ON THE SELF-SIMILARITY PROBLEM FOR ERGODIC FLOWS

K. FRACZEK AND M. LEMANCZYK

AssTtrAcT. Given an ergodic flow (T})icr we study the problem of its self-
similarities, i.e. we want to describe the set of these s € R for which the
original flow is isomorphic to the flow (Tst)icr. The problem is examined
in some classes of special flows over irrational rotations and over interval ex-
change transformations. In particular translation flows on translation surfaces
are considered, and, in such a case, it is proved that, under the weak mixing
condition, the set of self-similarities has Lebesgue measure zero. For von Neu-
mann special flows over irrational rotations given by Diophantine numbers this
set is shown to be equal to {1} while for horocycle flows a weak convergence in
case of some singular (to the volume measure) measures is shown giving rise
to some new equidistribution result.

The problem of self-similarity is also studied from the spectral point of
view, especially in the class of Gaussian systems.
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1. INTRODUCTION

Let T = (T}):cr be an ergodic measurable flow on a standard probability Borel
space (X, B, ). Given s € R\ {0} by 7, denote the flow (T;)icr. Let

I(T)={s € R\ {0} : 7 and 7; are isomorphic}.

If there exists s € I(7)\ {—1, 1}, the flow is called self-similar with the scale of self-
similarity s. Another weaker symptom of self-similarity for flows is the existence
of pairs of distinct real numbers ¢, s for which the automorphisms 7} and Ty are
isomorphic.

A natural example of dynamical system which has plenty of self-similarities is
the horocycle flow (7;)icr on any finite surface of constant negative curvature M.
If (7¢)ter stands for the geodesic flow on M then

(1) Vs 0Nt 0 Y5t = 1e—2sy for all s, € R,

and hence every positive number s is the scale of self-similarity for the horocycle
flow. This property yields a lot of information on the dynamics of the flow such as
Lebesgue spectrum (see Proposition 1.23 [17]) and mixing of all orders (see Theorem
1[23]). Our first aim is to study further mixing properties which are consequences
of the condition (1). The mixing condition for the flow (n;):cr says that

(2) (nt)«p — p weakly as t — oo

for every probability measure p absolutely continuous with respect to p. An appli-
cation of some ideas from [25] to the property (1) gives an opportunity to extend
(2) to measures p singular with respect to p (see Theorem 7, Corollary 9 and The-
orem 12). As a consequence we obtain a new result concerning equidistribution
theory for horocycle flows (see discussion after Corollary 9).

The next subject of the study is the size of the set I(7) and

Tout(T) = {(s,t) € R? : T, and T} are isomorphic}

in relation to some dynamical properties of 7. For example, if 7 has positive
and finite entropy then h,(7;) = |s|h,(7) # h,(7), and hence 7, and 7 are not
isomorphic for s € R\ {—1,1}; similarly I,,:(7) C {(s,t) : |s| = [¢t|}. In the zero
entropy case, of course, there is no universal bound on the size of I(7) because of
the horocycle flow. Nevertheless, as it was proved by Ryzhikov in [23], the absence
of mixing for 7 implies zero Lebesgue measure of I(7) and zero (two-dimensional)
Lebesgue measure of I,,+(7). Furthermore, if 7 is additionally rigid (i.e. T3, — Id
for some t,, — oo) then 7 and 7; are disjoint in the sense of Furstenberg for almost
every s € R, and Ty is disjoint from T} for almost every (s,t) € R? with respect
to the Lebesgue measure (see [25]). In this paper we extend the disjointness result
(see Theorem 14) to the class of weakly mixing flows for which there exist ¢,, — oo,
0 < A <1 and a probability Borel measure P on R such that

(3) liminf u(T;, AN B) > )\/ w(TsANB)dP(s) for all A, B € B.
n—oo R
As a consequence we obtain that for every translation structure on a compact
surface with genus greater than one if a direction flow F? is weakly mixing then
the flows F¥ and F? are disjoint for almost all s € R and the automorphisms F?
and F! are disjoint for almost all (s,t) € R? (see Corollary 18).
The property (3) turned out to be useful in proving the absence of self-similarity

also for some flows on surfaces that arise from quasi-periodic Hamiltonians flows
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on the torus by velocity changes. More precisely, if (3) holds for A = 1 and 7 is not
rigid or if (3) holds for some A > 0 and 7 is not partially rigid then I(7) C {—1,1}
(see Theorem 22). This result have been used to prove the absence of self-similarity
for special flows built over irrational rotations on the circle (or ergodic interval
exchange transformations) and under piecewise absolutely continuous functions.
For example, if T : [0,1) — [0,1) is an ergodic interval exchange transformation
and f :[0,1) — RT is a piecewise absolutely continuous function with non-zero
sum of jumps then the special flow 77 is not self-similar.

The absence of self-similarity is observed also for special flows built over ergodic
rotations on the circle by « satisfying the Diophantine condition

(4) |p—qa\2£, for somec>0forallgeN, peZ
q

and under some piecewise constant roof. Such special flows are partially rigid. Here
the absence of self-similarities follows from the mild mixing property which has been
proved in [12] for some special classes of piecewise constant roof functions.

In Appendix B we study the reversibility problem for special flows built over
irrational rotations Tz = = 4+ « on the circle. Recall that a flow 7 on (X, B, u) is
reversible if there exists an automorphism S of (X, B, ) such that SoT; =T_;05
for all t € R and S? = I. If the roof function f : T — RT is symmetric then
a simple observation shows that the special flow 7/ is reversible (see Remark 2).
In Appendix B we show the absence of reversibility (even disjointess of (77)_;
from 7 ) form some piecewise absolutely continuous non-symmetric roof functions.
More precisely, using elements of Ratner’s theory we prove that if o satisfies the
Diophantine condition (4) and f has non-zero sum of jumps then the flows (77)_;
and 7/ are disjoint. Furthermore, using the minimal self-joining property of such
flows (see [11]) we obtain I(7/) = {1} and the disjointess of T}/ from T for distinct
real numbers s and ¢. Recall that the same property has been observed in [14] for
some special flows over Chacon transformation.

Take an arbitrary countable multiplicative subgroup G C R. The example of
weakly mixing flow 7 with the minimal self-joining property and such T; and T
are disjoint for distinct s and ¢ allows us to construct (the idea of this construction
comes from [25]) a self-similar flow 7¢ such that I(7%) = G and 7. is disjoint
from 7¢ for all s ¢ G.

The self-similarity of dynamical systems can be also considered from the spectral
point of view. Let us consider spectral version of I(7):

SI(T) ={s € R\ {0} : T and 7, are spectrally isomorphic}.

Recall that 7_; is always spectrally isomorphic to 7, hence —1 € SI(7). If T
is spectrally self-similar, i.e. SI(7) # {—1,1} and SI(7) has positive Lebesgue
measure then 7 has pure Lebesgue spectrum (see Proposition 31). On the other
side, if 7 has singular continuous spectrum then ST(7) has zero Lebesgue measure
and 7, is spectrally disjoint from 7 for almost all s. Moreover, Ts and T; are
spectrally disjoint for almost all (s,t) € R2.

We construct ergodic flows which are not self-similar in the unitary category.
For this purpose, in Section 9, we deal with Gaussian systems which are completely
determined by the spectral measure of the underlying Gaussian process. A construc-
tion of measures which is supported by a set which emulate the classical Kronecker
set yields a Gaussian flow 7 with simple spectrum such that SI(7) = {—1,1} and
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7T, is spectrally disjoint from 7 for s # £1. Moreover, for some countable mul-
tiplicative symmetric subgroups G C R a modification of the above construction
yields a Gaussian flow 7€ with simple spectrum such that SI(7) = G and 7, is
spectrally disjoint from 7 for s ¢ G.

2. ADJOINT REPRESENTATIONS OF R

Let B be a separable Banach space. Denote by L£(B) the space of all linear
bounded operators on B. Let (U;)ier be a strongly continuous bounded represen-
tation of R in £(B), i.e. the map

R>t—UmxeB
is continuous for every z € B, and the map
Rt |U €R

is bounded. Let C' := sup,cp ||U¢||. Then the dual representation (U;)icr is
bounded and x-weakly continuous, i.e. the map

Rotw (z,Ufy") €eR
is continuous for every x € B and y* € B*. Let
By =B® ={2* € B* :R>t~ Uz* € B* is continuous}.

B® is a closed (U;)-invariant subspace of B* which is -weakly dense (see [20]
Ch.1). Given z* € B® let B®(z*) stand for the smallest closed (U;)-invariant
subspace of B® containing z*. Then B®(z*) is a separable Banach space.

Let P(R) stand for the space of all Borel probability measures on R. For every
o € P(R) and y* € B* let [, Ufy* do(t) (see [20] Appendix 2) denote the element
of B* determined by

<x,/ Ufy*do(t)) = /(x, Ufy*) do(t) for any = € B.
R R

Then || [, Ufy* do(t)|| < C|ly*||. Note that if B’ C B* is a (U} )-invariant x-weakly
closed subspace then for every y* € B’ and o € P(R) we have [, U;y*do(t) € B'.

Although the results of this section are formulated for continuous bounded rep-
resentations of R, as the proofs show they hold also for such representations of R¥.
Denote by A Lebesgue measure on R.

Lemma 1 (cf. [23], Theorem 3). Suppose that B® C B* is a x-weakly closed (U})-
invariant subspace of B* such that

{z* € B : Vyer Uf* = 2*} = {0}.
If D C R is a measurable set with 0 < \(D) < +oo then
1
(5) 7/ Ury* dr — 0 x-weakly, as t — +oo, for every y* € B°.
AD) Jp
Proof. Put Py* := %D) fD U;y* dr Since any closed ball in B* endowed with the

x-weak topology is a compact metric space and || Py*|| < C|ly*|, it suffices to check
that if z* € B* is a x-weak limit of a sequence (P;, y*) with ¢, — +oo then z* = 0.
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Since BY is (U})-invariant and *-weakly closed, P;, y* € B for every n € N, and
hence z* € BY. Observe that U}z* = z* for every s € R. Indeed, since

1 1
Us*opny*:i/Us*r y*dr=7/ Ury" dr,
! D) Jp =t AD) Jptst, tn

for every = € B we have

(2, U o Pry" — Pi,y")|

1 / 1
— z, Uy y* dr—i/ x, Ur y*)dr
A(D) D+s/tn< tn ) D) D< tn )

MDA(D + s/ty,)) .
< .
< C D) (EE
It follows that
[z, Usz" —=2")] = lim [(z,U] o P y" — P y")]
. MDA(D + s/tn)) o
< tim === e ) o

for every x € B. Therefore z* € B is a fixed vector for the representation (U}),
and hence z* = 0. g

Lemma 2 (cf. [25], the proof of Proposition 2). Suppose that B C B* is a closed
(U})-invariant separable space (in the norm topology) which verifies (5). Then for
every sequence t, — +oo we have A(E°) = 0 where

E ={r € R:Vuep, y-epo liminf Re(z, U}y y*) < 0}.

Proof. Notice that
FE¢ = {7“ eR: EIa:EB, llzl| <1, y*€BO, ||ly*||<1 hnﬂl)nge@?, U;‘tny*> > 0}

Givene >0, N € N, z € B and y* € B° put
De Ny i={r € R:Vu>y Re(z, Uy, y") > €}

In view of the *—weak continuity of (U;"), D¢ n 4.4+ is a G5, hence Borel, subset of
R. Moreover, A(D¢ N z,y+) = 0. Indeed, suppose that A(De n z,y+) > 0. Let D be a
subset of D, n 54+ such that 0 < A(D) < +o00. Then

1 1
Rei‘/ z, Uk y* drzi/Rex,U: y ydr > e
)\(D) D< tn > A(D) I < tn >

for all n > N, which contradicts (5) for y* € BY.

Let (7ck)ren stand for an £/(2C)-net of the unit ball in B, (y? ;)ren stand for
an £/(2C)-net of the unit ball in B® and let A be a countable set of real positive
numbers such that inf A = 0. It suffices to prove that

Erc U U UU ez,
c€A NeNkeNleN

Assume that r € E°. Then there exist x € B with ||z|| < 1, y* € BY with [|y*|| <1,
e € A and N € N such that

Re(x, Uy, y*) > 2¢ for all n > N.
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Next choose k,l € N such that ||z —x. x| <e/(2C) and [|y* —yZ,|| <e/(2C). Thus

{2, Upe, y7) = (e Upg, e 0| < Nl = ze el U7, 971+ llze k1 U, (v™ = 920l < e
It follows that Re(zex, Uy yZ,) > ¢ foralln > N, and hence r € De Ny, yyr,- U

Lemma 3. Suppose that B® C B® is a closed (U;)-invariant separable space which
verifies (5). Assume that there exist a sequence t, — 400 and a continuous linear
operator P : B — B* such that Ui y* — Py* x-weakly for every y* € B°. Then
there ezists a measurable subset E C R with A(E€) = 0 such that for every s # 0
and r € E if A, : B* — B* is a continuous linear operator such that A,(B°) C B°
and AU} = U} A, then U, A, Py* =0 for every y* € BY.

Proof. An application of Lemma 2 yields the existence of E C R with A(E€) =0
such that for r €
(6) liminf Re(z, U}, y*) <0 for all z € B and y* € B°.

n—oo
Suppose that s # 0, r € E and A, U} = U}, A,. By passing to a subsequence, if
necessary, we can assume that the fractional parts {t,,/s} — 6 € [0,1]. Take z € B,
y* € BY and € > 0. In view of the continuity of ¢t — Uz and t — U;y*,

(z, U'rtnA Usoe¥™)
(@, Urs[tn/s]+rs{tn/s}A Usorey™) = (@, Ur*s{tn/s}A U, [t,L/s]U o+eY")
= (Urstta/sy® AU Ugg_4, ys1)+¥ ")
—  (Upspz, A, PULY") = (2, Uy A, PUZY").

But A,U, .y* € B, hence using (6),
Re(x,Ur A PUy*) <0 forall z € B, y* € B°, ¢ > 0,

and hence U} A, Py* = 0. It follows that U, A, Py* = 0. O

rsf

Lemma 4. Let B’ C B* be a closed separable subspace. Assume that (P, : B —
B*)nen is a sequence of continuous linear operators such that ||P,y*|| < C|ly*|| for
all y* € B’ and n € N. Then there exist an increasing sequence (ky)nen of natural
numbers and a continuous linear operator P : B’ — B* such that Py y* — Py*
x-weakly for every y* € B'.

Proof. Let D be a dense countable subset of B’. Since | P,z*|| < C||z*| for every
n € Nand z* € D and any closed ball in B* endowed with the x-weak topology is
a compact metric space, by a diagonalisation argument we can find an increasing
sequence (ky)nen of natural numbers such that (Pg, z*),en is *-weakly convergent
for every x* € D. Let Pz* € B* stand for the *-weak limit the sequence (P, 2*)nen
for x* € D. Note that for every x € B and z*,y* € D we have

[{z, Pe™ = Py")| = Tim |(z, Py, z* = Py, y")| < Cllz|[[la" = y*|.
It follows that
(7 |Pz* — Py*|| < Cllz* — y*| for all z*,y* € D.

Furthermore (Py, x*)nen is *-weakly convergent for every z* € B’. Indeed, let
(z7)ien be a sequence in D such that ||z —2*|| — 0 as | — oo and > ;2 |lzf —
zf || < co. From (7), 3,2, |Px; — Pxj || < oo, and hence (Pz;})cn converges
to an element Pz* € B*. Fix ¢ > 0 and 0 # = € B. Take lp € N such that
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|z, — || <e/(3C||z|). Next choose ng € N such that [(z, Py, z} — P} )| <¢/3
for all n > ng. Then for n > ng,
|(z, Py, x* — Px™)|
< [, Py, 2" = Py, a} )| + [(z, P, x}, — Px})| + [(x, Pz}, — Px")|
< 20|=z|ll=7, — 2" + (=, Py, 3, — Pj,)| <e.

It follows that Py, x* — Px* s-weakly for every z* € B’. It is easy to see that
P : B’ — B* is a linear bounded operator. O

Theorem 5. Suppose that B C B® is a closed (U} )-invariant separable space
which verifies (5). Suppose that there exists a subset D C R of positive Lebesgue
measure such that for every pair (t,s) € D x D there exists Ay s € L(B*) with
the trivial kernel such that A; (B°) C B® and A; sUF = U} Ay s. Then Ufy* — 0
x-weakly, as |t| — oo, for every y* € BY.

Proof. Suppose, contrary to our claim, that there exists y; € B such that U yg -
0 x-weakly, as [¢| — oo. Since ||U;ysll < C|lygll, there exists a sequence t], — oo
such that tfny(’; converges *-weakly to a nonzero element. Since B is separable,
by Lemma 4, we can assume (passing to a subsequence if necessary) that there
exists a non-zero continuous linear operator P’ : B® — B* such that oyt = Ply*
x-weakly for every y* € BP.

Fix a non-zero number s € D and put ¢, = t/, — s. By Lemma 4, we can
assume (passing to a subsequence if necessary) that there exists a continuous linear
operator P : B — B* such that Ui y* — Py* x-weakly for every y* € BY. Then
UsP=P.

Take r € (D/s)NE (see Lemma 3 applied for (¢,,) and P above). Set A, := A, ;.
Then AU} = U}, A,. By Lemma 3, A, U*Py* = U’ A, Py* = 0 for every y* € B°.
Since A, has the trivial kernel, P'y* = U} Py* = 0 for every y* € B, which is a
contradiction. |

3. INNER SELF-SIMILARITY OF R-ACTIONS

Let G stand for the Lie group

{7 2 ]srer).

Then dv = e®dsdt is a left Haar measure of G. Let S : G — L(B) be a strongly
continuous bounded representation in a separable Banach space B, i.e.

Sglgz—l = 59—21 08y, for all g1,92 € G,

G 3 g+ Sygx € B is continuous for every z € B,
C = sup || 9] < +oc.
e
Then the dual representation S* : G — L(B*) is *-weakly continuous, bounded
and S; =57 oSy forall g1,92 € G. Let

BY ={z* € B*: G 3 g S;a* € B is continuous}.

It is easy to see that Bg is a closed linear subspace.
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Remark 1. Note that B¢ is not trivial. Indeed, fix f € L'(G,v) and y* € B*. Let
g = | Ssy*f(g)dv(g), i-e.

(z,5") = L(x,SZy*)f(g) dv(g) for all x € B.

Then for every g1, g2 € G we have

@, 2.5 — S557)| = ] [ S5 - 2gy*>f<g>du<g>]

‘/ ,8;5,49") (f(9) — f(gzlglg))dV(g)’

IN

Cllel " / F(9) - Fo3 019)| dla).

It follows that
155, 9" — S, 9"l < Clly|| /G 1f(g7"9) — [z '9)l dv(g),

and hence the continuity of g — S;y* is a consequence of the continuity of the
regular representation

G329y e LILYG.v)), Uuf(d)=Flg7"9).
Moreover, taking a sequence (f,)nen in L?(G,v) such that f, dv — §; weakly in
the space P(G) of probability Borel measures on G we can conclude that J-Bg = B,
and hence Bé? is x-weakly dense.

Given y* € B? let Bg(y*) denote the smallest closed S*-invariant subspace of
B¢ containing y*. Then BY(y*) is separable.

Let
(1 0] pqa e 0
=1 g =10 e |

(8) asuza; ' = u, 2+, for all s,t € R.

Note that

Let us consider two representations of R in £(B) given by U; = S,,, and As = S,,
Since R 3¢+ u; € Gand R 3 s — as € G are continuous homomorphisms,
representations (Uy) and (A;) are strongly continuous and bounded. Then the dual
representations (U;") and (A¥) are x-weakly continuous and bounded.

Corollary 6. Suppose that B® C B* is a closed S*-invariant subspace which veri-
fies (5). If y* € B N BY then Ujy* — 0 *-weakly as |t| — oco.
Proof. Fix y* € BY N BY. Then BY (y*) C BY is a closed (S;)-invariant separable
subspace. From (8), A* o U} o (A%)~! = U .., Now an application of Theorem 5,
for BY := B (y*), gives Ufz* — 0 for every z* € BS (y*). O

Let (X, d) be a compact metric space and let ¢ : G — Hom(X) be a continuous
representation of G in the group of homeomorphisms on X. ¢ determines two
continuous flows (7;)icr and (7s)ser on X:

N (x) = ¢y, and v4(x) = ¢q, .

Suppose that (7;) is uniquely ergodic and let p be the unique invariant probability
measure for (n;).
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Let us consider the representation of G in £L(C(X)) given by Sy f(x) = f(¢pqz).

Denote by M(X) the Banach space of signed real Borel measures on (X, d)
equipped with the norm given by the total variation. Let P(X) C M (X) stand for
the subset of probability measures. Since C(X)* = M (X), the dual representation
S* of G in L(M (X)) is given by S;(p) = (¢4)«p, the latter being the image of p
via ¢4. By the unique ergodicity of (1), every (U;)-invariant measure p € M(X)
is a real multiple of u € P(X) : p = p(X)p.
Theorem 7. If p € P(X) N M(X)S then (m).p — p weakly as [t| — oo.
Proof. Let

Mo(X) = {r € M(X) : 7(X) = (1,7) = 0}.

Clearly, My(X) is *-weakly closed and (S;) 1nvar1ant and as we have already noticed
any (U} )-invariant measure 7 € My(X) is equal to 7(X)u = 0. By Lemma 1, the
space Mo(X) verifies (5)

Suppose that p € P(X) N M(X)§. Then p— pu € M(X)§ N My(X). Now an
application of Corollary 6, for B = My(X), yields

(m)sp — p="U; (p — p) — 0 =-weakly as |t| — oc.
(]

Corollary 8. Let D C G be a Borel set such that 0 < v(D) < oco. Then for every
continuous function f: X — R and z € X,

m/Df(m%x) dv(g) — /deM as |t| — oo.

Proof. Fix x € X and let us consider the probability Borel measure p on X deter-
mined by

1
/dep: @/Df(@]x) dv(g) for all f € C(X).

Since

1p
Fop) = [ (5838 B dv o all f € C(X),
in view of Remark 1, p € M(X)Y. Moreover,

o 1
LU0 = oman) = o5 [ o) ivto)
for every f € C(X). Now an application of Theorem 7 yields
D)dule) = (1.U79) = (Fi) = [ fa
for every f € C(X). O

Let T' C PSL(2,R) be a discrete subgroup. Then the homogeneous space X =
I'\ PSL(2,R) is the unit tangent bundle of a surface M of constant negative cur-
vature. Consider the action 7 : PSL(2,R) — Hom/(X) by right translations, i.e.
mg(Fx) = T'xg for all g, € PSL(2,R). Assume that I' C PSL(2,R) is a lattice, i.e.
I' is a discrete subgroup of PSL(2,R) such that the action 7 has an invariant finite
measure. Let us denote by ur the unique w-invariant probability measure on X.

Since G is a subgroup of PSL(2,R), we can consider its subaction ¢ : G —
Hom(X). Then the corresponding flows (1;):cr and (7s)ser are called respectively
the horocycle and the geodesic flows on M.
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Suppose that the lattice I is cocompact, i.e. '\ PSL(2,R) is compact, then the
surface M is also compact. In 1973 Furtenberg [13] proved that the horocycle flow
has a unique invariant probability measure which is equal to ur.

Corollary 9. Assume that I' C PSL(2,R) is cocompact. If p € P(I'\ PSL(2,R))
and the map

G 3 g+ (¢g)sp € P('\PSL(2,R))
is strongly continuous then (n;).p tends weakly (as |t| — o) to the unique invariant
probability measure for the horocycle flow.

The unique ergodicity of the horocycle flow is equivalent to the equidistribution
property of all its orbits, i.e.

Thm T/ f(mx) dt—>/f )dpr(y) for any € X and f € C(X).

Fix x € X = I'\PSL(2,R) and an open and bounded subset D C G. Let us
consider the two-dimensional set D, = {¢42 : g € D} C X. By Corollary 8, the
image ¢ (D, ) is equidistributed on X as |t| — oo.

3.1. Horocycle flow on non-compact finite surfaces.

Lemma 10. Let f : [0,00) — R be a measurable bounded function such that

1/t
tlimf/ f(s)ds — 0.

Then for every Borel set D C [0,00) with finite Lebesque measure we have

Jim, [ (st)ds = 0A(D)

Proof. Let

D= {D € B([0,00)) : A(D) < o0, tlirgo f(st)ds = GA(D)} .

D
By the definition of D,

9) if D1 C Dy and Dy, Dy € D then Dy \ D; € D.

Moreover,
10 if (Dp)nen is a sequence in D such that A\(D,AD) — 0 as n — oo
(10) for some D € B([0,00)) then D € D.

Indeed, fix £ > 0 and choose ny € N such that A(D,,AD) < &/2(||f|loc + 16]) and
to > 0 such that

f(st)ds — OX(Dy,)

Dy,

< ¢e/2 for all t > to.

Then for ¢t > tg,

/D f(st)ds—&)\(D)‘ < /D F(st)ds — /D ot
+/ F(st)ds — OA(Dpy)| + 101 A(Dng) — A(D)|
D"‘O
< A(DngAD)||flloo + /2 + |0|N(Dy, AD) < €
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Thus [}, f(st)ds — OA(D) as t — oc.

By assumption, [0,a] € D for every a > 0. In view of (9), D includes every
finite interval in [0,00). Fix C > 0. From (9) and (10), D N B([0,C]) is a M-
system containing the family of all subintervals of [0, C] (this is a 7-system). By
the Dynkin’s lemma, B([0,C]) C D for every C' > 0. An application again of (10)
yields D € D for every Borel set D C [0, 00) with finite Lebesgue measure. O

Lemma 11. Let (n:):er be a continuous flow on a locally compact metric space
space (X, d). Suppose that there exists a Borel set Xo C X and a Borel probability
measure o on X such that po(Xo) =1 and

t

1 .
tim 5 [ o) ds = /X () duo(y)

t—oo

for every x € Xo and every continuous bounded function ¢ : X — R. Then for
every D € B(R) with 0 < A(D) < oo and every p € M(X) with |p|(X \ Xo) =0 we

have t_m/\ // o(e0) dpu() ds = (X)/ o(x) dpo(x)

for every continuous bounded function ¢ : X — R.

Proof. Since %fé o(nsz)ds — [y o(y) duo(y) and |7 fo x)ds| < ||l for u-
a.e. x € X, by Lebesgue’s dominated convergence theorem and Fubini’s theorem,

[ etnmranaras= [ [ o) ds dute)  ux) [ ot dato)

Putting f(s) = [y w(nsz) dp(zx), 0 = u(X) [ () dpo(x) and applying Lemma, 10
we complete the proof. O

Assume that I' C PSL(2,R) is a non-compact lattice and let consider the horo-
cycle flow (n;)¢ecr on X = I'\ PSL(2,R). Then X is a locally compact space and the
horocycle flow has periodic orbits. Let Xy C X stand for the set of non-periodic
orbits. Dani [4] has shown that every probability ergodic measure invariant with
respect to the horocycle flow is either equal to ur or is supported by a periodic
orbit. Moreover, every non-periodic orbit is equidistributed on X (see [5]), i.e. for
every x € Xy and every bounded continuous function f : X — R we have

.17
(1) lim / F(nez) ds = /X F(@) dur ()

t—o0o

Let Cy(X) denote the space of the continuous functions on X vanishing at infinity
equipped with the supremum norm. Recall that the dual space Cf(X) may be
identified with M (X) with the total variation norm.

Let BY stand for the space all signed measures u € M (X) such that u(X) =0
and |u|(X \ Xo) = 0. The subspace B® C M(X) is closed. Moreover, since the set
of periodic orbits X \ Xo is (¢g)gec-invariant, B is (S})geq-invariant. By (11)
and Lemma 11,

ﬁ /D Upnds — 0 -weakly
for every p € BY and every measurable set D C R with 0 < A\(D) < co. Suppose
that © € BN M(X)®. An application of Corollary 6 gives Uy — 0 x-weakly as
t — oo. This yields the following.
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Theorem 12. For every lattice T' C PSL(2,R) and p € P(I'\ PSL(2,R)) if the map
G5 g+ (8y).p € P(M\PSL(2,R))

is strongly continuous and p is supported by the set of non-periodic orbits for the
horocycle flow (ny)ier on I'\ PSL(2,R) then (n:)«p — pr weakly as |t| — oo.

4. FLOWS AND JOININGS

In this section we briefly put together necessary definitions and some known facts
about flows and their joinings. Although definitions and facts are formulated for
flows, all of them hold (and will be applied) for automorphisms.

The flow 7 = (T})ter determines a unitary representation, still denoted by
T = (T})ier, of R in U(L*(X, B, 1)) by the formula T;(f) +— f o T;. Since the flow
7T is measurable, the unitary representation 7 is continuous. Let S = (S;)icr be
another ergodic flow defined on (Y,C,v). By a joining between 7 and S we mean
any probability {T; x S; }ter—invariant measure on (X x Y, B&C) whose projections
on X and Y are equal to i and v respectively. The set of joinings between 7 and S
is denoted by J(7,S) (simply J(7) where S = 7). The subset of ergodic joinings
is denoted by J¢(7,S). Ergodic joinings are exactly extremal points in the simplex
J(T,S). Given p € J(T,S) define an operator ®, : L?(X,B,u) — L*(Y,C,v) by
requiring that

/ f(@)g(y) dp(z,y) = / ,(f)(y)g(y) dv(y)
XxY Y

for each f € L*(X,B,u) and g € L?(Y,C,v). This operator has the following
Markov property

(12) ®,1 =®71=1and ®,f > 0 whenever f > 0.
Moreover,
(13) ®,0T; =S o®, for each t € R.

In fact, there is a one-to-one correspondence between the set of Markov operators
® : L?(X,B,pn) — L*(Y,C,v) satisfying (13) and the set J(7,S) (see e.g. [26] for
details). Notice that the product measure corresponds to the Markov operator
denoted by [, where [(f) equals the constant function [, fdu. On J(T) we
consider the weak operator topology. In this topology J(7') becomes a metrizable
compact space which is a Choquet simplex.

We denote by C(7) the centralizer of the flow 7, this is the group of Borel
automorphisms R : (X, B, u) — (X, B, u) such that T; o R = RoT; for every ¢t € R.
Every R € C(T) can be considered as a Markov operator. The corresponding
self-joining, denoted by pr, and is determined by pur(A x B) = u(AN R™1B) for
A, B € B. Then up is concentrated on the graph of R and ur € J¢(7).

Flows T and § are called disjointif J(7T,S) = {u®v}. Equivalently, the operator
J is the only Markov operator that intertwines 7; and S; (for each ¢ € R). Notice
that if automorphisms Ty and S; are disjoint for a certain ¢ # 0 then the flows 7°
and S are disjoint as well.

If7;, = (Tt(z))teR is a Borel flow on (X;, B;, p;) fori = 1,..., k then by a k—joining
of 71, ...,7, we mean any probability (Tt(l) X ... X Tt(k))teRfinvariant measure on
(Hle X, ®f:1 Bi) whose projection on X; is equal to p; fori=1,... k.
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Suppose that 7 is an ergodic flow on (X,B,u) and 7, =7 fori =1,... k. If
Ri,...,R; € C(7) then the image of u via the map

X3z (Rx,...,Ryx) € X*

is called an off-diagonal joining. Of course, any off-diagonal joining is an ergodic
k—self-joining. Suppose that the set of indices {1,...,k} is now partitioned into
some subsets and let on each of these subsets an off-diagonal joining be given. Then
clearly the product of these off-diagonal joinings is a k—self—joining of 7.

An ergodic flow 7 is said to has minimal self—joining (MSJ) if every ergodic
k—self—joining is a product of off-diagonal joinings for every k € N and C(7) =
{Tt 't e R}

A flow 7 on (X, B, 1) is pairwise independently determined (PID) if any n-joining
(n > 3) of T which is pairwise independent, i.e. its projection on the product of
any two copies of X in X" is the product p ® u, must be the product measure p®"
(see [15]). Obviously, every weakly mixing MSJ flow is PID.

Proposition 13 (Ryzhikov [24]). Suppose that T is a weakly mizing PID flow and
take arbitrary two ergodic flows S on (Y,C,v) and R on (Z,D,p). Then any 3-
joining of T, S and R which is pairwise independent must be the product measure
UV p.

As a consequence of Lemma 3, we obtain the following.

Theorem 14. Let T = (Ti)ier be a weakly mizing flow on a standard Borel space
(X, B, ). Suppose that there exists a sequence of real numbers (t,) such that t,, —
400 and

T, Ha/ SdP(S)+ (1 —a)J,
c(T)
where o« > 0, P is a probability Borel measure on the centralizer C(T) and J €

J(T). Then Ty and Ty are disjoint for almost every pair (t,s) € R%. In particular,
T and 1, are disjoint for almost every s € R.

Proof. Since 7 is ergodic, we can apply Lemma 3 for the unitary representation
Ti(f) = fo T

on L?(X,p). Since T, — K weakly where K = afC(T) SdP(S)+ (1 — a)J, there

exists a measurable subset £ C R with A(E°) = 0 such that for every s # 0

and r € E if A, : L*(X,p) — L*(X,p) is a continuous linear operator such that
A (LE(X, ) € L3(X,pn) and A, Ty = T,5A, then

(14) A.Kf=0forevery f € L3(X, ).
Let us consider the set
t
E':={(t,s) e R x (R\ {0}): S € E}.

Since E’ is Lebesgue measurable, by Fubini’s theorem, the complement of E’ has
zero Lebesgue measure in R?, Suppose that (¢,5) € E’. Then t = rs for some
r € E. Let J, : L*(X, ) — L?(X, ) be a Markov operator intertwining T and T,
ie. J,Ts = T,sJ.. In view of (14),

a/ J.0SdP(S)+ (1 —a)J.oJ =0 on L3(X, pu),
c(T)
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and hence
a/ JTOSdP(S)—i—(l—a)JTOJ:/ on L*(X, ).
c(T)

By the weak mixing of 7', the operator [ is indecomposable in J(T}, T}.). Therefore
J,oS = f for P—almost every S, and hence J,. = f Consequently, T and Ty = T
are disjoint. [l

5. SPECIAL FLOW

Let T be an automorphism of a probability standard Borel space (X, B, u). If
f: X — Ris a strictly positive integrable function, then by 7/ = (th )ter We will
mean the corresponding special flow under f (see e.g. [3], Chapter 11) acting on
(Xf, B, 1), where X = {(z,5) € X xR : 0 < s < f(z)} and Bf (uf) is the
restriction of B& B(R) (1®\) to X/. Under the action of the flow 7/ each point in
X7 moves vertically at unit speed, and we identify the point (z, f(x)) with (T'z,0).
Given m € Z we put

f@)+ f(Tz)+ ...+ f(T™z) if m>0
fm(z) = 0 if m=0
—(f(Tmx)+ ...+ f(T7 ) if m<O.

Then for every (z,s) € X/ we have
T (2, 5) = (T"x, s +t — () (),
where n € Z is a unique number such that f((z) < s+t < f(z).

Remark 2. Note that for every positive s the flow 7./ is isomorphic to T7/s. More-
over, Tfl is isomorphic to the special flow built over 7-! and under —f(-1) =
foT~t. If T is a rotation on the circle then T~! is isomorphic to T by the
symmetry ¢ : T — T, {(x) = 1 — . Therefore the map

T/ 5 (x,t) — (Cx,t) € TI¢
establishes an isomorphism of 7/, and 7/°¢.

Assume that f € L?(X, u). Suppose that there exist an increasing sequence of
natural numbers {g¢,}, a sequence {a,} of real numbers and a sequence of Borel
sets {C,} such that

(15) w(Cyp) — a>0, u(C,AT*C,) —0 and sup d(z,T%x) — 0
zeC,y,

and the sequence { [, |fn(2)[*dp(2)} is bounded, where f, := flan) —q, for n € N.

As the distributions
1
AN fnC’,L «\H|C,, 7nEN}
{u(Cn)( ) (ple.)

are uniformly tight, by passing to a further subsequence if necessary we can assume
that

1

weakly in P(R) the set of probability Borel measures on R.

o )«(ple,) = P
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Proposition 15 (see Theorem 6 in [9]). The sequence {(T/),,} converges weakly
to the operator

a/(Tf),t dP(t) + (1 — a)J,
R
where J € J(TY).

Remark 3. Suppose that 7' : T — T is an ergodic rotation by « on the circle and let
f: T — R be a function of bounded variation. By the Denjoy-Koksma inequality,
|f(4) (2) — g,c| < Var f for every « € T, where (g,,) is the sequence of denominators
of « and ¢ = [ f(z)dx. Taking C,, = T and a,, = ¢,¢, in view of Proposition 15 we
obtain that T . — [ (T7)_y dP(t) for some P € P(R).

gncC

Let T be an interval exchange transformation on I = [0,1) corresponding
to a probability vector A = (A1, A2,...,Ap) (m > 1) and a permutation 7 of
{1,2,...,m}, i.e. T acts on every I} = [Zf;ll )\i,Zle Ai), k=1,...,m, by a
translation in such a way that the intervals I ,;\ are rearranged according to the
permutation 7.

Suppose that T' = T . is ergodic. Let f : [0,1] — R be a positive function
of bounded variation. As it was shown in [16] (see also [9]) f satisfies a Koksma-
Denjoy type inequality, i.e. there exist an increasing sequence of natural numbers
{qn}, a sequence {a,} of real numbers and a sequence of towers {C,} satisfying
(15), with @ > 1/(m+1)?, and such that |f9 (z) —a,| < Var f for all z € C,,. Now
an application of Proposition 15 together with Theorem 14 gives the following.

Corollary 16. Let T be an ergodic interval exchange transformation and let f :
[0,1] — R be a positive function of bounded variation. Suppose that the special flow
T = (th)teR is weakly mizing. Then T/ and T are disjoint for almost every
s € R. Moreover, th and Tsf are disjoint for almost every pair (t,s) € R2.

Let M be a compact orientable C°°—surface of genus > 1. A translation structure
on M consists of a finite set (the singularity set) ¥ C M and an atlas (Uy, ¢4) of
M\ ¥ such that for all a, 8 with Uy NUg # 0, ¢a 0 ¢5' (v) = v+ c. The surface M
endowed with a translation structure is called a translation surface. Since transition
functions ¢, O¢E1 preserve constant vector fields, there is a well defined vector field
of unit length on M \ ¥ in each direction 6. The corresponding flow F¢ = (Ff);cr
is called a translation flow in the direction #. Note that F? preserves the Liouville
measure i, i.e. the finite measure on M which is determined by images by ¢! of
the Lebesgue measure on R?.

Theorem 17 (see Veech [27]). If a translation flow F° has no saddle connection,
then it has a special representation under an interval exchange transformation T .
and under a function which is constant over each interval I,;\.

Corollary 18. If a translation flow F is weakly mizing with respect to i, then
FO and F¥ are disjoint for almost every s. Moreover, FY and F? are disjoint for

almost every pair (s,t) € R2.

Recall that recently Avila and Forni [1] proved that given stratum of the moduli
space of translation surfaces of genus > 2 for almost every translation surface from
the stratum the translation flow 7 is weakly mixing for almost every 6 € S*.

Although for any weakly mixing translation flow F9 the flows F? and F¢ are
disjoint for almost every s € R, Y can be self-similar.
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Ezample 1. Consider an example of weakly mixing translation flow constructed in
[7] which has a special representation 7/ where T = T} , is a 4 interval exchange
transformation (7 is the symmetric permutation (14)(23)) and f : [0,1) — (0, +0c0)
is constant and equal to hj over each interval I, ,;\, k=1,2,3,4. More precisely, the
vectors A = (A1, A2, A3, Aq) and h = (hq, ha, hg, he) are a right and a left Perron-
Frobenius eigenvectors respectively of the primitive matrix

Let 6 > 1 stand for the Perron-Frobenius eigenvalue. Let J' = [0,1/6) and let
T' : J — J stand for the induced transformation of T on J'. As it was shown
in [7] T" is a 4-interval exchange transformation which is isomorphic to T by the
map [0,1/0) > x — Oz € [0,1). Let us consider the interval J' as another cross
section for the flow 7/. The corresponding special representation of 7/ is built
over T" : J' — J' and under a piecewise constant function f’: J" — (0, +00) which
is equal to hj over the k-th interval of the interval exchange transformation 7" for
k=1,2,3,4. Moreover,

(WY, by, Wy, )T = A(hy, ho, by, ha)" = 0(h1, ho, ha, ha)T,

and hence f'(§~'z) = Of(x) for all x € [0,1). It follows that the map J/" >
(z,5) — (0z,s) € [0,1)%F establishes an isomorphism of 7'/ and 7% . In view of
Remark 2, 7% ~ Tlf/e, and hence 7/ ~ Tlf/e. Consequently, 8% ¢ I(T7) for every
ke Z.

6. ABSENCE OF SELF-SIMILARITY FOR SPECIAL FLOWS

In this section we present a joining method of proving that a flow has no self-
similarities. Let us denote by M (L?(X,u)) the simplex of Markov operators V :
L?(X, ) — L*(X,p), i.e. V is a positive operator such that V(1) =1 and V*(1) =
1. Notice that M (L?(X, u)) is a compact subset of £(L?(X,u)) endowed with the
weak operator topology. Let V = (V;);cr be a continuous representation of R in
M(L?*(X,u)). Given s € R\ {0} by Vs denote the representation R > t — Vy; €
M(L?*(X, u)). We will say two representation V = (V;)cr and V' = (V/)icr are
Markov isomorphic if there exists a measure preserving automorphism S : (X, u) —
(X, ) such that So VY =V, 05 for all t € R. Let

I(V) ={s € R\ {0} : V and Vs are Markov isomorphic}.
Let R, : R — R stand for the rescaling map Rt = st.
Lemma 19. For every P € P(R) and s, — 0,
(Rs, )« (P) — 6o weakly .

Proof. Let f: R — R be a continuous and bounded function. Then
| /R f(@) (R, ). (P)(x) - /R F() ddola)| = | /}R f(s) dP(z) — £(0)|
< | [ o) = 10)dP@)] < [ £(502) - 10 dPG)
R R
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As s, — 0, f(spz) — f(0) for every x € R. Moreover, since |f(s,x) — f(0)] <
2|| fllsup for every z € R, Lebesgue’s dominated convergence theorem shows that

Jo f(@)d(Rs,)(P)(2) = [ f(@) doo(). 0
Lemma 20. If P, — P weakly in P(R) then

/ Vi dP,(t) — / V, dP(t) weakly in L*(X, ).
R R

Proof. For every f,g € L?>(X, ) the map t — (V;f, g) is continuous and bounded.
It follows that

< / Vi dP, (1) f,g) = / (Vif, g) AP, (t) — / (Vif.g) AP, (1) = { / Vi dP. (1), ).
O

Lemma 21. Suppose that there exists s € I(V)\ {—1,1} and there exist P € P(R)
and 0 < a <1 such that

a/v;dp(t)+(1—a)Je{v;:teR}d
R

for some J € M(L*(X, u)). Then
al4+(1—a)K € {V; : t € R}?
for some K € M(L?(X, )).

Proof. Since s € I(V), there exists an automorphism S : (X, u) — (X, u) such that
SoVy =V,08 for all t € R. Therefore,

S™ o Vymy = V;08™ for every t € R and m € Z.

By the assumption, there exists a sequence (t,) such that |¢,| — 400 and
Vi, — a/ VidP(t) 4+ (1 — a)J weakly.
It follows that )
Ve, = S0V, 08™ — a/ §7™ 0 Vi 0 S™dP(t) + (1 - a)Jy,

_ a/Vsmth(t)—i-(l—a)Jm :a/th(Rsm)*(P)(t)—k(l—a)Jm,

and hence
a/ Vid(Rsm )« (P)t)+ (1 —a)Jy, €{Vi:t € R}d,
R

where J,, = S ™ o J o S™.

Assume that |s| < 1, in the case |s| > 1 the proof follows by the same method by
taking the sequence (s~™)5°_; instead of (s™)5°_,. By passing to a subsequence,
if necessary, we can assume that that J,, — K weakly. Since s™ — 0 as m — 400,

by Lemmas 19 and 20,
a/ Vid(Rsm)«(P)(t) + (1 —a)Jpm — al+(1 —a)K as m — +oo.
R

Thus
al+(1—a)K € ({V; : t e R} = {V; : t ¢ R}
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Theorem 22. Let T = (T})icr be a measure-preserving flow on (X, p) such that
T is isomorphic to T, for some s # +1.
o If [, T, dP(t) belongs to {T; : t € R} for some P € P(R) then T is rigid.
o Ifa [, T,dP(t)+ (1 —a)J € {T; : t € R} for some 0 <a <1, P € P(R)
and J € J(T) then T is partially rigid.
Corollary 23. If T is non-rigid and [, T, dP(t) belongs to {T; : t € R}? for some
P € P(R) then T is not self-similar. If T is not partially rigid and « fR T, dP(t) +
(1 — a)J belongs to {T; : t € R} for some P € P(R), 0 < a <1 and J € J(T)
then T is not self-similar.

Example 2. Let us consider a special flow 7/ built over an ergodic interval ex-
change transformation 7" : [0,1) — [0,1) and under piecewise absolutely continuous
function f : [0,1) — R. By Proposition 15, there exist P € P(R), 0 < a <1
and J € J(T7) such that o [, T/ dP(t) + (1 — a)J € {T/ : t € R}%. Suppose
that the sum of jumps S(f) = fol f'(z) dx of f is not zero. Then, by Theorem 36
in Appendix A (this is a more general version of Theorem 7.1 in [10]), 77 is not
partially rigid, and hence 77/ is not self-similar.

Ezample 3. The absence of self-similarity we can observe also for special flows built
over ergodic rotations 7" on the circle by « satisfying a Diophantine condition and
under some piecewise constant roof functions f : T — R. More precisely, we will
deal with rotations with bounded partial quotients and roof functions satisfying
conditions (P1) and (P2) from [12]. Such special flows are partially rigid. However,
as was noted in Remark 3, [, T/ dP(t) € {T/ : t € R}%. Moreover, as was shown
in [12], considered flows are mildly mixing, hence not rigid. Consequently, 7/ is
not self-similar.

Let us consider a particular case where f = a + bxo,1/2) and a,b > 0, a,b ¢
Q+ aQ. Since f verifies (P1) and (P2), 7 is not isomorphic to 7/ for all s # +1.
Observe that T/ , and T/ are isomorphic. Indeed, by Remark 2, 7° ! 1 is isomorphic
to 77°¢. Putting R: T — T, R(z) = 2 + 1/2, we have f o ( = f o R. On the other
side, the map

TR 5 (x,5) — (Rx,s) € TS
establishes an isomorphism of 7/°% and 7/, and hence 77 , and 7/ are isomorphic.
Therefore I(77) = {—1,1}.

Theorem 24. Let T = (T})icr be a weakly mizing MSJ flow. Suppose that there
exists non-zero s # +1 such that Ts and Ty are isomorphic. Then T is either
mizing or partially rigid (in fact, a-weakly mizing).

Proof. By Corollary 6.4 in [15], the flows 7; and 7 are isomorphic, and hence
seI(T).

Suppose that 7 is not mixing. Then there exists a sequence (t,,) with |t,| — +00
such that

T, — a/ T, dP(t)+ (1 — a)/
R
for some 0 < @ <1 and P € P(R). An application of Lemma 21 shows that

Ty — al+(1— a)/

for a sequence (¢),) with |t/ | — +o0. O
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Theorem 25. Let T = (T3)ier be a weakly mizing MSJ flow. Suppose that
Jz T2 dP(t) belongs to {T : t € R} for some P € P(R). Then for every nonzero
real s1, So with |s1| # |sa| the flows T, and Ty, are disjoint and the automorphisms
Ts, and Ts, are disjoint.

Proof. Suppose that T, and T,, are not disjoint, or 75, and 7, are not disjoint
for some s1,s2 € R\ {0} with |s1| # |s2|. By Corollary 6.4 in [15], 75, and 7, are
isomorphic, and hence s1/s2 € I(T) \ {—1,1}. Now an application of Theorem 22
gives the rigidity of 7, which is impossible. O

Ezample 4. Let us consider the special flow 7 built over a rotation by a with
bounded partial quotients and under a function f(x) = {z} 4+ ¢. As it was proved
in [11], the flow 7 has MSJ. As we noted earlier 7 is not self-similar. Furthermore,
the absence of self-similarity here has stronger consequence: 7 is disjoint from 7
for every s # +1. Moreover, 7 and 7_; are also disjoint. This is an immediate
consequence of Remark 2 and Theorem 40 in Appendix B. Finally, 7 is disjoint
from 7; for every s # 1.

Recall that the same property was observed in [14] for some special flows over
Chacon transformation.

Remark 4. Let T = (T})1cr be an ergodic flow for which 0 < s < 1 is a scale of
self-similarity. It follows that there exists an automorphism S : (X, u) — (X, p)
such that SoT; = Ts 05 for all t € R. Then S have to be mixing. Indeed, suppose
that S is not mixing. Then there exists an increasing sequence (k) of natural
numbers and J € J(7) such that S*» — J and J # [. Since S*» o T} = Tyr,,; 0 S*n
and Tk, ; — I, we obtain Ty o J = J for every ¢ € R. By the ergodicity of 7, J = [.

7. SELF-SIMILAR FLOWS

Let G be a countable multiplicative subgroup of R\ {0}. In this section given
we will construct a flow 7 such that I(7) = G.

Let S be a weakly mixing flow on a standard probability Borel space (Y,C,v)
which has MSJ property and S; if disjoint from S for every s # 1. Recall that
the flows presented in Example 4 possess such a property. Denote by (Y;,Cs,vs) =
(Y,C,v) the space of the flow S for s # 0.

Let us consider the product flow 7 = ngG Sy which acts on the product space

(X,B,u) = (ngc Yy, ®g€G Cy, ®g€G Vg) by

Z((yg)ge(;) = (Sgtyg)geG~

Assume that s € G. Then the flows 7 and 7 are isomorphic, and the isomorphism
is given by

T H Y, — H Yy, [m((yg)gec)ly = ysq for all ¢' € G.
9eG geG
Assume that s ¢ G. We will show that 7 and 7; are disjoint. To prove this
we will use PID property of the flow S. Suppose that 7 is an ergodic joining of 7
and 7,. Since G N sG = 0 and the flow T, = ngc Ssg On ngc Y, is isomorphic
to the flow HgEsG Sy on HQESG Y,, n can be treated as a probability measure on
[I,ccusc Yy invariant under the action of the product flow [] 5 .q Sg- On the
other hand, for any collection si,...,s; of distinct non-zero real numbers every
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ergodic joining of S, ,...,S,, is the product measure ps, ® ... ® ps,. This is a
consequence of Proposition 13 and the disjointness of S; form Sy for s # s'. It
follows that the projection of 1 on any finite product ngF Y, (F C GUsG and
finite) is the product measure @ . pg- Therefore n = Q) ccusq Py = 1 @ p, and
hence 7 and 7 are disjoint. Consequently, I(7) = G.

8. SPECTRAL THEORY

Let A be a locally compact second countable Abelian group. In this paper we will
deal only with two cases where A = R or Z. Let 7 = (T,),ca be measurable action
on a probability Borel space (X,B,u). The action 7 determined the Koopman
representation U7 of A in LZ(X,B,u) given by UZ(f) = foT,. For any f €
L3(X,B, 1) we define the cyclic space A(f) = span{UZ f;a € A}. By the spectral
measure o7 y of f we mean a Borel measure on the dual group A determined by
fiv(a)doyr(v) = (UILf, f)forall a € A.

By the spectral theorem there exists a spectral decomposition of L2(X, B, 1), i.e.

(16) LY(X,B,p) =@ A(fn) and op 17> 0571 .

Moreover, a spectral sequence (o, 7)nen is unique up to equivalence of measures.
The spectral type of oy, 7 (the equivalence class of measures), denoted by o7,
will be called the mazimal spectral type of 7. T is said to have Lebesgue spectrum
if o, ,7 = A, where A is a Haar measure on A. Tt is said that 7 has simple spectrum
if L2(X,B, 1) = A(f) for some f € L*(X, B, ).
For any real s let

0, : R — R, 0s(t) =t + s,
Rs;:R — R, R;(t) = st,
s : R — T, Xs(t) = exp 2mist.

Let 7 = (T})icr be a measurable flow on (X, B, ). Fix f € L3(X, B, ). Then
for any s # 0,

/R ™ doy 7 (1) = (f o Trs, f) = /

p2mirst daf,T(t) _ / e2mirt d(RS)*UﬁT(t)
R

R
and

/Z" doyr,(2) = (f o Ten, f) = / ™St doy 7 (t) = / 2" d(xXs)w0f7(2):
T R T
It follows that o7, = (Rs)«0f7 and oy, = (Xs)+0f7, and hence o7, = (Rs).0o1

and o, = (xs)«07-
Suppose that p and v are probability singular Borel measures on R. The following
two lemmas are well-known; we give proofs for completeness.

Lemma 26. For almost every s € R measures (05).p and v are orthogonal. If
1({0}) =v({0}) = 0 then (Rs).p and v are orthogonal for almost every s € R.

Proof. Since p % A = A, there exists a measurable set E C R such that v(F) = 1
and

0=pxA(F)= /]RM(E —8)ds = /R(HS)*,u(E) ds.

It follows that (05).u(E) = 0 for almost every s € R.
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Set g : R\ {0} — R, g(x) = log|z| and abs : R — R, abs(z) = |z|. Notice
that g.(p) and g.(v) are also singular. Let G stand for the set of real numbers s
such that ¢.(v) L (6s)+9«(1). Using once more the non-singularity of g we obtain
Mg~ (G@)®) = 0. Suppose that s € g~(G). Since g(s) € G,

g*(l/) 1 (eg(s))*g* (PJ)

It follows that (by the non—singularity of the function exp)

exp, g« (V) L exp, (0(5)) g+ (1) and (= exp)sgs(v) L (—exp)i(fy(s)) g (1)
Since exp ofly() 0 g = abs o R, on R\ {0},
V0 o) < b, L abs.(Ra)opt > (Ra)oil 0,400
and
V](—o00,0) K (—abs)yv L (—abs)s(Rs)spt > (Rs)sft](—c0,0)-
Consequently, v L (Rg) . O

Lemma 27. Let i and v be probability singular Borel measures on R. If u L v
then (xs)«pt L (xs)«v for almost every s € R.

Proof. By the first part of Lemma 26, there exists a measurable set £ C R whose
complement has zero Lebesgue measure such that (6xs).p L v for every s € E and
k # Z\{0}. Therefore (0,,5)«pt L (Os)sv for all s € E and m # n. By assumption,
(Ons)spt L (Ons)sv for all s € R and n € Z. Thus (Ops)spe L (Ons).v for all s € E
and m,n € Z. It follows that (ys)«p L (xs)«V for every s € E. O

Proposition 28. Let o be a probability singular Borel measure on R which has no
atom at zero. Then (xs)«0 L (x¢)«0 for almost all (s,t) € R2.

Proof. Denote by P(T) the space of all probability Borel measures on T provided
with the weak topology. As it was shown in [2], the set
{(t,v) € P(T) x P(T) : p L v}
is a Gs subset of P(T) x P(T). Since the map
Rt (xt)«0 € P(T)
is continuous,
G = {(s,t) € R?: (xs)s0 L (x2):0}
is a G5 subset of R%. Let G’ = {(s,t) € R?: (s,st) € G}. Since the diffeomorphism
(R\{0}) xR > (s,t) — (s,st) € (R\ {0}) xR

is a non-singular automorphism with respect to the Lebesgue measure on R?, it
suffices to prove that the complement of G’ has zero Lebesgue measure on R%. By
the second Lemma 26, there exists a set £ C R such that A\(E¢) =0and o L (R;)«0
for all t € E. Fix t € E. By Lemma 27,

(Xs)*a 1 (Xs)*(Rt)*U = (th)*O'

for almost every s € R, and hence (s,t) € G’ for almost every s € R. An application
of Fubini’s theorem for G’ gives that the complement of G’ (and hence of G) has
zero Lebesgue measure on R2. O

Theorem 29. Let T = (T})ier be an ergodic flow on a probability standard Borel
space (X,B,u). If the spectrum of T is singular then Ts and T are spectrally
disjoint for almost every pair (s,t) € R2,
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Proof. Tt suffices to note that if o is the maximal spectral typ of 7 then (x;).«o is
the maximal spectral typ of T;. ([

Corollary 30. Let T = (T})ier be an ergodic flow on a standard Borel space
(X,B, ). Suppose that there exists a measurable set E C R of positive Lebesgue
measure such that T; and Ty are not spectrally disjoint for all s,t € E. Then the
flow T has an absolutely continuous component in its spectrum.

Proposition 31. Let T = (T})ier be a weakly mizing flow on a standard Borel
space (X,B,u). Suppose that there exists a measurable set E C R of positive
Lebesgue measure such that T and T, are spectrally equivalent for all s € E. Then
the flow T has a Lebesgue spectrum.

Proof. If o denotes the maximal (reduced) spectral type of 7 then (R;).o is the
maximal (reduced) spectral type of 7,. By considering o’ = log,(0](0,4+00)) We
obtain a measure on R for which the set H(¢’) of ¢ € R such that o' = (6;).0” is
of positive Lebesgue measure. But H(¢’) is a Borel subgroup of R (see [6]), hence
H(c') = R and therefore ¢’ is equivalent to the Lebesgue measure. It follows that
7 (0,400) i also equivalent to the Lebesgue measure restricted to (0, +00). Since o
is symmetric, we conclude that o is also equivalent to the Lebesgue measure. [

9. GAUSSIAN FLOWS

The aim of this section is to show a construction of simple spectrum Gaussian
flows with minimal set of self-similarities (Gaussian flows are always reversible) as
well as with infinite set of self-similarities.

Let A be a locally compact second countable Abelian group. A measurable A-
action (S,),c, on a probability Borel space (X, B, i) is called a Gaussian action
if there exists an infinite dimensional real space H C L(X, B, 1) which generates
B, which is invariant under all S,, ¢ € A and for which all nonzero elements are
Gaussian variables. A classical result (see e.g. [3], Ch. 8 for the case of Z-actions)
is that a Gaussian (S,),c, is ergodic iff the spectral type o of (Sa),c, on the
Gaussian space H is continuous. Moreover, the maximal spectral type of (Su),c,
on LZ(X,B,p) is given by exp’o = >.°° | Lo where ¢(™ stands for the n-th
convolution power of o.

Let ¢ be a finite Borel measure on R. Put X = RF and let &, : X — R stand for
the projection on the s-th coordinate for s € R, i.e. £s((x)ier) = 5. By B denote
the smallest o-algebra of subsets X for which £, is a measurable map for every real
s. Given s € Rlet T : X — X be the shift Ts((z¢)ter) = (Tt4s)ter-

A probability measure p on (X, B) is called a Gaussian measure if the process
(&s)ser on (X, B, p) is a stationary centered Gaussian process. The Gaussian mea-
sure p determines the spectral measure o of the Gaussian process by

5(s) = /]R £4(@) - o) dpu(z) for 5 € R.

Since the Fourier transform & is real, the measure o is symmetric. Conversely, every
symmetric finite Borel measure on R is the spectral measure a Gaussian process
corresponding to a Gaussian measure p,. Let 77 = (17 )ier stand for the flow on
(X, B, ) given by

Ttg((xS)SGR) = (xs+t)s€R~
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Let H C L3(X, uy) be the closed real linear subspace generated by &5, s € R. Since
every non-zero element of H has a Gaussian distribution, the flow 77 is a Gaussian
flow with H as its Gaussian space. Moreover, o is the spectral measure of 77 on
the Gaussian space H. If o1 and o, are equivalent continuous measures on R then
the corresponding flows 77 and 72 are isomorphic.

Fix s # 0. The automorphism Ty = T? : (X, u,) — (X, po) is a Gaussian
automorphism with H as its Gaussian space. Moreover, since

(& 0T 6) = (Enr o) = / TSt o (1) = / 2" d((xs)0) (),

for every r € R and n € Z, the spectral measure of £, with respect to T is equal
to (xs)«0, and hence (xs).0 is the spectral measure of T on H.

A Borel subset K C A is called independent if for any collection of distinct
elements x1,...,xr € K and any ay, ..., a; € A the condition i (a;)-...-xx(ar) =1
implies a; = ... = ax = e, where e denotes the neutral element in A.

By the classical theory of Gaussian systems (see [3] Ch. 8 for the case of Z-
actions), if ¢ is a Borel finite measure on R concentrated on K U (—K), where
K C R is an independent Borel set then the flow 77 has simple spectrum.

Proposition 32 (Corollary 1 in [19]). Let o and 7 be finite positive, symmetric
continuous Borel measures on T. Assume that o is concentrated on K U K, where
K C T is an independent Borel set and that T is concentrated on a countable union
of independent Borel sets. Then either o™ 1L 7™ for allm,n € N, or o and %4,
are not mutually singular for some c € T.

Let P stand for the set of all polynomials in variables zi,zs,..., i.e. P =
Ug>1 R[z1,...,2%]. In other words every polynomial P € Rzy,..., x| we will
treat it as a polynomial in variables z1,zo,... given by

P(x1,xa,...) = P(x1,...,2k).
Let us consider two operators z,s : P — P given by

z(P)(z1,x2,3,...) P(0,x2,x3,...)

S(P)($1,$271‘3,...) = P(J?Q,l‘g,l‘g,...)

for every P € P.

For each finite subset Q@ C P denote by F,,(Q) the smallest subset of P containing
@ and closed under taking all permutations of the first 2" variables and under the
action of the operator z. Of course, F,,(Q) is still finite.

Let (P, )nen be a sequence in P\ {0}. We now define a sequence (Q)nen of
finite subsets in P by putting

Q1 =Fi({P1}) \ {0}, @mi1 = Fins1(Qm U {Pmi1}) \ {0}

Lemma 33. For any sequence (Py)nen in P\ {0} there exists a perfect compact
subset K C R such that for every m € N and s € N if there exists a collection of
distinct numbers y1,...,ys € K with

Pm(y17~-~,y5,0,...):0

then the polynomial P, (x1,...,xs,0,...) is the zero polynomial.
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Proof. (The construction of K below is a modification of the construction of a
Kronecker set from [21]). The set K is given as K = ()., K,, where K, =
Uf;l Fni, Fy; is a closed (non-trivial) interval and F,,; < F, ;1. The notation
A < B will mean that a < b for all @ € A and b € B. Our construction goes by
induction.

1) Ky = Fp,1 is an arbitrary closed non-trivial interval.

2) Suppose we have already constructed K,, = Uil F), ;. In each interval F;, ; we
find two open intervals Wy; 1 < Wo;. Let Q% 41 stand for the subset of polynomials
P € Q41 such that P(xq,...,29:+1,0,...) is a nonzero polynomial. Since the set

U (@1, aan0) €RT Play,... 2300,0,..) = 0}
PEQ?Hrl

has zero Lebesgue measure, there exists (61,...,02:+1) € W1 X ... X Want1 such
that

P(01,...,0p0+1,0,...) #0 forall Pe@Q)_,.
Next choose Fy41; C Wi, i =1,...,2""! such that

1

0 € Int Fopr, [Pl < 5oy

and
(17) (2’1, c. ,Zzn+1) S Fn+1’1 X ... X Fn+172n+1 = P(Zl7 R I | ) 7& 0

for every P € QY ;.
We will now show that for every m, s € N if the polynomial P, (z1,...,zs,0,...)
is non-zero then for any collection of distinct numbers ¥, ...,y in K we have

P(y1,---,Ys,0,...) £0.

Indeed, fix m > 1 and s € N and suppose that P, (z1,...,2s,0,...) is non-zero.
Take y1,...,ys in K such that y; # y; for i # j. Let n € N be so large that m < n,
s < 2" and max; |F,, ;| < min;»; |y; —y;|. We can find a permutation o of {1,...,s}
and 1 < j(1) < j(2) <...<j(s) <2" such that y,;) € F,, j; fori=1,...,s. By
the definition of @,,, the polynomial

W(l‘l, T, .. ) = Pm(ai‘j(o.f1(1)), Tj(e=1(2))r -1 Lj(o=1(s))» O7 .. )
belongs to Q2. Choose (21,...,22n) € Fy1 X ... X Fy, on such that 2j(i) = Yo (i) for
i=1,...,s. From (17),
Pm(yla ey Ys, 0, .. ) = Pm<2:j(071(1)), ey Zj(o.—l(s)), O, .. )
= W(Zl,...,ZQn,O,...)?éO.
|

Let A C (0,400) be an at most countable subset of positive numbers such that
for every polynomial P € Q[zy,...,x] if there exists a collection ay,...,a; of
distinct elements of A with P(aq,...,ax) = 0 then P = 0. Note that A can be also
empty. Let G(A) stand for the multiplicative subgroup generated by the elements
of A. In the case of A = () we will adhere to the convention that G(4) = {1}.
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Lemma 34. There exists a perfect compact subset K C R such that the set

K= U gK

geG(A)
is independent and its symmetrization K=EKU (—I?) satisfies:

Ir| ¢ G(A) = #((rK 4+ t) N K) < X, for any real t.

Proof. Let

P(x1, 72,73, 74,75, %6, T7,78) = (¥1 — ¥3)(¥6 — ¥8) — (2 — 74)(v5 — 7).
Let P denote the smallest subset of Rlx1, x2, T3, X4, T5, Te, T7, Tg] containing P,
and closed under taking all permutations of coordinates and under the action of
the operator s. Let Q(A) stand for the field which is the extension of Q@ by the
elements of A. Let Q* stand for the set all nonzero polynomials of the form

Ty + ...+ qeTk,
where ¢; € Q(A) for j =1,...,k, and k > 1.
Let (Pp,)5°_; be a sequence containing all elements from (PUQ*)\ {0}. Let K

satisfy the assertion of Lemma 33. Put

K= U gK.
geG(A)

First note that K is independent. Indeed, suppose that y, ...,y is a collection of
distinct elements of K such that

q1y1 + - - - + qryr = 0 for some rational ¢1, ..., gx.

We can find a finite collection aq, ..., a,, of distinct elements of A, z1,..., 2z, in K
and an integer matrix [5;;]1<i<m, 1<j<k such that

m
Yi :Halﬁ”zj forevery j =1,...,k

1=1
Without loss of generality we can assume that zp, ..., zs are distinct for some 1 <
s<kandz €{z,...,2} for every 1 < i < k. Moreover,
k s m
ﬂ .
0= quyj = ZHal YPi(a1,...,am)zj,
j=1 j=11=1
where the set of coefficients of the polynomials P; € Q[z1,...,2m], j =1,...,5 is

equal to {g1,...,qx}. Indeed, even if z; = z; for i # j we still have [[;", alﬁ” #
I, alﬁ"j, otherwise y; = y;. Since [[;~, a}g” Pj(a1,...,am) € Q(A)for j=1,...,s
and z1,..., zs are distinct elements of K, Pj(ai,...,a,) =0, and hence P; = 0 for
all j =1,...,s. It follows that g1 = ... =g, = 0.

Assume that |r| ¢ G(A). It is enough to consider r # 0. Let (G, (A))nen be an
increasing sequence of finite subsets of G(A) such that (J, .y Grn(A4) = G(A). Let

I}n = U gK.
gEGn(A)U(=Gn(A))
Since [W(n e f(, it suffices to prove that for each t € R
#((rK, +t) N K,) < 16(#G,(A))? for all n > 1.



26 K. FRACZEK AND M. LEMANCZYK

Suppose, contrary to our claim, that for some ¢t € R the set (rf(n +i)Nn K,
contains at least | = 16(#G,(A))? distinct elements. It follows that there are
Y1, Yy € K and s1,...,89 € G,,(A) U (=G, (A)) such that
(18) rSop—1Y2k—1 +t = sapyar for k=1,...,1

and saryor, k = 1,...,1 are distinct numbers. Since | > 4(#(G,,(A)U (=G, (A))))?,
the sequence {(s2_1, s2x) }L_, contains at least four identical elements. By renam-
ing points, if necessary, we can assume that (sor_1, $2x) = (81, $2) for k =1,2,3,4.
It follows that
7(s1y1 — 51Y3) = S2y2 — S2ya and 7(s1y5 — s1Y7) = 5296 — S2Us,
and hence
(y1 —y3) (Y6 — ys) = (Y2 — ya) (Y5 — yr).
Moreover, ys2, Y4, Y6, ys are distinct, and hence y1,ys, ys,y7 are distinct. Suppose
that {z1,...,2s} = {y1,...,ys}, where z1,..., z; are distinct numbers. Then s > 4.
Let us consider the function ¢ : {1,...,8} — {1,...,s} determined by y; = zy(;
for i = 1,...,8. Note that ¥(1),9(3),9(5),9(7) and ¥(2),9(4),9(6),¥(8) are two
collections of distinct numbers. Let
Wi(w1,...,2s) = (o) — o)) (Toe) — To(s)) — (To2) — To)) (Toz) — Toer))-

Then W € P and W(z,...,2s) =0. Since z1,...,zs belong to K and are distinct,
W is the zero polynomial. Observe that 9(1) # ¥(6),9(8). Otherwise W contains
the monomial xfm) with a nonzero coefficient, contrary to W = 0. It follows that

9(1) € {9(2),9(4)}. Similar arguments show that {9(1),9(3)} = {9(2),9(4)} and
{9(5),9(7)} = {9(6),9(8)}. Since W = 0, it follows that ¥(1) = 9(2), ¥(3) = 9(4),
9(5) = 9(6), 9(7) = ¥(8), or ¥(1) = J(4), ¥(3) = ¥(2), I(5) = ¥(8), ¥(T7) = V(8).
Thus, by (18),

rs1ye + 1t = Say2, TS1Ys + 1 = SaYa, TS1Ys +1 = S2ys, TS1Ys + 1 = S2ys.
or

rS1ys + 1 = Say2, TS1Y2 + 1 = SaoYa, TS1Ys +1 = S2ys, TS1Y6 + T = S2Us.
Since r ¢ G(A) U (—G(A)), we conclude that y2 = y4 = ys = ys, contrary to our
claim. [l

Theorem 35. If p is a continuous measure supported on K then the Gaussian flow
T = (Ti)ter given by the measure

p= S pe(Ry)e(p)
gEG(A)U(-G(A))
(pg > 0 and Y py < 4+00) has a simple singular spectrum and
o if |71/T2| € G(A) then T., is isomorphic to T.,;
o if |T1/T2| & G(A) then Ty, is spectrally disjoint from T,,, and hence the
flows T, and T, are spectrally disjoint.

Proof. TheAsimplicity of the spectrum of 7 follows directly from the independence
of the set K C R. The second assertion follows from the fact that

(R;)«(p) = p for every 7 € G(A) U (—G(A)).
If |7 /72| ¢ G(A) then the measures (R;, )« (p) *0; and (R,,).(p) are orthogonal for
every t € R. It follows that (xr,)«(p) %0 L (Xr )« (p) for every ¢ € T. The measure



ON THE SELF-SIMILARITY PROBLEM FOR ERGODIC FLOWS 27

(X7.)«(p) is the spectral measure of T, on its Gaussian space for i = 1,2. Let
D; C K be the set of numbers z € K for which there exist ng, n, . ..,n,,n € Z\ {0}
and a collection of distinct elements x1,...,x, of K different from x such that

noL + n1xy + ...+ nsxs = /7.

Since K is independent, the set D; is at most countable. By the definition of D;, the
set Xr, (K \ D;) C T is an independent Borel set. Moreover, since p is concentrated
on KU (—K) and it is continuous, the measure (X, ).(p) is concentrated on x, (K \

D;) U xr,(K \ D;). An application of Proposition 32 for (xr,)«(p) and (xr,)«(7)
gives the mutual singularity of (xr,)«(7)™) and (xr,)«(p)™ for all m,n € N. It
follows that exp’(xr )«(p) L exp’(xr,)«(p), and hence T,, and T, are spectrally
disjoint. (I

Remark 5. In this case of A = (), Theorem 35 yields an example of weakly mixing
flow 7 with simple spectrum which has no spectral self-similarity, i.e. SI(7) =
{-=1,1} and additionally 7; is spectrally disjoint from 7 for all s # +1.

10. OPEN PROBLEMS
Problem 1. Is I(T) a Borel group for any measurable flow 77

Problem 2. Find a flow 7 for which the group I(7) is not countable and has zero
Lebesgue measure. Give a classification of multiplicative subgroups of R that can
be obtained as I(7).

The same type of questions can be formulated for smooth system. The existence
of smooth flow which is not self-similar was announced by J. Kulaga. She uses
a smooth flow on the closed orientable two dimensional surface with genus two
isomorphic to the special flow built over an irrational rotation on the circle and
under a roof function which is of symmetric logarithmic type.

Problem 3. Solve the self-similarity problem for roof functions of non-symmetric
logarithmic type.

In the non-symmetric logarithmic case the special flow built over any irrational
rotation is mixing (see [18]), and hence the method of proving the absence of self-
similarity presented in Section 6 falls.

Problem 4. Find a self-similar smooth flow for which I(7") has zero Lebesgue mea-
sure.

In [22] de la Rue and de Sam Lazaro have shown that a typical automorphisms
of a standard Borel space is embeddable in a measurable flow; i.e. a typical auto-
morphism 7 is isomorphic to the time-1 map T of a measurable flow (7}):er.

Problem 5. Can we embed a typical automorphism in a self-similar flow?

Let Flow(X, B, 1) stand for the set of measure-preserving flows of a standard
probability space (X, B, u). Let {A, : n € N} a countable family in B which is
dense in B for the (pseudo-)metrics d,(A, B) = u(AAB). Let us consider the
metric d on the group Aut(X, B, 1) of measure preserving automorphisms defined
by

AT, S) =S 2in(ﬂ(:rAnASA,L) 4 (T ANS 7 AL)).
n=1
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The group Aut(X, B, 1) endowed with d is a topological Polish group. Then the
distance dz on Flow(X, B, i) is given by

d]-'((St)teRv(Tt)teR) = sup d(St7Tt)~
0<t<1

Problem 6. Is the absence of self-similarity generic in the set of measure preserving
flows Flow(X, B, 11)?

APPENDIX A. ABSENCE OF PARTIAL RIGIDITY

Let T =Ty :[0,1) — [0,1) be an ergodic m-interval exchange transformation
and f:[0,1] — R be a piecewise absolutely continuous positive function such that
f>2e>0.Let 0< 1 <...<f <1 stand for all discontinuities of f: [0,1) — R.
Let Z; stand for the set of all discontinuities of 77, j > 0. Then #Z; = (m — 1)j
and the set of all discontinuities of f() is a subset of

7j—1
UT 61, .. 8 UE 1.
=0

It follows that f() has at most kj 4+ (m — 1)(j — 1) < (k4 m)j — 1 discontinuities.
Theorem 36. If S(f) # 0 then the special flow T/ is not partially rigid.

Proof. Let C' := max,¢[o,1) f(z). Then 0 < ¢ < f(x) < C for every z € [0,1]. Let
u stand for Lebesgue measure on [0,1]. Assume, contrary to our claim, that (¢,),
t, — o0, is a partial rigidity time for 7/. By Lemma 7.1 in [10], there exists
0 < u <1 such that for every 0 < € < ¢ we have

(19) liminf p{z € [0,1) : Jjen [fU(x) — tn] < €} > u.

Without loss of generality we can assume that S := S(f) > 0, in the case S < 0
the proof goes along the same lines. Fix
Sc? c
20 0 i — .
(20) << mmn (32(k+m)C2(1—|—Varf)—|—ScQu’4)
Since f’ € L([0,1),u), there exists 0 < § < e such that p(A) < & implies
J41f'|dp < e. Moreover, by the ergodicity of T' (and recalling that S = fol fduw)
there exist A. C [0,1) with u(A:) > 1 — 0 and mo € N such that
1
(21) g < —f')(z) for all m > mg and z € A..
m
Then take any n € N such that ¢, /(2C) > mg and ¢, > 2¢. Now let us consider
the set J, . of all natural j such that |fU)(z) — t,| < & for some z € [0,1). Then
for such j and x we have

th+e> f9(x)>¢j andt, —e < f9(z) < Cj,

whence
(22) tn/(2C) < (t, —e)/C < j< (tn+e)/c < 2t,/c
for any j € J,,¢; in particular, j € J, . implies j > my.
Let 70 = maxJ,.. The points of discontinuity of FG") divide [0,1) into
subintervals If"), ceey L(LZ). By the remark preceding the theorem,

(23) tn < (k +m)j™.
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Notice that for every j € J,. the function ) is absolutely continuous in the
interior of any interval I, i = 1,... u,. Moreover, since (T%)(z) = 1 for all
points z of continuity of T%, (f)) (z) = (f')V¥)(z) for almost all z € [0,1) and all
natural j.

Fix 1 <i < wu,y,. For every j € J, . let

IV ={eeI™:|fV(@) —t,| <e}.
)

Of course, IV may be empty. Note that I(]

v 14,5
suppose that = € IZ.(J and y € Ii(J?, where j # j'. In view of (20), e < ¢/4, and

hence

, J € Jnc are pairwise disjoint. Indeed

S a > ‘ (O ] = 1) - 9a)
> If(J (y) — f¢ (y)|—|f(j,)(y)—tn\—|f(j)($)—tn|
> |fI@ )| —2e 2222
It follows that
(24) / Kk G ) dp >7Wheneverx€I(j),y€I(2andj7éj’,

which excludes the possibility that x and y are arbitrarily close, and therefore
N1 =0.
Furthermore, if x,y € IZ.(Z-) then

Yy
1(5) d,u‘ _

y(ﬂ”)’du’ =P y) = [P )] < 2,
therefore

)

(25) 1(J) d“‘ < 2¢ wherever z,y € IZ(Z :

Let us consider a sequence of points
inf I < al <bi <ah<bh<..<al <b. <supI™

and a sequence (j;);_, of distinct numbers from J,, . determined by the following
inductive procedure:

i

a] = inf U Ii(j;») = inf 1" bl = sup ™

4,J17 4,317
jeJ’r‘L,E

aj,, = inf U I(n = inf 1 ﬂ(f,l), bf+1:supl()

4,014 01417
J€Jn e

if Ujer, . I(" N (b, 1) = 0, the procedure stops. Since (J;¢; IZ-(Z-) N(bj,ai,,) =0
for 1 < [ < si, we have

U v c U[a%,bﬂ.
=1

J€JIn e
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From (25) and (22) for every 1 <1 < s; we have

bi f’(jl)

af J

Moreover, by (24),

ajy
/_ |f| du>7foralll<l<sl

1

It follows that

Si bl prGi) ACe  4Ce  8Ce
B R L
=17 n n
4 n
(26) < C’e 8052/ |f|(>)d
4Ce  8Ce M)y
< bt
< Tt o /Y
Since p(A¢) < 4, by (22), we have
Z / f’(]z)
=1 1l=1 al,b’]ﬂAC
i (™
(27) < ZZ / ) dp
tn im1 1—1 [a} bl]ﬂA°
t Jac tn
As
By ={x€0,1): Jjen [fD (@) —tul <t =] U 1% < U Ulai.bi],
i=1jE€Jp ¢ i=11=1

by (21), (26), (27), (23) and ( we have

]l)
“u(B,NA) < Z /

i=1 1=1 7 la},b]INAc Ju
Un S b; f ]l) Un Jz)
< S [EalSs
i=1 =1 i=1 1=1 Y laj-b{INAg
4C 8C 4C
< un—€+—5 |f| Ddp+ —e
tn tnC [0, c
A4k +m)j™WCe  4Ce 8Cej™
< %+—+ R
n c tnC
8k +m)Ce 4Ce 16Ce
< BlEtmCe 40 | 160 b,
C C C
16(k C?
< 16(k + m)C™ (14 Var f)e.

c2
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Finally, from (20) we obtain

32(k +m)C?
Sc?

contrary to (19). O

H(By) < (B 0 A2) + p(AS) < (1+ Var f)e +¢ <,

APPENDIX B. DISJOINTNESS OF SPECIAL FLOWS UNDER PIECEWISE ABSOLUTELY
CONTINUOUS ROOF FUNCTIONS

Let (X,d) and (Y,d) be o—compact metric spaces and let 5 and C be the o—
algebras of Borel subsets of X and Y respectively. Let  and v be Borel probability
measures on (X,d) and (Y,d). Suppose that 7 = (T})ier and S = (S;)ser are
weakly mixing flows on (X, B, 1) and (Y,C,v) respectively. Let P C R\ {0} be a
finite subset and ¢p € R\ {0}.

Suppose that the pair (7, S) verifies the following R(tg, P) (to € R) property: for
every € > 0 there exist k = k(¢) > 0 and X () € B, Y(¢) € C with u(X(e)°) < ¢,
v(Y(e)?) < e such that for every z € X(¢), y € Y(¢) and N € N there are
L= Lxy) > N, M = M(z,y) >0, Q = Q(z,y) > 0 such that L/(M + Q) > r
and there exists p = p(z,y) € P such that

1
L—c < s#{neZn[M,M+1]:

AT Q1nyto (), Tuto () < &, d(S(Qsn)to(Y) Sntg+p(y)) < €}

Remark 6. Suppose that T : (X,B,un) — (X,B, ) is an ergodic automorphism.
Fix A € B. Notice that if

M+L
1

<m and MiLil T;) xa(T"z) — p(A)

<n2

1 M-1
17 D Xa(T"w) = p(4)
n=0

then

23 xalmme) - u(A)
n=M

< (240
- T2 I/

It follows that for every e > 0, 6 > 0 and & > 0 there exist N = N(e,d,x) € N and
X(g,0,k) € B with u(X(g,0,k)) > 1 — ¢ such that for every M, L € N with L > N
and L/M > k we have

M+L

1
I Z xa(T"z) — p(A)| < e for all z € X (g, 6, k).
n=M

Theorem 37. Suppose that (T,S) has the R(s, P)—property for uncountably many
s € R. Then T is disjoint from S.

Proof. Suppose, contrary to our claim, that there exists p € J¢(7,S) such that
p # @ v. Since the flow (T} X Si)ier is ergodic on (X x Y, p), we can find ¢ty # 0
such that the automorphism T3, x S, : (X X Y, p) — (X x Y, p) is ergodic and the
pair (7,S) has the R(tg, P)—property. To simplify notation we assume that ¢, = 1.

Since the ergodicity of S, implies disjointness of .S, from the identity, for every
p € P there exist closed subsets A, C X, B, C Y such that

p(Ap x S_,By) # p(Ap x Bp).
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Let
(28) 0 < e :=min{|p(4p x S_,By) — p(4, x Bp)| : p € P}.
Next choose 0 < €1 < /8 such that u(A5'\ A,) < e/4, V(B '\ By) < e/dforp e P,

where At = {2z € X :d(2,A) <ei} and B! ={z€Y :d(z,B) <ei}. Then
I(Ay x By) — p(A5! x B2Y)| < /2.
Indeed,
|p(Ap x Bp) — p(A7 x BpY)| = p(A}} x By \ Ap x By)
= p(A7 x ByP\ At x By) + p(A}! x By \ Ay x By)

< p(X X (Bt \ By)) + p((A7\ 4p) X Y)
= V(B;Ezl \Bp) + M(A;I \Ap) <eg/2
and similarly
(29) I(Ay X S_yBy) — p(AZ x S_p(B3))| < ¢/2

for any p € P.

Let k := k(e1)(> 0). Since T3 x S; on (X X Y,B®C, p) is an ergodic automor-
phism, by Remark 6, there exist a measurable set U C X x Y with p(U) > 3/4 and
N € N such that if (z,y) € U, p€ P, > N and [/m > k then

m-+l

1 €
(30) 7 D X8, (T, Syy) = p(Ap x By)| < o,
k=m
1 m+l -
(31) 7 Z Xazxs_, (Bt Tk, Sky) — p(A" x S_p(By1))| < 3
k=m

and similar inequalities hold for A" x Bj' and A, x S_, B,

By the property R(1, P) applied for £; and N, for every x € X(e1) and y €
Y (e1) there exist L = L(z,y) > N, M = M(z,y) > 0, Q@ = Q(z,y) > 0 with
L/(M+ Q) >k and p = p(z,y) € P such that (#K,)/L > 1 — &1, where K, is
equal to

{n € ZN[M, M + L] : d(Tq4n(x), Tn(2)) < €1, d(Sqin(y); Sntp(y)) < e1}.
Since p(X (e1)¢) < e1, (Y (£1)¢) <e1 and g1 < e/8 < 1/8,
p(X(e1) xY(e1)) = 1—=p((X(1)) xY) = p(X x (Y(£1)))
= 1—p(X(1)) —v(Y(e1)9) >1—2¢; > 3/4.

Thus we can take (z,y) € UN(X(e1) XY (e1)). If k € K, then T4z € A, implies
Tyx € Ayt and Sq4ry € By, implies Sk1,y € B;'. Hence

| QEMEL M+L
7 Z X4, xB, Tz, Spy) = I Z X4, xB, (To+kT, SQ11Y)
k=Q+M E=M
4ZA[MM+L\K,) 1
(32) < ( [ 7 ] \ 1’) + Z Z XAPXBP(TQ+k$7 SQ+ky)
kEK,
M+L

< 5/8 + Z k% XA x Bt (Tkx’ Sk+py)'
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Now from (30) (applied to m = M + Q and | = L), (32), (31) (applied to m = M
d

and | = L) and (29) it follows that
Q+M+L
(A, x B,) < 1 Z XA (Tiz, Spy) +¢/8
P P p — L pXBp\LkLy Ok
k=Q+M

| ML
< /4+ Z Xastxs_, ) (Te®, Sky)

< g2+ p(Af; x S_p(Bgh)) <&+ p(Ap x S_pBy).
Applying similar arguments we get
p(A, x S_,By) < e+ p(Ap x By).

Consequently,
|p(Ap x Bp) — p(Ap X S_pBp)| <,
contrary to (28). O

While dealing with special flows over irrational rotations on T/ we will always
consider the induced metric from the metric defined on T x R by d((z, s), (y,t)) =
[z =yl +|s — 2.

Lemma 38. Let P C R\ {0} be a nonempty finite subset and let A > 0. Let Tz =
x + « be an ergodic rotation on the circle and let f,g: T — R be positive Riemann
integrable functions which are bounded away from zero and [ f(z)dz = [ g(z)dx
Suppose that the special flows T and T9 are weakly mizing. Assume that for every
e > 0 there exists K = k(e) > 0 such that for every x,y € T and N € N there are
natural numbers L = L(x,y) > N, M = M(z,y) > 0, Q = Q(z,y) > 0 such that
L/(M + Q) > R, |Qa| < € and there exist p = p(z,y) € P and a = a(x,y) €
[—A, A] such that

|F (@) = FD(T"2) — a| < & and | fQ(x) = g @ (T"y) —a—p| < e
for all M < n < M + L. Then the pair of special flows (T, T9) has the R(v, P)-
property for every v > 0.

Proof. Let ¢, C and K be positive numbers such that 0 < ¢ < f(x),g(x) < C for
every © € T and P C [- K, K|. Let p stand for Lebesgue measure on T. Let v be an

arbitrary positive number. We will show that (7,79) has the R(v, P)-property.
c/2—2e _

Fix0<e< m Put g1 = 5/8 Take kK = /%(51) and let x := ml‘i
Let
X(e) = {(x,s)ETf:§<5<f(x)—§},
Y(e) = {(w,s)e'ﬂ‘g:§<s<g(x)—§}.

Since ! (X(e)°) = p?(Y(e)°) = /4 and T and T4 are ergodic, by Remark 6
(applied to £/4 and A = X (¢)¢ and Y (¢)°), there ex1sts N(e) € N and Borel sets
X(e) C T/, Y(e) C T9 with u/ (X (£)¢) < e and u9(Y (£)¢) < € such that if | > N(¢)
and [/m > k then

(33) %#{m Sk<m+ 1T, (,5) ¢ X)) < S forall (z,5) € X(2)
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and
(34) %#{m <k<m+1:TL(y,8) ¢ V(o)) < % for all (y,s') € Y (&).

Moreover, since T is uniquely ergodic and [ f(z)dz = [ g(z)dz, we can assume
that

max(f"(2), 9" () — min(f@ (), 9" (y)) < e min(&, 1)l
foralll > N(e) and z,y € T.

Let us consider a pair of points (z,s) € X(¢),(y,s’) € Y(e) and an arbitrary
N € N. By assumption, there are natural numbers M = M(x,y), L = L(z,y) >
2max(1,v/c)max(1/e, N(g), N, (C + 2K)/c) and @ = Q(x,y) such that L/(M +
Q) > R, ||Qa| < &1 and there exist p = p(z,y) € P and a = a(z,y) € [-A, A] such
that

[f Q@) = FD(T2) — o] < &1 and |[f D (2) = gD (T"y) —a —p| < &1
forall M <n< M + L. Put

0. fPW—a max(FOD (@), 0D ) + K
Y v
L min(fED @) gD ) —C— K
Then !
L min(fE(), gED () — max(f) (2), g (y)) — C - 2K
Q+M FQ(z) — a+max(fOD(z), gD (y)) + K
. min( FE(TM g, g E)(TMy)) — e min(k, 1)(L + M) — C — 2K
- @ () + max(f0D (), g0 (y)) + A+ K
- (c—¢e)L —eRM — C - 2K - (c—e)L —er(M + Q) — cL/2
- CM+Q)+A+K — (C+A+K)(M+Q)
S c/2 — 25/% .
- C+H+A '
Moreover
(35)

(C—E)E—aﬁM—C—2K> (c—2(14+C+ K)e)L

Y Y
Since L > N(g), L/M > &, (z,s) € X(¢) and (y,s’) € Y(¢), by (33) and (34),

L
L> > % > max(N, N(e)).
Y

(36) %#{M k< M+ LT (2,5) ¢ X() or TL, (y,5) £ V(e)} < =

Suppose that M <k < M + L. Then ky + s € [FOD (z), FMFL)(2)), ky +p+
s € [gM(y), g™+ () and there exist unique M < my,ny < M + L such that
ky + s € [f0m)(x), f0m A (2) and ky +p + s € [g0) (y), g+ (y)). Suppose
additionally that
ke€B={M<j<M+L:T](2s) €X(e), T (y.5) € Y(e)}.
Then
F(z) +e/8 < s+ ky < ftY () — ¢/8.

g () +e/8 < '+ p+ky < g™V (y) —e/8.
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We have
s+(Q+k = (s+k)+f Q@) -a
< flmtD(g) — /8 + f@(TMH1y) 4 gy = fImtQED) ()
and
s+(Q+k)y = (s+kv) +f(Q)(m) —a
> f(z) +e/8+ fA(T™r) — gy = fmtQ ()
and
SHQ+EyY = (S+p+k)+f Q@) —a—p
< g () —e/8+ g DT y) 4o = g (y)
and
SHQ+Ey = (S+p+k)+f Q@) —a—p
> g (y) + /84 gD (Try) — &1 = g (y),
Thus
T,fv(x, s) = (T™x, s + ky — (™) (),
Theray (@:8) = (T Ca s 4 (k+ Q)y — S ¥9 ()
and
T (0, 8) = (Ty, s + ky +p— g™ (),
Ty (0:8) = (TFCy, s + (k+Q)y — g™+ (y)).
Hence
AT (x,5), Tl ), (%,9) = [Qal + Qv — f D (T z)
= [1Qal + [fD(x) — fO(T™2) —a] <261 <e
and

AT (Y. 8), TG ), (9:8)) = 1Qall +1Qy —p — ¢! 9 (T y)]
= |1Qal + [fD(x) — ¢ D(T™y) —a—p| < 261 < ¢

for every k € B.
By (36), (#B)/L > 1 — ¢, and the proof complete.

35

O

Let T : T — T be a rotation by an irrational a with bounded partial quotients.
Let (gn)nen stand for the sequence of denominators of a.

Proposition 39. Let f : T — R be a piecewise absolutely continuous function.
Then there exist a finite set Dy C R and 0 < 0 < 1 satisfying the following
property: for every € > 0 there exists ny(e) € N such that for every n > ny(e),
x,y € T with ||y — z|| < 1/qu,11 and any integer interval I C [0,q,11) N7Z there
exist an integer interval J C I and d € Dy such that #J > 0;#1 and

1F®) () — FO () — kS(f)(y — ) — d| < & for all k € J.

Proof. The proof of this proposition is contained in the proof of Theorem 6.1 in

[10].

O
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Theorem 40. Let T : T — T be a rotation by an irrational o with bounded partial
quotients. Assume that f,g : T — R be positive piecewise absolutely continuous
functions such that [ f(z)dz = [g(z)dz, S(f) # S(g) and T/, T9 are weakly
mizing. Then the special flows TY and TY are disjoint.

Proof. Put

po— {(S(f)_‘g(g))afagk:k_ez\{o}}

N{z e R:|z| <|S(f) — S(g)| +sup|D¢| +sup |Dy| + Var f + Varg + 1}
and A:=2Var f + 1. Fix0<6<w,N€Nandx,yeT. Take
_ €l¢0,
&)= S50 + 1St
Choose n > max(ns(e/8),n4(¢/8)) (see Proposition 39) such that
€ 0404
N 32(S(f) +15(9)])

Starting from the interval [0, ¢g,+1) N Z and using Proposition 39 twice (first for
I =1[0,¢n+1) NZ, the function f and the pair x, Tz obtaining J and for I = J,
the function ¢g and the pair y, T%y) we obtain an integer interval I C [0, ¢p4+1) NZ
and dy € Dy, d2 € Dy such that

{gma} = llgnall <

(37) #1 > 0705Gn+1
(38) |fE (T z) — f ) (@) — S(f)kllgnal —di] < /8,
(39) lg®) (T y) — g (y) — S(g)k|lgnal| — da| < /8

for all k € I. Let us consider two sequences (ax)xer, (Pk)ker,
ag = _S(f)kHQ’na“ - d17

pe = (S(f) = S(9)) (kllgnel)) — da + dy — g'7) () + f19) ().
Since
£ (T90) — 09 ) = fo0) (T2 — 1) ),

g B (T y) — gF) (y) = glan) (Thy) — glan) (3)),
by (38) and (39), for every k € I,

(40)  |f (@) — fN (T ) — ay| = [fP(Ta) = f P (@) — ar| < /8
and
1700 (@) — g (T*y) — ax — py] < |F9)(a) — FO)(TH0) —
(41) +g' ") (y) = g (Try) = (F19) (2) = f) (T 2))
+1) (2) — g (y) — pi| < 3e/8.
Moreover
Jag| < £ (@) = ) (T*2) — ag| + |f@) (x) = f@) (T )| < 2 Var £ + 1,
for all k£ € I. Furthermore
(42) k| < [S(f) = S(g)| +sup |Dy| + sup | Dy| + Var f + Var g,
pr1 — Pk = (S(f) = S(g)llgne
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max(py)rer — min(pr)rer = [S(f) = S(g)(#I — 1)[lgne||
and
IS(f) — S(9)l050,/2 < |S(f) — S(9)|#lgnall < [S(f) = S(g)].
It follows that there exist an integer interval J C I with
€ €

43 4 < 4T < 4141
“3) SIS+ 150 EGIEIEC]

and an element p = Wm € P, with m € Z\ {0}, such that
(44) |p —p| < e/8 for all k € J.

Fix ko € J and put a = ag,. Then using (43) and the definition of n, for every
kelJ,

SOk = kollanall < IS(AI#Jllanal
e#1lanall/8 +1S(f)lllancll < /4.
Now from (40), (45), (41), (44),
£ @) = f N (The) = al < |9 (@) = f)(TH2) = ag| + |a — a] < ¢/2

and

(45) lax = al

IN

‘f(QH)(x) _ g(qn)(Tky) —a—p|
< |9 (@) = g (Try) — ap — pi| + lak —al + [pr —p| <€
for every k € J. S -
Now let M, L be natural numbers such that J = [M, M+ L|NZ. Putting Q = g,

we have
1D (@) = DT 2) — al <2, | Da) g D(THy) —a—p| <=

for all M < k < M + L. Moreover, by (43) and (37),

L #I-1 # g
M+Q ~  2qui1  Agur1r — 32(S(H)] + 1S(9))gnit
E@feg _
= k(e),
SISO
L=l —1> Eqnt1050, € 004

Z 605U+ 15@)D) ~ Tamall 3205 +15@D

Since the special flow T is weakly mixing, the automorphism T,{ is ergodic (weakly
mixing) for all ¥ # 0, and hence an application of Lemma 38 and Theorem 37
completes the proof. O
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