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Abstract. Given an ergodic �ow (Tt)t∈R we study the problem of its self-
similarities, i.e. we want to describe the set of these s ∈ R for which the
original �ow is isomorphic to the �ow (Tst)t∈R. The problem is examined
in some classes of special �ows over irrational rotations and over interval ex-
change transformations. In particular translation �ows on translation surfaces
are considered, and, in such a case, it is proved that, under the weak mixing
condition, the set of self-similarities has Lebesgue measure zero. For von Neu-
mann special �ows over irrational rotations given by Diophantine numbers this
set is shown to be equal to {1} while for horocycle �ows a weak convergence in
case of some singular (to the volume measure) measures is shown giving rise
to some new equidistribution result.

The problem of self-similarity is also studied from the spectral point of
view, especially in the class of Gaussian systems.
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1. Introduction

Let T = (Tt)t∈R be an ergodic measurable �ow on a standard probability Borel
space (X,B, µ). Given s ∈ R \ {0} by Ts denote the �ow (Tst)t∈R. Let

I(T ) = {s ∈ R \ {0} : T and Ts are isomorphic}.
If there exists s ∈ I(T )\{−1, 1}, the �ow is called self-similar with the scale of self-
similarity s. Another weaker symptom of self-similarity for �ows is the existence
of pairs of distinct real numbers t, s for which the automorphisms Tt and Ts are
isomorphic.

A natural example of dynamical system which has plenty of self-similarities is
the horocycle �ow (ηt)t∈R on any �nite surface of constant negative curvature M .
If (γt)t∈R stands for the geodesic �ow on M then

(1) γs ◦ ηt ◦ γ−1
s = ηe−2st for all s, t ∈ R,

and hence every positive number s is the scale of self-similarity for the horocycle
�ow. This property yields a lot of information on the dynamics of the �ow such as
Lebesgue spectrum (see Proposition 1.23 [17]) and mixing of all orders (see Theorem
1 [23]). Our �rst aim is to study further mixing properties which are consequences
of the condition (1). The mixing condition for the �ow (ηt)t∈R says that

(2) (ηt)∗ρ→ µ weakly as t→∞
for every probability measure ρ absolutely continuous with respect to µ. An appli-
cation of some ideas from [25] to the property (1) gives an opportunity to extend
(2) to measures ρ singular with respect to µ (see Theorem 7, Corollary 9 and The-
orem 12). As a consequence we obtain a new result concerning equidistribution
theory for horocycle �ows (see discussion after Corollary 9).

The next subject of the study is the size of the set I(T ) and

Iaut(T ) = {(s, t) ∈ R2 : Ts and Tt are isomorphic}
in relation to some dynamical properties of T . For example, if T has positive
and �nite entropy then hµ(Ts) = |s|hµ(T ) 6= hµ(T ), and hence Ts and T are not
isomorphic for s ∈ R \ {−1, 1}; similarly Iaut(T ) ⊂ {(s, t) : |s| = |t|}. In the zero
entropy case, of course, there is no universal bound on the size of I(T ) because of
the horocycle �ow. Nevertheless, as it was proved by Ryzhikov in [23], the absence
of mixing for T implies zero Lebesgue measure of I(T ) and zero (two-dimensional)
Lebesgue measure of Iaut(T ). Furthermore, if T is additionally rigid (i.e. Ttn → Id
for some tn →∞) then T and Ts are disjoint in the sense of Furstenberg for almost
every s ∈ R, and Ts is disjoint from Tt for almost every (s, t) ∈ R2 with respect
to the Lebesgue measure (see [25]). In this paper we extend the disjointness result
(see Theorem 14) to the class of weakly mixing �ows for which there exist tn →∞,
0 < λ ≤ 1 and a probability Borel measure P on R such that

(3) lim inf
n→∞

µ(TtnA ∩B) ≥ λ
∫

R
µ(TsA ∩B) dP (s) for all A,B ∈ B.

As a consequence we obtain that for every translation structure on a compact
surface with genus greater than one if a direction �ow Fθ is weakly mixing then
the �ows Fθ and Fθs are disjoint for almost all s ∈ R and the automorphisms F θs
and F θt are disjoint for almost all (s, t) ∈ R2 (see Corollary 18).

The property (3) turned out to be useful in proving the absence of self-similarity
also for some �ows on surfaces that arise from quasi-periodic Hamiltonians �ows
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on the torus by velocity changes. More precisely, if (3) holds for λ = 1 and T is not
rigid or if (3) holds for some λ > 0 and T is not partially rigid then I(T ) ⊂ {−1, 1}
(see Theorem 22). This result have been used to prove the absence of self-similarity
for special �ows built over irrational rotations on the circle (or ergodic interval
exchange transformations) and under piecewise absolutely continuous functions.
For example, if T : [0, 1) → [0, 1) is an ergodic interval exchange transformation
and f : [0, 1) → R+ is a piecewise absolutely continuous function with non-zero
sum of jumps then the special �ow T f is not self-similar.

The absence of self-similarity is observed also for special �ows built over ergodic
rotations on the circle by α satisfying the Diophantine condition

(4) |p− qα| ≥ c

q
, for some c > 0 for all q ∈ N, p ∈ Z

and under some piecewise constant roof. Such special �ows are partially rigid. Here
the absence of self-similarities follows from the mild mixing property which has been
proved in [12] for some special classes of piecewise constant roof functions.

In Appendix B we study the reversibility problem for special �ows built over
irrational rotations Tx = x + α on the circle. Recall that a �ow T on (X,B, µ) is
reversible if there exists an automorphism S of (X,B, µ) such that S ◦ Tt = T−t ◦S
for all t ∈ R and S2 = I. If the roof function f : T → R+ is symmetric then
a simple observation shows that the special �ow T f is reversible (see Remark 2).
In Appendix B we show the absence of reversibility (even disjointess of (T f )−1

from T f ) form some piecewise absolutely continuous non-symmetric roof functions.
More precisely, using elements of Ratner's theory we prove that if α satis�es the
Diophantine condition (4) and f has non-zero sum of jumps then the �ows (T f )−1

and T f are disjoint. Furthermore, using the minimal self-joining property of such

�ows (see [11]) we obtain I(T f ) = {1} and the disjointess of T ft from T fs for distinct
real numbers s and t. Recall that the same property has been observed in [14] for
some special �ows over Chacon transformation.

Take an arbitrary countable multiplicative subgroup G ⊂ R. The example of
weakly mixing �ow T with the minimal self-joining property and such Tt and Ts
are disjoint for distinct s and t allows us to construct (the idea of this construction
comes from [25]) a self-similar �ow T G such that I(T G) = G and T Gs is disjoint
from T G for all s /∈ G.

The self-similarity of dynamical systems can be also considered from the spectral
point of view. Let us consider spectral version of I(T ):

SI(T ) = {s ∈ R \ {0} : T and Ts are spectrally isomorphic}.

Recall that T−1 is always spectrally isomorphic to T , hence −1 ∈ SI(T ). If T
is spectrally self-similar, i.e. SI(T ) 6= {−1, 1} and SI(T ) has positive Lebesgue
measure then T has pure Lebesgue spectrum (see Proposition 31). On the other
side, if T has singular continuous spectrum then SI(T ) has zero Lebesgue measure
and Ts is spectrally disjoint from T for almost all s. Moreover, Ts and Tt are
spectrally disjoint for almost all (s, t) ∈ R2.

We construct ergodic �ows which are not self-similar in the unitary category.
For this purpose, in Section 9, we deal with Gaussian systems which are completely
determined by the spectral measure of the underlying Gaussian process. A construc-
tion of measures which is supported by a set which emulate the classical Kronecker
set yields a Gaussian �ow T with simple spectrum such that SI(T ) = {−1, 1} and
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Ts is spectrally disjoint from T for s 6= ±1. Moreover, for some countable mul-
tiplicative symmetric subgroups G ⊂ R a modi�cation of the above construction
yields a Gaussian �ow T G with simple spectrum such that SI(T ) = G and Ts is
spectrally disjoint from T for s /∈ G.

2. Adjoint representations of R

Let B be a separable Banach space. Denote by L(B) the space of all linear
bounded operators on B. Let (Ut)t∈R be a strongly continuous bounded represen-
tation of R in L(B), i.e. the map

R 3 t 7→ Utx ∈ B

is continuous for every x ∈ B, and the map

R 3 t 7→ ‖Ut‖ ∈ R

is bounded. Let C := supt∈R ‖Ut‖. Then the dual representation (U∗t )t∈R is
bounded and ∗-weakly continuous, i.e. the map

R 3 t 7→ 〈x, U∗t y∗〉 ∈ R

is continuous for every x ∈ B and y∗ ∈ B∗. Let

B�U = B� = {x∗ ∈ B∗ : R 3 t 7→ U∗t x
∗ ∈ B∗ is continuous}.

B� is a closed (U∗t )�invariant subspace of B∗ which is ∗-weakly dense (see [20]
Ch.1). Given x∗ ∈ B� let B�(x∗) stand for the smallest closed (U∗t )�invariant
subspace of B� containing x∗. Then B�(x∗) is a separable Banach space.

Let P(R) stand for the space of all Borel probability measures on R. For every
σ ∈ P(R) and y∗ ∈ B∗ let

∫
R U
∗
t y
∗ dσ(t) (see [20] Appendix 2) denote the element

of B∗ determined by

〈x,
∫

R
U∗t y

∗ dσ(t)〉 =
∫

R
〈x, U∗t y∗〉 dσ(t) for any x ∈ B.

Then ‖
∫

R U
∗
t y
∗ dσ(t)‖ ≤ C‖y∗‖. Note that if B′ ⊂ B∗ is a (U∗t )-invariant ∗-weakly

closed subspace then for every y∗ ∈ B′ and σ ∈ P(R) we have
∫

R U
∗
t y
∗ dσ(t) ∈ B′.

Although the results of this section are formulated for continuous bounded rep-
resentations of R, as the proofs show they hold also for such representations of R+.
Denote by λ Lebesgue measure on R.

Lemma 1 (cf. [23], Theorem 3). Suppose that B0 ⊂ B∗ is a ∗-weakly closed (U∗t )�
invariant subspace of B∗ such that

{x∗ ∈ B0 : ∀t∈R U
∗
t x
∗ = x∗} = {0}.

If D ⊂ R is a measurable set with 0 < λ(D) < +∞ then

(5)
1

λ(D)

∫
D

U∗rty
∗ dr → 0 ∗-weakly, as t→ +∞, for every y∗ ∈ B0.

Proof. Put Pty
∗ := 1

λ(D)

∫
D
U∗rty

∗ dr Since any closed ball in B∗ endowed with the

∗-weak topology is a compact metric space and ‖Pty∗‖ ≤ C‖y∗‖, it su�ces to check
that if z∗ ∈ B∗ is a ∗-weak limit of a sequence (Ptny

∗) with tn → +∞ then z∗ = 0.
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Since B0 is (U∗t )-invariant and ∗-weakly closed, Ptny
∗ ∈ B0 for every n ∈ N, and

hence z∗ ∈ B0. Observe that U∗s z
∗ = z∗ for every s ∈ R. Indeed, since

U∗s ◦ Ptny∗ =
1

λ(D)

∫
D

U∗s+rtny
∗ dr =

1
λ(D)

∫
D+s/tn

U∗rtny
∗ dr,

for every x ∈ B we have

|〈x, U∗s ◦ Ptny∗ − Ptny∗〉|

=

∣∣∣∣∣ 1
λ(D)

∫
D+s/tn

〈x, U∗rtny
∗〉 dr − 1

λ(D)

∫
D

〈x, U∗rtny
∗〉 dr

∣∣∣∣∣
≤ C

λ(D4(D + s/tn))
λ(D)

‖x‖‖y∗‖.

It follows that

|〈x, U∗s z∗ − z∗〉| = lim
n→∞

|〈x, U∗s ◦ Ptny∗ − Ptny∗〉|

≤ lim
n→∞

C
λ(D4(D + s/tn))

λ(D)
‖x‖‖y∗‖ = 0

for every x ∈ B. Therefore z∗ ∈ B0 is a �xed vector for the representation (U∗t ),
and hence z∗ = 0. �

Lemma 2 (cf. [25], the proof of Proposition 2). Suppose that B0 ⊂ B∗ is a closed
(U∗t )-invariant separable space (in the norm topology) which veri�es (5). Then for
every sequence tn → +∞ we have λ(Ec) = 0 where

E = {r ∈ R : ∀x∈B, y∗∈B0 lim inf
n→∞

Re〈x, U∗rtny
∗〉 ≤ 0}.

Proof. Notice that

Ec = {r ∈ R : ∃x∈B, ‖x‖≤1, y∗∈B0, ‖y∗‖≤1 lim inf
n→∞

Re〈x, U∗rtny
∗〉 > 0}.

Given ε > 0, N ∈ N, x ∈ B and y∗ ∈ B0 put

Dε,N,x,y∗ := {r ∈ R : ∀n≥N Re〈x, U∗rtny
∗〉 > ε}.

In view of the ∗�weak continuity of (U∗t ), Dε,N,x,y∗ is a Gδ, hence Borel, subset of
R. Moreover, λ(Dε,N,x,y∗) = 0. Indeed, suppose that λ(Dε,N,x,y∗) > 0. Let D be a
subset of Dε,N,x,y∗ such that 0 < λ(D) < +∞. Then

Re
1

λ(D)

∫
D

〈x, U∗rtny
∗〉 dr =

1
λ(D)

∫
D

Re〈x, U∗rtny
∗〉 dr > ε

for all n ≥ N , which contradicts (5) for y∗ ∈ B0.
Let (xε,k)k∈N stand for an ε/(2C)�net of the unit ball in B, (y∗ε,k)k∈N stand for

an ε/(2C)�net of the unit ball in B0 and let ∆ be a countable set of real positive
numbers such that inf ∆ = 0. It su�ces to prove that

Ec ⊂
⋃
ε∈∆

⋃
N∈N

⋃
k∈N

⋃
l∈N

Dε,N,xε,k,y∗ε,l
.

Assume that r ∈ Ec. Then there exist x ∈ B with ‖x‖ ≤ 1, y∗ ∈ B0 with ‖y∗‖ ≤ 1,
ε ∈ ∆ and N ∈ N such that

Re〈x, U∗rtny
∗〉 > 2ε for all n ≥ N.
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Next choose k, l ∈ N such that ‖x−xε,k‖ < ε/(2C) and ‖y∗−y∗ε,l‖ < ε/(2C). Thus

|〈x, U∗rtny
∗〉 − 〈xε,k, U∗rtny

∗
ε,l〉| ≤ ‖x− xε,k‖‖U∗rtny

∗‖+ ‖xε,k‖‖U∗rtn(y∗ − y∗ε,l)‖ < ε.

It follows that Re〈xε,k, U∗rtny
∗
ε,l〉 > ε for all n ≥ N , and hence r ∈ Dε,N,xε,k,y∗ε,l

. �

Lemma 3. Suppose that B0 ⊂ B� is a closed (U∗t )-invariant separable space which
veri�es (5). Assume that there exist a sequence tn → +∞ and a continuous linear
operator P : B0 → B∗ such that U∗tny

∗ → Py∗ ∗-weakly for every y∗ ∈ B0. Then
there exists a measurable subset E ⊂ R with λ(Ec) = 0 such that for every s 6= 0
and r ∈ E if Ar : B∗ → B∗ is a continuous linear operator such that Ar(B0) ⊂ B0

and ArU
∗
s = U∗rsAr then U∗rsArPy

∗ = 0 for every y∗ ∈ B0.

Proof. An application of Lemma 2 yields the existence of E ⊂ R with λ(Ec) = 0
such that for r ∈ E
(6) lim inf

n→∞
Re〈x, U∗rtny

∗〉 ≤ 0 for all x ∈ B and y∗ ∈ B0.

Suppose that s 6= 0, r ∈ E and ArU
∗
s = U∗rsAr. By passing to a subsequence, if

necessary, we can assume that the fractional parts {tn/s} → θ ∈ [0, 1]. Take x ∈ B,
y∗ ∈ B0 and ε > 0. In view of the continuity of t 7→ Utx and t 7→ U∗t y

∗,

〈x, U∗rtnArU
∗
sθ+εy

∗〉
= 〈x, U∗rs[tn/s]+rs{tn/s}ArU

∗
sθ+εy

∗〉 = 〈x, U∗rs{tn/s}ArU
∗
s[tn/s]

U∗sθ+εy
∗〉

= 〈Urs{tn/s}x,ArU
∗
tnU

∗
s(θ−{tn/s})+εy

∗〉
→ 〈Ursθx,ArPU∗ε y∗〉 = 〈x, U∗rsθArPU∗ε y∗〉.

But ArU
∗
sθ+εy

∗ ∈ B0, hence using (6),

Re〈x, U∗rsθArPU∗ε y∗〉 ≤ 0 for all x ∈ B, y∗ ∈ B0, ε > 0,

and hence U∗rsθArPy
∗ = 0. It follows that U∗rsArPy

∗ = 0. �

Lemma 4. Let B′ ⊂ B∗ be a closed separable subspace. Assume that (Pn : B′ →
B∗)n∈N is a sequence of continuous linear operators such that ‖Pny∗‖ ≤ C‖y∗‖ for
all y∗ ∈ B′ and n ∈ N. Then there exist an increasing sequence (kn)n∈N of natural
numbers and a continuous linear operator P : B′ → B∗ such that Pkny

∗ → Py∗

∗-weakly for every y∗ ∈ B′.

Proof. Let D be a dense countable subset of B′. Since ‖Pnx∗‖ ≤ C‖x∗‖ for every
n ∈ N and x∗ ∈ D and any closed ball in B∗ endowed with the ∗-weak topology is
a compact metric space, by a diagonalisation argument we can �nd an increasing
sequence (kn)n∈N of natural numbers such that (Pknx

∗)n∈N is ∗-weakly convergent
for every x∗ ∈ D. Let Px∗ ∈ B∗ stand for the ∗-weak limit the sequence (Pkn

x∗)n∈N
for x∗ ∈ D. Note that for every x ∈ B and x∗, y∗ ∈ D we have

|〈x, Px∗ − Py∗〉| = lim
n→∞

|〈x, Pkn
x∗ − Pkn

y∗〉| ≤ C‖x‖‖x∗ − y∗‖.

It follows that

(7) ‖Px∗ − Py∗‖ ≤ C‖x∗ − y∗‖ for all x∗, y∗ ∈ D.

Furthermore (Pknx
∗)n∈N is ∗-weakly convergent for every x∗ ∈ B′. Indeed, let

(x∗l )l∈N be a sequence in D such that ‖x∗l − x∗‖ → 0 as l → ∞ and
∑∞
l=1 ‖x∗l −

x∗l+1‖ < ∞. From (7),
∑∞
l=1 ‖Px∗l − Px∗l+1‖ < ∞, and hence (Px∗l )l∈N converges

to an element Px∗ ∈ B∗. Fix ε > 0 and 0 6= x ∈ B. Take l0 ∈ N such that
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‖x∗l0 − x
∗‖ < ε/(3C‖x‖). Next choose n0 ∈ N such that |〈x, Pknx

∗
l0
− Px∗l0〉| < ε/3

for all n ≥ n0. Then for n ≥ n0,

|〈x, Pknx
∗ − Px∗〉|

≤ |〈x, Pknx
∗ − Pknx

∗
l0〉|+ |〈x, Pknx

∗
l0 − Px

∗
l0〉|+ |〈x, Px

∗
l0 − Px

∗〉|
≤ 2C‖x‖‖x∗l0 − x

∗‖+ |〈x, Pknx
∗
l0 − Px

∗
l0〉| < ε.

It follows that Pknx
∗ → Px∗ ∗-weakly for every x∗ ∈ B′. It is easy to see that

P : B′ → B∗ is a linear bounded operator. �

Theorem 5. Suppose that B0 ⊂ B� is a closed (U∗t )-invariant separable space
which veri�es (5). Suppose that there exists a subset D ⊂ R of positive Lebesgue
measure such that for every pair (t, s) ∈ D × D there exists At,s ∈ L(B∗) with
the trivial kernel such that At,s(B0) ⊂ B0 and At,sU

∗
s = U∗t At,s. Then U∗t y

∗ → 0
∗-weakly, as |t| → ∞, for every y∗ ∈ B0.

Proof. Suppose, contrary to our claim, that there exists y∗0 ∈ B0 such that U∗t y
∗
0 9

0 ∗-weakly, as |t| → ∞. Since ‖U∗t y∗0‖ ≤ C‖y∗0‖, there exists a sequence t′n → ∞
such that U∗t′ny

∗
0 converges ∗-weakly to a nonzero element. Since B0 is separable,

by Lemma 4, we can assume (passing to a subsequence if necessary) that there
exists a non-zero continuous linear operator P ′ : B0 → B∗ such that U∗t′ny

∗ → P ′y∗

∗-weakly for every y∗ ∈ B0.
Fix a non-zero number s ∈ D and put tn = t′n − s. By Lemma 4, we can

assume (passing to a subsequence if necessary) that there exists a continuous linear
operator P : B0 → B∗ such that U∗tny

∗ → Py∗ ∗-weakly for every y∗ ∈ B0. Then
U∗sP = P ′.

Take r ∈ (D/s)∩E (see Lemma 3 applied for (tn) and P above). Set Ar := Ars,s.
Then ArU

∗
s = U∗rsAr. By Lemma 3, ArU

∗
sPy

∗ = U∗rsArPy
∗ = 0 for every y∗ ∈ B0.

Since Ar has the trivial kernel, P ′y∗ = U∗sPy
∗ = 0 for every y∗ ∈ B0, which is a

contradiction. �

3. Inner self-similarity of R-actions

Let G stand for the Lie group{[
es 0
t e−s

]
: s, t ∈ R

}
.

Then dν = es ds dt is a left Haar measure of G. Let S : G → L(B) be a strongly
continuous bounded representation in a separable Banach space B, i.e.

Sg1g−1
2

= S−1
g2 ◦ Sg1 for all g1, g2 ∈ G,

G 3 g 7→ Sgx ∈ B is continuous for every x ∈ B,

C := sup
g∈G
‖Sg‖ < +∞.

Then the dual representation S∗ : G → L(B∗) is ∗-weakly continuous, bounded
and S∗g1g2 = S∗g1 ◦ S

∗
g2 for all g1, g2 ∈ G. Let

B�S = {x∗ ∈ B∗ : G 3 g 7→ S∗gx
∗ ∈ B∗ is continuous}.

It is easy to see that B�S is a closed linear subspace.
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Remark 1. Note that B�S is not trivial. Indeed, �x f ∈ L1(G, ν) and y∗ ∈ B∗. Let
ȳ∗ =

∫
G
S∗gy

∗f(g) dν(g), i.e.

〈x, ȳ∗〉 =
∫
G

〈x, S∗gy∗〉f(g) dν(g) for all x ∈ B.

Then for every g1, g2 ∈ G we have

|〈x, S∗g1 ȳ
∗ − S∗g2 ȳ

∗〉| =
∣∣∣∣∫
G

〈x, S∗g1gy
∗ − S∗g2gy

∗〉f(g) dν(g)
∣∣∣∣

=
∣∣∣∣∫
G

〈x, S∗g1gy
∗〉(f(g)− f(g−1

2 g1g)) dν(g)
∣∣∣∣

≤ C‖x‖‖y∗‖
∫
G

|f(g)− f(g−1
2 g1g)| dν(g).

It follows that

‖S∗g1 ȳ
∗ − S∗g2 ȳ

∗‖ ≤ C‖y∗‖
∫
G

|f(g−1
1 g)− f(g−1

2 g)| dν(g),

and hence the continuity of g 7→ S∗g ȳ
∗ is a consequence of the continuity of the

regular representation

G 3 g 7→ Ψg ∈ L(L1(G, ν)), Ψgf(g′) = f(g−1g′).

Moreover, taking a sequence (fn)n∈N in L2(G, ν) such that fn dν → δI weakly in
the space P(G) of probability Borel measures on G we can conclude that ⊥B�S = B,

and hence B�S is ∗-weakly dense.

Given y∗ ∈ B�S let B�S (y∗) denote the smallest closed S∗-invariant subspace of

B�S containing y∗. Then B�S (y∗) is separable.
Let

ut =
[

1 0
t 1

]
and as =

[
es 0
0 e−s

]
.

Note that

(8) asuta
−1
s = ue−2st for all s, t ∈ R.

Let us consider two representations of R in L(B) given by Ut = Sut
and As = Sas

.
Since R 3 t 7→ ut ∈ G and R 3 s 7→ as ∈ G are continuous homomorphisms,
representations (Ut) and (As) are strongly continuous and bounded. Then the dual
representations (U∗t ) and (A∗s) are ∗-weakly continuous and bounded.

Corollary 6. Suppose that B0 ⊂ B∗ is a closed S∗-invariant subspace which veri-
�es (5). If y∗ ∈ B�S ∩B0 then U∗t y

∗ → 0 ∗-weakly as |t| → ∞.

Proof. Fix y∗ ∈ B�S ∩ B0. Then B�S (y∗) ⊂ B0 is a closed (S∗g )-invariant separable
subspace. From (8), A∗s ◦U∗t ◦ (A∗s)

−1 = U∗e−2st. Now an application of Theorem 5,

for B0 := B�S (y∗), gives U∗t x
∗ → 0 for every x∗ ∈ B�S (y∗). �

Let (X, d) be a compact metric space and let φ : G→ Hom(X) be a continuous
representation of G in the group of homeomorphisms on X. φ determines two
continuous �ows (ηt)t∈R and (γs)s∈R on X:

ηt(x) = φutx and γs(x) = φasx.

Suppose that (ηt) is uniquely ergodic and let µ be the unique invariant probability
measure for (ηt).
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Let us consider the representation of G in L(C(X)) given by Sgf(x) = f(φgx).
Denote by M(X) the Banach space of signed real Borel measures on (X, d)

equipped with the norm given by the total variation. Let P(X) ⊂M(X) stand for
the subset of probability measures. Since C(X)∗ = M(X), the dual representation
S∗ of G in L(M(X)) is given by S∗g (ρ) = (φg)∗ρ, the latter being the image of ρ
via φg. By the unique ergodicity of (ηt), every (U∗t )-invariant measure ρ ∈ M(X)
is a real multiple of µ ∈ P(X) : ρ = ρ(X)µ.

Theorem 7. If ρ ∈ P(X) ∩M(X)�S then (ηt)∗ρ→ µ weakly as |t| → ∞.

Proof. Let
M0(X) = {τ ∈M(X) : τ(X) = 〈1, τ〉 = 0}.

Clearly,M0(X) is ∗-weakly closed and (S∗g )-invariant and as we have already noticed
any (U∗t )-invariant measure τ ∈ M0(X) is equal to τ(X)µ = 0. By Lemma 1, the
space M0(X) veri�es (5)

Suppose that ρ ∈ P(X) ∩M(X)�S . Then ρ − µ ∈ M(X)�S ∩M0(X). Now an
application of Corollary 6, for B0 = M0(X), yields

(ηt)∗ρ− µ = U∗t (ρ− µ)→ 0 ∗-weakly as |t| → ∞.

�

Corollary 8. Let D ⊂ G be a Borel set such that 0 < ν(D) <∞. Then for every
continuous function f : X → R and x ∈ X,

1
ν(D)

∫
D

f(ηtφgx) dν(g)→
∫
X

f dµ as |t| → ∞.

Proof. Fix x ∈ X and let us consider the probability Borel measure ρ on X deter-
mined by ∫

X

f dρ =
1

ν(D)

∫
D

f(φgx) dν(g) for all f ∈ C(X).

Since

〈f, ρ〉 =
∫
G

〈f, S∗gδx〉
1D
ν(D)

dν for all f ∈ C(X),

in view of Remark 1, ρ ∈M(X)�S . Moreover,

〈f, U∗t ρ〉 = 〈f ◦ ηt, ρ〉 =
1

ν(D)

∫
D

f(ηtφgx) dν(g)

for every f ∈ C(X). Now an application of Theorem 7 yields

1
ν(D)

∫
D

f(ηtφgx) dν(g) = 〈f, U∗t ρ〉 → 〈f, µ〉 =
∫
X

f dµ

for every f ∈ C(X). �

Let Γ ⊂ PSL(2,R) be a discrete subgroup. Then the homogeneous space X =
Γ\PSL(2,R) is the unit tangent bundle of a surface M of constant negative cur-
vature. Consider the action π : PSL(2,R) → Hom(X) by right translations, i.e.
πg(Γx) = Γxg for all g, x ∈ PSL(2,R). Assume that Γ ⊂ PSL(2,R) is a lattice, i.e.
Γ is a discrete subgroup of PSL(2,R) such that the action π has an invariant �nite
measure. Let us denote by µΓ the unique π-invariant probability measure on X.

Since G is a subgroup of PSL(2,R), we can consider its subaction φ : G →
Hom(X). Then the corresponding �ows (ηt)t∈R and (γs)s∈R are called respectively
the horocycle and the geodesic �ows on M .
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Suppose that the lattice Γ is cocompact, i.e. Γ\PSL(2,R) is compact, then the
surface M is also compact. In 1973 Furtenberg [13] proved that the horocycle �ow
has a unique invariant probability measure which is equal to µΓ.

Corollary 9. Assume that Γ ⊂ PSL(2,R) is cocompact. If ρ ∈ P(Γ\PSL(2,R))
and the map

G 3 g 7→ (φg)∗ρ ∈ P(Γ\PSL(2,R))
is strongly continuous then (ηt)∗ρ tends weakly (as |t| → ∞) to the unique invariant
probability measure for the horocycle �ow.

The unique ergodicity of the horocycle �ow is equivalent to the equidistribution
property of all its orbits, i.e.

lim
T→∞

1
T

∫ T

0

f(ηtx) dt→
∫
X

f(y) dµΓ(y) for any x ∈ X and f ∈ C(X).

Fix x ∈ X = Γ\PSL(2,R) and an open and bounded subset D ⊂ G. Let us
consider the two-dimensional set Dx = {φgx : g ∈ D} ⊂ X. By Corollary 8, the
image ηt(Dx) is equidistributed on X as |t| → ∞.

3.1. Horocycle �ow on non-compact �nite surfaces.

Lemma 10. Let f : [0,∞)→ R be a measurable bounded function such that

lim
t→∞

1
t

∫ t

0

f(s) ds→ θ.

Then for every Borel set D ⊂ [0,∞) with �nite Lebesgue measure we have

lim
t→∞

∫
D

f(st)ds = θλ(D).

Proof. Let

D =
{
D ∈ B([0,∞)) : λ(D) <∞, lim

t→∞

∫
D

f(st)ds = θλ(D)
}
.

By the de�nition of D,
(9) if D1 ⊂ D2 and D1, D2 ∈ D then D2 \D1 ∈ D.
Moreover,

if (Dn)n∈N is a sequence in D such that λ(Dn4D)→ 0 as n→∞
for some D ∈ B([0,∞)) then D ∈ D.

(10)

Indeed, �x ε > 0 and choose n0 ∈ N such that λ(Dn04D) < ε/2(‖f‖∞ + |θ|) and
t0 > 0 such that ∣∣∣∣∣

∫
Dn0

f(st)ds− θλ(Dn0)

∣∣∣∣∣ < ε/2 for all t > t0.

Then for t > t0,∣∣∣∣∫
D

f(st)ds− θλ(D)
∣∣∣∣ ≤

∣∣∣∣∣
∫
D

f(st)ds−
∫
Dn0

f(st)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫
Dn0

f(st)ds− θλ(Dn0)

∣∣∣∣∣+ |θ||λ(Dn0)− λ(D)|

≤ λ(Dn04D)‖f‖∞ + ε/2 + |θ|λ(Dn04D) < ε.
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Thus
∫
D
f(st)ds→ θλ(D) as t→∞.

By assumption, [0, a] ∈ D for every a ≥ 0. In view of (9), D includes every
�nite interval in [0,∞). Fix C > 0. From (9) and (10), D ∩ B([0, C]) is a λ-
system containing the family of all subintervals of [0, C] (this is a π-system). By
the Dynkin's lemma, B([0, C]) ⊂ D for every C > 0. An application again of (10)
yields D ∈ D for every Borel set D ⊂ [0,∞) with �nite Lebesgue measure. �

Lemma 11. Let (ηt)t∈R be a continuous �ow on a locally compact metric space
space (X, d). Suppose that there exists a Borel set X0 ⊂ X and a Borel probability
measure µ0 on X such that µ0(X0) = 1 and

lim
t→∞

1
t

∫ t

0

ϕ(ηsx) ds =
∫
X

ϕ(y) dµ0(y)

for every x ∈ X0 and every continuous bounded function ϕ : X → R. Then for
every D ∈ B(R) with 0 < λ(D) <∞ and every µ ∈M(X) with |µ|(X \X0) = 0 we
have

lim
t→∞

1
λ(D)

∫
D

∫
X

ϕ(ηstx) dµ(x) ds = µ(X)
∫
X

ϕ(x) dµ0(x)

for every continuous bounded function ϕ : X → R.

Proof. Since 1
t

∫ t
0
ϕ(ηsx) ds →

∫
X
ϕ(y) dµ0(y) and | 1t

∫ t
0
ϕ(ηsx) ds| ≤ ‖ϕ‖∞ for µ-

a.e. x ∈ X, by Lebesgue's dominated convergence theorem and Fubini's theorem,

1
t

∫ t

0

∫
X

ϕ(ηsx) dµ(x) ds =
∫
X

1
t

∫ t

0

ϕ(ηsx) ds dµ(x)→ µ(X)
∫
X

ϕ(x) dµ0(x).

Putting f(s) =
∫
X
ϕ(ηsx) dµ(x), θ = µ(X)

∫
X
ϕ(x) dµ0(x) and applying Lemma 10

we complete the proof. �

Assume that Γ ⊂ PSL(2,R) is a non-compact lattice and let consider the horo-
cycle �ow (ηt)t∈R on X = Γ\PSL(2,R). Then X is a locally compact space and the
horocycle �ow has periodic orbits. Let X0 ⊂ X stand for the set of non-periodic
orbits. Dani [4] has shown that every probability ergodic measure invariant with
respect to the horocycle �ow is either equal to µΓ or is supported by a periodic
orbit. Moreover, every non-periodic orbit is equidistributed on X (see [5]), i.e. for
every x ∈ X0 and every bounded continuous function f : X → R we have

(11) lim
t→∞

1
t

∫ t

0

f(ηsx) ds =
∫
X

f(x) dµΓ(x).

Let C0(X) denote the space of the continuous functions on X vanishing at in�nity
equipped with the supremum norm. Recall that the dual space C∗0 (X) may be
identi�ed with M(X) with the total variation norm.

Let B0 stand for the space all signed measures µ ∈ M(X) such that µ(X) = 0
and |µ|(X \X0) = 0. The subspace B0 ⊂M(X) is closed. Moreover, since the set
of periodic orbits X \ X0 is (φg)g∈G-invariant, B0 is (S∗g )g∈G�invariant. By (11)
and Lemma 11,

1
λ(D)

∫
D

U∗rsµds→ 0 ∗-weakly

for every µ ∈ B0 and every measurable set D ⊂ R with 0 < λ(D) < ∞. Suppose
that µ ∈ B0 ∩M(X)�. An application of Corollary 6 gives U∗t µ → 0 ∗-weakly as
t→∞. This yields the following.
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Theorem 12. For every lattice Γ ⊂ PSL(2,R) and ρ ∈ P(Γ\PSL(2,R)) if the map

G 3 g 7→ (φg)∗ρ ∈ P(Γ\PSL(2,R))

is strongly continuous and ρ is supported by the set of non-periodic orbits for the
horocycle �ow (ηt)t∈R on Γ\PSL(2,R) then (ηt)∗ρ→ µΓ weakly as |t| → ∞.

4. Flows and joinings

In this section we brie�y put together necessary de�nitions and some known facts
about �ows and their joinings. Although de�nitions and facts are formulated for
�ows, all of them hold (and will be applied) for automorphisms.

The �ow T = (Tt)t∈R determines a unitary representation, still denoted by
T = (Tt)t∈R, of R in U(L2(X,B, µ)) by the formula Tt(f) 7→ f ◦ Tt. Since the �ow
T is measurable, the unitary representation T is continuous. Let S = (St)t∈R be
another ergodic �ow de�ned on (Y, C, ν). By a joining between T and S we mean
any probability {Tt×St}t∈R�invariant measure on (X×Y,B⊗C) whose projections
on X and Y are equal to µ and ν respectively. The set of joinings between T and S
is denoted by J(T ,S) (simply J(T ) where S = T ). The subset of ergodic joinings
is denoted by Je(T ,S). Ergodic joinings are exactly extremal points in the simplex
J(T ,S). Given ρ ∈ J(T ,S) de�ne an operator Φρ : L2(X,B, µ) → L2(Y, C, ν) by
requiring that ∫

X×Y
f(x)g(y) dρ(x, y) =

∫
Y

Φρ(f)(y)g(y) dν(y)

for each f ∈ L2(X,B, µ) and g ∈ L2(Y, C, ν). This operator has the following
Markov property

(12) Φρ1 = Φ∗ρ1 = 1 and Φρf ≥ 0 whenever f ≥ 0.

Moreover,

(13) Φρ ◦ Tt = St ◦ Φρ for each t ∈ R.

In fact, there is a one-to-one correspondence between the set of Markov operators
Φ : L2(X,B, µ) → L2(Y, C, ν) satisfying (13) and the set J(T ,S) (see e.g. [26] for
details). Notice that the product measure corresponds to the Markov operator
denoted by

∫
, where

∫
(f) equals the constant function

∫
X
f dµ. On J(T ) we

consider the weak operator topology. In this topology J(T ) becomes a metrizable
compact space which is a Choquet simplex.

We denote by C(T ) the centralizer of the �ow T , this is the group of Borel
automorphisms R : (X,B, µ)→ (X,B, µ) such that Tt ◦R = R ◦ Tt for every t ∈ R.
Every R ∈ C(T ) can be considered as a Markov operator. The corresponding
self-joining, denoted by µR, and is determined by µR(A × B) = µ(A ∩ R−1B) for
A,B ∈ B. Then µR is concentrated on the graph of R and µR ∈ Je(T ).

Flows T and S are called disjoint if J(T ,S) = {µ⊗ν}. Equivalently, the operator∫
is the only Markov operator that intertwines Tt and St (for each t ∈ R). Notice

that if automorphisms Tt and St are disjoint for a certain t 6= 0 then the �ows T
and S are disjoint as well.

If Ti = (T (i)
t )t∈R is a Borel �ow on (Xi,Bi, µi) for i = 1, . . . , k then by a k�joining

of T1, . . . , Tk we mean any probability (T (1)
t × . . .× T (k)

t )t∈R�invariant measure on(∏k
i=1Xi,

⊗k
i=1 Bi

)
whose projection on Xi is equal to µi for i = 1, . . . , k.
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Suppose that T is an ergodic �ow on (X,B, µ) and Ti = T for i = 1, . . . , k. If
R1, . . . , Rk ∈ C(T ) then the image of µ via the map

X 3 x 7→ (R1x, . . . , Rkx) ∈ Xk

is called an o�-diagonal joining. Of course, any o�-diagonal joining is an ergodic
k�self�joining. Suppose that the set of indices {1, . . . , k} is now partitioned into
some subsets and let on each of these subsets an o��diagonal joining be given. Then
clearly the product of these o��diagonal joinings is a k�self�joining of T .

An ergodic �ow T is said to has minimal self�joining (MSJ) if every ergodic
k�self�joining is a product of o��diagonal joinings for every k ∈ N and C(T ) =
{Tt : t ∈ R}.

A �ow T on (X,B, µ) is pairwise independently determined (PID) if any n-joining
(n ≥ 3) of T which is pairwise independent, i.e. its projection on the product of
any two copies of X in Xn is the product µ⊗µ, must be the product measure µ⊗n

(see [15]). Obviously, every weakly mixing MSJ �ow is PID.

Proposition 13 (Ryzhikov [24]). Suppose that T is a weakly mixing PID �ow and
take arbitrary two ergodic �ows S on (Y, C, ν) and R on (Z,D, ρ). Then any 3-
joining of T , S and R which is pairwise independent must be the product measure
µ⊗ ν ⊗ ρ.

As a consequence of Lemma 3, we obtain the following.

Theorem 14. Let T = (Tt)t∈R be a weakly mixing �ow on a standard Borel space
(X,B, µ). Suppose that there exists a sequence of real numbers (tn) such that tn →
+∞ and

Ttn → α

∫
C(T )

S dP (S) + (1− α)J,

where α > 0, P is a probability Borel measure on the centralizer C(T ) and J ∈
J(T ). Then Tt and Ts are disjoint for almost every pair (t, s) ∈ R2. In particular,
T and Ts are disjoint for almost every s ∈ R.

Proof. Since T is ergodic, we can apply Lemma 3 for the unitary representation

Tt(f) = f ◦ Tt
on L2(X,µ). Since Ttn → K weakly where K = α

∫
C(T )

S dP (S) + (1− α)J , there
exists a measurable subset E ⊂ R with λ(Ec) = 0 such that for every s 6= 0
and r ∈ E if Ar : L2(X,µ) → L2(X,µ) is a continuous linear operator such that
Ar(L2

0(X,µ)) ⊂ L2
0(X,µ) and ArTs = TrsAr then

(14) ArKf = 0 for every f ∈ L2
0(X,µ).

Let us consider the set

E′ := {(t, s) ∈ R× (R \ {0}) :
t

s
∈ E}.

Since E′ is Lebesgue measurable, by Fubini's theorem, the complement of E′ has
zero Lebesgue measure in R2. Suppose that (t, s) ∈ E′. Then t = rs for some
r ∈ E. Let Jr : L2(X,µ)→ L2(X,µ) be a Markov operator intertwining Ts and Tt,
i.e. JrTs = TrsJr. In view of (14),

α

∫
C(T )

Jr ◦ S dP (S) + (1− α)Jr ◦ J = 0 on L2
0(X,µ),
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and hence

α

∫
C(T )

Jr ◦ S dP (S) + (1− α)Jr ◦ J =
∫

on L2(X,µ).

By the weak mixing of T , the operator
∫
is indecomposable in J(Ts, Trs). Therefore

Jr ◦S =
∫
for P�almost every S, and hence Jr =

∫
. Consequently, Ts and Tt = Trs

are disjoint. �

5. Special flow

Let T be an automorphism of a probability standard Borel space (X,B, µ). If

f : X → R is a strictly positive integrable function, then by T f = (T ft )t∈R we will
mean the corresponding special �ow under f (see e.g. [3], Chapter 11) acting on
(Xf ,Bf , µf ), where Xf = {(x, s) ∈ X × R : 0 ≤ s < f(x)} and Bf (µf ) is the
restriction of B⊗B(R) (µ⊗λ) to Xf . Under the action of the �ow T f each point in
Xf moves vertically at unit speed, and we identify the point (x, f(x)) with (Tx, 0).
Given m ∈ Z we put

f (m)(x) =

 f(x) + f(Tx) + . . .+ f(Tm−1x) if m > 0
0 if m = 0

−
(
f(Tmx) + . . .+ f(T−1x)

)
if m < 0.

Then for every (x, s) ∈ Xf we have

T ft (x, s) = (Tnx, s+ t− f (n)(x)),

where n ∈ Z is a unique number such that f (n)(x) ≤ s+ t < f (n+1)(x).

Remark 2. Note that for every positive s the �ow T fs is isomorphic to T f/s. More-

over, T f−1 is isomorphic to the special �ow built over T−1 and under −f (−1) =
f ◦ T−1. If T is a rotation on the circle then T−1 is isomorphic to T by the
symmetry ζ : T→ T, ζ(x) = 1− x. Therefore the map

Tf 3 (x, t) 7→ (ζx, t) ∈ Tf◦ζ

establishes an isomorphism of T f−1 and T f◦ζ .

Assume that f ∈ L2(X,µ). Suppose that there exist an increasing sequence of
natural numbers {qn}, a sequence {an} of real numbers and a sequence of Borel
sets {Cn} such that

(15) µ(Cn)→ α > 0, µ(Cn4T−1Cn)→ 0 and sup
x∈Cn

d(x, T qnx)→ 0

and the sequence {
∫
Cn
|fn(x)|2dµ(x)} is bounded, where fn := f (qn)−an for n ∈ N.

As the distributions {
1

µ(Cn)
(fn|Cn

)∗(µ|Cn
), n ∈ N

}
are uniformly tight, by passing to a further subsequence if necessary we can assume
that

1
µ(Cn)

(fn|Cn)∗(µ|Cn)→ P

weakly in P(R) the set of probability Borel measures on R.
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Proposition 15 (see Theorem 6 in [9]). The sequence {(T f )an} converges weakly
to the operator

α

∫
R

(T f )−t dP (t) + (1− α)J,

where J ∈ J(T f ).

Remark 3. Suppose that T : T→ T is an ergodic rotation by α on the circle and let
f : T → R be a function of bounded variation. By the Denjoy-Koksma inequality,
|f (qn)(x)−qnc| ≤ Var f for every x ∈ T, where (qn) is the sequence of denominators
of α and c =

∫
f(x) dx. Taking Cn = T and an = qnc, in view of Proposition 15 we

obtain that T fqnc →
∫

R(T f )−t dP (t) for some P ∈ P(R).

Let Tλ,π be an interval exchange transformation on I = [0, 1) corresponding
to a probability vector λ = (λ1, λ2, . . . , λm) (m > 1) and a permutation π of

{1, 2, . . . ,m}, i.e. T acts on every Iλk = [
∑k−1
i=1 λi,

∑k
i=1 λi), k = 1, . . . ,m, by a

translation in such a way that the intervals Iλk are rearranged according to the
permutation π.

Suppose that T = Tλ,π is ergodic. Let f : [0, 1] → R be a positive function
of bounded variation. As it was shown in [16] (see also [9]) f satis�es a Koksma-
Denjoy type inequality, i.e. there exist an increasing sequence of natural numbers
{qn}, a sequence {an} of real numbers and a sequence of towers {Cn} satisfying
(15), with α ≥ 1/(m+1)2, and such that |fqn(x)−an| ≤ Var f for all x ∈ Cn. Now
an application of Proposition 15 together with Theorem 14 gives the following.

Corollary 16. Let T be an ergodic interval exchange transformation and let f :
[0, 1]→ R be a positive function of bounded variation. Suppose that the special �ow

T f = (T ft )t∈R is weakly mixing. Then T f and T fs are disjoint for almost every

s ∈ R. Moreover, T ft and T fs are disjoint for almost every pair (t, s) ∈ R2.

LetM be a compact orientable C∞�surface of genus ≥ 1. A translation structure
on M consists of a �nite set (the singularity set) Σ ⊂ M and an atlas (Uα, φα) of
M \Σ such that for all α, β with Uα ∩Uβ 6= ∅, φα ◦φ−1

β (v) = v+ c. The surface M
endowed with a translation structure is called a translation surface. Since transition
functions φα ◦φ−1

β preserve constant vector �elds, there is a well de�ned vector �eld

of unit length on M \Σ in each direction θ. The corresponding �ow Fθ = (F θt )t∈R
is called a translation �ow in the direction θ. Note that Fθ preserves the Liouville
measure µ, i.e. the �nite measure on M which is determined by images by φ−1

α of
the Lebesgue measure on R2.

Theorem 17 (see Veech [27]). If a translation �ow Fθ has no saddle connection,
then it has a special representation under an interval exchange transformation Tλ,π
and under a function which is constant over each interval Iλk .

Corollary 18. If a translation �ow Fθ is weakly mixing with respect to µ, then
Fθ and Fθs are disjoint for almost every s. Moreover, F θt and F θs are disjoint for
almost every pair (s, t) ∈ R2.

Recall that recently Avila and Forni [1] proved that given stratum of the moduli
space of translation surfaces of genus ≥ 2 for almost every translation surface from
the stratum the translation �ow Fθ is weakly mixing for almost every θ ∈ S1.

Although for any weakly mixing translation �ow Fθ the �ows Fθ and Fθs are
disjoint for almost every s ∈ R, Fθ can be self-similar.



16 K. FR�CZEK AND M. LEMA�CZYK

Example 1. Consider an example of weakly mixing translation �ow constructed in
[7] which has a special representation T f where T = Tλ,π is a 4 interval exchange
transformation (π is the symmetric permutation (14)(23)) and f : [0, 1)→ (0,+∞)
is constant and equal to hk over each interval Iλk , k = 1, 2, 3, 4. More precisely, the
vectors λ = (λ1, λ2, λ3, λ4) and h = (h1, h2, h3, h4) are a right and a left Perron-
Frobenius eigenvectors respectively of the primitive matrix

A =


1 1 1 1
1 2 0 0
0 0 2 1
2 3 2 2

 .
Let θ > 1 stand for the Perron-Frobenius eigenvalue. Let J ′ = [0, 1/θ) and let
T ′ : J ′ → J ′ stand for the induced transformation of T on J ′. As it was shown
in [7] T ′ is a 4�interval exchange transformation which is isomorphic to T by the
map [0, 1/θ) 3 x 7→ θx ∈ [0, 1). Let us consider the interval J ′ as another cross
section for the �ow T f . The corresponding special representation of T f is built
over T ′ : J ′ → J ′ and under a piecewise constant function f ′ : J ′ → (0,+∞) which
is equal to h′k over the k-th interval of the interval exchange transformation T ′ for
k = 1, 2, 3, 4. Moreover,

(h′1, h
′
2, h
′
3, h
′
4)T = A(h1, h2, h3, h4)T = θ(h1, h2, h3, h4)T ,

and hence f ′(θ−1x) = θf(x) for all x ∈ [0, 1). It follows that the map J ′f
′ 3

(x, s) 7→ (θx, s) ∈ [0, 1)θf establishes an isomorphism of T ′f ′ and T θf . In view of

Remark 2, T θf ' T f1/θ, and hence T f ' T f1/θ. Consequently, θ
k ∈ I(T f ) for every

k ∈ Z.

6. Absence of self-similarity for special flows

In this section we present a joining method of proving that a �ow has no self-
similarities. Let us denote by M(L2(X,µ)) the simplex of Markov operators V :
L2(X,µ)→ L2(X,µ), i.e. V is a positive operator such that V (1) = 1 and V ∗(1) =
1. Notice that M(L2(X,µ)) is a compact subset of L(L2(X,µ)) endowed with the
weak operator topology. Let V = (Vt)t∈R be a continuous representation of R in
M(L2(X,µ)). Given s ∈ R \ {0} by Vs denote the representation R 3 t 7→ Vst ∈
M(L2(X,µ)). We will say two representation V = (Vt)t∈R and V ′ = (V ′t )t∈R are
Markov isomorphic if there exists a measure preserving automorphism S : (X,µ)→
(X,µ) such that S ◦ V ′t = Vt ◦ S for all t ∈ R. Let

I(V) = {s ∈ R \ {0} : V and Vs are Markov isomorphic}.

Let Rs : R→ R stand for the rescaling map Rst = st.

Lemma 19. For every P ∈ P(R) and sn → 0,

(Rsn
)∗(P )→ δ0 weakly .

Proof. Let f : R→ R be a continuous and bounded function. Then

|
∫

R
f(x) d(Rsn)∗(P )(x)−

∫
R
f(x) dδ0(x)| = |

∫
R
f(snx) dP (x)− f(0)|

≤ |
∫

R
(f(snx)− f(0)) dP (x)| ≤

∫
R
|f(snx)− f(0)| dP (x).
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As sn → 0, f(snx) → f(0) for every x ∈ R. Moreover, since |f(snx) − f(0)| ≤
2‖f‖sup for every x ∈ R, Lebesgue's dominated convergence theorem shows that∫

R f(x) d(Rsn
)∗(P )(x)→

∫
R f(x) dδ0(x). �

Lemma 20. If Pn → P weakly in P(R) then∫
R
Vt dPn(t)→

∫
R
Vt dP (t) weakly in L2(X,µ).

Proof. For every f, g ∈ L2(X,µ) the map t 7→ 〈Vtf, g〉 is continuous and bounded.
It follows that

〈
∫

R
Vt dPn(t)f, g〉 =

∫
R
〈Vtf, g〉 dPn(t)→

∫
R
〈Vtf, g〉 dPn(t) = 〈

∫
R
Vt dPn(t)f, g〉.

�

Lemma 21. Suppose that there exists s ∈ I(V) \ {−1, 1} and there exist P ∈ P(R)
and 0 < a ≤ 1 such that

a

∫
R
Vt dP (t) + (1− a)J ∈ {Vt : t ∈ R}d

for some J ∈M(L2(X,µ)). Then

a I +(1− a)K ∈ {Vt : t ∈ R}d

for some K ∈M(L2(X,µ)).

Proof. Since s ∈ I(V), there exists an automorphism S : (X,µ)→ (X,µ) such that
S ◦ Vst = Vt ◦ S for all t ∈ R. Therefore,

Sm ◦ Vsmt = Vt ◦ Sm for every t ∈ R and m ∈ Z.
By the assumption, there exists a sequence (tn) such that |tn| → +∞ and

Vtn → a

∫
R
Vt dP (t) + (1− a)J weakly.

It follows that

Vsmtn = S−m ◦ Vtn ◦ Sm → a

∫
R
S−m ◦ Vt ◦ Sm dP (t) + (1− a)Jm

= a

∫
R
Vsmt dP (t) + (1− a)Jm = a

∫
R
Vt d(Rsm)∗(P )(t) + (1− a)Jm,

and hence

a

∫
R
Vt d(Rsm)∗(P )(t) + (1− a)Jm ∈ {Vt : t ∈ R}d,

where Jm = S−m ◦ J ◦ Sm.
Assume that |s| < 1, in the case |s| > 1 the proof follows by the same method by

taking the sequence (s−m)∞m=1 instead of (sm)∞m=1. By passing to a subsequence,
if necessary, we can assume that that Jm → K weakly. Since sm → 0 as m→ +∞,
by Lemmas 19 and 20,

a

∫
R
Vt d(Rsm)∗(P )(t) + (1− a)Jm → a I +(1− a)K as m→ +∞.

Thus
a I +(1− a)K ∈ ({Vt : t ∈ R}d)d = {Vt : t ∈ R}d.

�
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Theorem 22. Let T = (Tt)t∈R be a measure-preserving �ow on (X,µ) such that
T is isomorphic to Ts for some s 6= ±1.

• If
∫

R Tt dP (t) belongs to {Tt : t ∈ R}d for some P ∈ P(R) then T is rigid.

• If a
∫

R Tt dP (t) + (1 − a)J ∈ {Tt : t ∈ R}d for some 0 < a ≤ 1, P ∈ P(R)
and J ∈ J(T ) then T is partially rigid.

Corollary 23. If T is non-rigid and
∫

R Tt dP (t) belongs to {Tt : t ∈ R}d for some

P ∈ P(R) then T is not self-similar. If T is not partially rigid and α
∫

R Tt dP (t) +
(1 − α)J belongs to {Tt : t ∈ R}d for some P ∈ P(R), 0 < α ≤ 1 and J ∈ J(T )
then T is not self-similar.

Example 2. Let us consider a special �ow T f built over an ergodic interval ex-
change transformation T : [0, 1)→ [0, 1) and under piecewise absolutely continuous
function f : [0, 1) → R. By Proposition 15, there exist P ∈ P(R), 0 < α ≤ 1
and J ∈ J(T f ) such that α

∫
R T

f
t dP (t) + (1 − α)J ∈ {T ft : t ∈ R}d. Suppose

that the sum of jumps S(f) =
∫ 1

0
f ′(x) dx of f is not zero. Then, by Theorem 36

in Appendix A (this is a more general version of Theorem 7.1 in [10]), T f is not
partially rigid, and hence T f is not self-similar.

Example 3. The absence of self-similarity we can observe also for special �ows built
over ergodic rotations T on the circle by α satisfying a Diophantine condition and
under some piecewise constant roof functions f : T → R. More precisely, we will
deal with rotations with bounded partial quotients and roof functions satisfying
conditions (P1) and (P2) from [12]. Such special �ows are partially rigid. However,

as was noted in Remark 3,
∫

R T
f
t dP (t) ∈ {T ft : t ∈ R}d. Moreover, as was shown

in [12], considered �ows are mildly mixing, hence not rigid. Consequently, T f is
not self-similar.

Let us consider a particular case where f = a + bχ[0,1/2) and a, b > 0, a, b /∈
Q +αQ. Since f veri�es (P1) and (P2), T fs is not isomorphic to T f for all s 6= ±1.
Observe that T f−1 and T f are isomorphic. Indeed, by Remark 2, T f−1 is isomorphic

to T f◦ζ . Putting R : T→ T, R(x) = x+ 1/2, we have f ◦ ζ = f ◦R. On the other
side, the map

Tf◦R 3 (x, s) 7→ (Rx, s) ∈ Tf

establishes an isomorphism of T f◦R and T f , and hence T f−1 and T f are isomorphic.

Therefore I(T f ) = {−1, 1}.
Theorem 24. Let T = (Tt)t∈R be a weakly mixing MSJ �ow. Suppose that there
exists non-zero s 6= ±1 such that Ts and T1 are isomorphic. Then T is either
mixing or partially rigid (in fact, α-weakly mixing).

Proof. By Corollary 6.4 in [15], the �ows Ts and T are isomorphic, and hence
s ∈ I(T ).

Suppose that T is not mixing. Then there exists a sequence (tn) with |tn| → +∞
such that

Ttn → a

∫
R
Tt dP (t) + (1− a)

∫
for some 0 < a ≤ 1 and P ∈ P(R). An application of Lemma 21 shows that

Tt′n → a I +(1− a)
∫

for a sequence (t′n) with |t′n| → +∞. �
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Theorem 25. Let T = (Tt)t∈R be a weakly mixing MSJ �ow. Suppose that∫
R Tt dP (t) belongs to {Tt : t ∈ R}d for some P ∈ P(R). Then for every nonzero
real s1, s2 with |s1| 6= |s2| the �ows Ts1 and Ts2 are disjoint and the automorphisms
Ts1 and Ts2 are disjoint.

Proof. Suppose that Ts1 and Ts2 are not disjoint, or Ts1 and Ts2 are not disjoint
for some s1, s2 ∈ R \ {0} with |s1| 6= |s2|. By Corollary 6.4 in [15], Ts1 and Ts2 are
isomorphic, and hence s1/s2 ∈ I(T ) \ {−1, 1}. Now an application of Theorem 22
gives the rigidity of T , which is impossible. �

Example 4. Let us consider the special �ow T built over a rotation by α with
bounded partial quotients and under a function f(x) = {x}+ c. As it was proved
in [11], the �ow T has MSJ. As we noted earlier T is not self-similar. Furthermore,
the absence of self-similarity here has stronger consequence: T is disjoint from Ts
for every s 6= ±1. Moreover, T and T−1 are also disjoint. This is an immediate
consequence of Remark 2 and Theorem 40 in Appendix B. Finally, T is disjoint
from Ts for every s 6= 1.

Recall that the same property was observed in [14] for some special �ows over
Chacon transformation.

Remark 4. Let T = (Tt)t∈R be an ergodic �ow for which 0 < s < 1 is a scale of
self-similarity. It follows that there exists an automorphism S : (X,µ) → (X,µ)
such that S ◦Tt = Tst ◦S for all t ∈ R. Then S have to be mixing. Indeed, suppose
that S is not mixing. Then there exists an increasing sequence (kn) of natural
numbers and J ∈ J(T ) such that Skn → J and J 6=

∫
. Since Skn ◦Tt = Tskn t ◦Skn

and Tskn t → I, we obtain Tt ◦J = J for every t ∈ R. By the ergodicity of T , J =
∫
.

7. Self-similar flows

Let G be a countable multiplicative subgroup of R \ {0}. In this section given
we will construct a �ow T such that I(T ) = G.

Let S be a weakly mixing �ow on a standard probability Borel space (Y, C, ν)
which has MSJ property and Ss if disjoint from S for every s 6= 1. Recall that
the �ows presented in Example 4 possess such a property. Denote by (Ys, Cs, νs) =
(Y, C, ν) the space of the �ow Ss for s 6= 0.

Let us consider the product �ow T =
∏
g∈G Sg which acts on the product space

(X,B, µ) =
(∏

g∈G Yg,
⊗

g∈G Cg,
⊗

g∈G νg

)
by

Tt((yg)g∈G) = (Sgtyg)g∈G.

Assume that s ∈ G. Then the �ows T and Ts are isomorphic, and the isomorphism
is given by

π :
∏
g∈G

Yg →
∏
g∈G

Yg, [π((yg)g∈G)]g′ = ysg′ for all g
′ ∈ G.

Assume that s /∈ G. We will show that T and Ts are disjoint. To prove this
we will use PID property of the �ow S. Suppose that η is an ergodic joining of T
and Ts. Since G ∩ sG = ∅ and the �ow Ts =

∏
g∈G Ssg on

∏
g∈G Yg is isomorphic

to the �ow
∏
g∈sG Sg on

∏
g∈sG Yg, η can be treated as a probability measure on∏

g∈G∪sG Yg invariant under the action of the product �ow
∏
g∈G∪sG Sg. On the

other hand, for any collection s1, . . . , sk of distinct non-zero real numbers every
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ergodic joining of Ss1 , . . . ,Ssk
is the product measure ρs1 ⊗ . . . ⊗ ρsk

. This is a
consequence of Proposition 13 and the disjointness of Ss form Ss′ for s 6= s′. It
follows that the projection of η on any �nite product

∏
g∈F Yg (F ⊂ G ∪ sG and

�nite) is the product measure
⊗

g∈F ρg. Therefore η =
⊗

g∈G∪sG ρg = µ⊗ µ, and
hence T and Ts are disjoint. Consequently, I(T ) = G.

8. Spectral theory

Let A be a locally compact second countable Abelian group. In this paper we will
deal only with two cases where A = R or Z. Let T = (Ta)a∈A be measurable action
on a probability Borel space (X,B, µ). The action T determined the Koopman
representation UT of A in L2

0(X,B, µ) given by UTa (f) = f ◦ Ta. For any f ∈
L2

0(X,B, µ) we de�ne the cyclic space A(f) = span{UTa f ; a ∈ A}. By the spectral

measure σT ,f of f we mean a Borel measure on the dual group Â determined by∫
Â γ(a)dσf,T (γ) = 〈UTa f, f〉 for all a ∈ A.
By the spectral theorem there exists a spectral decomposition of L2

0(X,B, µ), i.e.

(16) L2
0(X,B, µ) =

⊕∞
n=1 A(fn) and σf1,T � σf2,T ... .

Moreover, a spectral sequence (σfn,T )n∈N is unique up to equivalence of measures.
The spectral type of σf1,T (the equivalence class of measures), denoted by σT ,

will be called the maximal spectral type of T . T is said to have Lebesgue spectrum

if σf1,T ≡ λ, where λ is a Haar measure on Â. It is said that T has simple spectrum
if L2(X,B, µ) = A(f) for some f ∈ L2(X,B, µ).

For any real s let

θs : R→ R, θs(t) = t+ s,

Rs : R→ R, Rs(t) = st,

χs : R→ T, χs(t) = exp 2πist.

Let T = (Tt)t∈R be a measurable �ow on (X,B, µ). Fix f ∈ L2
0(X,B, µ). Then

for any s 6= 0,∫
R
e2πirt dσf,Ts

(t) = 〈f ◦ Trs, f〉 =
∫

R
e2πirst dσf,T (t) =

∫
R
e2πirt d(Rs)∗σf,T (t)

and ∫
T
zn dσf,Ts

(z) = 〈f ◦ Tsn, f〉 =
∫

R
e2πinst dσf,T (t) =

∫
T
zn d(χs)∗σf,T (z).

It follows that σf,Ts
= (Rs)∗σf,T and σf,Ts

= (χs)∗σf,T , and hence σTs
= (Rs)∗σT

and σTs
= (χs)∗σT .

Suppose that µ and ν are probability singular Borel measures on R. The following
two lemmas are well-known; we give proofs for completeness.

Lemma 26. For almost every s ∈ R measures (θs)∗µ and ν are orthogonal. If
µ({0}) = ν({0}) = 0 then (Rs)∗µ and ν are orthogonal for almost every s ∈ R.

Proof. Since µ ∗ λ = λ, there exists a measurable set E ⊂ R such that ν(E) = 1
and

0 = µ ∗ λ(E) =
∫

R
µ(E − s) ds =

∫
R

(θs)∗µ(E) ds.

It follows that (θs)∗µ(E) = 0 for almost every s ∈ R.
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Set g : R \ {0} → R, g(x) = log |x| and abs : R → R, abs(x) = |x|. Notice
that g∗(µ) and g∗(ν) are also singular. Let G stand for the set of real numbers s
such that g∗(ν) ⊥ (θs)∗g∗(µ). Using once more the non�singularity of g we obtain
λ(g−1(G)c) = 0. Suppose that s ∈ g−1(G). Since g(s) ∈ G,

g∗(ν) ⊥ (θg(s))∗g∗(µ).

It follows that (by the non�singularity of the function exp)

exp∗ g∗(ν) ⊥ exp∗(θg(s))∗g∗(µ) and (− exp)∗g∗(ν) ⊥ (− exp)∗(θg(s))∗g∗(µ)

Since exp ◦θg(s) ◦ g = abs ◦Rs on R \ {0},
ν|(0,+∞) � abs∗ν ⊥ abs∗(Rs)∗µ� (Rs)∗µ|(0,+∞)

and
ν|(−∞,0) � (−abs)∗ν ⊥ (−abs)∗(Rs)∗µ� (Rs)∗µ|(−∞,0).

Consequently, ν ⊥ (Rs)∗µ. �

Lemma 27. Let µ and ν be probability singular Borel measures on R. If µ ⊥ ν
then (χs)∗µ ⊥ (χs)∗ν for almost every s ∈ R.

Proof. By the �rst part of Lemma 26, there exists a measurable set E ⊂ R whose
complement has zero Lebesgue measure such that (θks)∗µ ⊥ ν for every s ∈ E and
k 6= Z\{0}. Therefore (θms)∗µ ⊥ (θns)∗ν for all s ∈ E and m 6= n. By assumption,
(θns)∗µ ⊥ (θns)∗ν for all s ∈ R and n ∈ Z. Thus (θms)∗µ ⊥ (θns)∗ν for all s ∈ E
and m,n ∈ Z. It follows that (χs)∗µ ⊥ (χs)∗ν for every s ∈ E. �

Proposition 28. Let σ be a probability singular Borel measure on R which has no
atom at zero. Then (χs)∗σ ⊥ (χt)∗σ for almost all (s, t) ∈ R2.

Proof. Denote by P(T) the space of all probability Borel measures on T provided
with the weak topology. As it was shown in [2], the set

{(µ, ν) ∈ P(T)× P(T) : µ ⊥ ν}
is a Gδ subset of P(T)× P(T). Since the map

R 3 t 7→ (χt)∗σ ∈ P(T)

is continuous,
G := {(s, t) ∈ R2 : (χs)∗σ ⊥ (χt)∗σ}

is a Gδ subset of R2. Let G′ = {(s, t) ∈ R2 : (s, st) ∈ G}. Since the di�eomorphism

(R \ {0})× R 3 (s, t) 7→ (s, st) ∈ (R \ {0})× R
is a non-singular automorphism with respect to the Lebesgue measure on R2, it
su�ces to prove that the complement of G′ has zero Lebesgue measure on R2. By
the second Lemma 26, there exists a set E ⊂ R such that λ(Ec) = 0 and σ ⊥ (Rt)∗σ
for all t ∈ E. Fix t ∈ E. By Lemma 27,

(χs)∗σ ⊥ (χs)∗(Rt)∗σ = (χts)∗σ

for almost every s ∈ R, and hence (s, t) ∈ G′ for almost every s ∈ R. An application
of Fubini's theorem for G′ gives that the complement of G′ (and hence of G) has
zero Lebesgue measure on R2. �

Theorem 29. Let T = (Tt)t∈R be an ergodic �ow on a probability standard Borel
space (X,B, µ). If the spectrum of T is singular then Ts and Tt are spectrally
disjoint for almost every pair (s, t) ∈ R2.
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Proof. It su�ces to note that if σ is the maximal spectral typ of T then (χt)∗σ is
the maximal spectral typ of Tt. �

Corollary 30. Let T = (Tt)t∈R be an ergodic �ow on a standard Borel space
(X,B, µ). Suppose that there exists a measurable set E ⊂ R of positive Lebesgue
measure such that Tt and Ts are not spectrally disjoint for all s, t ∈ E. Then the
�ow T has an absolutely continuous component in its spectrum.

Proposition 31. Let T = (Tt)t∈R be a weakly mixing �ow on a standard Borel
space (X,B, µ). Suppose that there exists a measurable set E ⊂ R of positive
Lebesgue measure such that T and Ts are spectrally equivalent for all s ∈ E. Then
the �ow T has a Lebesgue spectrum.

Proof. If σ denotes the maximal (reduced) spectral type of T then (Rs)∗σ is the
maximal (reduced) spectral type of Ts. By considering σ′ = log∗(σ|(0,+∞)) we
obtain a measure on R for which the set H(σ′) of t ∈ R such that σ′ ≡ (θt)∗σ′ is
of positive Lebesgue measure. But H(σ′) is a Borel subgroup of R (see [6]), hence
H(σ′) = R and therefore σ′ is equivalent to the Lebesgue measure. It follows that
σ|(0,+∞) is also equivalent to the Lebesgue measure restricted to (0,+∞). Since σ
is symmetric, we conclude that σ is also equivalent to the Lebesgue measure. �

9. Gaussian flows

The aim of this section is to show a construction of simple spectrum Gaussian
�ows with minimal set of self-similarities (Gaussian �ows are always reversible) as
well as with in�nite set of self-similarities.

Let A be a locally compact second countable Abelian group. A measurable A-
action (Sa)a∈A on a probability Borel space (X,B, µ) is called a Gaussian action

if there exists an in�nite dimensional real space H ⊂ L2
0(X,B, µ) which generates

B, which is invariant under all Sa, a ∈ A and for which all nonzero elements are
Gaussian variables. A classical result (see e.g. [3], Ch. 8 for the case of Z-actions)
is that a Gaussian (Sa)a∈A is ergodic i� the spectral type σ of (Sa)a∈A on the
Gaussian space H is continuous. Moreover, the maximal spectral type of (Sa)a∈A
on L2

0(X,B, µ) is given by exp′ σ =
∑∞
n=1

1
n!σ

(n), where σ(n) stands for the n-th
convolution power of σ.

Let σ be a �nite Borel measure on R. Put X = RR and let ξs : X → R stand for
the projection on the s-th coordinate for s ∈ R, i.e. ξs((xt)t∈R) = xs. By B denote
the smallest σ-algebra of subsets X for which ξs is a measurable map for every real
s. Given s ∈ R let Ts : X → X be the shift Ts((xt)t∈R) = (xt+s)t∈R.

A probability measure µ on (X,B) is called a Gaussian measure if the process
(ξs)s∈R on (X,B, µ) is a stationary centered Gaussian process. The Gaussian mea-
sure µ determines the spectral measure σ of the Gaussian process by

σ̂(s) =
∫

R
ξs(x) · ξ0(x) dµ(x) for s ∈ R.

Since the Fourier transform σ̂ is real, the measure σ is symmetric. Conversely, every
symmetric �nite Borel measure on R is the spectral measure a Gaussian process
corresponding to a Gaussian measure µσ. Let T σ = (Tσt )t∈R stand for the �ow on
(X,B, µσ) given by

Tσt ((xs)s∈R) = (xs+t)s∈R.
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Let H ⊂ L2
0(X,µσ) be the closed real linear subspace generated by ξs, s ∈ R. Since

every non-zero element of H has a Gaussian distribution, the �ow T σ is a Gaussian
�ow with H as its Gaussian space. Moreover, σ is the spectral measure of T σ on
the Gaussian space H. If σ1 and σ2 are equivalent continuous measures on R then
the corresponding �ows T σ1 and T σ2 are isomorphic.

Fix s 6= 0. The automorphism Ts = Tσs : (X,µσ) → (X,µσ) is a Gaussian
automorphism with H as its Gaussian space. Moreover, since

〈ξr ◦ Tns , ξr〉 = 〈ξns, ξ0〉 =
∫

R
e2πinst dσ(t) =

∫
T
zn d((χs)∗σ)(z),

for every r ∈ R and n ∈ Z, the spectral measure of ξr with respect to Ts is equal
to (χs)∗σ, and hence (χs)∗σ is the spectral measure of Ts on H.

A Borel subset K ⊂ Â is called independent if for any collection of distinct
elements χ1, . . . , χk ∈ K and any a1, . . . , ak ∈ A the condition χ1(a1)·. . .·χk(ak) = 1
implies a1 = . . . = ak = e, where e denotes the neutral element in A.

By the classical theory of Gaussian systems (see [3] Ch. 8 for the case of Z-
actions), if σ is a Borel �nite measure on R concentrated on K ∪ (−K), where
K ⊂ R is an independent Borel set then the �ow T σ has simple spectrum.

Proposition 32 (Corollary 1 in [19]). Let σ and τ be �nite positive, symmetric
continuous Borel measures on T. Assume that σ is concentrated on K ∪K, where
K ⊂ T is an independent Borel set and that τ is concentrated on a countable union
of independent Borel sets. Then either σ(n) ⊥ τ (m) for all m,n ∈ N, or σ and τ ∗δc
are not mutually singular for some c ∈ T.

Let P stand for the set of all polynomials in variables x1, x2, . . ., i.e. P =⋃
k≥1 R[x1, . . . , xk]. In other words every polynomial P ∈ R[x1, . . . , xk] we will

treat it as a polynomial in variables x1, x2, . . . given by

P (x1, x2, . . .) = P (x1, . . . , xk).

Let us consider two operators z, s : P → P given by

z(P )(x1, x2, x3, . . .) = P (0, x2, x3, . . .)
s(P )(x1, x2, x3, . . .) = P (x2, x2, x3, . . .)

for every P ∈ P.
For each �nite subset Q ⊂ P denote by Fn(Q) the smallest subset of P containing

Q and closed under taking all permutations of the �rst 2n variables and under the
action of the operator z. Of course, Fn(Q) is still �nite.

Let (Pn)n∈N be a sequence in P \ {0}. We now de�ne a sequence (Qn)n∈N of
�nite subsets in P by putting

Q1 = F1({P1}) \ {0}, Qm+1 = Fm+1(Qm ∪ {Pm+1}) \ {0}.

Lemma 33. For any sequence (Pn)n∈N in P \ {0} there exists a perfect compact
subset K ⊂ R such that for every m ∈ N and s ∈ N if there exists a collection of
distinct numbers y1, . . . , ys ∈ K with

Pm(y1, . . . , ys, 0, . . .) = 0

then the polynomial Pm(x1, . . . , xs, 0, . . .) is the zero polynomial.
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Proof. (The construction of K below is a modi�cation of the construction of a
Kronecker set from [21]). The set K is given as K =

⋂∞
n=0Kn, where Kn =⋃2n

i=1 Fn,i, Fn,i is a closed (non-trivial) interval and Fn,i < Fn,i+1. The notation
A < B will mean that a < b for all a ∈ A and b ∈ B. Our construction goes by
induction.

1) K0 = F0,1 is an arbitrary closed non-trivial interval.

2) Suppose we have already constructedKn =
⋃2n

i=1 Fn,i. In each interval Fn,i we
�nd two open intervalsW2i−1 < W2i. Let Q

0
n+1 stand for the subset of polynomials

P ∈ Qn+1 such that P (x1, . . . , x2n+1 , 0, . . .) is a nonzero polynomial. Since the set⋃
P∈Q0

n+1

{(x1, . . . , x2n+1) ∈ R2n+1
, P (x1, . . . , x2n+1 , 0, . . .) = 0}

has zero Lebesgue measure, there exists (θ1, . . . , θ2n+1) ∈ W1 × . . . ×W2n+1 such
that

P (θ1, . . . , θ2n+1 , 0, . . .) 6= 0 for all P ∈ Q0
n+1.

Next choose Fn+1,i ⊂Wi, i = 1, . . . , 2n+1 such that

θi ∈ Int Fn+1,i, |Fn+1,i| ≤
1

2n+1

and

(17) (z1, . . . , z2n+1) ∈ Fn+1,1 × . . .× Fn+1,2n+1 ⇒ P (z1, . . . , z2n+1 , 0, . . .) 6= 0

for every P ∈ Q0
n+1.

We will now show that for every m, s ∈ N if the polynomial Pm(x1, . . . , xs, 0, . . .)
is non-zero then for any collection of distinct numbers y1, . . . , ys in K we have

Pm(y1, . . . , ys, 0, . . .) 6= 0.

Indeed, �x m ≥ 1 and s ∈ N and suppose that Pm(x1, . . . , xs, 0, . . .) is non-zero.
Take y1, . . . , ys in K such that yi 6= yj for i 6= j. Let n ∈ N be so large that m ≤ n,
s ≤ 2n and maxi |Fn,i| < mini 6=j |yi−yj |. We can �nd a permutation σ of {1, . . . , s}
and 1 ≤ j(1) < j(2) < . . . < j(s) ≤ 2n such that yσ(i) ∈ Fn,j(i) for i = 1, . . . , s. By
the de�nition of Qn, the polynomial

W (x1, x2, . . .) = Pm(xj(σ−1(1)), xj(σ−1(2)), . . . , xj(σ−1(s)), 0, . . .)

belongs to Q0
n. Choose (z1, . . . , z2n) ∈ Fn,1 × . . .× Fn,2n such that zj(i) = yσ(i) for

i = 1, . . . , s. From (17),

Pm(y1, . . . , ys, 0, . . .) = Pm(zj(σ−1(1)), . . . , zj(σ−1(s)), 0, . . .)
= W (z1, . . . , z2n , 0, . . .) 6= 0.

�

Let A ⊂ (0,+∞) be an at most countable subset of positive numbers such that
for every polynomial P ∈ Q[x1, . . . , xk] if there exists a collection a1, . . . , ak of
distinct elements of A with P (a1, . . . , ak) = 0 then P ≡ 0. Note that A can be also
empty. Let G(A) stand for the multiplicative subgroup generated by the elements
of A. In the case of A = ∅ we will adhere to the convention that G(A) = {1}.
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Lemma 34. There exists a perfect compact subset K ⊂ R such that the set

K̂ =
⋃

g∈G(A)

gK

is independent and its symmetrization K̃ = K̂ ∪ (−K̂) satis�es:

|r| /∈ G(A) =⇒ #((rK̃ + t) ∩ K̃) ≤ ℵ0 for any real t.

Proof. Let

P (x1, x2, x3, x4, x5, x6, x7, x8) = (x1 − x3)(x6 − x8)− (x2 − x4)(x5 − x7).

Let P̂ denote the smallest subset of R[x1, x2, x3, x4, x5, x6, x7, x8] containing P ,
and closed under taking all permutations of coordinates and under the action of
the operator s. Let Q(A) stand for the �eld which is the extension of Q by the
elements of A. Let Q∗ stand for the set all nonzero polynomials of the form

q1x1 + . . .+ qkxk,

where qj ∈ Q(A) for j = 1, . . . , k, and k ≥ 1.
Let (Pm)∞m=1 be a sequence containing all elements from (P̂ ∪Q∗) \ {0}. Let K

satisfy the assertion of Lemma 33. Put

K̂ =
⋃

g∈G(A)

gK.

First note that K̂ is independent. Indeed, suppose that y1, . . . , yk is a collection of

distinct elements of K̂ such that

q1y1 + . . .+ qkyk = 0 for some rational q1, . . . , qk.

We can �nd a �nite collection a1, . . . , am of distinct elements of A, z1, . . . , zk in K
and an integer matrix [βlj ]1≤l≤m, 1≤j≤k such that

yj =
m∏
l=1

a
βlj

l zj for every j = 1, . . . , k

Without loss of generality we can assume that z1, . . . , zs are distinct for some 1 ≤
s ≤ k and zi ∈ {z1, . . . , zs} for every 1 ≤ i ≤ k. Moreover,

0 =
k∑
j=1

qjyj =
s∑
j=1

m∏
l=1

a
βlj

l Pj(a1, . . . , am)zj ,

where the set of coe�cients of the polynomials Pj ∈ Q[x1, . . . , xm], j = 1, . . . , s is
equal to {q1, . . . , qk}. Indeed, even if zi = zj for i 6= j we still have

∏m
l=1 a

βli

l 6=∏m
l=1 a

βlj

l , otherwise yi = yj . Since
∏m
l=1 a

βlj

l Pj(a1, . . . , am) ∈ Q(A) for j = 1, . . . , s
and z1, . . . , zs are distinct elements of K, Pj(a1, . . . , am) = 0, and hence Pj ≡ 0 for
all j = 1, . . . , s. It follows that q1 = . . . = qk = 0.

Assume that |r| /∈ G(A). It is enough to consider r 6= 0. Let (Gn(A))n∈N be an
increasing sequence of �nite subsets of G(A) such that

⋃
n∈N Gn(A) = G(A). Let

K̃n =
⋃

g∈Gn(A)∪(−Gn(A))

gK.

Since K̃n ↗ K̃, it su�ces to prove that for each t ∈ R

#((rK̃n + t) ∩ K̃n) < 16(#Gn(A))2 for all n ≥ 1.
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Suppose, contrary to our claim, that for some t ∈ R the set (rK̃n + t) ∩ K̃n

contains at least l = 16(#Gn(A))2 distinct elements. It follows that there are
y1, . . . , y2l ∈ K and s1, . . . , s2l ∈ Gn(A) ∪ (−Gn(A)) such that

(18) rs2k−1y2k−1 + t = s2ky2k for k = 1, . . . , l

and s2ky2k, k = 1, . . . , l are distinct numbers. Since l ≥ 4(#(Gn(A)∪ (−Gn(A))))2,
the sequence {(s2k−1, s2k)}lk=1 contains at least four identical elements. By renam-
ing points, if necessary, we can assume that (s2k−1, s2k) = (s1, s2) for k = 1, 2, 3, 4.
It follows that

r(s1y1 − s1y3) = s2y2 − s2y4 and r(s1y5 − s1y7) = s2y6 − s2y8,

and hence
(y1 − y3)(y6 − y8) = (y2 − y4)(y5 − y7).

Moreover, y2, y4, y6, y8 are distinct, and hence y1, y3, y5, y7 are distinct. Suppose
that {z1, . . . , zs} = {y1, . . . , y8}, where z1, . . . , zs are distinct numbers. Then s ≥ 4.
Let us consider the function ϑ : {1, . . . , 8} → {1, . . . , s} determined by yi = zϑ(i)

for i = 1, . . . , 8. Note that ϑ(1), ϑ(3), ϑ(5), ϑ(7) and ϑ(2), ϑ(4), ϑ(6), ϑ(8) are two
collections of distinct numbers. Let

W (x1, . . . , xs) = (xϑ(1) − xϑ(3))(xϑ(6) − xϑ(8))− (xϑ(2) − xϑ(4))(xϑ(5) − xϑ(7)).

Then W ∈ P̂ and W (z1, . . . , zs) = 0. Since z1, . . . , zs belong to K and are distinct,
W is the zero polynomial. Observe that ϑ(1) 6= ϑ(6), ϑ(8). Otherwise W contains
the monomial x2

ϑ(1) with a nonzero coe�cient, contrary to W ≡ 0. It follows that
ϑ(1) ∈ {ϑ(2), ϑ(4)}. Similar arguments show that {ϑ(1), ϑ(3)} = {ϑ(2), ϑ(4)} and
{ϑ(5), ϑ(7)} = {ϑ(6), ϑ(8)}. Since W ≡ 0, it follows that ϑ(1) = ϑ(2), ϑ(3) = ϑ(4),
ϑ(5) = ϑ(6), ϑ(7) = ϑ(8), or ϑ(1) = ϑ(4), ϑ(3) = ϑ(2), ϑ(5) = ϑ(8), ϑ(7) = ϑ(8).
Thus, by (18),

rs1y2 + t = s2y2, rs1y4 + t = s2y4, rs1y6 + t = s2y6, rs1y8 + t = s2y8.

or

rs1y4 + t = s2y2, rs1y2 + t = s2y4, rs1y8 + t = s2y6, rs1y6 + t = s2y8.

Since r /∈ G(A) ∪ (−G(A)), we conclude that y2 = y4 = y6 = y8, contrary to our
claim. �

Theorem 35. If ρ is a continuous measure supported on K then the Gaussian �ow
T = (Tt)t∈R given by the measure

ρ̃ =
∑

g∈G(A)∪(−G(A))

pg(Rg)∗(ρ)

(pg > 0 and
∑
pg < +∞) has a simple singular spectrum and

• if |τ1/τ2| ∈ G(A) then Tτ1 is isomorphic to Tτ2 ;
• if |τ1/τ2| /∈ G(A) then Tτ1 is spectrally disjoint from Tτ2 , and hence the
�ows Tτ1 and Tτ2 are spectrally disjoint.

Proof. The simplicity of the spectrum of T follows directly from the independence

of the set K̂ ⊂ R. The second assertion follows from the fact that

(Rτ )∗(ρ̃) ≡ ρ̃ for every τ ∈ G(A) ∪ (−G(A)).

If |τ1/τ2| /∈ G(A) then the measures (Rτ1)∗(ρ̃) ∗ δt and (Rτ2)∗(ρ̃) are orthogonal for
every t ∈ R. It follows that (χτ1)∗(ρ̃) ∗ δc ⊥ (χτ2)∗(ρ̃) for every c ∈ T. The measure
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(χτi)∗(ρ̃) is the spectral measure of Tτi on its Gaussian space for i = 1, 2. Let

Di ⊂ K̂ be the set of numbers x ∈ K̂ for which there exist n0, n1, . . . , nr, n ∈ Z\{0}
and a collection of distinct elements x1, . . . , xr of K̂ di�erent from x such that

n0x+ n1x1 + . . .+ nsxs = n/τi.

Since K̂ is independent, the set Di is at most countable. By the de�nition of Di, the

set χτi
(K̂ \Di) ⊂ T is an independent Borel set. Moreover, since ρ̃ is concentrated

on K̂∪(−K̂) and it is continuous, the measure (χτi
)∗(ρ̃) is concentrated on χτi

(K̂ \
Di) ∪ χτi

(K̂ \Di). An application of Proposition 32 for (χτ1)∗(ρ̃) and (χτ2)∗(ρ̃)
gives the mutual singularity of (χτ1)∗(ρ̃)(m) and (χτ2)∗(ρ̃)(n) for all m,n ∈ N. It
follows that exp′(χτ1)∗(ρ̃) ⊥ exp′(χτ2)∗(ρ̃), and hence Tτ1 and Tτ2 are spectrally
disjoint. �

Remark 5. In this case of A = ∅, Theorem 35 yields an example of weakly mixing
�ow T with simple spectrum which has no spectral self-similarity, i.e. SI(T ) =
{−1, 1} and additionally Ts is spectrally disjoint from T for all s 6= ±1.

10. Open problems

Problem 1. Is I(T ) a Borel group for any measurable �ow T ?
Problem 2. Find a �ow T for which the group I(T ) is not countable and has zero
Lebesgue measure. Give a classi�cation of multiplicative subgroups of R that can
be obtained as I(T ).

The same type of questions can be formulated for smooth system. The existence
of smooth �ow which is not self-similar was announced by J. Kuªaga. She uses
a smooth �ow on the closed orientable two dimensional surface with genus two
isomorphic to the special �ow built over an irrational rotation on the circle and
under a roof function which is of symmetric logarithmic type.

Problem 3. Solve the self-similarity problem for roof functions of non-symmetric
logarithmic type.

In the non-symmetric logarithmic case the special �ow built over any irrational
rotation is mixing (see [18]), and hence the method of proving the absence of self-
similarity presented in Section 6 falls.

Problem 4. Find a self-similar smooth �ow for which I(T ) has zero Lebesgue mea-
sure.

In [22] de la Rue and de Sam Lazaro have shown that a typical automorphisms
of a standard Borel space is embeddable in a measurable �ow; i.e. a typical auto-
morphism T is isomorphic to the time-1 map T1 of a measurable �ow (Tt)t∈R.

Problem 5. Can we embed a typical automorphism in a self-similar �ow?

Let Flow(X,B, µ) stand for the set of measure-preserving �ows of a standard
probability space (X,B, µ). Let {An : n ∈ N} a countable family in B which is
dense in B for the (pseudo�)metrics dµ(A,B) = µ(A4B). Let us consider the
metric d on the group Aut(X,B, µ) of measure preserving automorphisms de�ned
by

d(T, S) =
∞∑
n=1

1
2n

(µ(TAn4SAn) + µ(T−1An4S−1An)).
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The group Aut(X,B, µ) endowed with d is a topological Polish group. Then the
distance dF on Flow(X,B, µ) is given by

dF ((St)t∈R, (Tt)t∈R) = sup
0≤t≤1

d(St, Tt).

Problem 6. Is the absence of self-similarity generic in the set of measure preserving
�ows Flow(X,B, µ)?

Appendix A. Absence of partial rigidity

Let T = Tλ,π : [0, 1) → [0, 1) be an ergodic m-interval exchange transformation
and f : [0, 1]→ R be a piecewise absolutely continuous positive function such that
f ≥ c > 0. Let 0 < β1 < . . . < βk < 1 stand for all discontinuities of f : [0, 1)→ R.
Let Ξj stand for the set of all discontinuities of T j , j > 0. Then #Ξj = (m − 1)j
and the set of all discontinuities of f (j) is a subset of

j−1⋃
l=0

T−l{β1, . . . , βk} ∪ Ξj−1.

It follows that f (j) has at most kj + (m− 1)(j − 1) ≤ (k+m)j − 1 discontinuities.

Theorem 36. If S(f) 6= 0 then the special �ow T f is not partially rigid.

Proof. Let C := maxx∈[0,1] f(x). Then 0 < c ≤ f(x) ≤ C for every x ∈ [0, 1]. Let
µ stand for Lebesgue measure on [0, 1]. Assume, contrary to our claim, that (tn),
tn → +∞, is a partial rigidity time for T f . By Lemma 7.1 in [10], there exists
0 < u ≤ 1 such that for every 0 < ε < c we have

(19) lim inf
n→∞

µ{x ∈ [0, 1) : ∃j∈N |f (j)(x)− tn| < ε} ≥ u.

Without loss of generality we can assume that S := S(f) > 0, in the case S < 0
the proof goes along the same lines. Fix

(20) 0 < ε < min
(

Sc2

32(k +m)C2(1 + Var f) + Sc2
u,
c

4

)
.

Since f ′ ∈ L1([0, 1), µ), there exists 0 < δ < ε such that µ(A) < δ implies∫
A
|f ′| dµ < ε. Moreover, by the ergodicity of T (and recalling that S =

∫ 1

0
f ′ dµ)

there exist Aε ⊂ [0, 1) with µ(Aε) > 1− δ and m0 ∈ N such that

(21)
S

2
≤ 1
m
f ′(m)(x) for all m ≥ m0 and x ∈ Aε.

Then take any n ∈ N such that tn/(2C) ≥ m0 and tn > 2ε. Now let us consider
the set Jn,ε of all natural j such that |f (j)(x) − tn| < ε for some x ∈ [0, 1). Then
for such j and x we have

tn + ε > f (j)(x) ≥ cj and tn − ε < f (j)(x) ≤ Cj,
whence

(22) tn/(2C) ≤ (tn − ε)/C < j < (tn + ε)/c ≤ 2tn/c

for any j ∈ Jn,ε; in particular, j ∈ Jn,ε implies j ≥ m0.

Let j(n) = maxJn,ε. The points of discontinuity of f (j(n)) divide [0, 1) into

subintervals I
(n)
1 , . . . , I

(n)
un . By the remark preceding the theorem,

(23) un ≤ (k +m)j(n).
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Notice that for every j ∈ Jn,ε the function f (j) is absolutely continuous in the

interior of any interval I
(n)
i , i = 1, . . . , un. Moreover, since (T i)′(x) = 1 for all

points x of continuity of T i, (f (j))′(x) = (f ′)(j)(x) for almost all x ∈ [0, 1) and all
natural j.

Fix 1 ≤ i ≤ un. For every j ∈ Jn,ε let

I
(n)
i,j = {x ∈ I(n)

i : |f (j)(x)− tn| < ε}.

Of course, I
(n)
i,j may be empty. Note that I

(n)
i,j , j ∈ Jn,ε are pairwise disjoint. Indeed

suppose that x ∈ I(n)
i,j and y ∈ I(n)

i,j′ , where j 6= j′. In view of (20), ε < c/4, and
hence∫ y

x

|f ′|(j
(n)) dµ ≥

∣∣∣∣∫ y

x

f ′(j) dµ

∣∣∣∣ =
∣∣∣∣∫ y

x

(f (j))′ dµ
∣∣∣∣ = |f (j)(y)− f (j)(x)|

≥ |f (j)(y)− f (j′)(y)| − |f (j′)(y)− tn| − |f (j)(x)− tn|

≥ |f (j−j′)(T j
′
y)| − 2ε ≥ c− 2ε ≥ c

2
.

It follows that

(24)

∫ y

x

|f ′|(j
(n)) dµ ≥ c

2
whenever x ∈ I(n)

i,j , y ∈ I
(n)
i,j′ and j 6= j′,

which excludes the possibility that x and y are arbitrarily close, and therefore

I
(n)
i,j ∩ I

(n)
i,j′ = ∅.

Furthermore, if x, y ∈ I(n)
i,j then∣∣∣∣∫ y

x

f ′(j) dµ

∣∣∣∣ =
∣∣∣∣∫ y

x

(f (j))′ dµ
∣∣∣∣ = |f (j)(y)− f (j)(x)| ≤ 2ε,

therefore

(25)

∣∣∣∣∫ y

x

f ′(j) dµ

∣∣∣∣ ≤ 2ε wherever x, y ∈ I(n)
i,j .

Let us consider a sequence of points

inf I(n)
i ≤ ai1 ≤ bi1 ≤ ai2 ≤ bi2 ≤ . . . ≤ aisi

≤ bisi
≤ sup I(n)

i

and a sequence (jl)sl=1 of distinct numbers from Jn,ε determined by the following
inductive procedure:

ai1 = inf

 ⋃
j∈Jn,ε

I
(n)
i,j

 = inf I(n)
i,j1
, bi1 = sup I(n)

i,j1
,

ail+1 = inf

 ⋃
j∈Jn,ε

I
(n)
i,j ∩ (bil, 1)

 = inf I(n)
i,jl+1

∩ (bil, 1), bil+1 = sup I(n)
i,jl+1

,

if
⋃
j∈Jn,ε

I
(n)
i,j ∩ (bil, 1) = ∅, the procedure stops. Since

⋃
j∈Jn,ε

I
(n)
i,j ∩ (bil, a

i
l+1) = ∅

for 1 ≤ l < si, we have ⋃
j∈Jn,ε

I
(n)
i,j ⊂

si⋃
l=1

[ail, b
i
l].
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From (25) and (22) for every 1 ≤ l ≤ si we have∣∣∣∣∣
∫ bi

l

ai
l

f ′(jl)

jl
dµ

∣∣∣∣∣ ≤ 2ε
jl
≤ 4Cε

tn
.

Moreover, by (24), ∫ ai
l+1

bi
l

|f ′|(j
(n)) dµ ≥ c

2
for all 1 ≤ l < si.

It follows that∣∣∣∣∣
si∑
l=1

∫ bi
l

ai
l

f ′(jl)

jl
dµ

∣∣∣∣∣ ≤ si
4Cε
tn

=
4Cε
tn

+
8Cε
ctn

(si − 1)
c

2

≤ 4Cε
tn

+
8Cε
ctn

si−1∑
l=1

∫ ai
l+1

bi
l

|f ′|(j
(n)) dµ

≤ 4Cε
tn

+
8Cε
ctn

∫
I
(n)
i

|f ′|(j
(n)) dµ.

(26)

Since µ(Acε) < δ, by (22), we have∣∣∣∣∣
un∑
i=1

si∑
l=1

∫
[ai

l ,b
i
l ]∩Ac

ε

f ′(jl)

jl
dµ

∣∣∣∣∣
≤ 2C

tn

un∑
i=1

si∑
l=1

∫
[ai

l ,b
i
l ]∩Ac

ε

|f ′|(j
(n)) dµ

≤ 2C
tn

∫
Ac

ε

|f ′|(j
(n)) dµ ≤ 2C

tn
j(n)ε ≤ 4C

c
ε.

(27)

As

Bn := {x ∈ [0, 1) : ∃j∈N |f (j)(x)− tn| < ε} =
un⋃
i=1

⋃
j∈Jn,ε

I
(n)
i,j ⊂

un⋃
i=1

si⋃
l=1

[ail, b
i
l],

by (21), (26), (27), (23) and (22) we have

S

2
µ(Bn ∩Aε) ≤

un∑
i=1

si∑
l=1

∫
[ai

l ,b
i
l ]∩Aε

f ′(jl)

jl
dµ

≤

∣∣∣∣∣
un∑
i=1

si∑
l=1

∫ bi
l

ai
l

f ′(jl)

jl
dµ

∣∣∣∣∣+

∣∣∣∣∣
un∑
i=1

si∑
l=1

∫
[ai

l ,b
i
l ]∩Ac

ε

f ′(jl)

jl
dµ

∣∣∣∣∣
≤ un

4Cε
tn

+
8Cε
tnc

∫
[0,1)

|f ′|(j
(n)) dµ+

4C
c
ε

≤ 4(k +m)j(n)Cε

tn
+

4Cε
c

+
8Cεj(n)

tnc
‖f ′‖L1

≤ 8(k +m)Cε
c

+
4Cε
c

+
16Cε
c2
‖f ′‖L1

≤ 16(k +m)C2

c2
(1 + Var f)ε.
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Finally, from (20) we obtain

µ(Bn) ≤ µ(Bn ∩Aε) + µ(Acε) <
32(k +m)C2

Sc2
(1 + Var f)ε+ ε < u,

contrary to (19). �

Appendix B. Disjointness of special flows under piecewise absolutely

continuous roof functions

Let (X, d) and (Y, d̄) be σ�compact metric spaces and let B and C be the σ�
algebras of Borel subsets of X and Y respectively. Let µ and ν be Borel probability
measures on (X, d) and (Y, d̄). Suppose that T = (Tt)t∈R and S = (St)t∈R are
weakly mixing �ows on (X,B, µ) and (Y, C, ν) respectively. Let P ⊂ R \ {0} be a
�nite subset and t0 ∈ R \ {0}.

Suppose that the pair (T ,S) veri�es the following R(t0, P ) (t0 ∈ R) property: for
every ε > 0 there exist κ = κ(ε) > 0 and X(ε) ∈ B, Y (ε) ∈ C with µ(X(ε)c) < ε,
ν(Y (ε)c) < ε such that for every x ∈ X(ε), y ∈ Y (ε) and N ∈ N there are
L = L(x, y) ≥ N , M = M(x, y) > 0, Q = Q(x, y) ≥ 0 such that L/(M + Q) ≥ κ
and there exists p = p(x, y) ∈ P such that

1− ε <
1
L

#{n ∈ Z ∩ [M,M + L] :

d(T(Q+n)t0(x), Tnt0(x)) < ε, d̄(S(Q+n)t0(y), Snt0+p(y)) < ε}.

Remark 6. Suppose that T : (X,B, µ) → (X,B, µ) is an ergodic automorphism.
Fix A ∈ B. Notice that if∣∣∣∣∣ 1

M

M−1∑
n=0

χA(Tnx)− µ(A)

∣∣∣∣∣ < η1 and

∣∣∣∣∣ 1
M + L+ 1

M+L∑
n=0

χA(Tnx)− µ(A)

∣∣∣∣∣ < η2

then ∣∣∣∣∣ 1L
M+L∑
n=M

χA(Tnx)− µ(A)

∣∣∣∣∣ < η1
M

L
+ η2

(
2 +

M

L

)
.

It follows that for every ε > 0, δ > 0 and κ > 0 there exist N = N(ε, δ, κ) ∈ N and
X(ε, δ, κ) ∈ B with µ(X(ε, δ, κ)) > 1− δ such that for every M,L ∈ N with L ≥ N
and L/M ≥ κ we have∣∣∣∣∣ 1L

M+L∑
n=M

χA(Tnx)− µ(A)

∣∣∣∣∣ < ε for all x ∈ X(ε, δ, κ).

Theorem 37. Suppose that (T ,S) has the R(s, P )�property for uncountably many
s ∈ R. Then T is disjoint from S.

Proof. Suppose, contrary to our claim, that there exists ρ ∈ Je(T ,S) such that
ρ 6= µ⊗ ν. Since the �ow (Tt × St)t∈R is ergodic on (X × Y, ρ), we can �nd t0 6= 0
such that the automorphism Tt0 × St0 : (X × Y, ρ)→ (X × Y, ρ) is ergodic and the
pair (T ,S) has the R(t0, P )�property. To simplify notation we assume that t0 = 1.

Since the ergodicity of Sp implies disjointness of Sp from the identity, for every
p ∈ P there exist closed subsets Ap ⊂ X, Bp ⊂ Y such that

ρ(Ap × S−pBp) 6= ρ(Ap ×Bp).



32 K. FR�CZEK AND M. LEMA�CZYK

Let

(28) 0 < ε := min{|ρ(Ap × S−pBp)− ρ(Ap ×Bp)| : p ∈ P}.
Next choose 0 < ε1 < ε/8 such that µ(Aε1p \Ap) < ε/4, ν(Bε1p \Bp) < ε/4 for p ∈ P ,
where Aε1p = {z ∈ X : d(z,A) < ε1} and Bε1p = {z̄ ∈ Y : d̄(z̄, B) < ε1}. Then

|ρ(Ap ×Bp)− ρ(Aε1p ×Bε1p )| < ε/2.

Indeed,

|ρ(Ap ×Bp)− ρ(Aε1p ×Bε1p )| = ρ(Aε1p ×Bε1p \Ap ×Bp)
= ρ(Aε1p ×Bε1p \Aε1p ×Bp) + ρ(Aε1p ×Bp \Ap ×Bp)
≤ ρ(X × (Bε1p \Bp)) + ρ((Aε1p \Ap)× Y )

= ν(Bε1p \Bp) + µ(Aε1p \Ap) < ε/2

and similarly

(29) |ρ(Ap × S−pBp)− ρ(Aε1p × S−p(Bε1p ))| < ε/2

for any p ∈ P .
Let κ := κ(ε1)(> 0). Since T1 × S1 on (X × Y,B ⊗ C, ρ) is an ergodic automor-

phism, by Remark 6, there exist a measurable set U ⊂ X×Y with ρ(U) > 3/4 and
N ∈ N such that if (x, y) ∈ U , p ∈ P , l ≥ N and l/m ≥ κ then

(30)

∣∣∣∣∣1l
m+l∑
k=m

χAp×Bp
(Tkx, Sky)− ρ(Ap ×Bp)

∣∣∣∣∣ < ε

8
,

(31)

∣∣∣∣∣1l
m+l∑
k=m

χAε1
p ×S−p(B

ε1
p )(Tkx, Sky)− ρ(Aε1p × S−p(Bε1p ))

∣∣∣∣∣ < ε

8

and similar inequalities hold for Aε1p ×Bε1p and Ap × S−pBp.
By the property R(1, P ) applied for ε1 and N , for every x ∈ X(ε1) and y ∈

Y (ε1) there exist L = L(x, y) ≥ N , M = M(x, y) > 0, Q = Q(x, y) ≥ 0 with
L/(M + Q) ≥ κ and p = p(x, y) ∈ P such that (#Kp)/L > 1 − ε1, where Kp is
equal to

{n ∈ Z ∩ [M,M + L] : d(TQ+n(x), Tn(x)) < ε1, d̄(SQ+n(y), Sn+p(y)) < ε1}.
Since µ(X(ε1)c) < ε1, ν(Y (ε1)c) < ε1 and ε1 < ε/8 ≤ 1/8,

ρ(X(ε1)× Y (ε1)) ≥ 1− ρ((X(ε1)c)× Y )− ρ(X × (Y (ε1)c))
= 1− µ(X(ε1)c)− ν(Y (ε1)c) > 1− 2ε1 ≥ 3/4.

Thus we can take (x, y) ∈ U ∩ (X(ε1)×Y (ε1)). If k ∈ Kp then TQ+kx ∈ Ap implies
Tkx ∈ Aε1p and SQ+ky ∈ Bp implies Sk+py ∈ Bε1p . Hence

(32)

1
L

Q+M+L∑
k=Q+M

χAp×Bp
(Tkx, Sky) =

1
L

M+L∑
k=M

χAp×Bp
(TQ+kx, SQ+ky)

≤ #(Z ∩ [M,M + L] \Kp)
L

+
1
L

∑
k∈Kp

χAp×Bp
(TQ+kx, SQ+ky)

≤ ε/8 +
1
L

M+L∑
k=M

χAε1
p ×B

ε1
p

(Tkx, Sk+py).
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Now from (30) (applied to m = M +Q and l = L), (32), (31) (applied to m = M
and l = L) and (29) it follows that

ρ(Ap ×Bp) ≤ 1
L

Q+M+L∑
k=Q+M

χAp×Bp
(Tkx, Sky) + ε/8

≤ ε/4 +
1
L

M+L∑
k=M

χAε1
p ×S−p(B

ε1
p )(Tkx, Sky)

< ε/2 + ρ(Aε1p × S−p(Bε1p )) ≤ ε+ ρ(Ap × S−pBp).

Applying similar arguments we get

ρ(Ap × S−pBp) < ε+ ρ(Ap ×Bp).

Consequently,

|ρ(Ap ×Bp)− ρ(Ap × S−pBp)| < ε,

contrary to (28). �

While dealing with special �ows over irrational rotations on Tf we will always
consider the induced metric from the metric de�ned on T× R by d((x, s), (y, t)) =
‖x− y‖+ |s− t|.

Lemma 38. Let P ⊂ R \ {0} be a nonempty �nite subset and let A > 0. Let Tx =
x+ α be an ergodic rotation on the circle and let f, g : T→ R be positive Riemann
integrable functions which are bounded away from zero and

∫
f(x) dx =

∫
g(x) dx.

Suppose that the special �ows T f and T g are weakly mixing. Assume that for every
ε > 0 there exists κ̄ = κ̄(ε) > 0 such that for every x, y ∈ T and N ∈ N there are
natural numbers L̄ = L̄(x, y) ≥ N , M̄ = M̄(x, y) > 0, Q̄ = Q̄(x, y) ≥ 0 such that
L̄/(M̄ + Q̄) ≥ κ̄, ‖Q̄α‖ < ε and there exist p = p(x, y) ∈ P and a = a(x, y) ∈
[−A,A] such that

|f (Q̄)(x)− f (Q̄)(Tnx)− a| < ε and |f (Q̄)(x)− g(Q̄)(Tny)− a− p| < ε

for all M̄ ≤ n ≤ M̄ + L̄. Then the pair of special �ows (T f , T g) has the R(γ, P )�
property for every γ > 0.

Proof. Let c, C and K be positive numbers such that 0 < c ≤ f(x), g(x) ≤ C for
every x ∈ T and P ⊂ [−K,K]. Let µ stand for Lebesgue measure on T. Let γ be an
arbitrary positive number. We will show that (T f , T g) has the R(γ, P )�property.

Fix 0 < ε < c
4(1+C+K) . Put ε1 = ε/8. Take κ̄ = κ̄(ε1) and let κ := c/2−2ε

C+A+K κ̄.

Let

X̄(ε) :=
{

(x, s) ∈ Tf :
ε

8
< s < f(x)− ε

8

}
,

Ȳ (ε) :=
{

(x, s) ∈ Tg :
ε

8
< s < g(x)− ε

8

}
.

Since µf (X̄(ε)c) = µg(Ȳ (ε)c) = ε/4 and T fγ and T gγ are ergodic, by Remark 6

(applied to ε/4 and A = X̄(ε)c and Ȳ (ε)c), there exists N(ε) ∈ N and Borel sets
X(ε) ⊂ Tf , Y (ε) ⊂ Tg with µf (X(ε)c) < ε and µg(Y (ε)c) < ε such that if l ≥ N(ε)
and l/m ≥ κ then

(33)
1
l
#{m ≤ k < m+ l : T fkγ(x, s) /∈ X̄(ε)} < ε

2
for all (x, s) ∈ X(ε)
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and

(34)
1
l
#{m ≤ k < m+ l : T gkγ(y, s′) /∈ Ȳ (ε)} < ε

2
for all (y, s′) ∈ Y (ε).

Moreover, since T is uniquely ergodic and
∫
f(x) dx =

∫
g(x) dx, we can assume

that

max(f (l)(x), g(l)(y))−min(f (l)(x), g(l)(y)) < εmin(κ̄, 1)l
for all l ≥ N(ε) and x, y ∈ T.

Let us consider a pair of points (x, s) ∈ X(ε), (y, s′) ∈ Y (ε) and an arbitrary
N ∈ N. By assumption, there are natural numbers M̄ = M̄(x, y), L̄ = L̄(x, y) ≥
2 max(1, γ/c) max(1/ε,N(ε), N, (C + 2K)/c) and Q̄ = Q̄(x, y) such that L̄/(M̄ +
Q̄) ≥ κ̄, ‖Q̄α‖ < ε1 and there exist p = p(x, y) ∈ P and a = a(x, y) ∈ [−A,A] such
that

|f (Q̄)(x)− f (Q̄)(Tnx)− a| < ε1 and |f (Q̄)(x)− g(Q̄)(Tny)− a− p| < ε1

for all M̄ ≤ n ≤ M̄ + L̄. Put

Q :=
f (Q̄)(x)− a

γ
, M :=

max(f (M̄)(x), g(M̄)(y)) +K

γ
,

L :=
min(f (L̄+M̄)(x), g(L̄+M̄)(y))− C −K

γ
−M.

Then

L

Q+M
=

min(f (L̄+M̄)(x), g(L̄+M̄)(y))−max(f (M̄)(x), g(M̄)(y))− C − 2K
f (Q̄)(x)− a+ max(f (M̄)(x), g(M̄)(y)) +K

≥ min(f (L̄)(T M̄x), g(L̄)(T M̄y))− εmin(κ̄, 1)(L̄+ M̄)− C − 2K
f (Q̄)(x) + max(f (M̄)(x), g(M̄)(y)) +A+K

≥ (c− ε)L̄− εκ̄M̄ − C − 2K
C(M̄ + Q̄) +A+K

≥ (c− ε)L̄− εκ̄(M̄ + Q̄)− cL̄/2
(C +A+K)(M̄ + Q̄)

≥ c/2− 2ε
C +A

κ̄ = κ.

Moreover
(35)

L ≥ (c− ε)L̄− εκ̄M̄ − C − 2K
γ

≥ (c− 2(1 + C +K)ε)L̄
γ

≥ cL̄

2γ
> max(N,N(ε)).

Since L ≥ N(ε), L/M ≥ κ, (x, s) ∈ X(ε) and (y, s′) ∈ Y (ε), by (33) and (34),

(36)
1
L

#{M ≤ k < M + L : T fkγ(x, s) /∈ X̄(ε) or T gkγ(y, s′) /∈ Ȳ (ε)} < ε.

Suppose that M ≤ k < M + L. Then kγ + s ∈ [f (M̄)(x), f (M̄+L̄)(x)), kγ + p +
s′ ∈ [g(M̄)(y), g(M̄+L̄)(y)) and there exist unique M̄ ≤ mk, nk < M̄ + L̄ such that
kγ + s ∈ [f (mk)(x), f (mk+1)(x)) and kγ + p + s′ ∈ [g(nk)(y), g(nk+1)(y)). Suppose
additionally that

k ∈ B := {M ≤ j < M + L : T fjγ(x, s) ∈ X̄(ε), T gjγ(y, s′) ∈ Ȳ (ε)}.
Then

f (mk)(x) + ε/8 < s+ kγ < f (mk+1)(x)− ε/8.
g(nk)(y) + ε/8 < s′ + p+ kγ < g(nk+1)(y)− ε/8.
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We have

s+ (Q+ k)γ = (s+ kγ) + f (Q̄)(x)− a
< f (mk+1)(x)− ε/8 + f (Q̄)(Tmk+1x) + ε1 = f (mk+Q̄+1)(x)

and

s+ (Q+ k)γ = (s+ kγ) + f (Q̄)(x)− a
> f (mk)(x) + ε/8 + f (Q̄)(Tmkx)− ε1 = f (mk+Q̄)(x)

and

s′ + (Q+ k)γ = (s′ + p+ kγ) + f (Q̄)(x)− a− p
< g(nk+1)(y)− ε/8 + g(Q̄)(Tnk+1y) + ε1 = g(nk+Q̄+1)(y)

and

s′ + (Q+ k)γ = (s′ + p+ kγ) + f (Q̄)(x)− a− p
> g(nk)(y) + ε/8 + g(Q̄)(Tnky)− ε1 = g(nk+Q̄)(y).

Thus

T fkγ(x, s) = (Tmkx, s+ kγ − f (mk)(x)),

T f(k+Q)γ(x, s) = (Tmk+Q̄x, s+ (k +Q)γ − f (mk+Q̄)(x))

and

T gkγ+p(y, s
′) = (Tnky, s′ + kγ + p− g(nk)(y)),

T g(k+Q)γ(y, s′) = (Tnk+Q̄y, s′ + (k +Q)γ − g(nk+Q̄)(y)).

Hence

d(T fkγ(x, s), T f(k+Q)γ(x, s)) = ‖Q̄α‖+ |Qγ − f (Q̄)(Tmkx)|

= ‖Q̄α‖+ |f (Q̄)(x)− f (Q̄)(Tmkx)− a| < 2ε1 < ε

and

d(T gkγ+p(y, s
′), T g(k+Q)γ(y, s′)) = ‖Q̄α‖+ |Qγ − p− g(Q̄)(Tnky)|

= ‖Q̄α‖+ |f (Q̄)(x)− g(Q̄)(Tnky)− a− p| < 2ε1 < ε

for every k ∈ B.
By (36), (#B)/L > 1− ε, and the proof complete. �

Let T : T→ T be a rotation by an irrational α with bounded partial quotients.
Let (qn)n∈N stand for the sequence of denominators of α.

Proposition 39. Let f : T → R be a piecewise absolutely continuous function.
Then there exist a �nite set Df ⊂ R and 0 < θf ≤ 1 satisfying the following
property: for every ε > 0 there exists nf (ε) ∈ N such that for every n ≥ nf (ε),
x, y ∈ T with ‖y − x‖ < 1/qn+1 and any integer interval I ⊂ [0, qn+1) ∩ Z there
exist an integer interval J ⊂ I and d ∈ Df such that #J ≥ θf#I and

|f (k)(y)− f (k)(x)− kS(f)(y − x)− d| < ε for all k ∈ J.

Proof. The proof of this proposition is contained in the proof of Theorem 6.1 in
[10]. �
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Theorem 40. Let T : T→ T be a rotation by an irrational α with bounded partial
quotients. Assume that f, g : T → R be positive piecewise absolutely continuous
functions such that

∫
f(x) dx =

∫
g(x) dx, S(f) 6= S(g) and T f , T g are weakly

mixing. Then the special �ows T f and T g are disjoint.

Proof. Put

P :=
{

(S(f)− S(g))θfθg
8

k : k ∈ Z \ {0}
}

∩{x ∈ R : |x| ≤ |S(f)− S(g)|+ sup |Df |+ sup |Dg|+ Var f + Var g + 1}

and A := 2 Var f + 1. Fix 0 < ε <
|S(f)−S(g)|θfθg

4 , N ∈ N and x, y ∈ T. Take

κ̄(ε) =
εθfθg

32(|S(f)|+ |S(g)|)
.

Choose n ≥ max(nf (ε/8), ng(ε/8)) (see Proposition 39) such that

{qnα} = ‖qnα‖ <
ε

N

θfθg
32(|S(f)|+ |S(g)|)

Starting from the interval [0, qn+1) ∩ Z and using Proposition 39 twice (�rst for
I = [0, qn+1) ∩ Z, the function f and the pair x, T qnx obtaining J and for I = J ,
the function g and the pair y, T qny) we obtain an integer interval I ⊂ [0, qn+1)∩Z
and d1 ∈ Df , d2 ∈ Dg such that

(37) #I ≥ θfθgqn+1

|f (k)(T qnx)− f (k)(x)− S(f)k‖qnα‖ − d1| < ε/8,(38)

|g(k)(T qny)− g(k)(y)− S(g)k‖qnα‖ − d2| < ε/8(39)

for all k ∈ I. Let us consider two sequences (ak)k∈I , (pk)k∈I ,

ak = −S(f)k‖qnα‖ − d1,

pk = (S(f)− S(g))(k‖qnα‖)− d2 + d1 − g(qn)(y) + f (qn)(x).
Since

f (k)(T qnx)− f (k)(x) = f (qn)(T kx)− f (qn)(x),

g(k)(T qny)− g(k)(y) = g(qn)(T ky)− g(qn)(y),
by (38) and (39), for every k ∈ I,

(40) |f (qn)(x)− f (qn)(T kx)− ak| = |f (k)(T qnx)− f (k)(x)− ak| < ε/8

and

|f (qn)(x)− g(qn)(T ky)− ak − pk| ≤ |f (qn)(x)− f (qn)(T kx)− ak|

+|g(qn)(y)− g(qn)(T ky)− (f (qn)(x)− f (qn)(T kx))

+f (qn)(x)− g(qn)(y)− pk| ≤ 3ε/8.

(41)

Moreover

|ak| ≤ |f (qn)(x)− f (qn)(T kx)− ak|+ |f (qn)(x)− f (qn)(T kx)| ≤ 2 Var f + 1,

for all k ∈ I. Furthermore

(42) |pk| ≤ |S(f)− S(g)|+ sup |Df |+ sup |Dg|+ Var f + Var g,

pk+1 − pk = (S(f)− S(g))‖qnα‖
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max(pk)k∈I −min(pk)k∈I = |S(f)− S(g)|(#I − 1)‖qnα‖
and

|S(f)− S(g)|θfθg/2 < |S(f)− S(g)|#I‖qnα‖ < |S(f)− S(g)|.
It follows that there exist an integer interval J ⊂ I with

(43)
ε

8(|S(f)|+ |S(g)|)
#I ≤ #J ≤ ε

8(|S(f)|+ |S(g)|)
#I + 1

and an element p = (S(f)−S(g))θfθg

8 m ∈ P , with m ∈ Z \ {0}, such that

(44) |pk − p| < ε/8 for all k ∈ J.
Fix k0 ∈ J and put a = ak0 . Then using (43) and the de�nition of n, for every

k ∈ J ,
|ak − a| = |S(f)||k − k0|‖qnα‖ ≤ |S(f)|#J‖qnα‖

≤ ε#I‖qnα‖/8 + |S(f)|‖qnα‖ < ε/4.
(45)

Now from (40), (45), (41), (44),

|f (qn)(x)− f (qn)(T kx)− a| ≤ |f (qn)(x)− f (qn)(T kx)− ak|+ |ak − a| < ε/2

and

|f (qn)(x)− g(qn)(T ky)− a− p|
≤ |f (qn)(x)− g(qn)(T ky)− ak − pk|+ |ak − a|+ |pk − p| < ε

for every k ∈ J .
Now let M̄, L̄ be natural numbers such that J = [M̄, M̄+L̄]∩Z. Putting Q̄ = qn,

we have

|f (Q̄)(x)− f (Q̄)(T kx)− a| < ε, |f (Q̄)(x)− g(Q̄)(T ky)− a− p| < ε

for all M̄ ≤ k ≤ M̄ + L̄. Moreover, by (43) and (37),

L̄

M̄ + Q̄
≥ #J − 1

2qn+1
≥ #J

4qn+1
≥ ε#I

32(|S(f)|+ |S(g)|)qn+1

≥ εθfθg
32(|S(f)|+ |S(g)|)

= κ̄(ε),

L̄ = #J − 1 ≥ εqn+1θfθg
16(|S(f)|+ |S(g)|)

>
ε

‖qnα‖
θfθg

32(|S(f)|+ |S(g)|)
> N.

Since the special �ow T f is weakly mixing, the automorphism T fγ is ergodic (weakly
mixing) for all γ 6= 0, and hence an application of Lemma 38 and Theorem 37
completes the proof. �
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