ā · A−1 =

 0
0
1

 [
1 0 0

]
.

>From (3.13) we obtain

[
1 0 0

]
=

[
1 0 0

]
Df̂ and

 0
0
1

 = Df̂

 0
0
1

 .

Consequently,

∂

∂x1
f̂1(x̄) = 1,

∂

∂x2
f̂1(x̄) = 0,

∂

∂x3
f̂1(x̄) = 0,

∂

∂x3
f̂1(x̄) = 0,

∂

∂x3
f̂2(x̄) = 0,

∂

∂x3
f̂3(x̄) = 1

for all x̄ ∈ T3
A. It follows that

f̂(x1, x2, x3) = (x1 + α, x2 + β(x1), x3 + γ(x1, x2)),

where β : R → R, γ : R2 → R are C1–functions. Let N ∈ GL3(Z) stand for the
linear part of f . Then the A–linear part of f̂ equals

ANA−1 =

 1 0 0
K21 1 0
K31 K32 1

 .

It follows that

āN = ā (3.14)
b̄N = K21ā + b̄ (3.15)
c̄N = K31ā + K32b̄ + c̄. (3.16)



POLYNOMIAL GROWTH OF THE DERIVATIVE 503

Let f̃ : T3 → R3 stand for the periodic part of f , i.e. f(x̄) = x̄NT + f̃(x̄). Then

fn(x̄) = x̄(Nn)T +
n−1∑
k=0

f̃(fkx̄)(Nn−1−k)T .

Since
∫

T3 D(f̃ ◦ fk)(x̄) dx̄ = 0 for all natural k,

1
nτ

Nn =
1
nτ

∫
T3

Dfn(x̄)dx̄ → g. (3.17)

It follows that

1
nτ

 1 0 0
K21 1 0
K31 K32 1

n

→ ĝ =

 0 0 0
0 0 0
1 0 0

 . (3.18)

Suppose, contrary to our claim, that rank G(ā) < 2.
First, suppose that rank G(ā) = 0. From (3.14) we have N = Id. Consequently,

n−τNn tends to zero, contrary to (3.17).
Now suppose that rank G(ā) = 1. Let m̄ ∈ Z3 be a generator of G(ā). Then

there exists a vector r̄ ∈ Q3 such that N − Id = m̄T r̄, by (3.14). From (3.15) we
have

b̄ m̄T r̄ = b̄(N − Id) = K21ā.

Suppose that K21 �= 0. Then rank G(ā) = rank G(r̄) = 2, which contradicts our
assumption. Consequently, K21 = 0. It follows that 1 0 0

K21 1 0
K31 K32 1

n

=

 1 0 0
0 1 0

nK31 nK32 1

 .

>From (3.18) it follows that τ = 1 and K31 = 1,K32 = 0. Then

c̄ m̄T r̄ = c̄(N − Id) = ā,

by (3.16). It follows that rank G(ā) = rank G(r̄) = 2, which contradicts our
assumption.

Finally, we have to prove that τ equals either 1 or 2. >From (3.18) we obtain

n1−τK21 → 0, n1−τK31 +
1 − 1/n

2
n2−τK21K32 → 1, n1−τK32 → 0.

If K21 = 0, then τ = 1 and K31 = 1. Otherwise, τ = 2 and K21K32 = 2, which
completes the proof.

Proof of Lemma 3.3. First, notice that f2 preserves area and orientation, and
n−τDf2n tends uniformly to 2τ c̄T ā. By Lemma 3.4, rank G(ā) = 2. It follows that
ā = am̄ ∈ aZ3, by Lemma B.1 (see Appendix B). Now choose n̄, k̄ ∈ Z3 such that
the determinant of

A :=

 m̄
n̄
k̄


equals 1. Let us consider the diffeomorphism f̂ : T3 → T3 given by f̂ := A◦f ◦A−1.
Then

ĝ = A · g · A−1 = a

 0
n̄c̄T

k̄c̄T

 [
1 0 0

]
.
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>From (3.13) we have

[
1 0 0

]
Df̂(x̄) =

[
1 0 0

]
and

 0
n̄c̄T

k̄c̄T

 = Df̂(x̄)

 0
n̄c̄T

k̄c̄T

 .

It follows that
f̂(x1, x2, x3) = (x1 + α,ϕx1(x2, x3)),

where ϕ : T × T2 → T2 is an area–preserving random diffeomorphism over the
rotation by an irrational number α. Then[

n̄c̄T

k̄c̄T

]
= Dϕx1(x2, x3)

[
n̄c̄T

k̄c̄T

]
for all (x1, x2, x3) ∈ T3

Suppose that n̄c̄T and k̄c̄T are rationally independent. Then by Lemma 2.5,
ϕx1(x2, x3) = (x2 +β(x1), x3 + γ(x1)), where β, γ : T → T are C1–functions, which
is our claim.

Otherwise, by Lemma 2.6, there exist a group automorphism B : T2 → T2 and
C1–functions β : T → T, γ : T2 → T such that

B ◦ ϕx1 ◦ B−1(x2, x3) = (εx2 + β(x1), x3 + γ(x1, x2)),

where ε = det Df , which proves the claim. �
Proof of Theorem 3.1. is divided into a few cases.

Case 1. Suppose that g = c̄T (h1ā+h2b̄), where ā and b̄ are orthogonal to c̄ and
the matrix

A =

 ā
b̄
c̄


is nonsingular. Let f̂ : T3

A → T3
A be given by f̂ := A ◦ f ◦ A−1. Then

ĝ = A · c̄T (ĥ1ā + ĥ2b̄) · A−1 =

 0
0
1

 [
ĥ1 ĥ2 0

]
,

where ĥi(x̄) := hi(A−1x̄) for i = 1, 2. From (3.13) we obtain[
ĥ1(x̄) ĥ2(x̄) 0

]
=

[
ĥ1(f̂ x̄) ĥ2(f̂ x̄) 0

]
Df̂(x̄), (3.19) 0

0
1

 = Df̂(x̄)

 0
0
1


for all x̄ ∈ T3

A. Consequently, ∂f̂1(x̄)/∂x3 = 0, ∂f̂2(x̄)/∂x3 = 0 and ∂f̂3(x̄)/∂x3 = 1
for all x̄ ∈ T3

A. It follows that

f̂(x1, x2, x3) = (F (x1, x2), x3 + γ(x1, x2)),

where γ : R2 → R is a smooth function and F : R2 → R2 is the diffeomorphism
given by F (x1, x2) = (f̂1(x1, x2), f̂2(x1, x2)). Let K stand for the A–linear part
of f̂ , K = AN A−1, where N ∈ GL3(Z) is the linear part of f . Then det K =
det N = ε′ = ±1 and K13 = 0,K23 = 0,K33 = 1. Moreover, there exist C2–
functions F̃ : R2 → R2, γ̃ : R2 → R which are (ām̄T , b̄m̄T )–periodic for all m̄ ∈ Z3

such that

F (x̄) = F̃ (x̄) + x̄K ′T and γ(x1, x2) = γ̃(x1, x2) + K31x1 + K32x2,
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where K ′ = K|{1,2}×{1,2} ∈ GL2(R) and det K ′ = ε′. From (3.11) we have

1
nτ

DFn(x1, x2) → 0 and
1
nτ

n−1∑
k=0

D(γ ◦ F k)(x1, x2) →
[
ĥ1(x̄) ĥ2(x̄)

]
uniformly on T3

A. Therefore ĥ1, ĥ2 depend only on the first two coordinates. Let
H : R2 → R2 be given by H(x1, x2) =

[
ĥ1(x1, x2, 0) ĥ2(x1, x2, 0)

]
. Then H is

(ām̄T , b̄m̄T )–periodic for all m̄ ∈ Z3 and is of class C1. From (3.19) we have

H(F x̄) · DF (x̄) = H(x̄) (3.20)

for all x̄ ∈ R2. Set χn := n−τ
∑n−1

k=0 γ ◦ F k. Since Dχn → H uniformly on R2,
χn(x1, x2)−χn(x1, 0) → ∫ x2

0
H2(x1, t) dt, χn(x1, x2)−χn(0, x2) →

∫ x1

0
H1(t, x2) dt

for all (x1, x2) ∈ R2. Let ξ : R2 → R be defined by

ξ(x1, x2) := lim
n→∞(χn(x1, x2) − χn(0, 0)) =

∫ x1

0

H1(t, x2) dt +
∫ x2

0

H2(0, t) dt

=
∫ x2

0

H2(x1, t) dt +
∫ x1

0

H1(t, 0) dt.

Then ∂ξ/∂x1 = H1, ∂ξ/∂x2 = H2 and ξ is of class C2. By (3.20), there exists
α ∈ R such that

ξ(F x̄) = ξ(x̄) + α. (3.21)
By Lemma B.1 (see Appendix B), there exists a C2–function ξ̃ : R2 → R which is
(ām̄T , b̄m̄T )–periodic for all m̄ ∈ Z3 and d1, d2 ∈ R such that ξ(x1, x2) = ξ̃(x1, x2)+
d1x1 + d2x2. Since H �= 0, it is easy to see that (d1, d2) �= (0, 0). Moreover, from
(3.21) we have

[ d1 d2 ] K ′ = [ d1 d2 ] (3.22)
and

ξ̃(x̄) + α (3.23)

= ξ̃(F̃1(x̄) + K11x1 + K12x2, F̃2(x̄) + K21x1 + K22x2) + d1F̃1(x̄) + d2F̃2(x̄).

Case 1a. Suppose that rank G(c̄) = 0. By Lemma B.1, Df̂ is constant. It
follows that Df and g are constant. Therefore g = c̄T ā, where ā is orthogonal
to c̄. From (3.12) we obtain c̄T = Df(x̄) c̄T for all x̄ ∈ T3. As G(c̄) = {0} and
Df(x̄) ∈ GL3(Z) we have Df(x) =Id for all x̄ ∈ T3. Consequently, f is a rotation
on the 3–torus, which is impossible.

Case 1b. Suppose that rank G(c̄) = 1. By Lemma B.1, there exist real numbers
l1, l2 such that m̄ = l1ā + l2b̄ generates G(c̄) and C2–functions F̄ : T → R2,
ξ̄ : T → R, γ̄ : T → R such that

F̃ (x1, x2) = F̄ (l1x1+l2x2), ξ̃(x1, x2) = ξ̄(l1x1+l2x2) and γ̃(x1, x2) = γ̄(l1x1+l2x2).

From (3.23) we obtain

ξ̄(l1x1 + l2x2) + α = ξ̄(l1F̄1(l1x1 + l2x2) + l2F̄2(l1x1 + l2x2) + s1x1 + s2x2)
+d1F̄1(l1x1 + l2x2) + d2F̄2(l1x1 + l2x2),

where [ s1 s2 ] = [ l1 l2 ] K ′. If (s1, s2) and (l1, l2) are linearly independent, then ξ̄ is
constant. It follows that H is constant which reduces the problem to Lemma 3.3.
Otherwise, there exists a real number s such that (s1, s2) = s(l1, l2) and

ξ̄(x) + α = ξ̄(l1F̄1(x) + l2F̄2(x) + sx) + d1F̄1(x) + d2F̄2(x)
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for any real x. Since f preserves area det DF (x̄) = ε = ±1 for all x̄ ∈ T3. It follows
that

ε = det
[

l1DF̄1(x) + K11 l2DF̄1(x) + K12

l1DF̄2(x) + K21 l2DF̄2(x) + K22

]
= (l1K22 − l2K21)DF̄1(x) + (−l1K12 + l2K11)DF̄2(x) + det K

= (l1DF̄1(x) + l2DF̄2(x)) det K/s + det K

for any real x. Since F̄1, F̄2 are 1–periodic, we have l1DF̄1(x) + l2DF̄2(x) = 0
and det K = ε. Therefore the function l1F̄1 + l2F̄2 is constant. Let us choose real
numbers r1, r2 such that the determinant of the matrix

L =

 l1 l2 0
r1 r2 0
0 0 1


equals 1. Now consider the diffeomorphism f̌ : T3

LA → T3
LA given by f̌ = L◦f̂ ◦L−1.

Then

f̌(x1, x2, x3) = (sx1+α, ε/sx2+rx1+r1F̄1(x1)+r2F̄2(x1), x3+γ̄(x1)+p1x1+p2x2).

As ∂f̌n
1 /∂x1 = sn and ∂f̌n

2 /∂x2 = (ε/s)n we obtain s = ±1, because f̌ has polyno-
mial uniform growth of the derivative. Moreover,

LA =

 m̄
r1ā + r2b̄

c̄


and L ◦ A ◦ f = f̌ ◦ L ◦ A. Therefore f(x̄) m̄T = s x̄ m̄T + α. Observe that s = 1.
Indeed, suppose, contrary to our claim, that s = −1. Consider the smooth function
κ : T3 → C given by κ(x̄) = e2πix̄m̄T

. Then κ ◦ f2 = κ. Since κ is smooth, we
conclude that it is constant, by the ergodicity of f . Consequently, m̄ = 0, which is
impossible. Now choose n̄, k̄ ∈ Z3 such that the determinant of

A :=

 m̄
n̄
k̄


equals 1. Let us consider the diffeomorphism f̂ : T3 → T3 given by f̂ := A◦f ◦A−1.
From (3.13) we have  0

n̄c̄T

k̄c̄T

 = Df̂(x̄)

 0
n̄c̄T

k̄c̄T

 .

Moreover,

f̂1(x̄) = f(x̄(A−1)T )m̄T = x̄(A−1)T m̄T + α = x1 + α.

Our claim now follows by the same arguments as in the proof of Lemma 3.3.
Case 1c. Suppose that rank G(c̄) = 2. Then we can assume that ā, b̄, c̄ ∈ Z3

and ā, b̄ generates G(c̄). Set q = det A ∈ N. Then the A–linear part of f̂ (which is
equal K = AN A−1) belongs to M3(q−1Z). Moreover, the functions F̃ : R2 → R2,
γ̃ : R2 → R and ξ̃ : R2 → R are Z2–periodic, by Lemma B.2 (see Appendix B).
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Case 1c(i). Suppose that d1/d2 is irrational. From (3.22) we obtain K ′ =[
1 0
0 1

]
. Set

L :=

 1/q 0 0
0 1/q 0
0 0 1

 .

Consider the diffeomorphism f̌ : T3
LA → T3

LA given by f̌ = L ◦ f̂ ◦ L−1. Then

f̌(x1, x2, x3) = (F̌ (x1, x2), x3 + γ̌(x1, x2)),

where F̌ (x1, x2) = q−1F (qx1, qx2) and γ̌(x1, x2) = γ(qx1, qx2). Then

F̌ (x̄ + m̄) − F̌ (x̄) = m̄ and γ̌(x̄ + m̄) − γ̌(x̄) = qK31m1 + qK32m2 ∈ Z

for all m̄ ∈ Z2. Therefore, f̌ can also be treated as a diffeomorphism of the torus
T3. Let ξ̌(x1, x2) = ξ(qx1, qx2). Then

ξ̌ ◦ F̌ = ξ̌ + α, (3.24)

Dξ̌ : R2 → R is Z2–periodic and non–zero at each point. Moreover, f̌ : T3 → T3

has τ–polynomial uniform growth of the derivative. More precisely,

1
nτ

Df̌n →
 0 0 0

0 0 0
Dξ̌ 0

 (3.25)

uniformly.
Let us denote by ϕt the Hamiltonian C2–flow on T2 defined by the Hamiltonian

equation
d

dt
ϕt(x̄) =

[
ξ̌x2(ϕ

t(x̄))
−ξ̌x1(ϕ

t(x̄))

]
.

Since ϕt has no fixed point and
∫

T2 ξ̌x1(x̄)dx̄/
∫

T2 ξ̌x2(x̄)dx̄ = d1/d2 is irrational, it
follows that ϕt is C2–conjugate to the special flow constructed over the rotation by
an irrational number a and under a positive C2–function b : T → R, (see for instance
[2, Ch. 16]) i.e. there exists an area–preserving C2–diffeomorphism ρ : R2 → R2

and a matrix N ∈ GL2(Z) such that

det Dρ ≡ −b̂ = −
∫

T

b(x) dx, σt ◦ ρ = ρ ◦ ϕt,

where σt(x1, x2) = (x1, x2 + t) and

ρ(x̄ + m̄) = (ρ1(x̄) + (m̄N)1 + (m̄N)2a, ρ2(x̄) − b((m̄N)2)(ρ1(x̄)))

for all m̄ ∈ Z2. Let Ta,−b : T × R → T × R denote by the skew product given
by Ta,−b(x1, x2) = (x1 + a, x2 − b(x1)). Let us consider the quotient space M =
Ma,b = T × R/ ∼, where the relation ∼ is defined by (x1, x2) ∼ (y1, y2) if and only
if (x1, x2) = T k

a,−b(y1, y2) for an integer k. Then the quotient flow σt
a,b of the action

σt modulo the relation ∼ is the special flow constructed over the rotation by a and
under the function b. Moreover, ρ : T2 → M conjugates flows ϕt and σt

a,b. Let
F̄ : M → M stand for the C2–diffeomorphism F̄ := ρ ◦ F̌ ◦ ρ−1. Since the map
R � t �−→ ξ̌(ϕtx̄) ∈ R is constant for each x̄ ∈ R2 we see that the map

R � t �−→ ξ̌ ◦ ρ−1(σt(x1, x2)) = ξ̌ ◦ ρ−1(x1, x2 + t) ∈ R
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is constant for each (x1, x2) ∈ R2. It follows that the function ξ̌ ◦ ρ−1 : R2 → R

depends only on the first coordinate. Moreover,

Dρ−1(x̄)
[

0
1

]
=

d

dt
ρ−1 ◦ σt(x̄)|t=0 =

d

dt
ϕt ◦ ρ−1(x̄)|t=0

=
[

ξ̌x2(ρ
−1(x̄))

−ξ̌x1(ρ
−1(x̄))

]
.

Consequently, ∂ρ−1
1 /∂x2 = (∂ξ̌/∂x2) ◦ ρ−1 and ∂ρ−1

2 /∂x2 = −(∂ξ̌/∂x1) ◦ ρ−1. It
follows that

d

dx1
(ξ̌ ◦ ρ−1) =

∂ξ̌

∂x1
◦ ρ−1 · ∂ρ−1

1

∂x1
+

∂ξ̌

∂x2
◦ ρ−1 · ∂ρ−1

2

∂x1
= −det Dρ−1 = b̂−1.

Therefore
ξ̌ ◦ ρ−1(x1, x2) = b̂−1δx1 + c. (3.26)

We see by (3.24) that ξ̌◦ρ−1◦F̄ = ξ̌◦ρ−1+α and consequently F̄1(x1, x2) = x1+b̂α.
For abbreviation, we will write α instead of b̂α. Since F̄ : R2 → R2 preserves area,
we conclude that

F̄ (x1, x2) = (x1 + α, εx2 + β(x1)),

where β : R → R is a C2–function and ε = det DF̄ = ±1. As F̄ is a diffeomorphism
of M , there exist m1,m2 ∈ Z such that

(x1 + 1 + α, εx2 + β(x1 + 1))
= F̄ (x1 + 1, x2) = Tm2

a,−bF̄ (x1, x2) + (m1, 0)

= (x1 + α + m1 + m2a, εx2 + β(x1) − b(m2)(x1 + α)).

It follows that m1 = 1, m2 = 0, hence β : T → R. Moreover, there exist n1, n2 ∈ Z

such that

(x1 + a + α, εx2 − εb(x1) + β(x1 + a))
= F̄ ◦ Ta,−b(x1, x2) = Tn2

a,−bF̄ (x1, x2) + (n1, 0)

= (x1 + α + n1 + n2a, εx2 + β(x1) − b(n2)(x1 + α)).

It follows that n1 = 0, n2 = 1, hence β(x) − b(x + α) = −εb(x) + β(x + a).
Consequently,

(1 − ε)b̂ =
∫

T

(b(x + α) − εb(x))dx =
∫

T

(β(x) − β(x + a))dx = 0.

Therefore F̄ (x1, x2) = (x1 + α, x2 + β(x1)) and the skew products F̄ and Ta,−b

commute. Let f̄ : M × T → M × T denote by the diffeomorphism

f̄ := (ρ × IdT) ◦ f̌ ◦ (ρ × IdT)−1.

Then
f̄(x1, x2, x3) = (F̄ (x1, x2), x3 + γ̄(x1, x2)),

where γ̄ : M → T is given by γ̄ = γ̌ ◦ ρ−1. Therefore there exist k1, k2 ∈ Z such
that

γ̄(x1 + 1, x2) = γ̄(x1, x2) + k1 and γ̄(x1 + a, x2 − b(x1)) = γ̄(x1, x2) + k2.
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Moreover,

1
nτ

Df̄n

=

 (Dρ) ◦ F̌n ◦ ρ−1 0
0

0 0 1

  n−τ (DF̌n) ◦ ρ−1 0
0

n−τ (D(γ̌(n))) ◦ ρ−1 n−τ

 D(ρ−1)
0
0

0 0 1


→

 0 0 0
0 0 0

(Dξ̌) ◦ ρ−1 0

 Dρ−1 0
0

0 0 1

 =

 0 0 0
0 0 0

D(ξ̌ ◦ ρ−1) 0

 =

 0 0 0
0 0 0
b̂ 0 0


uniformly on M × T, by (3.25) and (3.26). It follows that

1
nτ

n−1∑
k=0

(γ̄x1(F̄
k(x1, x2)) + γ̄x2(F̄

k(x1, x2)) · Dβ(k)(x1)) → b̂

and 1
nτ

∑n−1
k=0 γ̄x2(F̄

k(x1, x2)) → 0 uniformly for (x1, x2) ∈ M . Consequently,

1
nτ

n−1∑
k=0

∫
M

(γ̄x1(F̄
k(x1, x2)) + γ̄x2(F̄

k(x1, x2)) Dβ(k)(x1)) dx1 dx2 → 1,

1
nτ

n−1∑
k=0

∫
M

γ̄x2(F̄
k(x1, x2)) dx1 dx2 → 0. (3.27)

We now show that

1
n

n−1∑
k=0

∫
M

(γ̄x1(F̄
k(x1, x2)) + γ̄x2(F̄

k(x1, x2)) · Dβ(k)(x1))dx1dx2 → k1b̂.

This implies τ = 1 and k1 �= 0. To prove this, note that

1
n

n−1∑
k=0

∫
M

γ̄x1(F̄
k(x1, x2)) dx1 dx2

=
∫ 1

0

∫ b(x1)

0

γ̄x1(x1, x2) dx2 dx1

=
∫ 1

0

d

dx1

(∫ b(x1)

0

γ̄(x1, x2) dx2

)
dx1 −

∫ 1

0

Db(x1)γ̄(x1, b(x1)) dx1

=
∫ b(1)

0

γ̄(1, x2) dx2 −
∫ b(0)

0

γ̄(0, x2) dx2 −
∫ 1

0

Db(x1)(γ̄(x1 + a, 0) − k2) dx1

= b(0)k1 −
∫ 1

0

Db(x1)γ̄(x1 + a, 0) dx1.
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Let u : T → R be given by u(x) = γ̄(x) − k1x. Now observe that

1
n

n−1∑
k=0

∫
M

γ̄x2(F̄
k(x1, x2)) · Dβ(k)(x1) dx1 dx2

=
1
n

n−1∑
k=0

∫ 1

0

∫ b(x1)

0

γ̄x2(x1, x2) · Dβ(k)(x1 − kα) dx2 dx1

=
1
n

n−1∑
k=0

∫ 1

0

(γ̄(x1, b(x1)) − γ̄(x1, 0)) · Dβ(k)(x1 − kα) dx1

=
1
n

n−1∑
k=0

∫ 1

0

(γ̄(x1 + a, 0) − k2 − γ̄(x1, 0)) · Dβ(k)(x1 − kα) dx1

=
1
n

n−1∑
k=0

∫ 1

0

u(x1 + a)(Dβ(k)(x1 − kα) − Dβ(k)(x1 − kα + a)) dx1

=
1
n

n−1∑
k=0

∫ 1

0

u(x1 + a)(Db(x1) − Db(x1 − kα)) dx1

=
∫ 1

0

u(x1 + a)Db(x1)dx1 −
∫ 1

0

u(x1 + a)
1
n

n−1∑
k=0

Db(x1 − kα) dx1

→
∫ 1

0

u(x1 + a)Db(x1) dx1

=
∫ 1

0

γ̄(x1 + a, 0)Db(x1) dx1 − k1

∫ 1

0

x1 · Db(x1) dx1.

Moreover,
∫ 1

0
x ·Db(x) dx = b(1)−∫

T
b(x) dx, which proves the required conclusion.

From (3.27) we have
∫ 1

0

∫ b(x1)

0
γ̄x2(x1, x2)dx2dx1 = 0. However∫ 1

0

∫ b(x1)

0

γ̄x2(x1, x2)dx2dx1 =
∫ 1

0

(γ̄(x1, b(x1)) − γ̄(x1, 0))dx1

=
∫ 1

0

(γ̄(x1 + a, 0) − γ̄(x1, 0) − k2)dx1

= k1a − k2.

It follows that k1a = k2, which contradicts the fact that k1 �= 0 and a is irrational.
Consequently, d1/d2 must be rational.

Case 1c(ii). Suppose that (d1, d2) = d(l1, l2), where l1, l2 are relatively prime
integers. Since K ′ ∈ M(q−1Z) and det k′ = ε = ±1, there exist M ∈ GL2(Z) and
m ∈ Z such that

K ′ = M−1

[
1 0

m/q ε

]
M,

by (3.22). Then there exists an even number r > 0 such that K ′r ∈ GL2(Z). There-
fore the diffeomorphism F r : R2 → R2 can be treated as an area–preserving diffeo-
morphism of the torus T2. Let ξ̌ : T2 → T be given by ξ̌(x1, x2) = d−1ξ(x1, x2). It
follows by (3.21) that

ξ̌ ◦ F r = ξ̌ + rα/d and (d1(ξ̌), d2(ξ̌)) = (l1, l2) �= 0.



POLYNOMIAL GROWTH OF THE DERIVATIVE 511

Note that α/d is irrational. Indeed, suppose that α/d = k/l, where k ∈ Z and l ∈ N.
Let Ξ : T3

A → C be defined by Ξ(x1, x2, x3) = exp 2πilξ̌(x1, x2). As ξ̌ ◦ F = ξ̌ + k/l
we have

Ξ(f̂(x1, x2, x3)) = exp 2πilξ̌(F (x1, x2)) = Ξ(x1, x2, x3).

By the ergodicity of f̂ , Ξ and also ξ̌ is constant, which is impossible.
By Theorem A.1 (see Appendix A), there is an area–preserving C2–diffeomor-

phism ψ : T2 → T2 such that

ψ−1 ◦ F r ◦ ψ : T2 → T2

is a skew product and ξ̌ ◦ ψ(x1, x2) = kx1 + c, where k ∈ N and c ∈ R. Therefore
D(ξ ◦ ψ) = [ dk 0 ]. Let L ∈ GL2(Z) stand for the linear part of ψ. Set

L̄ :=

 L
0
0

0 0 1

 ∈ GL3(Z).

Let us consider the area–preserving C2–isomorphism ρ : T3
A → T3

L̄−1A
defined by

ρ(x1, x2, x3) = (ψ−1(x1, x2), x3).

Let f̌ : T3
L̄−1A

→ T3
L̄−1A

be given by f̌ = ρ ◦ f̂ ◦ ρ−1. Then

1
nτ

Df̌n

=

 (Dψ−1) ◦ Fn ◦ ψ
0
0

0 0 1

  n−τ (DFn) ◦ ψ
0
0

n−τ (D(γ(n))) ◦ ψ n−τ

 Dψ
0
0

0 0 1


→

 0 0 0
0 0 0

Dξ ◦ ψ 0

 Dψ
0
0

0 0 1

 =

 0 0 0
0 0 0

D(ξ ◦ ψ) 0

 =

 0 0 0
0 0 0
dk 0 0


uniformly. Let f̄ : T3 → T3 stand for the diffeomorphism f̄ := A−1 ◦ L̄◦ f̌ ◦ L̄−1 ◦A.
It is easy to see that

1
nτ

Df̄n → A−1 · L̄ ·
 0 0 0

0 0 0
d 0 0

 · L̄−1 · A

uniformly and that f̄ and f are conjugate via the area–preserving C2–diffeomor-
phism A−1 ◦ L̄ ◦ ρ ◦ A : T3 → T3. An application of Lemma 3.3 for f̄ proves the
claim.

Case 2. Suppose that g = (h1ā
T +h2b̄

T )c̄, where ā and b̄ are orthogonal to c̄ and
the determinant of the matrix A−1 =

[
c̄T āT b̄T

]
equals 1. Let f̂ : T3

A → T3
A

be given by f̂ := A ◦ f ◦ A−1. Then

ĝ = A · (h1ā
T + h2b̄

T )c̄ · A−1 =

 0
ĥ1

ĥ2

 [
1 0 0

]
,

where ĥi(x̄) := hi(A−1x̄) for i = 1, 2. From (3.13) we get 0
ĥ1(x̄)
ĥ2(x̄)

 [
1 0 0

]
=

 0
ĥ1(f̂ x̄)
ĥ2(f̂ x̄)

 [
1 0 0

]
Df̂(x̄)
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for all x̄ ∈ T3
A. Consequently

∂

∂x1
f̂1(x̄)ĥi(f̂ x̄) = ĥi(x̄),

∂

∂x2
f̂1(x̄) =

∂

∂x3
f̂1(x̄) = 0 and

∂

∂x1
f̂1(x̄) �= 0

for all x̄ ∈ T3
A and i = 1, 2. Now observe that ĥ1, ĥ2 are linearly dependent.

Indeed, without loss of generality we can assume that ĥ2 is Aλ⊗3–non–zero. Then
ĥ2(x̄) �= 0 for a.e. x̄ ∈ T3

A, by the ergodicity of f̂ . Therefore the measurable
function ĥ1/ĥ2 : T3

A → R is f̂–invariant. Hence there is a real constant c such
that ĥ1(x̄) = cĥ2(x̄) for a.e. x̄ ∈ T3

A, by ergodicity. Consequently, h1 = ch2, which
reduces the consideration to Case 1, and the proof is complete. �

4. 4–dimensional case. In this section we indicate why there is no 4–dimensional
analogue of classifications of area–preserving diffeomorphisms of polynomial growth
of the derivative presented in previous sections. More precisely, we construct an
ergodic area–preserving diffeomorphism of the 4–dimensional torus with linear uni-
form growth of the derivative which is not even metrically isomorphic to any 3–step
skew product, i.e. to any automorphism of T4 of the form

(x1, x2, x3, x4) �−→ (x1 + α, ε1x2 + β(x1), ε2x3 + γ(x1, x2), ε3x4 + δ(x1, x2, x3)),

where εi = ±1 for i = 1, 2, 3. Before we pass to the construction we should
mention area–preserving diffeomorphisms of the 2–torus with a sublinear growth of
the derivative. We say that a C1–diffeomorphism f : T2 → T2 has sublinear growth
of the derivative if the sequence {Dfn/n} tends uniformly to zero.

Suppose that f : T2 → T2 is an area–preserving weakly mixing C∞–diffeomor-
phism with sublinear growth of the derivative. The examples of such diffeomor-
phisms will be given later. Let Tϕ : T2 → T2 be an Anzai skew product of an
ergodic rotation Tx = x + α on the circle and a C∞–function ϕ : T → T with
non–zero topological degree.

Theorem 4.1. The product diffeomorphism f × Tϕ : T4 → T4 is ergodic and has
linear uniform growth of the derivative. Moreover, it is not metrically isomorphic
to any 3–step skew product.

Proof. The former claim of the theorem is obvious. Now suppose, contrary to latter
claim, that f×Tϕ is metrically isomorphic to a 3–step skew product. Then f×Tϕ is
measure theoretically distal (has generalized discrete spectrum in the terminology
of [17]). However, f×Tϕ has a weakly mixing factor, which contradicts the fact that
measure theoretically distal are disjoint from all weakly mixing dynamical systems
(see [7]).

In the remainder of this section we present two examples of area–preserving
weakly mixing diffeomorphisms with sublinear growth of the derivative.

Given α ∈ T and β : T → R we denote by Tα,β : T × R → T × R the skew
product Tα,β(x1, x2) = (x1 + α, x2 + β(x1)). Let a ∈ T be an irrational number
and let b : T → R be a positive C∞–function. By Lemma 2 in [3] and Theorem
1 in [12], the special flow σt

a,b built over the rotation by a and under the function
b is C∞–conjugate to a Hamiltonian C∞–flow ϕt which has no fixed point on
the torus. Therefore there exists a C∞–diffeomorphism ρ : Ma,b → T2 such that
ϕt = ρ ◦ σt

a,b ◦ ρ−1 and there exists C∞–function ξ : R2 → R such that Dξ is
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Z2–periodic, non–zero at each point and
d

dt
ϕt(x̄) =

[
ξx2(ϕ

t(x̄))
−ξx1(ϕ

t(x̄))

]
.

We will identify ρ with a diffeomorphism ρ : R2 → R2 such that

ρ(x1 + 1, x2) = ρ(x1, x2) + (N11, N12),
ρ(x1 + a, x2 − b(x1)) = ρ(x1, x2) + (N21, N22)

for any (x1, x2) ∈ R2, where N ∈ GL2(Z). Then

Dρ(x1 + 1, x2) = Dρ(x1, x2) (4.28)

Dρ(Tn
a,−b(x1, x2))

[
1 0

−Db(n)(x1) 1

]
= Dρ(x1, x2) (4.29)

for any integer n.
Let Tα,β : T × R → T × R be a skew product commuting with Ta,−b, where

β : T → R is of class C∞. Then Tα,β can be treated as a C∞–diffeomorphism of
Ma,b. Let f : T2 → T2 stand for the area–preserving C∞–diffeomorphism f :=
ρ ◦ Tα,β ◦ ρ−1.

Lemma 4.2. The diffeomorphism f : T2 → T2 has sublinear growth of the deriva-
tive.

Proof. Since

Dfn(x̄) = Dρ(Tn
α,β ◦ ρ−1(x̄))

[
1 0

Dβ(n)(ρ−1
1 (x̄)) 1

]
Dρ−1(x̄),

it suffices to show that
1
n

Dρ(Tn
α,β(x1, x2))

[
1 0

Dβ(n)(x1) 1

]
→ 0

uniformly on the set M ′ = {(x1, x2) : x1 ∈ R, 0 ≤ x2 ≤ b(x1)}. Given (x1, x2) ∈ R2

let us denote by n(x1, x2) the unique integer such that T
n(x1,x2)
a,−b (x1, x2) ∈ M ′, i.e.

b(n(x1,x2))(x1) ≤ x2 ≤ b(n(x1,x2)+1)(x1). Let c, C be positive constants such that
0 < c ≤ b(x) ≤ C for every x ∈ T. Then

c|n(x1, x2)| ≤ |x2| ≤ C|n(x1, x2)| + C.

Since
1
n

Dρ(Tn
α,β(x1, x2))

[
1 0

Dβ(n)(x1) 1

]
= Dρ(T

n(T n
α,β(x1,x2))

a,−b (Tn
α,β(x1, x2))) ×

1
n

[
1 0

−Db(n(T n
α,β(x1,x2)))(x1 + nα) + Dβ(n)(x1) 1

]
(by (4.29)), Dρ is bounded on M ′ (by (4.28)) and n−1Dβ(n) tends uniformly to
zero, it suffices to show that

1
n

Db(n(T n
α,β(x1,x2)))(x1 + nα) → 0

uniformly on M ′. To prove this, observe that

|n(Tn
α,β(x1, x2))| ≤ c−1|x2 + β(n)(x1)| ≤ k1 + k2n,
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for any natural n and every (x1, x2) ∈ M ′, where k1 = C/c and k2 = ‖β‖∞/c. Fix
ε > 0. Let n0 be a natural number such that |n| ≥ n0 implies

1
|n| ‖Db(n)‖∞ < ε/2k2 and k1 + k2n ≤ 2k2

for any integer n. Assume that n is a natural number such that n ≥ ‖b‖C1n0/ε.
Let (x1, x2) ∈ M ′. If |n(Tn

α,β(x1, x2))|‖b‖C1/n < ε, then

| 1
n

Db(n(T n
α,β(x1,x2)))(x1 + nα)| ≤ |n(Tn

α,β(x1, x2))|
n

‖b‖C1 < ε.

Otherwise, |n(Tn
α,β(x1, x2))| ≥ εn/‖b‖C1 ≥ n0. Then

| 1
n

Db(n(T n
α,β(x1,x2)))(x1 + nα)|

≤ |n(Tn
α,β(x1, x2))|

n

1
|n(Tn

α,β(x1, x2))| ‖Db(n(T n
α,β(x1,x2)))‖∞

<
k1 + k2n

n

ε

2k2
≤ ε,

which completes the proof.

Proposition 4.3. (see [1]) For every C2–function β : T → R with zero mean,
which is not a trigonometric polynomial there exists a dense Gδ set of irrational
numbers α ∈ T such that the corresponding skew product Tα,β : T × R → T × R is
ergodic.

>From the proof of the Main Theorem in [16] and the nature of the weak mixing
property, we have the following:

Proposition 4.4. For every positive real analytic function b : T → R which is not
a trigonometric polynomial there exists a dense Gδ set of irrational numbers a ∈ T

such that the corresponding special flow σt
a,b is weakly mixing.

Example 4.1. Suppose that σt
a,b is a weakly mixing special flow whose roof function

is real analytic. Let ϕt be a Hamiltonian flow on T2 which is C∞–conjugate to the
special flow σt

a,b. Then the area–preserving diffeomorphism ϕ1 : T2 → T2 is weakly
mixing and has sublinear growth of the derivative, by Lemma 4.2.

Example 4.2. By Propositions 4.3 and 4.4, there exist a C∞–function β : T → R

with zero mean and an irrational numbers α ∈ T such that the corresponding skew
product Tα,β : T × R → T × R is ergodic and there is no real r �= 0 for which there
exist c ∈ T and a measurable function cr : T → T satisfying

cr(x + α) · e2πirβ(x) = c · cr(x).

Using a standard construction we can find in the weak closer of {Tn
α,β : n ∈ Z} a

skew product Ta,b1 such that a is an irrational number with a �= nα for all n ∈ Z

and b1 : T → R is a C∞–function. Let us consider the special flow σt
a,b on Ma,b,

where b = −b1 + ‖b1‖∞ + 1. Since Tα,β commutes with Ta,−b, it can be treated as
a C∞–diffeomorphism of Ma,b. Moreover, Tα,β : Ma,b → Ma,b is ergodic, by the
ergodicity of Tα,β : T×R → T×R. It is quite easy to prove that Tα,β : Ma,b → Ma,b

is also weakly mixing (see [6]). Let ϕt be a Hamiltonian flow on T2 which is C∞–
conjugate to the special flow σt

a,b, via a C∞–diffeomorphism ρ : Ma,b → T2. Then
the area–preserving C∞–diffeomorphism ρ ◦ Tα,β ◦ ρ−1 of T2 is weakly mixing and
has sublinear growth of the derivative, by Lemma 4.2.
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Appendix A.

Theorem A.1. Let f : T2 → T2 be an area–preserving C2–diffeomorphism. Sup-
pose that there exist an irrational number α and a C2–function ξ : T2 → T such
that

Dξ(x̄) �= 0 for any x̄ ∈ T2, (A.30)
ξ ◦ f = ξ + α. (A.31)

Then there exist an area–preserving C2–diffeomorphism ψ : T2 → T2, k ∈ N, c ∈ R

and a C2–cocycle ϕ : T → T such that ξ ◦ ψ(x1, x2) = kx1 + c and

ψ−1 ◦ f ◦ ψ(x1, x2) = (x1 + α, εx2 + ϕ(x1)),

where ε = det Df .

Proof. By (A.30), ξ is a submersion of T2 to T and therefore defines a fibration
with the circle as a fiber. Moreover, the cohomology class defined by the closed
form Dξ is p1 dx1 + p2 dx2, where p1, p2 are integers such that (p1, p2) �= (0, 0). By
taking ξ/ gcd(p1, p2) instead of ξ, we can assume that p1 and p2 are relatively prime.
Let us consider the symplectic vector field X associated to Dξ by the symplectic
form dx1 ∧ dx2. Its orbits are the levels curves of ξ. Consider now the symplectic
vector field X ′ associated to D(ξ ◦ f). The fact that f is a canonical change of
coordinates (f preserves the area) implies that the flows of X is conjugate via f
to the flow of X ′ (or to the flow reversed in the time). Therefore (A.31) asserts
that the level curves ξ−1(c) and ξ−1(c + α) are periodic curves of X with the same
period. Consequently, by irrationality of α, one remarks that the level curves of ξ
all have the same period τ . By taking a closed curve transverse to the foliation,
parametrized by the value of ξ, and then using the flow of X, one gets a natural
diffeomorphism T × R/τZ � (s, t) �→ ψ(s, t) ∈ T2. Then ψ∗(dx1 ∧ dx2) = ds ∧ dt
and therefore τ = 1. One deduces then that ψ satisfies the asked conditions.

Appendix B. The proofs of the following lemmas are straightforward and can
be found in [6].

Lemma B.1. Let c̄ ∈ R3 be a non–zero vector and let h : R2 → R be a continuous
function. Assume that ā, b̄ ∈ R3 are linearly independent vectors orthogonal to c̄.
Suppose that there exists a vector d̄ ∈ R3 such that

h(x1 + ām̄T , x2 + b̄m̄T ) = h(x1, x2) + d̄m̄T

for all m̄ ∈ Z3. Then there exist k1, k2 ∈ R such that d̄ = k1ā + k2b̄ and the
function h̃(x1, x2) = h(x1, x2)−k1x1−k2x2 is (ām̄T , b̄m̄T )–periodic for all m̄ ∈ Z3.
Moreover,

• if rank G(c̄)=0, then h̃ is constant;
• if rank G(c̄)=1, then there exist l1, l2 ∈ R and a continuous function ρ : T → R

such that h̃(x1, x2) = ρ(l1x1 + l2x2) and l1ā + l2b̄ ∈ Z3 generates G(c̄);
• if rank G(c̄)=2, then c̄ ∈ cZ3 where c �= 0. �

Lemma B.2. Let c̄ ∈ Z3 be a non–zero vector. Then for any pair of generators
ā, b̄ ∈ Z3 of G(c̄) we have Λ(ā, b̄) = {(ām̄T , b̄m̄T ) ∈ Z2 : m̄ ∈ Z3} = Z2. �
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