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This selfreport consists of two parts. The dissertation entitled �Di�eomor-
phisms with polynomial growth of the derivative� is presented in the �rst
part. The second part is devoted to the results the author has obtained after
being awarded the degree of Ph.D. These results were not included in the
dissertation.
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A Dissertation

A.1 Subject matter of the dissertation

The habilitation thesis entitled

�Di�eomorphisms with polynomial growth of the derivative�

includes results published in the following articles:

[R1] Linear growth of the derivative for measure�preserving di�eomorphisms,
item [17] in the list of the quoted literature,

[R2] Measure�preserving di�eomorphisms of the torus, item [19],

[R3] On di�eomorphisms with polynomial growth of the derivative on sur-

faces, item [20],

[R4] Polynomial growth of the derivative for di�eomorphisms on tori, item
[22],

[R5] On cocycles with values in the group SU(2), item [18],

[R6] On the degree of cocycles with values in the group SU(2), item [21].

In the further part of the selfreport, we will use the denotations [R1],...,[R6]
to refer to the above articles.

A.2 Introduction

Automorphisms of standard probability Borel space (X,B, µ), i.e. measur-
able automorphisms preserving measure µ, are the fundamental object of
research in ergodic theory. Space (X,B, µ) is then treated as a state space
(a phase space), while the automorphism T re�ects the changes of states
in time, i.e. it describes the dynamics of the phenomena. Therefore, the
system (X,B, µ, T ) (or simply T for short) is often called a dynamical sys-
tem. One of the fundamental questions of ergodic theory is whether two
given dynamical systems have the same dynamics, i.e. whether they are
isomorphic? We say that the two dynamical systems (X1,B1, µ1, T1) and
(X2,B2, µ2, T2) are metrically isomorphic if there exists a measurable iso-
morphism S : (X1,B1, µ1) → (X2,B2, µ2), such that S∗(µ1) = µ2 (the image
of measure µ1 is equal to µ2 via S) and S ◦ T1 = T2 ◦ S.
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Ergodic theory also deals with the examination of such asymptotic prop-
erties of the sequence of iterations {T n}n∈N of automorphism T as: ergodicity,
weak mixing, strong mixing, etc.

De�nition 1. Automorphism T : (X,B, µ) → (X,B, µ) is

• ergodic if
1

n

n−1∑
k=0

f ◦ T k →
∫
X

f dµ w L2(X,B, µ)

for any f ∈ L2(X,B, µ);

• weakly mixing if

1

n

n−1∑
k=0

∣∣∣∣∫
X

f(T kx)g(x) dµ(x)−
∫
X

f(x) dµ(x)

∫
X

g(x) dµ(x)

∣∣∣∣ → 0

for any f, g ∈ L2(X,B, µ);

• strongly mixing (or mixing for short) if∫
X

f(T nx)g(x) dµ(x) →
∫
X

f(x) dµ(x)

∫
X

g(x) dµ(x)

for any f, g ∈ L2(X,B, µ).

Some of the more subtle properties of automorphisms come from the
spectral theory of unitary operators. Every measure�preserving automor-
phism T : (X,B, µ) → (X,B, µ) is associated with its Koopman operator on
UT : L2(X,B, µ) → L2(X,B, µ) given by the formula:

(UT (f))(x) = f(Tx)

for any f ∈ L2(X,B, µ) (instead of space L2(X,B, µ), Koopman operator is
often considered on its subspace L2

0(X,B, µ) of functions with zero integral).
Let us make a general assumption that U is a unitary operator of some

separable Hilbert spaceH. For any f ∈ H, we denote by Z(f) the cyclic space
generated by f , i.e. the smallest U�invariant closed subspace of H containing
f , while by σf we denote spectral measure of f , i.e. Borel measure on the
circle T determined by the equations

〈Unf, f〉 = σ̂f (n) =

∫
T
e2πinx dσf (x)
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for all n ∈ Z. Then, the spectral theorem says that there exists a sequence
of elements {fn}n∈N of H such that

H =
∞⊕
n=1

Z(fn) oraz σf1 � σf2 � . . .

Moreover, the sequence {σfn}n∈N is uniquely determined modulo equivalent
relation of the measures. Then, the spectral type σU of the measure σf1 (the
class of the equivalence relations of the measures) is called a maximal spectral
type of the operator U . Here are some of spectral properties examined in
ergodic theory:

• the operator U has Lebesgue spectrum (continuous, singular or dis-
crete) if U is a type of Lebesgue measure (continuous, singular or dis-
crete);

• the operator U is mixing if σU is a type of Rajchman measure, i.e.
σ̂f (n) → 0 for any f ∈ H;

• the operator U has homogeneous spectrum if σfn ≡ σf1 lub σfn ≡ 0 for
any natural n;

• the spectrum of the operator U has Lebesgue component of in�nite
multiplicity if λ � σfn for all n ∈ N, or equivalently, if there exists a
sequence {gn}n∈N such that Ukgn ⊥ U lgm when m 6= n or k 6= l.

Of course, ergodicity as well as weak or strong mixing of automorphisms are
also spectral properties, because the automorphism T is ergodic i� 1 is not
an eigenvalue of the Koopman operator UT : L2

0(X,B, µ) → L2
0(X,B, µ), T is

weakly mixing i� σT := σUT
is a type of continuous measure and T is strongly

mixing i� σT is a type of Rajchman measure.
In physical considerations, the state space, in addition to the measure�

theoretical structure, is often equipped with a topological structure or simply
with a di�erential structure (especially in classical mechanics). In that case,
the automorphism describing dynamics usually preserves a given structure,
too. Then, the situation is the following: the dynamics in the state space M
(M is a di�erential manifold here) are governed by the laws described by an
autonomous di�erential equation of the following form

dx

dt
= X(x), (1)
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where X : M → TM is a tangent vector �eld. Equation (1) is associated
with �ow {ψt}t∈R, i.e. a smooth mapping R×M 3 (t, x) 7→ ψtx ∈M ful�lling
the conditions

ψt1+t2(x) = ψt1(ψt2(x)) for any t1, t2 ∈ R,
ψ0(x) = x,

determined by the following solutions of the equation (1):{
d
dt
ψt(x) = X(ψtx)
ψ0(x) = x

for any t ∈ R and x ∈ M . Then, we can consider discretizations of the �ow
{ψt}t∈R, i.e. di�eomorphisms ψt : M → M for t 6= 0. Such di�eomorphisms
are called times of the �ow. Another approach consists in �nding a sub-
manifold N ⊂ M of codimension 1, which is transversal to the orbits of the
�ow {ψt}t∈R and such that each point x ∈ N returns to N after the positive
time τ+(x) > 0 and the negative time τ−(x) < 0. Then, the di�eomorphism
f : N → N given by the formula f(x) = ψτ+(x)(x) and known as Poincaré
transformation is a signi�cant element of the research in the understanding
of the dynamics of �ow {ψt}t∈R.

In the context of smooth dynamical systems, the concept of isomorphism
of two systems is much stronger. We will say that two Cr�di�eomorphisms
f1 : M1 →M1, f2 : M2 →M2 (r ∈ N∪ {∞}) are Cr�conjugated, when there
exists a Cr�isomorphism g : M1 →M2 such that g ◦ f1 = f2 ◦ g.

Sometimes, as in Hamiltonian dynamics for example, there exist natural
smooth measures on the state space, which are invariant with respect to the
action of a given di�eomorphism. The dissertation deals with such a situa-
tion. Let M (a state space) be a compact, connected and �nite dimension
di�erential C∞�manifold and let (Ui, ϕi)i∈I be a certain atlas of this mani-
fold. We say that probability Borel measure onM is a positive C∞�measure,
if for any i ∈ I the image of the measure µ|Ui

is equivalent to the Lebesgue
measure on ϕi(Ui) via the mapping ϕi, and its density is a positive function of
C∞ class. In this dissertation, the dynamical properties of di�eomorphisms
of manifold preserving certain positive probability C∞�measures are being
examined from the point of view of ergodic theory.

The linearization or the examination of linear transformations Dfn(x) :
TxM → TfnxM is one of the basic methods of the examination of the dynam-
ical properties of di�eomorphisms f : M → M . The asymptotic behaviour
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of such linearizations is described from the point of view of ergodic theory
by the following fundamental Oseledec's theorem:

Theorem 1. Let f be a C1�di�eomorphism of a compact di�erential

manifoldM . Then, there exists a Borel full measure subsetM ′ ⊂M (measure
1 for any f�invariant probability measure) with the following properties: If

x ∈M ′, then there exists a sequence of numbers λ1(x) > λ2(x) > . . . > λm(x)
and a decomposition

TxM = E1(x)⊕ . . .⊕ Em(x)

such that

lim
n→±∞

1

n
log ‖Dfn(x)u‖fnx = λj(x)

for any 0 6= u ∈ Ej(x) and any 1 ≤ j ≤ m. Moreover, Ej(fx) = Df(x)Ej(x)
and λj(Tx) = λj(x) for any 1 ≤ j ≤ m.

The norm in Oseledec's theorem comes from any established Riemannian
form on M . Since all such forms are equivalent, the numbers λj(x), j =
1, . . . ,m do not depend on the choice of the form. The numbers λj(x), j =
1, . . . ,m are called Lyapunov exponents. Then, Eu(x) =

⊕
i:λi(x)>0Ei(x) is a

subspace of unstable directions, while Es(x) =
⊕

i:λi(x)<0Ei(x) is a subspace
of stable directions in TxM .

Taking the linearization of di�eomorphisms into consideration makes it
possible to introduce a natural distinction between elliptic, parabolic and
hyperbolic di�eomorphisms. This distinction, discussed in more detail in
[28], is not fully formal and, brie�y (but in a very informal way), it can be
presented in the following way:

• Linearizations of hyperbolic di�eomorphisms possess only eigenvalues
with absolute values di�erent from unity, which means that the se-
quence {Dfn}n∈N grows exponentially in some directions, and in some
directions it also decreases exponentially. In more formal terms, it
means that all Lyapunov exponents are non zero ones.

• All the eigenvalues of the linearization of elliptic di�eomorphisms have
modules equal to one and do not have non�trivial Jordan blocks. Then,
the sequence {‖Dfn‖}n∈N does not grow too fast.
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• All the eigenvalues of the linearization of parabolic di�eomorphisms
have modules equal to one and possess non�trivial Jordan blocks. Then,
the sequence {‖Dfn‖}n∈N grows much faster than in the case of elliptic
di�eomorphisms, but signi�cantly slower than in the case of exponential
growth.

Of course, not all di�eomorphisms can be classi�ed in this way. However, a
signi�cant part of them belongs to one of those classes. In the further part
of this chapter, we will present some examples of the most representative
di�eomorphisms for each class and we will discuss their properties.

Anosov di�eomorphisms are the best known and the best examined kinds
of hyperbolic di�eomorphisms. We say that f : M →M is an Anosov di�eo-
morphism if there exist constants K > 0, 0 < λ < 1 such that the tangent
space TxM in every point decomposes into a direct sum of a stable subspace
Es
x and an unstable subspace Eu

x and at the same time, these subspaces ful�ll
the following conditions:

Df(x)Es
x = Es

f(x), Df(x)Eu
x = Eu

f(x),

‖Dfn(x)|Es
x‖ ≤ Kλn, ‖Df−n(x)|Eu

x‖ ≤ Kλn

for all x ∈ M and n ∈ N. Anosov di�eomorphisms have clear classi�cation
when a �nite dimension torus is a state space. As it was proved by Manning in
[44], any Anosov di�eomorphism of a torus is C0�conjugate with a hyperbolic
group automorphism of this torus. A similar theorem is true for infra-nil-
manifold di�eomorphisms. So far, no general answer has been given to the
question of on which manifolds Anosov di�eomorphisms exit. Up till now,
this type of di�eomorphisms have been successfully constructed only on infra-
nil-manifolds. The problem becomes much simpler if we narrow the scope of
our interest down to two�dimensional manifolds, i.e. to surfaces. Then, as it
was proved by Franks in [16], the two�dimensional torus is the only surface
allowing Anosov di�eomorphisms.

Rotations on tori, which appear naturally in the theory of Hamiltonian
systems, are the best known and the best examined class of elliptic di�eo-
morphisms. Let us consider a broader class Di�r0(Td) of Cr (r ∈ N ∪ {∞})
di�eomorphisms of the d�dimensional torus Td, which are homotopic to iden-
tity. Let us assume that f ∈ Di�r0(Td) and µ is a probability f�invariant and
ergodic measure. Then, the lift of the di�eomorphism f has the form of
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f̃ = Id +ϕ, where ϕ ∈ Cr(Td,Rd). Moreover,

1

n
(f̃n(x)− x) =

1

n

n−1∑
k=0

ϕ(fk(x)) → µ(ϕ) =

∫
Td

ϕdµ

for µ�a.e. x ∈ Td. In this case, vector µ(ϕ) is called a vector of rotation for
f , while the simplex

ρ(f) = {µ(ϕ) : µ is a probability f�invariant measure}

is a set of rotation vectors for f . The set ρ(f) is a dynamical invariant,
which has a signi�cant impact on whether di�eomorphism f is conjugate to
the rotation. The asymptotic behaviour of the sequence {Dfn}n∈N is another
important factor in�uencing the properties of f .

Theorem 2 (see [52] and [29]). Let f ∈ Di�1
0(Td) and let the sequence

{Dfn}n∈N be uniformly bounded. Then, ρ(f) is a one�element set and if

the coordinates of the vector α ∈ ρ(f) are rationally independent (i.e. if
n1α1 + . . . + ndαd = m for integer m,ni, i = 1, . . . , d, then n1 = n2 =
. . . = nd = 0), then f is C0�conjugate with the rotation by α. Moreover, if

f ∈ Di�r0(Td) (r ∈ N ∪ {∞}) and the sequence {Dfn}n∈N is bounded in the

Cr norm, then f is Cr�conjugate with the rotation.

The times of horocycle �ows on surfaces with a constant negative cur-
vature and skew Anzai products are the best�known examples of parabolic
di�eomorphism. Before we move on to discuss those examples, we will in-
troduce several concepts regarding groups of matrices. Let G ⊂ GL(d,R)
(GL(d,C)) be a closed Lie matrix group. Let g denote the Lie algebra of
group the G. Then, the mapping exp : g → G is locally inversible around
0 ∈ g. Let f : G → G be a di�eomorphism. Now, we determine the deriva-
tive f at point g ∈ G using the maps coming from the mapping exp( · ) · g,
i.e. let us consider the mapping

g 3 X 7−→ exp−1[f(exp(X)g)f(g)−1] ∈ g,

which is well de�ned in a certain neighbourhood 0 ∈ g. The derivative of this
mapping at 0 ∈ g will be denoted by L(f)(g) : g → g. Let us assume now that
f is a left rotation on the group, i.e. f(g) = ag. Then, L(f)(g)X = aXa−1.
Next, let us assume that Γ ⊂ G is a discrete co�compact subgroup ofG. Then
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the homogeneous space G/Γ is a compact C∞�manifold of the dimension
dim(G). Let f : G/Γ → G/Γ be a left rotation with the form of f(gΓ) =
agΓ. Then, if we calculate the derivative f at point gΓ ∈ G/Γ using local
inverses of the mappings in the form of g 3 X 7→ π(exp(X)g) ∈ G/Γ, where
π : G → G/Γ is a natural covering, we will obtain a linear transformation
L(f)(gΓ) : g → g in the form L(f)(gΓ)X = aXa−1.

Let
G = SL(2,R) =

{[
a b
c d

]
: ad− bc = 1

}
and let µ be a right�invariant and left-invariant Haar measure on SL(2,R).
Let Γ ⊂ SL(2,R) be a discrete and co-compact subgroup. Since µ is invariant
on the right-hand shifts, it can be considered as a Borel measure on the
homogeneous space M = SL(2,R)/Γ. In this case, it is �nite, thus, we can
assume it its probabilistic after it has been normalized. Next, let us consider
the �ow {ht}t∈R on M in the form

ht(gΓ) =

[
1 0
t 1

]
· gΓ.

The �ow of horocycles on any compact surface with a constant negative cur-
vature is analytically conjugate with a certain �ow of this type. Of course,
the �ow {ht}t∈R preserves the measure µ. Any �ow of horocycles and con-
sequently every non�zero time, i.e. di�eomorphism ht : (M,µ) → (M,µ),
t 6= 0, is mixing. Moreover, it has Lebesgue spectrum with in�nite multiplic-
ity. Every di�eomorphism ht, t 6= 0 is parabolic, because

L(hnt )(x)

[
a b
c −a

]
=

[
1 0
t 1

] [
a b
c −a

] [
1 0
t 1

]−1

=

[
a− tnb b

c+ 2tna− t2n2b −a+ tnb

]
.

In addition, the sequence of derivatives {L(hnt )}n∈N has a square growth.
The next major example of parabolic di�eomorphisms are skew Anzai

products on the two�dimensional torus, i.e. di�eomorphisms Tϕ : T2 → T2

with the form
Tϕ(z, ω) = (Tz, ϕ(z)ω), (2)

where T : T → T is an ergodic rotation and ϕ : T → T is an absolutely
continuous mapping. Let us assume that the topological degree d(ϕ) of the
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mapping ϕ is di�erent from zero. Then, ϕ(e2πix) = e2πi(d(ϕ)x+ϕ̃(x)), where
ϕ̃ : T → R is an absolutely continuous function. Moreover,

L
(
T nϕ

)
(e2πix, ω) =

[
1 0

d(ϕ)n+
∑n−1

k=0 ϕ̃
′(T kx) 1

]
.

On the basis of Birkho� ergodic theorem

1

n

n−1∑
k=0

ϕ̃′(T kx) →
∫

T
ϕ̃′(t) dt = 0

for a.e. x ∈ T. Hence

1

n
L

(
T nϕ

)
(z, ω) →

[
0 0

d(ϕ) 0

]
(3)

for a.e. (z, ω) ∈ T2. Let us notice that if ϕ belongs to C1 class, then, due to
the monoergodicity of the rotation T , the convergence in (3) is uniform. The
operator UTϕ on the subspace L2(dz) ⊂ L2(T2) of the functions dependent
only on the �rst coordinate is unitarily equivalent to the operator UT , and
thus it has pure discrete spectrum. The spectral properties Tϕ on the orthog-
onal space L2(dz)⊥ were already examined by Anzai in paper [4]; however,
the strongest results were obtained by Iwanik, Lema«czyk and Rudolph in
paper [31]. If ϕ : T → T is an absolutely continuous function and d(ϕ) 6= 0
then UTϕ is a mixing operator on L2(dz)⊥. If, in addition, the derivative
ϕ′ is of bounded variation, then UTϕ has Lebesgue spectrum with in�nite
multiplicity on L2(dz)⊥.

This dissertation concentrates on the research of parabolic di�eomor-
phisms and, more precisely, di�eomorphisms with a polynomial growth of
the derivative. Consequently, the following three problems are being consid-
ered:

• to provide a formal de�nition of the notion of polynomial growth of the
derivative;

• for a given manifold, to classify ergodic di�eomorphisms with polyno-
mial growth of the derivative (if they exist);

• to examine dynamical and spectral properties of such di�eomorphisms.
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A.3 Di�eomorphisms on tori

In this chapter, the results presented in articles [R1], R2] and [R4] will be
discussed. These papers introduce various de�nitions of the notion of polyno-
mial growth of the derivative for di�eomorphisms of the simplest manifolds,
such as tori. The papers also present certain results, which classify this type
of ergodic di�eomorphisms.

By Td we will denote the d�dimensional torus {(z1, . . . , zd) ∈ Cd : |z1| =
. . . = |zd| = 1}, which will be identi�ed with the quotient group Rd/Zd. λd
will denote Lebesgue measure on Td. Let us assume that f : Td → Td is a
di�eomorphism. Then, any of its lift f̃ : Rd → Rd can be presented as

f̃(x) = Ax+ f̄(x),

where A ∈ GL(d,Z), i.e. A is an integer matrix such that | det(A)| = 1 and
f̄ : Td → Rd, i.e. f̄ is a period function due to each coordinate, its period
being one. In paper [R1], the following de�nition of τ�polynomial growth of
the derivative.

De�nition 2. A di�eomorphism f : Td → Td possesses τ�polynomial
growth of the derivative (τ > 0) if

1

nτ
Df̃(x) → g(x) for λd�a.e. x ∈ Td,

where g : Td → Md×d(R) is a non�zero a.e. function, i.e. there exists a
measurable subset A ⊂ Td such that λd(A) > 0 and g(x) 6= 0 for x ∈ A.

It is worth mentioning here that the original de�nition from paper [R1]
refers to di�eomorphisms of any manifolds and unfortunately it is not correct.
Its correct version was presented in paper [R3].

Of course, the skew Anzai products in the form (2) have linear growth of
the derivative, if d(ϕ) 6= 0. The main result of paper [R1] says that there are
no other area�preserving ergodic di�eomorphisms with a polynomial growth
of the derivative on the two�dimensional torus.

Theorem 3 ([R1]). If f : (T2, λ2) → (T2, λ2) is a measure�preserving

ergodic C2�di�eomorphism with τ�polynomial growth of the derivative, then

and f is algebraically conjugate (via the group automorphism) with a certain

skew Anzai product Tϕ, where T : T → T is an ergodic rotation, while ϕ :
T → T is a C2�mapping with non-zero topological degree.
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The classi�cation of di�eomorphisms (with polynomial growth of the
derivative) of the three�dimensional torus is the next step. Of course, in
this case, apart from linear growth, one should also expect di�eomorphisms
with square growth of the derivative. Indeed, any two�step skew product
with the form

f(x, y, z) = (x+ α, y + β(x), z + γ(x, y)),

where α ∈ T is an irrational number, β : T → T is a mapping of C1 class
such that d(β) 6= 0 and γ : T2 → T is a mapping of C1 class such that
d2(γ) = d(γ(x, · )) 6= 0, is ergodic and has square growth of the derivative,
and more precisely

1

n2
Df̃n →

 0 0 0
0 0 0

d(β)d2(γ)/2 0 0


uniformly. Roughly speaking, the main result of paper [R4] is that only linear
or square growth of the derivative is possible on the three�dimensional torus;
moreover, each ergodic di�eomorphism with such growth of the derivative is
conjugate with a certain two�step skew product. This time, τ�polynomial
growth of the derivative means that the sequence {Dfn/nτ}n∈N converges
uniformly towards a non�zero function g, which, in addition, is of C1 class.

Theorem 4 ([R4]). If f : (T3, λ3) → (T3, λ3) is a measure�preserving

ergodic C2�di�eomorphism with τ�polynomial growth of the derivative, then

τ = 1 or τ = 2 and f is C2�conjugate with a certain skew product in the

form of

T3 3 (x, y, z) 7→ (x+ α, εy + β(x), z + γ(x, y)) ∈ T3,

where ε = detDf = ±1.

The analysis of so�called random di�eomorphisms with polynomial growth
of the derivative on the two�dimensional torus contained in [R4] is one of the
steps needed to prove Theorem 4. Let T be a measure�preserving ergodic
automorphism of a standard probability Borel space (Ω,F , P ). By B, we
denote σ�algebra of Borel sets on T2. Then, any measurable mapping

(Ω× T2,F ⊗ B) 3 (ω, x) 7→ fω(x) ∈ (T2,B)
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such that fω : T2 → T2 is a Cr�di�eomorphism (r ∈ N ∪ {∞}) for P�
a.e. ω ∈ Ω, is called a random Cr�di�eomorphism on T2 over (Ω,F , P, T ).
The random di�eomorphism built over T is associated with a skew product
Tf : Ω× T2 → Ω× T2 in the form of

Tf (ω, x) = (Tω, fω(x)).

The probability measure µ on the space (Ω × T2,F ⊗ B) is called an f�
invariant measure if its projection on Ω is equal to P and µ is Tf�invariant,
which equivalently means that fωµω = µTω for P�a.e. ω ∈ Ω, where µω, ω ∈ Ω
is the disintegration of measure µ over P . Then, we say that the random
di�eomorphism {fω : ω ∈ Ω} is ergodic, if the skew product Tf : (Ω×T2, µ) →
(Ω× T2, µ) is ergodic.

Let us assume that measure µ is equivalent to P ⊗ λ2.

De�nition 3. We say that the random di�eomorphism {fω : ω ∈ Ω} has
τ�polynomial growth of the derivative, if

1

nτ
D(fTn−1ω ◦ fTn−2ω ◦ . . . ◦ fTω ◦ fω)(x) → g(ω, x)

both in space L1((Ω × T2, µ),M2×2(R)) and for µ�a.e. (ω, x) ∈ Ω × T2, and
the function g : Ω× T2 → M2×2(R) is µ�non�zero one.

Random skew Anzai products in the form

fω(x, y) = (x+ α(ω), y + ϕ(ω, x))

are examples of random di�eomorphisms with linear growth of the derivative.
If random rotation (ω, x) 7→ (Tω, x+α(x)) is ergodic,Dxϕ ∈ L1(Ω×T, P⊗λ1)
and

∫
Ω
d(ϕω) dP (ω) 6= 0, then the random di�eomorphism {fω}ω∈Ω is ergodic

and it has linear growth of the derivative. The following result classi�es some
random di�eomorphisms with polynomial growth of the derivative and is a
generalization of Theorem 3.

Theorem 5 ([R4]). Let f be a random C1�di�eomorphism on T2 over

(Ω,F , P, T ) and let µ be an invariant ergodic measure for f equivalent to

P ⊗ λ2 such that Radon�Nikodym derivatives dµ/d(P ⊗ λ2), d(P ⊗ λ2)/dµ
are bounded. Then, if f has τ�polynomial growth of the derivative, then τ = 1
and f is Lipschitz conjugate with some random Anzai skew product, i.e. there
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exists a random homeomorphism g : Ω×T2 → T2 such that gω, g
−1
ω : T2 → T2

are Lipschitz mappings for P�a.e. ω ∈ Ω and

{g−1
Tω ◦ fω ◦ gω}ω∈Ω

is a random skew Anzai product.

Let us return to ordinary di�eomorphisms (di�eomorphisms devoid of
randomness), and more precisely, to di�eomorphisms on the four-dimensional
torus. In this case, it is not possible to classify ergodic di�eomorphisms with
polynomial growth of the derivative in the same way as we did in the case
of the three-dimensional torus. Not all ergodic di�eomorphisms on T4 with
polynomial growth of the derivative are conjugate with multi�step skew prod-
ucts. In order to construct a counterexample, it is enough to �nd a measure�
preserving di�eomorphism h : (T2, λ2) → (T2, λ2) which is weakly mixing
and such that the sequence {Dhn/n}n∈N converges uniformly towards zero.
Such di�eomorphisms, as it was proved in [R4], include for example non�zero
times of certain weakly mixing Hamiltonian �ows on T2. The existence of
such �ows was proven by Shklover in [53]. Then, the product di�eomorphism
Tϕ × h : T4 → T4, in which Tϕ is an ergodic skew Anzai product such that
d(ϕ) 6= 0, is an ergodic di�eomorphism with linear growth of the derivative.
In [R4], by using certain theorems on the disjointness of dynamical systems
proved by Furstenberg in [27], it was shown that Tϕ×h is not conjugate with
any multi�step skew, even in the metrical sense.

Of course, De�nition 2 is not the only de�nition of polynomial growth of
the derivative. In paper [R2], another approach to the problem was proposed.
In this approach, a very restrictive assumption on the convergence of the
sequence {Dfn/nτ}n∈N is avoided. This time, a di�eomorphism f : Td → Td

has τ�polynomial growth of the derivative, when there exist real constants
c, C such that

0 < c ≤ ‖Dfn(x)‖
nτ

≤ C (4)

for any n ∈ N and x ∈ Td. Let us notice that the de�nition given above
does not depends on the choice of the norm on Md×d(R) and it can be easily
referred to the case of compact di�erentiable manifolds. Then, this norm will
be an operator norm derived from a certain Riemannian form (all such forms
are equivalent).
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Let us assume that f : (T2, λ2) → (T2, λ2) is a measure�preserving dif-
feomorphism with linear growth of the derivative. Then, as it was proved in
paper [R2], for any x ∈ T2, there exist two directions u(x), v(x) ∈ S1 ⊂ R2

such that
lim
n→∞

1

n
(‖Dfn(x)u(x)‖ − ‖Dfn(x)‖) = 0,

the sequence {‖Dfn(x)v(x)‖}n∈N is bounded.

The direction u(x) is a distant equivalent of the unstable direction, while v(x)
is an equivalent of the stable direction considered in hyperbolic dynamics. In
the hyperbolic case, the stable and unstable directions (or rather subspaces)
make it possible determine stable and unstable submanifolds (Hadamard�
Perron theorem), which make the basis for further analysis. The parabolic
case does not create such good conditions as the hyperbolic one and con-
sequently we have to support ourselves with additional assumptions. The
property that the sequence {Dfn/n}n∈N is bounded in C2 norm is such an
additional assumption in paper [R2]. This assumption allows us to prove
that the functions u, v : T2 → S1 are of C1 class. Then, it allows us to prove
the main result of this paper:

Theorem 6 ([R2]). Let f : (T2, λ2) → (T2, λ2) be a measure�preserving

ergodic C3�di�eomorphism. If f has linear growth of the derivative (i.e.
inequality (4) occurs for τ = 1) and the sequence {Dfn/n}n∈N is bounded

in the C2 norm, then f is algebraically conjugate with a certain skew Anzai

product Tϕ such that d(ϕ) 6= 0.

A.4 Polynomial growth of the derivative for di�eomor-

phisms of any di�erential manifolds

Let us assume that M is a compact connected and k�dimensional C∞�mani-
fold. Let f : M →M be a C∞�di�eomorphism preserving a certain positive
probability C∞�measure µ on M . Then, it is possible to de�ne the notion of
polynomial growth of the derivative of f imitating the phenomenon described
in De�nition 2. This time, we observe polynomial growth for the derivative
of the sequence {fn}n∈N �perceived� via charts of a certain atlas {Ui, ϕi}i∈I
of the manifold M .

De�nition 4. ([R3]) We say that the pair (f, {Ui, ϕi}i∈I) has τ�polyno-
mial growth of the derivative, when, for any i, j ∈ I, there exists a measur-
able function Aji : Ui → Mk×k(R) µ�non�zero and such that for µ�almost
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everyx ∈ Ui, if {nl}l∈N is a sequence of natural numbers divergent towards
in�nity and fnlx ∈ Uj for l ∈ N, then

lim
l→∞

1

nlτ
D(ϕj ◦ fnl ◦ ϕ−1

i )(ϕi(x)) = Aji(x).

We will say that the di�eomorphism f : (M,µ) → (M,µ) has τ�polynomial
growth of the derivative, when there exista an atlas on M suitable for f , i.e.
f together with this atlas have suitable growth.

Let us note that suitable skew products on tori described in Chapter A.3
are di�eomorphisms with polynomial growth of the derivative in the sense
of De�nition 4. We obtain the adequate atlases from local inverses of the
coverings.

As in the case of Anosov di�eomorphisms, the issue of determining the
manifolds, on which ergodic di�eomorphisms exist with polynomial growth of
the derivative, is signi�cant. For dimensions greater than two, this problem
seems to be extremely di�cult. Already in the third dimension, in this class
there is the Cartesian product of Klein bottle and the circle. Probably, in
higher dimensions, other infra-nil-manifolds are also permissible, the two�
dimensional case being very poor, which was proved in paper [R3].

Theorem 7 ([R3]). Torus is the only compact and connected two�dimen-
sional C∞�surface, which permits the existence of an ergodic C∞�di�eomor-

phism with polynomial growth of the derivative (which preserves a positive

probability C∞�measure). Moreover, any di�eomorphism of this kind is C∞�

conjugate with a certain skew Anzai product Tϕ : T2 → T2, where d(ϕ) 6= 0.

The proof of this theorem is based on the following general result.

Theorem 8 ([R3]). LetM be a compact and connected C∞�manifold and

let µ be a positive probability C∞�measure on M . If f : (M,µ) → (M,µ) is
an ergodic C∞�di�eomorphism with polynomial growth of the derivative, then

there exists a C∞��ow {ψt}t∈R on M such that f commutes with {ψt}t∈R,

i.e. f ◦ψt = ψt ◦ f for any t ∈ R, and {ψt}t∈R does not have any �xed points.

In addition, {ψt}t∈R preserves measure µ.

Using Poincaré-Hopf theorem, we conclude that the Euler characteristic
χ(M) of manifold M equals zero. If dim(M) = 2, then M must be the torus
or Klein bottle. Since, Klein bottle possesses a two�point covering provided
by the torus, then the analysis of di�eomorphisms, when M is the torus, is
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the essence of the elimination of the case of Klein bottle. Then, it is easy
to notice that the �ow {ψt}t∈R can be treated as a Hamiltonian �ow on the
torus, i.e. a �ow associated with the equation

dx

dt
=

∂H

∂y
(x, y)

dy

dt
= −∂H

∂x
(x, y),

where H(x, y) = H̃(x, y) + γ1x + γ2y and H̃ : T2 → R2 is a function of C∞

class.
In paper [R3], the following result was proved:

Theorem 9 ([R3]). Let {ψt}t∈R be a Hamiltonian C∞��ow on the torus

T2, which does not have any �xed points. Let f : (T2, λ2) → (T2, λ2) be an

ergodic C∞�di�eomorphism commuting with the �ow {ψt}t∈R. If the �ow

{ψt}t∈R is ergodic, then there exists the constant C > 0 such that

lim inf
n→∞

‖Dfn(x)‖ ≤ C

for a.e. x ∈ T2. Whereas, if the �ow {ψt}t∈R is not ergodic, then f is C∞�

conjugate with a certain skew Anzai product.

The result presented above makes it possible to complete the proof of
Theorem 7. The proof of Theorem 9 makes use of the special representation
of the �ow {ψt}t∈R as well as a certain condition implying the recurrence of
cocycles over Z2�actions, which was proved by Depauw in [9].

A.5 Skew products on Td × SU(2)

In this chapter, we will consider di�eomorphisms of certain compact Lie
matrix groups. Let G ⊂ GL(d,C) be a compact matrix group, let g be its
Lie algebra, while ν its Haar measure. Then, we say that di�eomorphism
f : (G, ν) → (G, ν) has τ�polynomial growth of the derivative if

1

nτ
L(fn)(g) → H(g)

for ν�a.e. while H(g) : g → g is a non�zero linear transformation on the set of
positive ν�measure. This de�nition is another generalization of De�nition 2.
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In the further part of the selfreport, we will discuss the properties of some
di�eomorphisms on Td × SU(2) with linear growth of the derivative, which
were proved in papers [R5] and [R6]. We will consider skew products of
ergodic rotations on Td with rotations by cocycles with values in the group
SU(2).

Let us make a general assumption that T is a measure�preserving ergodic
automorphism of standard probability Borel space (X,B, µ). Let G be a
closed Lie matrix group, while ν a right�invariant Haar measure on G. Then,
any measurable mapping ϕ : X → G determines the skew product Tϕ :
(X ×G, µ⊗ ν) → (X ×G, µ⊗ ν) given by the formula

Tϕ(x, g) = (Tx, g · ϕ(x)).

By a measurable cocycle over the action of automorphism T , we will denote
any measurable mapping Z×X 3 (n, x) 7→ ψ(n)(x) ∈ G such that

ψ(n+m)(x) = ψ(n)(x) · ψ(m)(T nx)

for any m,n ∈ Z and x ∈ X. Then, any mapping ϕ : X → G determines a
measurable cocycle over automorphism T given by the formula

ϕ(n)(x) =


ϕ(x) · ϕ(Tx) · . . . · ϕ(T n−1x) for n > 0

e for n = 0(
ϕ(T nx) · ϕ(T n+1x) · . . . · ϕ(T−1x)

)−1 for n < 0.

(5)

This correspondence between cocycles and mappings is one-to-one; therefore,
we will identify the cocycle ϕ( · )( · ) with the function ϕ. Moreover, let us
notice that T nϕ (x, g) = (T nx, g · ϕ(n)(x)) for any integer n. We say that two
cocycles ϕ, ψ : X → G are cohomologous when there exists a measurable
mapping p : X → G such that

ϕ(x) = p(x)−1 · ψ(x) · p(Tx).

Then, the mapping X × G 3 (x, g) 7→ (x, g · p(x)) ∈ X × G establishes a
measurable isomorphism between skew products Tϕ and Tψ. If, in addition,
X is a Cr�manifold (r ∈ N ∪ {∞}) and all the functions ϕ, ψ, p are of Cr

class, then we say that ϕ and ψ are Cr�cohomologous.
The examination of skew products is extremely interesting due to their

association with the theory of linear di�erential equations. Let G ⊂ GL(d,C)
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be a closed Lie matrix group. By g ⊂ g(d,C), we denote its Lie algebra. Let
us consider a di�erential equation on Cd with the following form

d

dt
x(t) = x(t)A(t), (6)

where A : R → g is a function of Cr class (r ∈ N∪{∞}). By Φ : R → G, we
denote the fundamental solution (the fundamental matrix) for (6), i.e.{

d
dt

Φ(t) = Φ(t)A(t)
Φ(0) = Id .

In the simplest case, when the function A is periodic (with period equal to
1), then, on the basis of the Floquet theorem (see [48], for example), equation
(6) is reduced to an equation with constant coe�cients, which means that
there exists function c : T → G and B ∈ g such that

Φ(t) = c(0)−1etBc(t).

However, the phenomenon described here does not occur when A is an almost
periodic function. Let us assume that function A has the following form

A(t) = Ā(St0),

where Ā : Tk+1 → g is a function of Cr class and {St}t∈R is an ergodic linear
�ow on torus Tk+1 with the form

St(x1, . . . , xk+1) = (x1 + tω1, . . . , xk+1 + tωk+1).

Then, we say that equation (6) is Cr�reducible to an equation with constant
coe�cients if there exists function

Φ(t) = c(0)−1etBc(St0). (7)

Moreover, let us consider function φ : R× Tk+1 → G determined by{
d
dt
φ(t, θ) = φ(t, θ)Ā(Stθ)
φ(0, θ) = Id

for all t ∈ R and θ ∈ Tk+1. Then φ is a cocycle over the �ow {St}t∈R, i.e.

φ(t1 + t2, θ) = φ(t1, θ)φ(t2, St1θ) (8)
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for any t1, t2 ∈ R and θ ∈ Tk+1. Moreover, the condition of Cr�reducibility
(7) is equivalent to condition

φ(t, θ) = c(θ)−1etBc(Stθ), (9)

which means that the cocycle φ is Cr�cohomologous with cocycle (t, θ) 7→ etB.
The cocycle φ is associated with Cr��ow (skew product) {Sφt }t∈R on Tk+1×G
given by the formula

Sφt (θ, g) = (Stθ, g · φ(t, θ)).

Let M ' Tk×G be a submanifold with the form {(x1, . . . , xk, 0, g) ∈ Tk+1×
G : (x1, . . . , xk, g) ∈ Tk × G}. Then, M is a transversal manifold to the
orbits of the �ow {Sφt }t∈R, while Poincaré transformation on M is naturally
conjugate with the skew product Tϕ : Tk ×G→ Tk ×G, where T : Tk → Tk

is an ergodic rotation Tx = x + α (α = (ω1/ωk+1, . . . , ωk/ωk+1)) and ϕ :
Tk → G, ϕ(x) = φ(1/ωk+1, x, 0). Moreover, condition (9) is equivalent with
the Cr�cohomologousness of the cocycle ϕ with a constant cocycle. Indeed,
let us assume that

ϕ(x) = c(x)−1eBc(Tx),

where c : Tk → G is a function of Cr class and B ∈ g. Without loss of
generality of the reasoning, we can assume that that ωk+1 = 1. Then, the
function c̃ : Rk × R → G given by the formula

c̃(x, y) = e−Byc(x− yα)φ(y, x− yα, 0)

is Zk+1�periodic and of Cr class. Using formula (8), one can conclude that

φ(t, x, y) = c̃(x, y)−1etB c̃(x+ tα, y + t).

To sum up, equation (6) is Cr�reducible i� the cocycle ϕ associated with
it is Cr�cohomologous with a constant cocycle. Moreover, in some cases,
for example when k = 1 and G = SU(2) (see Rychlik [50]), the mapping
Ā 7→ ϕĀ = ϕ is a surjection on the whole set of Cr�cocycles Cr(Tk, G).

More information on the reducibility of cocycles and some linear equa-
tions as well as the connection of this subject matter with quasi�periodic
Schrödinger equations can be found in papers [11, 12, 13, 14, 39, 40, 41]
published in recent years.

Let us then return to the considerations on skew products over rotations.
Let us assume that Tk 3 x 7→ Tx = x+ α ∈ Tk is an ergodic rotation, while
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ϕ : Tk → G is a C1�cocycle over T , where G is a compact (semisimple) Lie
matrix group. Then, the linear transformation L

(
T nϕ

)
(x, g) : Rk×g → Rk×g

has the form

L
(
T nϕ

)
(x, g)(r,X) = (r,X + g(r · L(ϕ(n))(x))g−1),

where
L(ψ)(x) = (Lx1(ψ)(x), . . . , Lxk

(ψ)(x)) ∈ gk

and
Lxk

(ψ)(x) =
∂

∂xj
ψ(x)(ψ(x))−1 ∈ g

for any ψ : Tk → G of class C1 and j = 1, . . . , k. For any g ∈ G and
X ∈ g, let us denote by Ad(g) : g → g, ad(X) : g → g linear transformations
Ad(g)Y = gY g−1, ad(X)Y = [X, Y ]. Then, the Cartan�Killing form

〈X, Y 〉 = −tr(ad(X) ◦ ad(Y ))

is symmetric, positive and Ad�invariant, therefore, it de�nes Ad�invariant
norm on g. By applying this form, it is possible to provide a good de�nition
of space L2(Tk, g) with the norm

‖ψ‖ =

√∫
Tk

‖ψ(x)‖2 dx,

which, in addition, is a Hilbert space. On L2(Tk, g), let us consider the
unitary operator

(Uψ)(x) = Ad(ϕ(x))ψ(Tx).

Then

Lxj
(ϕ(n))(x) =

n−1∑
l=0

(
U l

(
Lxj

(ϕ)
))

(x)

for 1 ≤ j ≤ k. Thus, on the basis of the von Neumann ergodic theorem we
obtain:

Theorem 10 ([R5]). For any C1�cocycle ϕ : Tk → G and j = 1, . . . , k,
there exists ψj ∈ L2(Tk, g) such that

1

n
Lxj

(ϕ(n)) → ψj w L2(Tk, g). (10)

Moreover, the function ‖ψj( · )‖ is a.e. constant and Ad(ϕ(x))ψj(Tx) = ψj(x)
for a.e. x ∈ Tk and j = 1, . . . , k.
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Let us add that it is possible to show that the convergence in (10) is also
a.e.

De�nition 5. Vector

d(ϕ) =
1

2π
(‖ψ1‖, . . . , ‖ψk‖) ∈ Rk

is called a degree of cocycle ϕ over the rotation T .
Of course, if d(ϕ) 6= 0, then di�eomorphism Tϕ has linear growth of the

derivative.
Papers [R5] and [R6] contain an analysis of dynamical properties of co-

cycles with non�zero degree if

G = SU(2) =

{[
z1 z2

−z2 z1

]
: z1, z2 ∈ C, |z1|2 + |z2|2 = 1

}
.

Then, an important class of cocycles will include cocycles with values in the
maximal torus

T =

{[
z 0
0 z

]
: z ∈ C, |z| = 1

}
,

i.e. cocycles with the form

diagγ(x) =

[
γ(x) 0

0 γ(x)

]
,

where γ : T → T. In paper [R5], it was proved that d(ϕ) 6= 0 implies non�
ergodicity of the skew product Tϕ, which is in contrast with the properties
of skew products if G = T (see [31] or the remarks concerning the spectral
properties of skew Anzai products in Chapter A.2).

Theorem 11 ([R5]). If ϕ : Tk → SU(2) is a cocycle of C1 class over an

ergodic rotation T and d(ϕ) 6= 0, then ϕ is cohomologous with a cocycle with

values in the subgroup T. Moreover, the skew product Tϕ : Tk × SU(2) →
Tk × SU(2) is not ergodic.

Paper [R5] describes ergodic components of skew product Tϕ and it pre-
sents their spectral analysis in the case where k = 1.

Theorem 12 ([R5]). Let ϕ : T → SU(2) be a cocycle of C1 class over an

ergodic rotation T . If d(ϕ) 6= 0 and ϕ is cohomologous with a cocycle with

the form diagγ : T → T, where γ : T → T, then, all the ergodic components

Tϕ are metrically isomorphic with the skew product Tγ : T × T → T × T.
Moreover, Koopman operator UTγ is mixing on L2(dz)⊥.
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This result implies that if the degree of a cocycle is non�zero, then it
cannot be cohomologous with a constant cocycle. With some additional
assumptions, we will �nd Lebesgue components in the spectrum UTϕ .

Theorem 13 ([R5]). Let ϕ : T → SU(2) be a cocycle of C2 class over an

ergodic rotation T such that d(ϕ) 6= 0 and ϕ is cohomologous with a cocycle

with values w in the subgroup T via a function of bounded variation, whose

derivative is in L2(T, su). Then, Lebesgue component in the spectrum UTϕ

has in�nite multiplicity.

Describing the possible values of the cocycle degree is another impor-
tant problem raised in [R5] and [R6]. If a cocycle ϕ : Tk → SU(2) is C1�
cohomologous with a cocycle whose values are in the subgroup T, then, an
easy calculation shows that d(ϕ) ∈ Zk. A similar property is generally true
for C2�cocycles if k = 1. The proof of this fact for the rotation by the gold
number, based on the procedure of renormalization introduced by Rychlik
in [50], is found in paper [R5]. The proof of the following general version,
based on the procedure of renormalization introduced by Krikorian in [41],
was presented in paper [R6].

Theorem 14 ([R6]). For any cocycle ϕ : T → SU(2) of C2 class over

any ergodic rotation T , we have d(ϕ) ∈ Z.

This property is not true when k ≥ 2.

Theorem 15 ([R5]). For any ergodic rotation T : T2 → T2 of the form

T (x, y) = (x + α, y + β), there exists a cocycle ϕ : T2 → SU(2) of C∞ class

such that d(ϕ) = (|β|, |α|).

Another problem considered in [R6] regards the dependence of the value of
the cocycle degree on the changes of rotation in its base with the established
function which forms the cocycle. If G = T and k = 1, the degree of the
cocycle is equal to the absolute value of the topological degree of the function
which determines it, and thus it does not depend on the choice of the rotation
in the base. In paper [R6], it was shown that this phenomenon vanishes when
G = SU(2). In this paper, the function ϕ : T → SU(2) of C∞ class and two
irrational rotations, such that the degree ϕ amounts to 0 and to 1 over the
�rst and second rotation respectively, were determined.

Other consequences of the application of Krikorian procedure proved in
[R6] include, �rstly, the invariancy of the degree due to the relation of mea-
surable cohomology, secondly, a classi�cation of C∞�cocycles with non�zero
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degree if the rotation in the base of the cocycle is slowly approximated by
rational numbers. By G : T → T, we denote the Gauss transformation, i.e.
G(x) = {1/x}. For any γ > 0 oraz σ > 1, let us denote

CD(γ, σ) = {α ∈ T : ∀0 6=k∈N∀l∈Z|kα− l| > 1

γkσ
}.

Next, by Σ, let us denote the set of those α ∈ T, for which there exist γ > 0
and σ > 1 such that Gk(α) ∈ CD(γ, σ) for in�nitely many k ∈ N. Due to the
ergodicity of the Gauss transformation, the set Σ is a full Lebesgue measure.
For any r ∈ N and w ∈ R, let

expr,w(x) =

[
e2πi(rx+w) 0

0 e−2πi(rx+w)

]
.

The degree of cocycle expr,w is equal to r. Moreover, expr,w is stable, in a
sense, with respect to C∞�disturbances if the rotation is slowly approximated
by rational numbers.

Theorem 16 ([R6]). For any γ > 0, σ > 1 and r > 0 there exist

s0 ∈ N and ε0 > 0 such that for any α ∈ CD(γ, σ) and ϕ ∈ C∞(T, SU(2)), if
‖ϕ− expr,0 ‖Cs0 < ε0 and d(ϕ) = r, then, the cocycle ϕ is C∞�cohomologous

with a cocycle of the form expr,w.

This result, proved in [R6], is almost a direct conclusion drawn from a very
profound Theorem 9.1 in [41]. Moreover, by using the Krikorian procedure
of renormalization, it makes it possible to prove the following result which
classi�es cocycles with non�zero degree:

Theorem 17 ([R6]). If α ∈ Σ and ϕ : T → SU(2) is a C∞�cocycle

such that d(ϕ) > 0, then ϕ is C∞�cohomologous with a cocycle of the form

expd(ϕ),w.

However, Theorem 17 is not true if we assume that the degree of a cocycle
is equal to zero.

Finally, it should be mentioned that the subject matter connected with
the examination of the type of the growth of the sequence of the derivatives
of di�eomorphism has been �ourishing recently. The subject matter was
initiated by Polterovich in paper [45] and various authors continued to discuss
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it in papers [6, 7, 46, 47]. In [45], Polterovich considers the following sequence
for any di�eomorphism f : M →M

Γn(f) = max

(
max
x∈M

‖Dfn(x)‖,max
x∈M

‖Df−n(x)‖
)
.

The considerations presented in the above�mentioned papers mainly refer to
the class Symp0(M,ω) of di�eomorphismsM preserving a certain symplectic
structure ω determined on M and isotropic with identity. Then, the growth
of the sequence {Γn(f)}n∈N in di�erent cases is described in [45] and [47] in
the following way:

Theorem 18. Let f ∈ Symp0(M,ω) \ {Id}.

• Let M = T2 and let f have a �xed point, then there exists c > 0 such

that Γn ≥ cn.

• If M is a compact orientable surface with genus larger than one, then

there exists c > 0 such that Γn ≥ cn.

• If M = T2d is the standard symplectic torus and f has a �xed point,

then there exists c > 0 such that Γn ≥ c
√
n.

• If f ∈ Di�2
0([0, 1]), then either (log Γn(f))/n → γ(f) > 0, or there

exists C > 0 such that Γn ≤ Cn2.

B Scienti�c achievements in addition to the dis-

sertation

The papers whose results were not included in the dissertation refer to the
properties of disjointness of some special �ows derived from di�erential equa-
tions on two�dimensional surfaces. These results are included in the following
publications:

[D1] A class of special �ows over irrational rotations which is disjoint from

mixing �ows, item [23] in the list of the quoted literature,

[D2] On symmetric logarithm and some old examples in smooth ergodic the-

ory, item [24].

In the further part of the report, we will use the denotations [D1] and [D2]
to refer to these papers.
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B.1 The problem of smooth realization

The results of the research published in articles [D1] and [D2] are con-
nected with the so�called problem of smooth realization for �ows. A �ow
on a standard probability Borel space (X,B, µ) is any one�parameter group
{Tt}t∈R of the automorphisms of space (X,B, µ), i.e. measurable mapping
X × R 3 (x, t) 7→ Ttx ∈ X such that

1o automorphisms Tt preserve measure µ for any t ∈ R;

2o for any t1, t2 ∈ R we have Tt1+t2x = Tt1(Tt2x) for µ�a.e. x ∈ X.

Let us remember that {Tt}t∈R is a Cr��ow if X is a compact di�erential
Cr�manifold, B is the σ�algebra of Borel sets, the mapping X×R 3 (x, t) 7→
Ttx ∈ X is of Cr class and the equation 2o occurs for all x ∈ X. All the
ergodic properties described in Chapter A.2 for automorphisms can also be
de�ned for the action of �ows (more details can be found in [8]). The problem
of smooth realization can be formulated in the following way: does there
exist, for a given ergodic property, a compact C∞�manifold with a C∞��ow
preserving a positive probability C∞�measure ful�lling a given property on
it? A more speci�c question can also be the following: on which manifolds
is it possible to realize a given property? More details regarding smooth
realization can be found in [32]. The problem of the realization of ergodic
properties on the simplest manifolds, i.e. two�dimensional surface, seems to
be especially interesting. The problem of the existence of ergodic �ows on
surfaces was solved by Blohin in [5]. He constructed ergodic C∞��ows on all
the compact surfaces with the exception of sphere, projective plain and Klein
bottle, on which such �ows do not exist. Moreover, Kochergin showed in [37]
that there exist mixing C∞��ows on all the surfaces with the exception of the
three surfaces mentioned above. However, when we ask about the existence
of weakly mixing �ows and non�mixing ones, there appears a problem, which
is among the issues raised in paper [D2]. Shklover [53] gave an example of
such a �ow on the torus. For the manifolds of at least the third dimension,
the situation is simpler, because for any such compact manifold, there exists
a weakly mixing and non�mixing C∞��ow (see [3]). The question about a
smooth realization of Gaussian �ows is another interesting problem. A �ow
{Tt}t∈R on a space (X,B, µ) is called a Gaussian �ow if there exists a real
subspace H ⊂ L2

0(X,B, µ) such that

• subspace H is {Tt}t∈R�invariant,
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• subspace H generates B, i.e. the smallest σ�algebra including σ�algeb-
ras h−1(BR), h ∈ H (BR is the σ�algebra of Borel spaces on R) is equal
to B,

• each non�zero element from H has Gaussian distribution.

More information on Gaussian automorphisms and �ows can be found in [8].
The conjecture regarding Gaussian �ows is the following: it is not possible
to realize such �ows on compact surfaces. This conjecture refers to a wider
class of �ows, which can be informally called �ows with probabilistic origin.
They were referred to with the formal name of ELF �ows in [D1] (ELF is an
acronym of the full French name of ergodicité des limites faibles proposed by
F. Parreau). The property of ELF is de�ned as a property of certain joinings
of the �ow.

B.2 Joinings and properties of ELF

Let {Tt}t∈R and {St}t∈R be ergodic �ows on standard probability Borel spaces
(X,B, µ) and (Y, C, ν) respectively. By joining of �ows {Tt}t∈R and {St}t∈R,
we will call any probability measure ρ on (X × Y,B ⊗ C) invariant for the
action of the �ow {Tt × St}t∈R and such that their projections on X and Y
are equal to µ and ν respectively. The set of all such joinings is denoted
by J({Tt}, {St}), while the subset of ergodic joinings, i.e. joinings such that
the �ow {Tt × St}t∈R is ergodic on the space (X × Y,B ⊗ C, ρ), is denoted
by Je({Tt}, {St}). The set J({Tt}, {St}) is non�empty, because µ ⊗ ν ∈
J({Tt}, {St}), and it is a simplex whose extreme points are the elements
from Je({Tt}, {St}). Any joining ρ ∈ J({Tt}, {St}) de�nes an operator Φρ :
L2(X,B, µ) → L2(Y, C, ν) determined by∫

X×Y
f(x)g(y) dρ(x, y) =

∫
Y

Φρ(f)(y)g(y) dν(y)

for any f ∈ L2(X,B, µ) and g ∈ L2(Y, C, ν). The operator Φρ is a Markov
operator, i.e.

Φρ1 = Φ∗
ρ1 = 1 and Φρf ≥ 0, gdy f ≥ 0.

Moreover,
Φρ ◦ Tt = St ◦ Φρ for any t ∈ R. (11)

In addition, there exists one-to-one correspondence between the set of Markov
operators ful�lling (11) and the set J({Tt}, {St}) (see [51]). For example,
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the product measure corresponds to the operator
∫

given by the formula∫
(f) =

∫
X
f dµ. Thus, it is possible to introduce a weak topology derived

from the weak operator topology on J({Tt}, {St}). Together with this topol-
ogy, J({Tt}, {St}) becomes a compact metrizable space, where ρn → ρ i�
〈Φρnf, g〉 → 〈Φρf, g〉 for any f ∈ L2(X,B, µ) and g ∈ L2(Y, C, ν). The
joinings can be composed with the application of the following rule: if ρ1 ∈
J({Tt}, {St}) and ρ2 ∈ J({St}, {Wt}), then the joining ρ2◦ρ1 ∈ J({Tt}, {Wt})
is determined by

Φρ2◦ρ1 = Φρ2 ◦ Φρ1 .

We say that �ows {Tt}t∈R and {St}t∈R are disjoint when J({Tt}, {St}) =
{µ ⊗ ν}. The concept of the disjointness of dynamical systems introduced
by Furstenberg in [27] is a much stronger concept than the lack of isomor-
phism. The disjointness of dynamical systems implies the lack of common
factors, and thus it testi�es to the fundamental di�erences in the dynamics
of the systems. Spectral disjointness is the strongest determinant of the lack
of common features of dynamical systems, which means that the maximal
spectral types of �ows are mutually singular. It is not di�cult to check that
this property implies disjointness in the sense of Furstenberg.

For any s ∈ R, Koopman operator UTs : L2(X,B, µ) → L2(X,B, µ),
which we will brie�y denote by Ts, is a Markov operator ful�lling (11), thus
Ts ∈ J({Tt}, {Tt}). Then, the joining corresponding to operator Ts is a
measure concentrated on the graph of the automorphism Ts.

De�nition 6. We say that an ergodic �ow {Tt}t∈R has the property of
ELF when {Ts : s ∈ R} ⊂ Je({Tt}, {Tt}).

It is obvious that mixing �ows are ELFs, because then {Ts : s ∈ R} =
{Ts : s ∈ R}∪ {

∫
}. Paper [D1] includes a simple proof of the fact that every

ergodic Gaussian �ow possesses properties of ELF (the proof of this fact also
follows directly from the results obtained in [43]). In addition to Gaussian
�ows, the following major �ows of probabilistic origin possess the property of
ELF: ergodic Poisson suspension and ergodic �ows derived from symmetric
α�stable processes (see [10]). One of the fundamental ELF properties of
�ows is described by the following result proved in [D2], which is a direct
conclusion drawn from the main result in paper [2].

Theorem 19 ([D1]). Let us assume that {Tt}t∈R is a �ow ful�lling the

property of ELF and ρ ∈ {Ts : s ∈ R}. Let {St}t∈R be another ergodic �ow

and λ ∈ Je({St}, {Tt}). Then, ρ ◦ λ ∈ Je({St}, {Tt}).
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This result makes it possible to prove the following criterion, which sug-
gests how to prove disjointness with mixing �ows or �ows possessing the
property of ELF.

Theorem 20 ([D1]). Let {St}t∈R be an ergodic �ow on (Y, C, ν) such that
for a certain sequence divergent to in�nity {tn}n∈N of real numbers we have

Stn →
∫

R
Ss dP (s),

where P is a probability Borel measure on R. Then, the �ow {St}t∈R is

disjoint from all mixing �ows. If Fourier transformation of measure P is an

analytic function, then {St}t∈R is spectrally disjoint from all mixing �ows. If

the measure P is not a Dirac measure (concentrated in one point), then the

�ow {St}t∈R is disjoint from all weakly mixing �ows of ELF.

This criterion proves to be �e�ective� when the �ow can be represented
as the special �ow over a rigid automorphism.

B.3 Special �ows

Let T be a measure�preserving automorphism of a standard probability Borel
space (X,B, µ). We say that T is rigid if there exists a sequence divergent
to in�nity {qn}n∈N (known as the time of the rigidity) such that T qn → Id
in the weak operator topology. Let f : X → R be an integrable function
with positive values. Then, the set Xf = {(x, t) ∈ X × R : 0 ≤ t < f(x)}
is the state space of the special �ow T f = {(T f )t}t∈R. The �ow T f acts
on the point by moving it vertically upwards with unique speed and using
the identi�cation of points (x, f(x)) and (Tx, 0). The �ow T f preserves the
measure µf , which is the restriction of the product of measure µ with the
Lebesgue measure on R to the set Xf .

Let us remember that any ergodic Hamiltonian Cr��ow on the torus (see
Chapter A.4) without �xed points is Cr�conjugate with a certain special
�ow T f , where T is an irrational rotation on the circle, while f : T → R is
a function of Cr class, r ∈ N ∪ {∞} (see [8]). Moreover, every such special
�ow comes from a certain Hamiltonian �ow (see [15]).

Let us assume that f ∈ L2(X,B, µ) and let us denote f0(x) = f(x) −∫
X
f dµ. Let us denote by f ( · )

0 ( · ) the additive cocycle over the automorphism
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T associated with the function f0 : X → R (see (5)). Let us assume that
{qn}n∈N is a time of the rigidity for T and

sup
n∈N

‖f (qn)
0 ‖L2 <∞.

Then, when pass to the subsequence, we can assume that(
f

(qn)
0

)
∗
µ→ P

weakly in the space of probability Borel measures on R. The following result
was proved in [D1]:

Theorem 21 ([D1]). If the function f is separated from zero, then

(T f )cqn →
∫

R
(T f )−t dP (t)

weakly, where c =
∫
X
f dµ.

This result, together with Theorem 20 and Koksma�Denjoy type inequal-
ity proved in [1], makes it possible to generalize a classical result of Kochergin
[35], which says that any special �ow T f such that T is an irrational rotation
on the circle, while f is a function of bounded variation, is not mixing.

Theorem 22 ([D1]). If T is an irrational rotation on the circle and

f ∈ L2(T, λ1) is a positive function separated from zero and such that f̂(n) ∈
O(1/|n|), then the �ow T f is disjoint from all mixing �ows. If, in addition,

f is of bounded variation, then T f is spectrally disjoint from all mixing �ows.

Moreover, Theorems 20 and 21 make it possible construct Hamiltonian
Cr��ows on the torus which are disjoint with ELFs for any r ∈ N (see the
end of [D1]). The next examples of special �ows over rotations which are
disjoint with ELFs are considered in [D2] and these are �ows built under
such functions as

f(x) = −a(log{x}+ log{−x}) + h(x), (12)

where a > 0 and h : T → R is an absolutely continuous function. The main
results of paper [D2] can be formulated in the following way:
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Theorem 23 ([D2]). Let T : T → T be an irrational rotation by α. If

f > 0 has the form of (12), then the special �ow T f is weakly mixing and

disjoint from ELFs (even more so for mixing �ows). If, in addition, α is

approximated fast enough by rational numbers, then T f is spectrally disjoint

from all mixing �ows.

This result makes it possible to provide at least a partially positive answer
to the question whether, on compact surface with a positive genus, one can
�nd weakly mixing (but not mixing) C∞��ows. The following result was
proved in paper [D2]:

Theorem 24 ([D2]). On any compact and connected C∞�surface with

a negative even Euler characteristic, there exists a C∞��ow preserving a

positive C∞�measure, which is weakly mixing, spectrally disjoint from all

mixing �ows and disjoint from ELFs in the sense of Furstenberg.

The subject matter discussed in article [D1] and [D2] is continued and
further results were included in papers [25], [10] and [26] sent for publication.
All these papers were enclosed with the dissertation and denoted as [D3], [D4]
and [D5] respectively.

In article [D3], which was accepted for publication in Fundamenta Math-
ematicae, Theorem 21 was generalized for the case where the automorphism
in the base of the special �ow is not rigid, but in a certain sense it is locally
rigid. It makes it possible to determine the disjointness of certain special
�ows constructed over automorphisms which are more complicated than ro-
tations on the circle. In paper [D3], a classical Katok result was generalized
(see [33]). It says that special �ows constructed over ergodic exchanges of
intervals and under functions of bounded variation are not mixing. In [D3],
it was proved that such �ows are disjoint from mixing �ows in the sense of
Furstenberg. This paper also considers ergodic smooth measure�preserving
�ows on surfaces, which had been earlier examined by Kochergin in [38]. In
[D3], it was proved that if a �ow possesses a �nite number of critical points,
all of the non�degenerated saddle type, and which admit a �good� transversal
curve, then it is disjoint from ELF �ows.

However, it seems that the most important result in these papers is the
proof of the thesis (included in [D5]) that special �ows constructed over
certain irrational rotations and under piecewise smooth functions with a non�
zero sum of the jumps possess the property imitating the Ratner property
(see [49] and [54]). This result makes it possible to construct mildly mixing
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�ows, which are derived from di�erential equations with singular points of
the simple pole type.
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