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ON DIFFEOMORPHISMS WITH POLYNOMIAL GROWTH
OF THE DERIVATIVE ON SURFACES

BY

KRZYSZTOF FRĄCZEK (Toruń)

Abstract. We consider zero entropy C∞-diffeomorphisms on compact connected
C∞-manifolds. We introduce the notion of polynomial growth of the derivative for such
diffeomorphisms, and study it for diffeomorphisms which additionally preserve a smooth
measure. We show that if a manifoldM admits an ergodic diffeomorphism with polynomial
growth of the derivative then there exists a smooth flow with no fixed point on M . More-
over, if dimM = 2, then necessarily M = T2 and the diffeomorphism is C∞-conjugate to
a skew product on the 2-torus.

1. Introduction. Let f : M → M be a smooth diffeomorphism of
a compact connected smooth manifold M . An important question of the
theory of smooth dynamical systems is whether asymptotic properties of
the sequence {Dfn} affect the dynamical properties of the diffeomorphism
f : M →M . There are classical results describing this phenomenon in some
special cases.

For example, suppose that f : Td → Td is a diffeomorphism of the
d-dimensional torus, homotopic to the identity. If the sequence {Dfn} is
uniformly bounded and the coordinates of the rotation vector of f are ra-
tionally independent then f is C0-conjugate to an ergodic rotation (see
[8, p. 181]). On the other hand, suppose that M is a surface (2-dimensional
case). If the sequence {Dfn} has an “exponential growth”, more precisely,
if f is an Anosov diffeomorphism then f is C0-conjugate to a hyperbolic
automorphism of the 2-torus (see [7]).

Let us first define the notion of polynomial growth of the derivative. Let
M be a k-dimensional compact connected C∞-manifold. There is a natural
collection of sets of measure zero on M . This is the collection of sets A such
that for any local chart (U,ϕ) the set ϕ(A∩U) ⊂ Rk has Lebesgue measure
zero. Let f : M → M be a C∞-diffeomorphism and let {(Ui, ϕi)}i∈I be
a C∞-atlas of M .

Definition 1. We say that the pair (f, {(Ui, ϕi)}i∈I) has β-polynomial
growth of the derivative if for every i, j ∈ I there exists a measurable function
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Aji : Ui →Mk(R) non-zero at a.e. point such that for a.e. x ∈ Ui we have

1
nβ

D(ϕj ◦ fn ◦ ϕ−1
i )(ϕi(x))→ Aji(x)

whenever n tends to infinity through values such that fn(x) ∈ Uj . We
say that the diffeomorphism f : M → M has β-polynomial growth of the
derivative if there exists an atlas {(Ui, ϕi)}i∈I for which (f, {(Ui, ϕi)}i∈I)
has such growth.

Suppose that M is the d-torus and {(Ui, ϕi)}i∈I is an atlas which comes
from the natural projection of Rd on Td. Then the notion of β-polynomial
growth of the derivative of f : Td → Td with respect to {(Ui, ϕi)} coincides
with the definition presented in [4], i.e. n−βDf

n
converges a.e. to a non-

zero function, where f : Rd → Rd is a lift of f . In [4], it is shown that
if f : T2 → T2 is an area-preserving ergodic C2-diffeomorphism with β-
polynomial growth of the derivative (in the above sense) then β = 1 and f
is algebraically conjugate (i.e. via a group automorphism) to a skew product

Tα,ϕ(x1, x2) = (x1 + α, x2 + ϕ(x1)),

where α is irrational and the topological degree d(ϕ) of ϕ is non-zero. Further
versions of this result can be found in [5] and [6].

The aim of this paper is a further study of diffeomorphisms with polyno-
mial growth of the derivative on general smooth manifolds, more precisely,
we will consider such diffeomorphisms which possess an ergodic positive
smooth invariant measure. In Section 2 we show that if a manifold M ad-
mits such a diffeomorphism then there exists a smooth flow with no fixed
point on M . In particular, the Euler characteristic of M equals 0, by the
Poincaré–Hopf Index Formula. It follows that if dimM = 2, then M is dif-
feomorphic either to the 2-torus or to the Klein bottle. In Section 3, roughly
speaking, we prove that every diffeomorphism with polynomial growth of
the derivative on the 2-torus is diffeomorphic to a skew product Tα,ϕ, where
d(ϕ) 6= 0. In particular, the matrix of the algebraic action of such a dif-
feomorphism on the 1-homology group H1(T2,Z) cannot be conjugate to
a diagonal matrix. Next we will apply this result to eliminate the Klein
bottle. More precisely, we lift diffeomorphisms with polynomial growth of
the derivative on the Klein bottle to diffeomorphisms with such growth on
the torus. However it will turn out that the matrices of the algebraic ac-
tions of such lifts on the 1-homology group are diagonal. It follows that
the two-dimensional torus is the only two-dimensional compact smooth sur-
face which admits ergodic diffeomorphisms with polynomial growth of the
derivatives.
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2. Fundamental properties. Let f : M → M be a C∞-diffeomor-
phism of a compact connected C∞-manifold M . Let µ be an f -invariant
positive probability C∞-measure on M (see [10, Ch. 5] for the definition of
positive smooth measures).

Lemma 1. Suppose that f : (M,µ) → (M,µ) is ergodic and has β-
polynomial growth of the derivative. Then there exists an atlas {(Ui, ϕ̃i)}i∈I
such that (f, {(Ui, ϕ̃i)}i∈I) has β-polynomial growth of the derivative and
Aji(x) is independent of j ∈ I for each i ∈ I and for a.e. x ∈ Ui.

Proof. Let {(Ui, ϕi)}i∈I be an atlas such that (f, {(Ui, ϕi)}i∈I) has β-
polynomial growth of the derivative. Take i, j, k ∈ I. Suppose that y ∈
Uj ∩ Uk. By the ergodicity of f , for a.e. x ∈ Ui the orbit {fnx}∞n=0 is dense
in M . Therefore for a.e. x ∈ Ui there exists an increasing sequence {nl}∞l=1
of natural numbers such that

fnlx ∈ Uj ∩ Uk and fnlx→ y.

Since
1

nβl
D(ϕj ◦ fnl ◦ ϕ−1

i )(ϕi(x))

= D(ϕj ◦ ϕ−1
k )(ϕk(fnlx)) · 1

nβl
D(ϕk ◦ fnl ◦ ϕ−1

i )(ϕi(x)),

letting l→∞ we obtain

Aji(x) = D(ϕj ◦ ϕ−1
k )(ϕk(y)) ·Aki(x)(1)

for every y ∈ Uj ∩ Uk and for a.e. x ∈ Ui.
Fix j0 ∈ I. Since M is connected, for every j ∈ I we can choose a

sequence {Ujs}ms=1 of sets and a sequence {ys}ms=1 of points such that ys ∈
Ujs−1 ∩ Ujs for s = 1, . . . ,m, where jm = j. Let ϕ̃j : Uj → Rk be defined by

ϕ̃j(x) := Bj ϕj(x)

= D(ϕj0 ◦ ϕ−1
j1

)(ϕj1(y1)) · . . . ·D(ϕjm−1 ◦ ϕ−1
jm

)(ϕjm(ym))ϕj(x).

Clearly, {(Ui, ϕ̃i)}i∈I is a C∞-atlas on M . Take i, j ∈ I. Then for a.e. x ∈ Ui
we have
1
nβ

D(ϕ̃j ◦ fn ◦ ϕ̃−1
i )(ϕ̃i(x))

= Bj ·
1
nβ

D(ϕj ◦ fn ◦ ϕ−1
i )(ϕi(x)) ·B−1

i

→ D(ϕj0 ◦ ϕ−1
j1

)(ϕj1(y1)) · . . . ·D(ϕjm−1 ◦ ϕ−1
jm

)(ϕjm(ym)) ·Ajmi(x) ·B−1
i

= Aj0i(x) ·B−1
i ,

whenever n→∞ with fnx ∈ Uj , by (1), and the proof is complete.
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By the above lemma, we can assume that for every i ∈ I there exists
Ai : Ui → Rk such that

1
nβ

D(ϕj ◦ fn ◦ ϕ−1
i )(ϕi(x))→ Ai(x)

whenever n→∞ with fnx ∈ Uj .
Lemma 2. For every i, j, k ∈ I and for any natural n we have

Ai(x) = D(ϕk ◦ fn ◦ ϕ−1
j )(ϕj(y)) ·Ai(x)

for any y ∈ Uj ∩ f−nUk and for a.e. x ∈ Ui.
Proof. Take y ∈ Uj ∩ f−nUk. Since for a.e. x ∈ Ui the orbit {fnx}∞n=0 is

dense in M (by the ergodicity of f), we can choose an increasing sequence
{nl}∞l=1 of natural numbers such that

fnlx ∈ Uj ∩ f−nUk and fnlx→ y.

Since
1

nβl
D(ϕk ◦ fn+nl ◦ ϕ−1

i )(ϕi(x))

= D(ϕk ◦ fn ◦ ϕ−1
j )(ϕj(fnlx)) · 1

nβl
D(ϕj ◦ fnl ◦ ϕ−1

i )(ϕi(x)),

letting l→∞ we obtain the assertion.

Theorem 3. Suppose that a C∞-diffeomorphism f : (M,µ) → (M,µ)
is ergodic and has β-polynomial growth of the derivative. Then there exists
a C∞-flow ψt on M such that

• f ◦ ψt = ψt ◦ f for any real t,
• ψt has no fixed point.

Proof. Fix i ∈ I. By Lemma 2, there exists x ∈ Ui such that

Ai(x) 6= 0 and Ai(x) = D(ϕk ◦ fn ◦ ϕ−1
j )(ϕj(y)) ·Ai(x)

whenever y ∈ Uj ∩ f−nUk. Let a ∈ Rk be a non-zero column of Ai(x). Then

a = D(ϕk ◦ fn ◦ ϕ−1
j )(ϕj(y))a(2)

whenever y ∈ Uj ∩ f−nUk. Consider the C∞-vector field X : M → TM
defined by

X(x) := D(ϕ−1
j )(ϕj(x))a

whenever x ∈ Uj . Clearly, X(x) does not depend on the choice of the chart
(Uj , ϕj), by (2). Moreover, X(x) 6= 0 for all x ∈ M . Let ψt stand for the
associated flow on M , i.e.

d

dt
ψt(x) = X(ψtx).
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Suppose that x ∈ Uj and choose ε > 0 such that ψtx ∈ Uj for any t ∈ (−ε, ε).
Then

d

dt
ϕj ◦ ψt(x) = D(ϕj)(ψt(x)) · d

dt
ψt(x)

= D(ϕj)(ψt(x)) ·X(ψt(x))

= D(ϕj)(ψt(x)) ·D(ϕ−1
j )(ϕj(ψtx))a = a

whenever t ∈ (−ε, ε). Now suppose that x ∈ Uj ∩ f−1Uk and choose 0 <
ε′ ≤ ε such that f ◦ ψt(x), ψt ◦ f(x) ∈ Uk for any t ∈ (−ε′, ε′). Then

d

dt
(ϕk ◦ f ◦ ψt(x)− ϕk ◦ ψt ◦ f(x))

= D(ϕk ◦ f ◦ ϕ−1
j )(ϕj(ψtx)) · d

dt
ϕj ◦ ψt(x)− d

dt
ϕk ◦ ψt(fx)

= D(ϕk ◦ f ◦ ϕ−1
j )(ϕj(ψtx))a− a = 0

for all t ∈ (−ε′, ε′), by (2). Consequently, f ◦ ψt(x) = ψt ◦ f(x) for all
t ∈ (−ε′, ε′). Since M is compact, we conclude that f ◦ ψt = ψt ◦ f for all
real t.

Corollary 4. Let M be a connected compact C∞-manifold. Suppose
that there exists an ergodic positive C∞-measure-preserving C∞-diffeomor-
phism with polynomial growth of the derivative on M . Then the Euler char-
acteristic χ(M) equals zero.

Let T : (X,B, µ) → (X,B, µ) be a measure-preserving automorphism
of standard Borel space. We will denote by IT (µ) the σ-algebra of B-
measurable T -invariant sets. Each measurable function f : X → R de-
termines a cocycle over the automorphism T given by

f (n)(x) =





f(x) + f(Tx) + . . .+ f(T n−1x) for n > 0,

0 for n = 0,

−(f(Tnx) + f(Tn+1x) + . . .+ f(T−1x)) for n < 0.

Denote by Tf : (X × R, µ⊗ λR)→ (X × R, µ⊗ λR) the skew product

Tf (x, y) = (Tx, y + f(x)).

Then Tnf (x, y) = (Tx, y + f (n)(x)) for any integer n.

Remark 1. Suppose that a C∞-diffeomorphism f : M → M preserves
a positive probability C∞-measure µ on M . Assume that a C∞-diffeomor-
phism g : M →M commutes with f . It is easy to check that if the σ-algebra
If (µ) is finite, then g preserves µ as well.

3. 2-dimensional case. In this section we study the case where M is a
surface. Let f : M →M be a C∞-diffeomorphism and let µ be an f -invariant
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positive probability C∞-measure on M . Suppose that f is ergodic and has
polynomial growth of the derivative. By Corollary 4, the Euler characteristic
of M must be zero. Therefore M is C∞-diffeomorphic either to the torus or
to the Klein bottle. Here is the main result of this paper.

Theorem 5. Let f : M → M be a C∞-diffeomorphism of a connected
compact C∞-surface. Suppose that f has polynomial growth of the derivative
and possesses an invariant ergodic positive probability C∞-measure on M .
Then f is C∞-conjugate to a skew product of the form

T2 3 (x1, x2) 7→ (x1 + α, x2 + β(x1)) ∈ T2.

Before passing to the proof of the theorem let us consider the case where
M is the 2-torus T2 = R2/Z2. By λT2 we will denote the Lebesgue measure
on T2. We will identify functions on T2 with Z2-periodic (i.e. 1-periodic in
each coordinate) functions on R2. Let f : T2 → T2 be a smooth diffeomor-
phism. We will identify f with its lift, i.e. with a diffeomorphism f : R2 → R2

such that
f(x1 + 1, x2) = f(x1, x2) + (a11, a21),

f(x1, x2 + 1) = f(x1, x2) + (a12, a22)

for every (x1, x2) ∈ R2, where [aij ]i,j=1,2 ∈ GL2(Z). Then the induced auto-
morphism of the 1-homology group

f∗1 : H1(T2,Z)→ H1(T2,Z)

is determined by the matrix [aij ]i,j=1,2. Given α ∈ T = R/Z and β : T→ T
let Tα,β : T2 → T2 stand for the skew product

Tα,β(x1, x2) = (x1 + α, x2 + β(x1)).

Lemma 6. Let f : (T2, µ)→ (T2, µ) be a C∞-diffeomorphism such that

• f has polynomial growth of the derivative,
• the σ-algebra If (µ) is finite,
• there exists on T2 a C∞-flow ψt which commutes with f and has no

fixed point.

Then f is C∞-conjugate to a skew product Tα,β : T2 → T2, where α ∈ T is
irrational and β : T→ T is a C∞-mapping with non-zero topological degree.

Proof. The proof starts with the observation that we only need to prove
the lemma in the case where µ = λT2 . Indeed, by Theorem 1 in [11], there
exists a C∞-diffeomorphism % : T2 → T2 such that %∗µ = λT2 . Then the
diffeomorphism % ◦ f ◦ %−1 : T2 → T2 preserves the Lebesgue measure and
satisfies the assumption of the lemma.

Therefore we can suppose that µ = λT2 . By Remark 1, the flow ψt

preserves the Lebesgue measure as well. It follows that ψt is a Hamiltonian
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flow on T2 with no fixed point, i.e. there exists a C∞-function H : R2 → R
such that DH is Z2-periodic, non-zero at each point and

d

dt
ψt(x) =

[
Hx2(ψt(x))

−Hx1(ψt(x))

]
.

Put

d :=
{ �

T2 Hx1(x) dx/
�
T2 Hx2(x) dx if

�
T2 Hx2(x) dx 6= 0,

∞ otherwise.

First suppose that d is irrational. Then ψt is C∞-conjugate to a spe-
cial flow constructed over the rotation by an irrational number a and under
a positive C∞-function b : T → R with

�
T b(x) dx = 1 (see for instance

[1, Ch. 16]), i.e. there exists an area-preserving C∞-diffeomorphism % :
R2 → R2 and a matrix N ∈ GL2(Z) such that

ψt ◦ % = % ◦ σt,
where σt(x1, x2) = (x1, x2 + ct), c > 0, and

%(x1 +m1 +m2a, x2 − b(m1)(x1)) = %(x1, x2) + (m1,m2)N

for all (m1,m2) ∈ Z2. Let Ta,−b : T × R → T × R stand for the skew
product Ta,−b(x1, x2) = (x1 + a, x2 − b(x1)). Consider the quotient space
Ma,b = T × R/∼, where the relation ∼ is defined by (x1, x2) ∼ (y1, y2) iff
(x1, x2) = T ka,−b(y1, y2) for an integer k. Then the quotient flow σta,b of the
action σt by the relation ∼ is the special flow constructed over the rotation
by a and under the function b. Moreover, % : Ma,b → T2 conjugates the flows
σta,b and ψt. Let f̂ : Ma,b →Ma,b be given by f̂ = %−1 ◦f ◦%. As f̂ : R2 → R2

commutes with the flow σt we have

f̂(x1, x2) = f̂ ◦ σx2/c(x1, 0) = σx2/c ◦ f̂(x1, 0) = (f̂1(x1, 0), x2 + f̂2(x1, 0)).

Since f̂ : R2 → R2 preserves area, ∂
∂x1

f̂1(x1, 0) = detDf̂ = ε = ±1. Conse-
quently,

f̂(x1, x2) = (εx1 + α, x2 + β(x1)),

where β(x) = f̂2(x, 0). Since f̂ is a diffeomorphism of Ma,b, there exist
m1,m2 ∈ Z such that

(εx1 + ε+ α, x2 + β(x1 + 1))

= f̂(x1 + 1, x2) = Tm2
a,−bf̂(x1, x2) + (m1, 0)

= (εx1 + α+m1 +m2a, x2 + β(x1)− b(m2)(εx1 + α)).

It follows that m1 = ε, m2 = 0, hence that β : T→ R. Moreover, there exist
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n1, n2 ∈ Z such that

(εx1 + εa+ α, x2 − b(x1) + β(x1 + a))

= f̂ ◦ Ta,−b(x1, x2) = Tn2
a,−bf̂(x1, x2) + (n1, 0)

= (εx1 + α+ n1 + n2a, x2 + β(x1)− b(n2)(εx1 + α)).

It follows that n1 = 0, n2 = ε, hence that β(x) − b(ε)(εx + α) = −b(x) +
β(x+ a). Suppose that ε = −1. Then

−2 = �
T

(−b(−x+ α− a)− b(x)) dx = �
T

(β(x)− β(x+ a)) dx = 0.

Therefore
f̂(x1, x2) = (x1 + α, x2 + β(x1))

and the skew products f̂ and Ta,−b commute. By Lemma 9 (see Appendix),
f : T2 → T2 is tangentially non-transient, which contradicts the fact that
f has polynomial growth of the derivative. Consequently, d must be either
rational or infinite. Then

Df(x)
[

Hx2(x)

−Hx1(x)

]
=

d

dt
f ◦ ψt(x)

∣∣∣∣
t=0

=
d

dt
ψt ◦ f(x)

∣∣∣∣
t=0

=
[

Hx2(fx)

−Hx1(fx)

]
.

It follows that
DH(fx) ·Df(x) = εDH(x),

where ε = detDf = ±1, and finally that

H ◦ f(x) = εH(x) + α.

Since DH is Z2-periodic, we can represent H as

H(x1, x2) = H̃(x1, x2) + d1x1 + d2x2,

where di =
�
T2 Hxi(x) dx, i = 1, 2 and H̃ : T2 → R. Without loss of gener-

ality we can assume that d1, d2 are relatively prime integer numbers and at
least one of them is non-zero, because DH is non-zero at each point. Now
notice that ε = 1. Indeed, suppose, contrary to our claim, that ε = −1. Let
ξ : T2 → C be given by ξ(x1, x2) = exp 2πiH(x1, x2). Then ξ ◦ f2 = ξ. Since
the σ-algebra If is finite, it is easy to show that the σ-algebra If2 is finite as
well. It follows that ξ and finally H is constant, which is impossible. In the
same manner we can show that α is irrational. Now applying Theorem 13
of [6] we conclude that f is C∞-conjugate to a skew product Tα,β : T2 → T2.

Finally, suppose, contrary to our claim, that the topological degree d(β)
of β : T→ T equals zero. Then

DT qnα,β =
[

1 0

Dβ(qn) 1

]
→
[

1 0

0 1

]
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uniformly (see [8, p. 189]), where {qn} is the sequence of the denomina-
tors of α, which contradicts the fact that f has polynomial growth of the
derivative.

Let us turn to the case where M is the Klein bottle. Let G ⊂ Aut(R2)
denote the subgroup of all group automorphisms of the plane generated by
the following two isometries:

S(x1, x2) = (x1 + 1,−x2), T (x1, x2) = (x1, x2 + 1).

Then the compact surface K = R2/G is a model of the Klein bottle. Since
Sn ◦ Tm = T (−1)nm ◦ Sn, each element of G can be represented as Tm ◦ Sn,
wherem,n ∈ Z. Moreover,G is isomorphic to the semidirect product Z×evZ,
where ev : Z → Aut(Z) is given by ev(n)m = (−1)nm, i.e. the multiplica-
tion is given by

(n1,m1) ◦ (n2,m2) = (n1 + n2,m1 + (−1)n1m2).

The group isomorphism is established by the map

Z×ev Z 3 (n,m) 7→ Tm ◦ Sn ∈ G.
Suppose that f : K→ K is a C∞-diffeomorphism. Let f : R2 → R2 be a

lift of f . Then there exists a group automorphism Φ : G→ G such that

f((n,m)x) = Φ(n,m)f(x)

for any (n,m) ∈ G. Put

(a11, a12) := Φ(1, 0), (a21, a22) := Φ(0, 1).

As (1, 1) ◦ (1, 1) = (2, 0) = (1, 0) ◦ (1, 0), we have

(2(a11 + a21), (1 + (−1)a11+a21)(a22 + (−1)a21a12))

= Φ((1, 1) ◦ (1, 1)) = Φ((1, 0) ◦ (1, 0)) = (2a11, (1 + (−1)a11)a12).

It follows that a21 = 0 and (1 + (−1)a11)a22 = 0. Consider the subgroup
G0 ⊂ G of all elements of the form (2n,m), m,n ∈ Z. Then G0 ∼= Z2,
because (2n1,m1) ◦ (2n2,m2) = (2n1 + 2n2,m1 +m2). Moreover,

Φ(2n,m) = Φ(0, 1)m ◦ Φ(1, 0)2n = (0, a22)m ◦ (a11, a12)2n

= (0,ma22) ◦ (2na11, n(1 + (−1)a11)a12)

= (2na11,ma22 + n(1 + (−1)a11)a12) ∈ G0.

It follows that Φ : G0 → G0 is a group automorphism, hence that there
exists B ∈ GL2(Z) such that

Φ(2n,m) = (2b11n+ 2b12m, b21n+ b22m).

However,
(2b11, b21) = Φ(2, 0) = (2a11, (1 + (−1)a11)a12),

(2b12, b22) = Φ(0, 1) = (0, a22).
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It follows that b11 = a11, b12 = 0, b21 = (1 + (−1)a11)a12 and b22 = a22, and
finally that a11, a22 ∈ {−1, 1} and b21 = 0. Consider the C∞-diffeomorphism
f̂ : R2 → R2 given by

f̂(x1, x2) :=
(1

2f1(2x1, x2), f2(2x1, x2)
)
.(3)

Then

f̂(x1 + n, x2 +m) =
(1

2f1((2n,m)(2x1, x2)), f2((2n,m)(2x1, x2))
)

=
(1

2f1(2x1, x2) + nb11, f2(2x1, x2) +mb22
)

= f̂(x1, x2) + (nb11,mb22).

Therefore f̂ can be treated as a C∞-diffeomorphism of the torus.

Corollary 7. For every smooth diffeomorphism f : K→ K the matrix
of the induced automorphism f̂∗1 : H1(T2,Z) → H1(T2,Z) of f̂ : T2 → T2

is diagonal.

Denote by % : T2 → K the twofold cover of the Klein bottle given by

%(x1, x2) := (2x1, x2).

Then
f ◦ % = % ◦ f̂ .

Suppose that µ is an f -invariant positive probability C∞-measure on K.
Then µ is equivalent to the Lebesgue measure λK on K. Set p := dµ/dλK.
Let p̂ : T2 → R be given by p̂ = p ◦ %. Then the positive C∞-measure
dµ̂ = p̂ dλT2 is f̂ -invariant.

Lemma 8. If the diffeomorphism f : (K,BK, µ) → (K,BK, µ) is ergodic,
then the σ-algebra of invariant sets of f̂ : (T2,BT2 , µ̂) → (T2,BT2 , µ̂) is
finite.

Proof. It is easy to check that the group of all measure-preserving au-
tomorphisms g : (T2,BT2 , µ̂) → (T2,BT2 , µ̂) such that g ◦ f̂ = f̂ ◦ g and
g−1%−1BK = %−1BK equals {IdT2 , I}, where I(x1, x2) = (x1 + 1/2,−x2).
By Lemma 1.8.1 of [9], f̂ : (T2,BT2 , µ̂) → (T2,BT2 , µ̂) is a Z2-extension of
f : (K,BK, µ) → (K,BK, µ), i.e. f̂ is measure theoretically isomorphic to a
skew product fξ : (K×Z2, µ⊗ (δ0 + δ1)/2)→ (K×Z2, µ⊗ (δ0 + δ1)/2) given
by

fξ(x, y) = (f(x), y + ξ(x)),

where ξ : K→ Z2 is a measurable function. It is now easy to check that the
σ-algebra Ifξ is generated by at most two sets.

Proof of Theorem 5. By Lemma 6, it is sufficient to prove that there is
no ergodic positive C∞-measure-preserving C∞-diffeomorphism of the Klein
bottle with polynomial growth of the derivative on K. Suppose, contrary to
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our claim, that f : K→ K is such a diffeomorphism. Consider the associated
C∞-diffeomorphism f̂ : T2 → T2 given by (3). It is easy to see that f̂ has
polynomial growth of the derivative as well. Let µ̂ denote the f̂ -invariant
positive C∞-measure on T2 given by dµ̂ = ((dµ/dλK)◦%)dλT2. By Lemma 8,
the σ-algebra of invariant sets of f̂ : (T2,BT2 , µ̂)→ (T2,BT2 , µ̂) is finite.

By Theorem 3, there exists an area-preserving C∞-flow ψt on K such
that f ◦ ψt = ψt ◦ f for any real t and ψt has no fixed point. Denote by
ψt a flow which is a lift of ψt to R2. Since ψt and f commute, there exists
(n,m) ∈ G such that

ψt ◦ f = (n,m)f ◦ ψt

for all real t. Letting t = 0, we see that f = (n,m)f , and finally that
(n,m) = (0, 0), because G acts freely on R2. Denote by ψ̂t the C∞-flow on
T2 defined by

ψ̂t(x1, x2) :=
(1

2ψ
t
1(2x1, x2), ψt2(2x1, x2)

)
.

Then the flow ψ̂ t has no fixed point and commutes with f̂ . Therefore f̂
satisfies the assumption of Lemma 6. Consequently, f̂ is C∞-conjugate to a
skew product Tα,β : T2 → T2, where α ∈ T is irrational and β : T → T is a
C∞-function with non-zero topological degree. This contradicts the fact that
the matrix of the induced automorphism f̂∗1 is diagonal (see Corollary 7),
which proves the theorem.

A. Tangentially non-transient diffeomorphisms. Let f : M →M
be a C∞-diffeomorphism of a compact C∞-manifold M .

Definition 2. We say that f is tangentially non-transient if there exists
a Riemannian C∞-structure on M such that

lim inf
n→∞

‖Dfn(x)‖ <∞ for a.e. x ∈M .

In fact, the above notion does not depend on the choice of the Rieman-
nian structure, because all Riemannian structures are equivalent. Clearly,
the notion of the tangential non-transience is invariant under C∞-conjuga-
tion. Moreover, there is no diffeomorphism which is simultaneously tangen-
tially non-transient and with polynomial growth of the derivative. In this
section we present a class of tangentially non-transient diffeomorphisms of
the torus.

Given α ∈ T and β : T→ R we will denote by Tα,β : T×R→ T×R the
skew product Tα,β(x1, x2) = (x1 +α, x2 + β(x1)). Let a ∈ T be an irrational
number and let b : T → R be a positive C∞-function with

�
T b(x) dx = 1.

Let σt denote the flow on T×R given by σt(x1, x2) = (x1, x2 + t). Consider
the quotient space Ma,b = T × R/∼, where the relation ∼ is defined by
(x1, x2) ∼ (y1, y2) iff (x1, x2) = T ka,−b(y1, y2) for an integer k. Then the
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quotient flow σta,b of the action σt by the relation ∼ is the special flow
constructed over the rotation by a and under the function b. By Lemma 2
of [3] and Theorem 1 of [11], there exists a C∞-diffeomorphism % : Ma,b → T2

such that the flow ψt := % ◦ σta,b ◦ %−1 is a Hamiltonian flow on T2 with no
fixed points, i.e. there exists a C∞-function H : R2 → R such that DH is
Z2-periodic, non-zero at each point and

d

dt
ψt(x) =

[
Hx2(ψt(x))

−Hx1(ψt(x))

]
.

We will identify % with a diffeomorphism % : R2 → R2 such that

%(x1 + 1, x2) = %(x1, x2) + (N11, N12),

%(x1 + a, x2 − b(x1)) = %(x1, x2) + (N21, N22),

for any (x1, x2) ∈ R2, where N ∈ GL2(Z). Then

D%(x1 + 1, x2) = D%(x1, x2),(4)

D%(Tna,−b(x1, x2))
[

1 0

−Db(n)(x1) 1

]
= D%(x1, x2),(5)

for any integer n.
Let Tα,β : T×R→ T×R be a skew product commuting with Ta,−b, where

β : T→ R is of class C∞. Then Tα,β can be treated as a C∞-diffeomorphism
of Ma,b. Denote by f : T2 → T2 the area-preserving C∞-diffeomorphism
given by f := % ◦ Tα,β ◦ %−1.

Lemma 9. The diffeomorphism f : T2 → T2 is tangentially non-tran-
sient.

To prove this lemma we will need some information on recurrent cocycles
over Z2-actions. Let

Z2 3 n 7→ Tn ∈ Aut(X,B, µ)

be a measure-preserving ergodic free Z2-action on a standard Borel space
such that the automorphism T (1,0) is ergodic as well. Let Φ : Z2 ×X → R2

be an L1-cocycle over the Z2-action T , i.e.

Φ(n1+n2)(x) = Φ(n1)(x) + Φ(n2)(Tn1x)

for all n1, n2 ∈ Z and ‖Φ(n)‖ ∈ L1(X,µ) for all n ∈ Z. We will denote by TΦ
the Z2-action on (X × R2, µ⊗ λR2) given by the skew product

T nΦ (x, y) = (Tn(x), y + Φ(n)(x)).

For the background on the theory of cocycles we refer to [12].

Lemma 10. Suppose that Φ is a recurrent cocycle such that the cocycle
Φ

(1,0)
1 over the automorphism T (1,0) is transient. Then for a.e. x ∈ X and all

ε > 0 and N ∈ N there exists n ∈ Z2 such that ‖Φ(n)(x)‖ ≤ ε and n2 > N .
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Proof. Denote by � ⊂ Z2 × Z2 the lexicographic order on Z2, i.e.

m � n ⇔ m1 < n1 ∨ (m1 = n1 ∧m2 ≤ n2).

Fix ε > 0. First we show that for a.e. x ∈ X we have ‖Φ(n)(x)‖ ≤ ε for
infinitely many n � 0. Put

V := X ×B(0, ε/2), D := V ∩
⋂

m�0

T−mΦ V c.

Since TmΦ D ∩ T nΦD = ∅ for m 6= n, we obtain µ ⊗ λR2(D) = 0, because TΦ
is conservative. Consequently, for a.e. x ∈ X there exists n � 0 such that
‖Φ(n)(x)‖ ≤ ε, by the Fubini theorem. Therefore the set

Fε =
∞⋃

k=1

⋃

m∈Z2

⋂

n�0

{x ∈ X : ‖Φ(n)(Tmx)‖ > ε/2k}

has zero µ-measure. Clearly, if x ∈ X \ Fε, then there exists a strictly
increasing sequence {mi}i∈N in {m ∈ Z2 : m � 0} such that ‖Φ(mi)(x)‖ ≤ ε.
Now suppose that the set

Bε = {x ∈ X : ∃N∈N ∀n�0 (‖Φ(n)(x)‖ ≤ ε⇒ n2 ≤ N)}
has positive µ-measure. Since Φ(1,0)

1 is a transient cocycle over the ergodic
automorphism T (1,0), the set C ⊂ X of all x ∈ X such that

1
n
Φ

(n,0)
1 (Tmx)→ �

X

Φ
(1,0)
1 dµ 6= 0

for every m ∈ Z2 has full µ-measure. Suppose that x ∈ Bε∩C∩X \Fε. Then
there exists a strictly increasing sequence {mi}i∈N in {m ∈ Z2 : m � 0} such
that ‖Φ(mi)(x)‖ ≤ ε. As x ∈ Bε, there exists a natural number N such that
mi

2 ≤ N . Without loss of generality we can assume that mi
2 = N for all

i ∈ N. Then mi
1 →∞ and

‖Φ(mi1,0)
1 (T (0,N)x)‖ ≤ ‖Φ(mi)(x)‖+ ‖Φ(0,N)(x)‖ ≤ ε+ ‖Φ(0,N)(x)‖

is bounded, which contradicts the fact that x ∈ C. Consequently, µ(Bε) = 0
for every ε > 0. Finally, if x ∈ X \⋃∞k=1B1/k, then for all ε > 0 and N ∈ N
there exists n ∈ Z2 such that ‖Φ(n)(x)‖ ≤ ε and n2 > N , which completes
the proof.

Proof of Lemma 9. Since

Dfn(x) = D%(Tnα,β ◦ %−1(x))
[

1 0

Dβ(n)(%−1
1 (x)) 1

]
D%−1(x),

it suffices to show that

lim inf
n→∞

∥∥∥∥D%(Tnα,β(x1, x2))
[

1 0

Dβ(n)(x1) 1

]∥∥∥∥ <∞
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for a.e. (x1, x2) in the set M ′ = {(x1, x2) : x1 ∈ R, 0 ≤ x2 ≤ b(x1)}. Put
C := ‖b‖sup. From (4), for every γ > 0 there exists a positive constant Kγ

such that

‖D%(x1, x2)‖ ≤ Kγ whenever (x1, x2) ∈ R× [−γ,C + γ].

Consider the Z2-action on (T, λT) given by

T (n1,n2)(x) = x+ n1a+ n2α

and the cocycle Φ : Z2 × T→ R2 over the action T given by

Φ(n1,n2)(x) = (−b(n1)(x+ n2α) + β(n2)(x),−Db(n1)(x+ n2α) +Dβ(n2)(x)).

Case 1. Suppose that the Z2-action T is free. Since

rank
[ �

T Φ
(1,0)(x) dx

�
T Φ

(0,1)(x) dx

]
= rank

[ −1 0
�
T β(x) dx 0

]
= 1,

the cocycle Φ : Z2×T→ R2 is recurrent, by Corollary of [2]. By Lemma 10,
the set A ⊂ T of all x ∈ T for which there exists a sequence {ni}i∈N in Z2

such that ni2 → ∞ and ‖Φ(ni)(x)‖ ≤ 1 has full Lebesgue measure. Suppose
that (x1, x2) ∈M ′ and x1 ∈ A. From (5) we have
∥∥∥∥D%(Tn

i
2

α,β(x1, x2))
[

1 0

Dβ(ni2)(x1) 1

]∥∥∥∥

=

∥∥∥∥D%(Tn
i
x1, x2 + Φ

(ni)
1 (x1)))

[
1 0

Φ
(ni)
2 (x1) 1

]∥∥∥∥ ≤ 3K1,

because (Tn
i
x1, x2 + Φ

(ni)
1 (x1))) ∈ R× [−1, C + 1] for any natural i, which

implies the tangential non-transience of f .

Case 2. Suppose that the Z2-action T is not free. Then there exist
k1, k2, k ∈ Z such that k1a+k2α = k and k2 6= 0. As T k2

α,β◦T k1
a,−b = T k1

a,−b◦T k2
α,β

we have

−b(k1)(x) + β(k2)(x+ k1a) = β(k2)(x)− b(k1)(x+ k2α).

Consequently,

b(−k1)(x+ k1a) + β(k2)(x+ k1a) = β(k2)(x) + b(−k1)(x)

and β(k2)(x) = −b(−k1)(x) + c, because a is irrational. Then

T k1
α,β(x1, x2) = (x1 + k1α, x2 + β(k1)(x1))

= (x1 − k2a, x2 − b(k2)(x1) + c) ∼ (x1, x2 + c).

Since the tangential non-transience of f k1 implies that of f , we can narrow
our consideration down to the case where α = 0 and β is a constant func-
tion. If β = 0, then f = IdT. Assume that β 6= 0. Denote by {qn}n∈N
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the sequence of the denominators of the irrational number a ∈ T. Set
mn := sgn(β)([qn/β] + 1), where sgn(β) = β/|β|. Then mn → +∞ and
0 < βmn − sgn(β)qn ≤ |β|. Suppose that (x1, x2) ∈M ′. From (5) we have
∥∥∥∥D%(Tmnα,β (x1, x2))

[
1 0

Dβ(mn)(x1) 1

]∥∥∥∥

=‖D%(x1, x2 +mnβ)‖

=
∥∥∥∥D%(x1 +sgn(β)qna, x2 +mnβ − b(sgn(β)qn)(x1))

[
1 0

−Db(sgn(β)qn)(x1) 1

]∥∥∥∥.

Since b(qn) − qn and Db(qn) tend uniformly to zero (see [8, p. 189]),

−|β| < mnβ − b(sgn(β)qn)(x1) ≤ 2|β|, |Db(sgn(β)qn)(x1)| ≤ 1,

for any x1 ∈ R and for all n large enough. It follows that

(x1 + sgn(β)qna, x2 +mnβ − b(sgn(β)qn)(x1)) ∈ R× [−2|β|, C + 2|β|],
and finally that

‖D%(x1, x2 +mnβ)‖ ≤ 3K2|β|

for all (x1, x2) ∈M ′ and for all n large enough, which completes the proof.
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