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Abstract
Let T be an ergodic and free Zd-rotation on the d-dimensional torus

Td given by

T (m1,...,md)(z1, ..., zd)

= (e2πi(α11m1+...+α1dmd)z1, ..., e
2πi(αd1m1+...+αddmd)zd),

where (m1, ..., md) ∈ Zd, (z1, ..., zd) ∈ Td and [αjk]j,k=1...d ∈ Md(R). For
a continuous circle cocycle φ : Zd×Td → T (φm + n(z) = φm(T n z)φn(z)
for any m, n ∈ Zd), we de�ne the winding matrix W (φ) of a cocycle φ,
which is a generalization of the topological degree. We study spectral
properties of extensions given by

T φ : Zd × Td × T → Td × T, (T φ)m(z, ω) = (T m z, φm(z)ω).

We show that if φ is smooth (for example φ is of class C1) and det W (φ) 6=
0, then T φ is mixing on the orthocomplement of the eigenfunctions of T .
For d = 2 we show that if φ is smooth (for example φ is of class C4),
det W (φ) 6= 0 and T is a Z2-rotation of �nite type, then T φ has countable
Lebesgue spectrum on the orthocomplement of the eigenfunctions of T .
If rank W (φ) = 1, then T φ has singular spectrum.

Introduction

Let X be a compact abelian group and let µ be the probability Haar measure
of X. Assume that G is a countable discrete abelian group and Φ : G → X is a
group homomorphism. We will call a G�action on X given by

T gx = Φ(g)x

the G�rotation onX. The G�rotation T is ergodic and free i� Φ is monomorphic
and Φ(G) is dense in X. Let H be a locally compact abelian group. Throughout
this paper H will be the circle or real line.
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De�nition 0.1. By an H�cocycle of the G�rotation T we mean a measur-
able function φ : G×X → H such that

φg1g2(x) = φg1(T g2x)φg2(x)

for any g1, g2 ∈ G and x ∈ X.

We will call φ suitably smooth if the function φg is smooth for any g ∈ G.
Suppose thatH is a compact group and letm be the probability Haar measure of
H. Given anH�cocycle φ consider the G�action T φ : G → Aut(X×H,B, µ×m)
given by

(T φ)g(x, h) = (T gx, φg(x)h),

where B is the product σ�algebra of the Boolean σ�algebras and Aut(X ×
H,B, µ × m) is the group of all measure�preserving automorphisms. The G�
action T φ is called an H�extension of T . In this paper we will consider circle
extensions of rotations on the torus.

By Td (d ∈ N) we mean the d-dimensional torus {(z1, ..., zd) ∈ Cd; |z1| =
... = |zd| = 1}. We will also use the additive notation, i.e. we will identify the
group Td with the group Rd/Zd. We will also identify functions on Rd/Zd with
the Zd�periodic functions on Rd (periodic of period 1 in each coordinates). Let
λd denote the probability Lebesgue measure on Td. Let Φ : Zd → Td be a group
homomorphism. Then there exists a matrix α = [αjk]j,k=1...d ∈ Md(R) such
that

Φ(m1, ...,md) = (e2πi(α11m1+...+α1dmd), ..., e2πi(αd1m1+...+αddmd)).

Consider a Zd�rotation T on Td given by

T m z = Φ(m) z = (e2πi(α11m1+...+α1dmd)z1, ..., e
2πi(αd1m1+...+αddmd)zd),

where m = (m1, ...,md) ∈ Zd and z = (z1, ..., zd) ∈ Td.

Lemma 0.1. T is ergodic i� m α /∈ Zd for any m ∈ Zd \ {0}. T is free i�
αm T /∈ Zd for any m ∈ Zd \ {0}. �

Write T j = T
(0,...,0,

j

1,0,...,0)
for j = 1, ..., d. For any function ψ : Td → T,

any n ∈ Z and j = 1, ..., d set

ψ(n,j)(z) =


ψ(z)ψ(T j z)...ψ(T n−1

j z) if n > 0
1 if n = 0

(ψ(T n
j z)ψ(T n+1

j z)...ψ(T −1
j z))−1 if n < 0.

Let φ : Zd × Td → T be a T�cocycle. Then φ can be represented as

φm(z) = φ
(m1,1)
1 (T m2

2 T m3
3 ...T md

d z)φ(m2,2)
2 (T m3

3 ...T md

d z)...φ(md,d)
d (z),

where φj = φ
(0,...,0,

j

1,0,...,0)
for j = 1, ..., d. Moreover, for any j, k = 1, ..., d we

have

(1) φj(T k z)φj(z)−1 = φk(T j z)φk(z)−1.
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Suppose that φ is a continuous cocycle. Then φ1, ..., φd can be represented as

φ1(e2πix1 , ..., e2πixd) = e2πi(h1(x1,...,xd)+w11x1+...+w1dxd)

...
φd(e2πix1 , ..., e2πixd) = e2πi(hd(x1,...,xd)+wd1x1+...+wddxd),

where W (φ) = [wjk]j,k=1...d ∈ Md(Z) and h1, ..., hd : Rd/Zd → R are con-
tinuous. In the above representation of φ, the matrix W (φ) is unique, while
h1, ..., hd are unique up to an additive integer constant. We call the matrix
W (φ) the winding matrix of the cocycle φ.

For j = 1, ..., d let Tj : Rd/Zd → Rd/Zd be a translation given by

Tj(x1, ..., xd) = (x1 + α1j , ..., xd + αdj).

Let T be a Zd�action on Rd/Zd given by Tm = Tm1
1 ◦ ... ◦ Tmd

d . From (1) we
have

exp(2πi(hj(Tk x)−hj(x)+
d∑

l=1

wjlαlk)) = exp(2πi(hk(Tj x)−hk(x)+
d∑

l=1

wklαlj)).

It follows that

hj(Tk x)− hj(x)− (hk(Tj x)− hk(x)) + (Wα)jk − (Wα)kj = djk ∈ Z.

Since ∫
Td

(hj(Tk x)− hj(x)− (hk(Tj x)− hk(x)))dx = 0,

we have
hj(Tk x)− hj(x) = hk(Tj x)− hk(x)

for j, k = 1, ..., d and

(2) (Wα)− (Wα)T ∈Md(Z).

For any function f : Rd/Zd → R, any n ∈ Z and j = 1, ..., d set

f (n,j)(x) =


f(x) + f(Tj x) + ...+ f(Tn−1

j x) if n > 0
0 if n = 0

−(f(Tn
j x) + f(Tn+1

j x) + ...+ f(T−1
j x)) if n < 0.

Then h = h(φ) : Zd × Rd/Zd → R given by

hm(x) = h
(m1,1)
1 (Tm2

2 Tm3
3 ...Tmd

d x) + h
(m2,2)
2 (Tm3

3 ...Tmd

d x) + ...+ h
(md,d)
d (x)

is a real cocycle.

In the case d = 1, the cocycle φ has only one generator φ1 and the winding
matrix of φ is the topological degree of φ1. Then we have some information on
spectral properties of T φ. It has been proved by Choe in [1] that if φ is of class
C2 and W (φ) 6= 0, then T φ has countable Lebesgue spectrum on the ortho-
complement of the eigenfunctions of T . The assumptions for φ were weakened
in [8] to φ absolutely continuous and φ′ of bounded variation to get countable
Lebesgue spectrum. In [8] the authors have proved also that if φ is absolutely
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continuous, then T φ is mixing on the orthocomplement of the eigenfunctions of
T . In [7] a su�cient condition for countable Lebesgue spectrum is expressed in
terms of the Fourier coe�cients of φ. On the other hand, in [4] the authors have
proved that if W (φ) = 0 and φ is absolutely continuous, then T φ has singular
spectrum.

The aim of this paper is to study the spectral properties of cocycles for
d > 1. We will try to generalize the above results. We show that if φ is
weakly absolutely continuous and detW (φ) 6= 0, then T φ is mixing on the
orthocomplement of the eigenfunctions of T . For d = 2 we show that if we put
a stronger assumption on φ (for example φ of class C4), and T is a Z2-rotation
of �nite type (i.e. T is slowly approximate to rational rotations), then T φ has
countable Lebesgue spectrum on the orthocomplement of the eigenfunctions of
T . In the case detW (φ) = 0 we prove that if rankW (φ) = 1 (or rankW (φ) = 0
and there is an m ∈ Z2 \ {0} such that the automorphism T m is not ergodic)
and φ is absolutely continuous, then T φ has singular spectrum.

1 Notation and facts from spectral theory

Let U be a unitary representation of group G in a separable Hilbert space
H. For any f ∈ H we de�ne the cyclic space G(f) = span{Ugf ; g ∈ G}. By

the spectral measure σf of f we mean a Borel measure on Ĝ determined by the
equalities ∫

Ĝ
γ(g)dσf (γ) = (Ugf, f)

for all g ∈ G.

Theorem 1.1 (spectral theorem). There exists a sequence f1, f2, ... in H
such that

(3) H =
⊕∞

n=1 G(fn) and σf1 � σf2 ... .

Moreover, for any sequence f ′1, f
′
2, ... in H satisfying (3) we have σf1 ≡ σf ′1

, σf2 ≡
σf ′2

, ... �

The spectral type of σf1 (the equivalence class of measures) will be called the
maximal spectral type of U . U is said to have Haar spectrum if σf1 ≡ λ, where λ

is the Haar measure on Ĝ. It is said that U has spectrum of uniform multiplicity
if σfn

≡ σf1 for n = 1, 2, ..., k and σfn
≡ 0 for n > k, where k ∈N∪{∞}. We

say that an operator U is mixing if for any f, h ∈ H we have

lim
g→∞

(Ugf, h) = 0.

Consider a unitary representation U of the group G in L2(X × H,µ ×m)
given by

Ugf(x, h) = f(T gx, φg(x)h).

Let us decompose

L2(X ×H,µ×m) =
⊕
χ∈Ĥ

Hχ,
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where
Hχ = {f ; f(x, h) = ξ(x)χ(h), ξ ∈ L2(X,µ)}.

Observe that Hχ is a closed U�invariant subspace of L2(X ×H,µ×m).

Lemma 1.2. (see [8]) The representation U : G → U(Hχ) is unitarily
equivalent to the representation Uχ : G → U(L2(X,µ)) given by

((Uχ)gξ)(x) = χ(φg(x))ξ(T gx).

Proof. We de�ne V : Hχ → L2(X,µ) by putting V f = ξ, where f(x, h) =
ξ(x)χ(h). Then V is an isometry from Hχ onto L2(X,µ) and

Ugf(x, h) = f(T gx, φg(x)h) = ξ(T gx)χ(φg(x))χ(h),

so
(V Ugf)(x) = χ(φg(x))ξ(T gx) = ((Uχ)gξ)(x) = ((Uχ)gV f)(x),

and the lemma follows. �
We say the representation U is mixing on the orthocomplement of the eigen-

functions of T if U is mixing on the orthocomplement of H1. We say the repre-
sentation U has em Haar spectrum of uniform multiplicity on the orthocomple-
ment of the eigenfunctions of T if U has Haar spectrum of uniform multiplicity
on the orthocomplement of H1.

Suppose that T is ergodic and free G�rotation. Let F : G × X → T be a
T�cocycle. Consider a unitary representation of the group G in L2(X,µ) given
by

(Ugf)(x) = Fg(x)f(T gx).

Lemma 1.3. (see [8]) The maximal spectral type of U is either discrete or
continuous singular or Haar and U has spectrum of uniform multiplicity. �

Lemma 1.4. (see [8]) Suppose that

lim
g→∞

∫
X

Fg(x)dµ(x) = 0.

Then U is mixing. Moreover, if∑
g∈G

|
∫

X

Fg(x)dµ(x)|2 < +∞,

then U has Haar spectrum of uniform multiplicity. �

Let T be an ergodic and free Zd�rotation on Td. Let φ : Zd × Td → T be a
continuous cocycle. For any q ∈ Z and m ∈ Zd set

sm,q = |
∫

Td

(φ(z))qd z | = |
∫

Td

e2πiq(hm(x)+m W (φ) x T )dx |.

By Lemma 1.4, we obtain:
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Corollary 1.1. Suppose that for any q ∈ Z \ {0} we have

lim
m→∞

sm,q = 0.

Then the circle extension of T given by

T φ : Zd × Td × T → Td × T, (T φ)m(z, ω) = (T m z, φm(z)ω)

is mixing on the orthocomplement of the eigenfunctions of T . Moreover, if for
any q ∈ Z \ {0}, ∑

m∈Zd

s2m,q <∞,

then T φ has countable Lebesgue spectrum on this orthocomplement. �

Suppose that detW (φ) 6= 0. Consider a family of subsets of Zd of the form

Vl = {m ∈ Zd \ {0}; |
d∑

j=1

mjwjl| = max
1≤k≤d

|
d∑

j=1

mjwjk|}, l = 1, ..., d.

Then Zd =
d⋃

l=1

Vl∪{0}. To obtain either mixing or countable Lebesgue spectrum

of T φ it is enough to show that for every l = 1, ..., d and q ∈ Z \ {0} we have
either

lim
m→∞,m∈Vl

sm,q = 0

or ∑
m∈Vl

s2m,q <∞

respectively. We will need the following simple lemma.

Lemma 1.5. There exists a constant C > 0 such that for any m ∈ Vl and
k = 1, .., d we have

|mk| ≤ C|
d∑

j=1

mjwjl|.

Proof. If m ∈ Vl, then |ck| ≤ |cl|, where ck =
d∑

j=1

mjwjk for k = 1, ..., d.

Put W = W (φ). By the Cramer's formulas we have

|mk| ≤
|detW1k|+ ...+ |detWdk|

|detW |
|cl|.

Hence for C =
d∑

r,s=1

|detWrs|/|detW | we obtain

|mk| ≤ C|
d∑

j=1

mjwjl|. �
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2 Mixing of circle extensions of Zd�rotations

Let T : Zd × Rd/Zd → Rd/Zd be an ergodic Zd�rotation on Rd/Zd. For a
given m ∈ Zd let the operator PT

m : L1(Rd/Zd) → L1(Rd/Zd) be de�ned by

f + fTm + fT 2
m + ...+ fTn−1

m

n
→ PT

mf

in L1(Rd/Zd). By Birkho�'s ergodic theorem, the operator PT
m is well de�ned

and

PT
mf ◦ Tm = PT

mf,

∫
Td

PT
mfdx =

∫
Td

fdx, PT
m(f ◦ Tm ′) = PT

mf ◦ Tm ′

for any m ′ ∈ Zd.

Lemma 2.1. Let h : Zd × Rd/Zd → R be an L1 cocycle. Then for every
m ∈ Zd we have

PT
mhm =

∫
Td

hm(x)dx .

Proof. Since for any m ′ ∈ Zd,

hm ◦ Tm ′ − hm = hm ′ ◦ Tm − hm ′

we have

PT
mhm ◦ Tm ′ − PT

mhm = PT
mhm ′ ◦ Tm − PT

mhm ′ = 0.

It follows that PT
mhm is T�invariant. By ergodicity of T , PT

mhm is a constant
and equal to ∫

Td

PT
mhm(x)dx =

∫
Td

hm(x)dx . �

De�nition 2.1. We will say that a function f : Rd/Zd → R is weakly
absolutely continuous (WAC for short) if f is a continuous function and for any
(x1, ..., xj−1, xj+1, ..., xd) ∈ Rd−1, j = 1, ..., d the function

f(x1, ..., xj−1, ·, xj+1, ..., xd) : R/Z → R

is absolutely continuous and for any j = 1, ..., d we have ∂f
∂xj

∈ L1(Rd/Zd).

Obviously, if f is of class C1 then f isWAC. We call a cocycle φ : Zd×Td →
T WAC if the cocycle h : Zd × Rd/Zd → R is WAC.

Lemma 2.2. Let T be an ergodic Zd�rotation on Rd/Zd. If h : Zd ×
Rd/Zd → R is a WAC cocycle, then for every m ∈ Zd and l = 1, ..., d we
have

PT
m

∂

∂xl
hm = 0.

In particular, for any l, j = 1, ..., d we have

lim
n→∞

1
n

∂

∂xl
h

(n,j)
j = 0 in L1(Rd/Zd).
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Proof. Observe that ∂
∂xl

h : Zd × Rd/Zd → R is an L1 cocycle. By
Lemma 2.1,

PT
m

∂

∂xl
hm =

∫
Td

∂

∂xl
hm(x)dx = 0.�

Theorem 2.3. Let T be an ergodic Zd�rotation on Td and let φ : Zd×Td →
T be a WAC cocycle. Consider the circle extension of T given by

T φ : Zd × Td × T → Td × T, (T φ)m(z, ω) = (T m z, φm(z)ω).

If detW (φ) 6= 0, then T φ is mixing on the orthocomplement of the eigenfunc-
tions of T .

Proof. By Corollary 1.1, it is enough to show that for every l = 1, ..., d and
q ∈ Z \ {0},

lim
m→∞,m∈Vl

sm,q = 0.

Applying integration by parts for Stieltjes integrals, for m ∈ Vl we get

sm,q

= |
∫

Td−1
e2πiq

∑d
j,k=1;k 6=l mjwjkxk(

∫
T
e2πiq(hm(x)+

∑d
j=1 mjwjlxl)dxl)dx1...d̂xl...dxd|

≤
∫

Td−1
|
∫

T
e2πiq(hm(x)+

∑d
j=1 mjwjlxl)dxl|dx1...d̂xl...dxd

=
1

2π|q
∑d

j=1mjwjl|

∫
Td−1

|
∫

T
e2πiqhm(x)de2πiq

∑d
j=1 mjwjlxl |dx1...d̂xl...dxd

=
1

2π|q
∑d

j=1mjwjl|

∫
Td−1

|
∫

T
e2πiq

∑d
j=1 mjwjlxlde2πiqhm(x)|dx1...d̂xl...dxd

=
1

|
∑d

j=1mjwjl|

∫
Td−1

|
∫

T
e2πiq(hm(x)+

∑d
j=1 mjwjlxl)

∂

∂xl
hm(x)dxl|dx1...d̂xl...dxd

≤ 1

|
∑d

j=1mjwjl|

∫
Td

| ∂
∂xl

hm(x)|dx

≤
d∑

k=1

|mk|
|
∑d

j=1mjwjl|

∫
Td

|
∂

∂xl
h

(mk,k)
k (x)

mk
|dx .

For n ∈ Z \ {0} set

bn = max
1≤k≤d

∫
Td

|
∂

∂xl
h

(n,k)
k (x)

n
|dx .

Then b−n = bn. By Lemma 2.2, lim
n→∞

bn = 0.

If the sequence {nbn}n∈N is bounded by M > 0, then

|
∫

Td

e2πiq(hm(x)+m W (φ) x T )dx | ≤
d∑

k=1

|mkbmk
|

|
∑d

j=1mjwjl|
≤ d2MC

1∑d
l=1 |mk|

,
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by Lemma 1.5. Since lim
m→∞

1/
d∑

l=1

|mk| = 0, we obtain

lim
m→∞,m∈Vl

|
∫

Td

e2πiq(hm(x)+m W (φ) x T )dx | = 0.

Suppose now that the sequence {nbn}n∈Z is unbounded. Fix ε > 0. We have
to show that there exists a constant R > 0 such that if m = (m1, ...,md) ∈ m ∈
Vl and max(|m1|, ..., |md|) > R, then

|
∫

Td

e2πiq(hm(x)+m W (φ) x T )dx | < ε.

Let n0 be a natural number such that for |n| ≥ n0 we have bn <
ε

2dC . Set

R = min{r ∈ N; r ≥ n0,max
|n|≤r

|nbn| ≤ rbr}.

Then for |n| > R we have bn < ε
2dC . If m ∈ Vl and max(|m1|, ..., |md|) > R,

then the set D = {k ∈ {1, ..., d}; |mk| > R} is not empty. Choose k0 ∈ D.
Applying Lemma 1.5 we obtain

sm,q ≤
d∑

k=1

|mkbmk
|

|
∑d

j=1mjwjl|
≤

∑
k∈D

Cbmk
+

∑
k/∈D

C
|mkbmk

|
mk0

≤ ε/2 +
∑
k/∈D

C
RbR
R

≤ ε/2 +
∑
k/∈D

CbR < ε,

which completes the proof. �

Corollary 2.1. If φ is of class C1 and detW (φ) 6= 0, then T φ is mixing
on the orthocomplement of the eigenfunctions of T .

3 On functions of bounded variation on I2

Let I = [0, 1] and I2 = [0, 1] × [0, 1]. In this section we will study some
properties of functions of bounded variation on I2. It will be useful to obtain
countable Lebesgue spectrum of T φ in the case when d = 2.

For a closed rectangle Q = [a1, a2]× [b1, b2] ⊂ I2 the linear functional ∆∗
Q :

CI2 → C is de�ned by

∆∗
Qf = f(a2, b2)− f(a1, b2)− f(a2, b1) + f(a1, b1).

By a partition P of I2, we mean a partition into rectangles [η(1)
i1
, η

(1)
i1+1] ×

[η(2)
i2
, η

(2)
i2+1] given by sequences

{(η(j)
0 , η

(j)
1 , ..., η(j)

mj
); 0 = η

(j)
0 ≤ ... ≤ η(j)

mj
= 1 , j = 1, 2}.

Given such a partition, for i1 = 0, ...,m1 − 1 and i2 = 0, ...,m2 − 1, the linear
functional ∆i1i2 : CI2 → C is de�ned by

∆i1i2f = ∆∗
[η

(1)
i1

,η
(1)
i1+1]×[η

(2)
i2

,η
(2)
i2+1]

f

= f(η(1)
i1+1, η

(2)
i2+1)− f(η(1)

i1+1, η
(2)
i2

)− f(η(1)
i1
, η

(2)
i2+1) + f(η(1)

i1
, η

(2)
i2

).
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De�nition 3.1. For a function f : I2 → C, by the variation of f we mean

Var(2)f = sup
P∈P

m1−1∑
i1=0

m2−1∑
i2=0

|∆i1i2f |,

where P is the family of all partitions P of I2. If Var(2)f is �nite, then f is said
to be of bounded variation on I2 in the sense of Vitali.

De�nition 3.2. A function f is said to be of bounded variation on I2 in
the sense of Hardy and Krause if f is of bounded variation in the sense of Vitali
and both of the functions f(0, ·), f(·, 0) : I → C are of bounded variation in the
ordinary sense.

In what follows functions of bounded variation are those of bounded variation
in the sense of Hardy and Krause. We will denote by BV the space of all
functions of bounded variation on I2. We will consider the norm on BV given
by

‖f‖BV = sup
x∈I2

|f(x)|+ VarIf(·, 0) + VarIf(0, ·) + Var(2)f.

Recall that if a function is of bounded variation, then it is integrable in the
sense of Riemann (see [6] �448).

For m ∈ Z set |m|1 = max(|m|, 1).

Lemma 3.1. Let f : I2 → C be a function on bounded variation. If g : I →
C is a function given by g(t) = f({pt + c}, {qt + d}), where p, q ∈ Z, c, d ∈ R,
then

VarIg ≤ |p|1|q|1‖f‖BV . �

Let f, g : I2 → C be bounded functions. We will denote by
∫

I2 fdg the
Riemann-Stieltjes integral of function f with respect to g (see [6] �381). Recall
that if both f and g are of bounded variation and if at least one of the functions
is continuous then

∫
I2 fdg exists (see [6] �448) and

(4) |
∫

I2
fdg| ≤ sup

x∈I2
|f(x)|Var(2)g.

Theorem 3.2 (integration by parts). (See [6] �448.) Let f, g : I2 → C
be functions of bounded variation and let at least one of them be continuous.
Then ∫

I2
fdg =

∫
I2
gdf −

∫
I

g(·, 1)df(·, 1) +
∫

I

g(·, 0)df(·, 0)

−
∫

I

g(1, ·)df(1, ·) +
∫

I

g(0, ·)df(0, ·) + ∆∗
I2gf.�

We say f : R2/Z2 → C is of bounded variation if f |I2 is of bounded variation.
For any f : R2/Z2 → C, a, b ∈ R set fa,b(x1, x2) = (x1 + a, x2 + b). Then

Var(2)fa,b = Var(2)f . By the previous theorem, we obtain:

Corollary 3.1. Let f, g : R2/Z2 → C be functions of bounded variation and
let at least one of them be continuous. Then∫

I2
fdg =

∫
I2
gdf.

10



Lemma 3.3. If f, g ∈ BV , then fg ∈ BV and we have

‖fg‖BV ≤ 2‖f‖BV ‖g‖BV . �

Recall that if f : I → C is of bounded variation and there exists a real
number a > 0 such that 0 < a ≤ |f(x)| for any x ∈ I, then the function 1/f is
of bounded variation and

(5) VarI(
1
f

) ≤ VarIf

a2
.

Lemma 3.4. Let f ∈ BV and assume that there exists a real number a such
that for every x ∈ I2 we have 0 < a ≤ |f(x)|. Then 1/f ∈ BV and

Var(2)
1
f
≤ ‖f‖BV

a2
+

2‖f‖2BV

a3
. �

De�nition 3.3. We say that a function f : Id → C is di�erentiable in the
sense of Vitali at (x1, x2) ∈ I2 if

lim
(h1,h2)→(0,0)

∆∗
[x1,x1+h1]×[x2,x2+h2]

f

h1h2
,

exists. This limit is called the derivative of f and is denoted by Df(x1, x2).

Remark. If f ∈ C2(I2), then Df(x) = ∂2f
∂x1∂x2

(x) (see [12] ch.7 �1). If a
function f is of bounded variation in the sense of Vitali, then f is di�erentiable
in the sense of Vitali almost everywhere (see [12] ch.7 �2).

De�nition 3.4. A function f is said to be di�erentiable in the sense of
Hardy and Krause at x ∈ I2 if f is di�erentiable in the sense of Vitali and the
partial derivatives of f at x exist.

In what follows, by di�erentiable functions we mean those which are di�er-
entiable in the sense of Hardy and Krause.

Lemma 3.5. Let f : I2 → C be a di�erentiable function. Then the function
exp f : I2 → C is di�erentiable and we have

D exp f(x) = exp f(x)(Df(x) +
∂

∂x1
f(x)

∂

∂x2
f(x)). �

The number |P | = (b1 − a1)(b2 − a2) is called the substance of the rectangle
P = [a1, b1]× [a2, b2].

De�nition 3.5. A function f : I2 → C is said to be absolutely continuous
in the sense of Vitali if for every ε > 0 there exists δ > 0 such that for every
system of rectangles Q1, ..., Qn such that Int Qi are pairwise disjoint,

|Q1|+ ...+ |Qn| < δ =⇒ |∆∗
Q1
f |+ ...+ |∆∗

Qn
f | < ε.

Remark. If a function is absolutely continuous in the sense of Vitali, then
it is of bounded variation in the sense of Vitali (see [12] ch.7 �3).
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De�nition 3.6. A function f is said to be is absolutely continuous on I2

in the sense of Hardy and Krause if f is absolutely continuous in the sense of
Vitali and both of the functions f(0, ·), f(·, 0) : I → C are absolutely continuous
in the ordinary sense.

In what follows absolutely continuous functions are those absolutely contin-
uous in the sense of Hardy and Krause. We will denote by AC the space of
function which are absolutely continuous on I2. A function f : R2/Z2 → C is
absolutely continuous if f |I2 is absolutely continuous.

Recall that (see [12] ch.7 �3) if a function f is of bounded variation and g is
absolutely continuous, then

(6)

∫
I2
fdg =

∫
I2
fDgdx .

Lemma 3.6. Let f : I2 → R be an absolutely continuous function such that
f(x1, 1)−f(x1, 0), f(1, x2)−f(0, x2) ∈ Z for any (x1, x2) ∈ I2 and Df, ∂f

∂x1
, ∂f

∂x2
∈

BV . Suppose that there exists a real number a > 0 such that

|Df(x)− 2πi
∂

∂x1
f(x)

∂

∂x2
f(x)| ≥ a > 0

for any x ∈ I2. Then

|
∫

I2
exp 2πif(x)dx | ≤

‖Df‖BV + 2‖ ∂
∂x1

f‖BV ‖ ∂
∂x2

f‖BV

a2

+
‖Df‖2BV + 16π‖ ∂

∂x1
f‖2BV ‖ ∂

∂x2
f‖2BV

a3
.

Proof. An application in succession (6), Lemma 3.5, integration by parts,
(4) and Lemma 3.4 gives that

|
∫

I2
exp 2πif(x)dx | =

1
2π
|
∫

I2

1
Df − 2πi ∂

∂x1
f ∂

∂x2
f
de2πif |

=
1
2π
|
∫

I2
e2πifd

1
Df − 2πi ∂

∂x1
f ∂

∂x2
f
|

≤ 1
2π

Var(2)
1

Df − 2πi ∂
∂x1

f ∂
∂x2

f

≤
‖Df − 2πi ∂

∂x1
f ∂

∂x2
f‖BV

2πa2
+
‖Df − 2πi ∂

∂x1
f ∂

∂x2
f‖2BV

πa3

≤
‖Df‖BV + 2‖ ∂

∂x1
f‖BV ‖ ∂

∂x2
f‖BV

a2

+
‖Df‖2BV + 16π‖ ∂

∂x1
f‖2BV ‖ ∂

∂x2
f‖2BV

a3
,

and the proof is complete. �

4 Koksma inequalities and Diophantine approxi-

mation on the torus

De�nition 4.1. Let x 1, ...,x N be a sequence in Rd. By the discrepancy of

12



x 1, ...,x N we mean

D∗
N (x 1, ...,x N ) = sup

J∈J
| 1
N

N∑
n=1

χJ({x n})− λ(J)|,

where J is the family of subcubes of Id of the form
∏d

i=1[0, βi), where 0 ≤ βi < 1
for j = 1, ..., d and {x} = ({x1}, ..., {xd}) for x = (x1, ..., xd).

Remark. If γ1, ..., γd, 1 are independent over Q, then lim
N→∞

D∗
N ({nγ}N

n=1) =

0, where γ = (γ1, ..., γd).

Set ‖x‖ = inf
p∈Z

|x + p| = min({x}, 1 − {x}) for any x ∈ R. For any h =

(h1, ..., hd) ∈ Zd and x = (x1, ..., xd) ∈ Rd denote

< h,x >=
d∑

j=1

hjxj and |h| =
d∏

j=1

max(|hj |, 1).

De�nition 4.2. Let γ1, ..., γd, 1 be real numbers independent over Q. The
multinumber γ = (γ1, ..., γd) is called of type η ≥ 1 if there exists C > 0 such
that for any h ∈ Zd \ {0}

‖ < h,γ > ‖ ≥ C

|h|η

We say γ is of �nite type if there exists η ≥ 1 such that γ is of type η.

It follows from the de�nition that for any γ ∈ Rd, h ∈ Zd and m ∈ Z \ {0}
the multinumber γ is of type η i� −γ is of type η i� γ + h is of type η i� mγ
is of type η.

Lemma 4.1. (See [10]) If γ ∈ R, (γ1, γ2) ∈ R2 are of type η, then there
exists L > 0 such that

D∗
N ({nγ}N

n=1) ≤
L

N1/η
,

D∗
N ({(nγ1, nγ2)}N

n=1) ≤
L logN
N1/(2η−1)

. �

If γ1, γ2, 1 are linearly dependent over Q and γ1, γ2 ∈ R \Q then there exist
t1, t2, t3 ∈ Z, t1, t2 6= 0 such that t1γ1 + t2γ2 = t3. Take s1, s2 ∈ Z such that
t2s1 − t1s2 = gcd(t1, t2).

De�nition 4.3. Let γ = (γ1, γ2) be a pair such that at least one of the
numbers γ1, γ2 is irrational. Then the pair γ is called of type η

(i) for γ1, γ2, 1 rationally independent if γ is of type η in the ordinary sense
(De�nition 4.2),

(ii) for γ1, γ2, 1 rationally dependent and γ1, γ2 ∈ R\Q if s1γ1 + s2γ2 is of type
η in the ordinary sense,

(iii) for γ2 ∈ Q if γ1 is of type η in the ordinary sense.

Note that the second part of this de�nition is independent of the choice of
t1, t2, s1, s2.
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Theorem 4.2 (Denjoy-Koksma inequality). Let f : R/Z → C be of
bounded variation and let {xn}N

n=1 be a sequence of real numbers. Then

| 1
N

N∑
n=1

f(xn)−
∫

I

f(x)dx| ≤ D∗
N ({xn}N

n=1)VarIf.

Theorem 4.3 (Koksma-Hlawka inequality). Let f : R2/Z2 → C be of

bounded variation and let {(x(1)
n , x

(2)
n )}N

n=1 be a sequence in R2. Then

| 1
N

N∑
n=1

f(x(1)
n , x(2)

n )−
∫

T2
f(x)dx | ≤ D∗

N ({x(1)
n }N

n=1)VarIf(·, 1)

+D∗
N ({x(2)

n }N
n=1)VarIf(1, ·)

+D∗
N ({(x(1)

n , x(2)
n )}N

n=1)Var
(2)f.

The proofs of the above theorems can be found in [10].

Theorem 4.4. Let γ ∈ R2 be of type η. Then there exists a linear operator
Pγ : L1(R2/Z2) → L1(R2/Z2) and a constant L > 0 such that for any function
f : R2/Z2 → C of bounded variation and for any natural N ≥ 2 we have

| 1
N

N−1∑
n=0

f(x +nγ)− Pγf(x)| ≤ L logN
N1/(2η−1)

‖f‖BV .

Moreover, Pγf(x +γ) = Pγf(x) and
∫

I2 Pγf(x)dx =
∫

I2 f(x)dx.

Proof. We will use the symbol SN to denote

| 1
N

N−1∑
n=0

f(x +nγ)− Pγf(x)|.

CASE 1. Suppose that γ1, γ2, 1 are linearly independent over Q. Put
Pγf(x) =

∫
T2 fdλ. By the Koksma-Hlawka inequality and Lemma 4.1,

SN ≤ L1

N1/η
(VarIf(·, 1) + VarIf(1, ·)) +

L1 logN
N1/(2η−1)

Var(2)f

≤ L logN
N1/(2η−1)

‖f‖BV ,

where L1 is the constant from Lemma 4.1 and L = 3L1.
CASE 2. Suppose that γ2 = p

q , where p ∈ Z, q ∈ N. By the Denjoy-Koksma

inequality and Lemma 4.1, for any natural M and (x1, x2) ∈ T2 we have

| 1
M

M−1∑
n=0

f(x1 + nqγ1, x2 + np)−
∫

T
f(x, x2)dx| ≤

L1

M1/η
VarIf(·, x2).

Replace x2 by x2 + jp/q and f by fjγ1,0 for j = 0, ..., q − 1. Sum up these q
inequalities. Dividing the resulting inequality by q we get

| 1
qM

qM−1∑
n=0

f(x1 + nγ1, x2 + n
p

q
)− 1

q

q∑
j=1

∫
T
f(x, x2 + j

p

q
)dx|

≤ L1

qM1/η

q∑
j=1

VarIf(·, x2 + j
p

q
).
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For any natural N choose a natural number M such that qM ≤ N < (M + 1)q.
Put Pγf(x1, x2) = 1

q

∑q
j=1

∫
T f(x, x2 + jp/q)dx. Then

SN= | 1
N

N−1∑
n=0

f(x1 + nγ1, x2 + n
p

q
)− 1

q

q∑
j=1

∫
T
f(x, x2 + j

p

q
)dx|

≤ | 1
qM

qM−1∑
n=0

f(x1 + nγ1, x2 + n
p

q
)− 1

q

q∑
j=1

∫
T
f(x, x2 + j

p

q
)dx|

+|qM −N

NqM

qM−1∑
n=0

f(x1 + nγ1, x2 + n
p

q
) +

1
N

N−1∑
n=qM

f(x1 + nγ1, x2 + n
p

q
)|

≤ L1

qM1/η

q∑
j=1

VarIf(·, x2 + j
p

q
) +

2(N − qM)
N

sup
x∈T2

|f(x)|.

Since N − qM < q and N < 2qM ,

(7) SN ≤ 2q
N

sup
x∈T2

|f(x)|+ 2L1

N1/η

q∑
j=1

VarIf(·, x2 + j
p

q
).

By Lemma 3.1, we obtain

SN ≤ L logN
N1/(2η−1)

‖f‖BV ,

where L = 2q(L1 + 1).
CASE 3. Suppose that γ1, γ2, 1 are linearly dependent over Q and γ1, γ2 ∈

R \Q. Then there exist t1, t2, t3 ∈ Z, t1, t2 6= 0 such that t1γ1 + t2γ2 = t3. Take
s1, s2 ∈ Z such that t2s1 − t1s2 = gcd(t1, t2). Set t = gcd(t1, t2) and

B =
[

s1 s2
t1/t t2/t

]
.

Since B ∈M2(Z) and detB = 1, B : R2/Z2 → R2/Z2 is a group automorphism.
Consider the function g : R2/Z2 → C given by g = fB−1. Then the function
g(·, x2) : R/Z → C is of bounded variation for any x2 ∈ R. Replace γ1 by
s1γ1 + s2γ2, f by g, q by t, p by t3 in (7). Applying Lemma 3.1 we obtain

| 1
N

N−1∑
n=0

g(y1 + n(s1γ1 + s2γ2), y2 + n
t3
t

)− 1
t

t∑
j=1

∫
T
g(x, y2 + j

t3
t

)dx| ≤

2t
N

sup
x∈T2

|g(x)|+ 2L1

N1/η

t∑
j=1

VarIg(·, y2 + j
t3
t

) ≤ L logN
N1/(2η−1)

‖f‖BV ,

for any (y1, y2) ∈ R2, where L = 2t(1 + L1|t1||t2|). Put

Pγf(x1, x2) =
1
t

t∑
j=1

∫
T
fB−1(x,

t1x1 + t2x2 + jt3
t

)dx.
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With notation y1 = s1x1 + s2x2 and y2 = (t1x1 + t2x2)/t we have

SN = | 1
N

N−1∑
n=0

f(x1 + nγ1, x2 + nγ2)−
1
t

t∑
j=1

∫
T
fB−1(x,

t1x1 + t2x2 + jt3
t

)dx|

= | 1
N

N−1∑
n=0

gB(x1 + nγ1, x2 + nγ2)−
1
t

t∑
j=1

∫
T
g(x,

t1x1 + t2x2 + jt3
t

)dx|

= | 1
N

N−1∑
n=0

g(y1 + n(s1γ1 + s2γ2), y2 + n
t3
t

)− 1
t

t∑
j=1

∫
T
g(x, y2 + j

t3
t

)dx|

≤ L logN
N1/(2η−1)

‖f‖BV . �

5 Spectral properties of extensions of Z2�rotations

Let T : Z2 × T2 → T2 be an ergodic and free Z2�rotation given by

T (m1,m2)(z1, z2) = (e2πi(α11m1+α12m2)z1, e
2πi(α21m1+α22m2)z2).

De�nition 5.1. We say the rotation T is of type η if both of the pair
(α11, α21), (α12, α22) are of type η. The rotation T said to be of �nite type if
there exists η ≥ 1 such that T is of type η.

Lemma 5.1. Suppose that T is of type η. There exists a constant L > 0
such that if h : Zd × Rd/Zd → Rd is an absolutely continuous cocycle and the
cocycles ∂h

∂x1
, ∂h

∂x2
are of bounded variation, then

(8) | 1
N

∂

∂xk
h

(N,j)
j | ≤ L log |N |

|N |1/(2η−1)
‖ ∂

∂xk
hj‖BV

for any |N | ≥ 2 and j, k = 1, 2.

Proof. It su�ces to show that the inequality (8) is true for any natural N .
By Theorem 4.4,

| 1
N

∂

∂xk
h

(N,j)
j − P(α1j ,α2j)(

∂

∂xk
hj)| ≤

L logN
N1/(2η−1)

‖ ∂

∂xk
hj‖BV .

Observe that PT
m = Pαm. Application Lemma 2.2 gives

P(α1j ,α2j)(
∂

∂xk
hj) = 0. �

Theorem 5.2. Suppose that T is an ergodic and free Z2�rotation on T2

which is of �nite type. Let φ : Z2 × T2 → T be an absolutely continuous cocycle
such that the cocycles Dh, ∂h

∂x1
, ∂h

∂x2
are of bounded variation. If detW (φ) 6=

0, then T φ has countable Lebesgue spectrum on the orthocomplement of the
eigenfunctions of T .

In view of Corollary 1.1 it is enough to prove that for any q ∈ Z \ {0} and
l = 1, 2, ∑

m∈Vl

s2m,q <∞,
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where

sm,q = |
∫

T2
φm(z)qd z |

= |
∫

T2
e2πiq(hm(x1,x2)+(m1w11+m2w21)x1+(m1w12+m2w22)x2)dx1dx2|.

We will prove the above condition only for l = 1. The proof in the case l = 2 is
similar.

Let η be a type of T . Take a real number a such that max(1 − 1/(2η −
1), 3/4) < a < 1. Then there exists K > 0 such that

(9)
logN

N1/(2η−1)
≤ K

Na

N

for any natural N ≥ 2. Set

M = 1 +KLCa(‖ ∂

∂x1
h1‖BV + ‖ ∂

∂x1
h2‖BV + ‖ ∂

∂x2
h1‖BV + ‖ ∂

∂x2
h2‖BV ),

where C and L are the constants from Lemma 1.5 and Lemma 5.1 respectively.

Lemma 5.3. There exists a constant R > 0 such that if m ∈ V1 and

(2M)1/(1−a) ≤ |m1w11 +m2w21|,

then

sm,q ≤
R

|m1w11 +m2w21|
.

Proof. Applying Lemma 5.1, Lemma 1.5 and inequality (9) for any x ∈
R2/Z2 we get

| ∂
∂x1

hm(x)|
|m1w11 +m2w21|

≤
| ∂
∂x1

h
(m1,1)
1 (T (0,m2) x)|+ | ∂

∂x1
h

(m2,2)
2 (x)|

|m1w11 +m2w21|

≤ KL
|m1|a‖ ∂

∂x1
h1‖BV + |m2|a‖ ∂

∂x1
h2‖BV

|m1w11 +m2w21|

≤ M

|m1w11 +m2w21|1−a
.

It follows that for (2M)1/(1−a) ≤ |m1w11 +m2w21| we have

| ∂
∂x1

hm(x)| ≤ 1
2
|m1w11 +m2w21|

and

(10) | ∂
∂x1

hm(x) +m1w11 +m2w21| ≥
1
2
|m1w11 +m2w21|.

Applying in succession integration by parts, (5) with (10), Lemma 3.1 and
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Lemma 1.5 we obtain

sm,q

= |
∫

T
e2πiq(m1w12+m2w22)x2(

∫
T
e2πiq(hm(x1,x2)+(m1w11+m2w21)x1)dx1)dx2|

≤
∫

T
|
∫

T
e2πiq(hm(x1,x2)+(m1w11+m2w21)x1)dx1|dx2

≤ 1
2π|q|

∫
T
|
∫

T

1
∂

∂x1
hm(x) +m1w11 +m2w21

de2πiq(hm(x)+(m1w11+m2w21)x1)|dx2

=
1

2π|q|

∫
T
|
∫

T
e2πiq(hm(x)+(m1w11+m2w21)x1)d

1
∂

∂x1
hm(x) +m1w11 +m2w21

|dx2

≤ 1
2π|q|

∫
T
VarI

1
∂

∂x1
hm(·, x2) +m1w11 +m2w21

dx2

≤ 2
π|q|

∫
T

VarI
∂

∂x1
hm(·, x2)

|m1w11 +m2w21|2
dx2

≤ 2
π|q|

|m1|+ |m2|
|m1w11 +m2w21|2

(‖∂h1

∂x1
‖BV + ‖∂h2

∂x1
‖BV ),

and �nally

sm,q ≤
R

|m1w11 +m2w21|
,

where R = 4C
π|q| (‖

∂h1
∂x1

‖BV + ‖∂h2
∂x1

‖BV ). �

For a given s ∈ N let us denote by V1s the set

{m ∈ Z2\{0}; s|m1w12+m2w22| ≤ |m1w11+m2w21| ≤ (s+1)|m1w12+m2w22|}.

Then V1 =
∞⋃

s=1

V1s.

Lemma 5.4. There exists a constant R∗ > 0 such that if m ∈ V1s and

(11) (4Ms)1/(1−a) ≤ |m1w11 +m2w21|,

then

sm,q ≤
R∗

|m1w11 +m2w21|3a−1
.

Proof. Analysis similar to that in the proof of Lemma 5.3 shows that for
any x ∈ T2,

| ∂
∂x2

hm(x)|
|m1w12 +m2w22|

≤ M
|m1w11 +m2w21|a

|m1w12 +m2w22|

≤ 2sM
|m1w11 +m2w21|1−a

≤ 1
2
.

Therefore

| ∂
∂x2

hm(x) +m1w12 +m2w22| ≥
1
2
|m1w12 +m2w22|.
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From the above inequality and (10) we have

| ∂
∂x1

hm(x) +m1w11 +m2w21||
∂

∂x2
hm(x) +m1w12 +m2w22| ≥

1
4
|m1w11 +m2w21||m1w12 +m2w22|.

It follows that

|qDhm(x)−2πiq2(
∂

∂x1
hm(x)+m1w11+m2w21)(

∂

∂x2
hm(x)+m1w12+m2w22)| ≥

q2|m1w11 +m2w21||m1w12 +m2w22|.
Applying Lemma 3.6 to the function

q(hm(x1, x2) + (m1w11 +m2w21)x1 + (m1w12 +m2w22)x2)

we get

sm,q

≤
‖Dhm‖BV + 2‖∂hm

∂x1
‖BV ‖∂hm

∂x2
‖BV

q2|m1w11 +m2w21|2|m1w12 +m2w22|2

+
‖Dhm‖2BV + 16π‖∂hm

∂x1
‖2BV ‖

∂hm

∂x2
‖2BV

q2|m1w11 +m2w21|3|m1w12 +m2w22|3

≤ |m1‖|Dh1‖BV + |m2‖|Dh2‖BV

q2|m1w11 +m2w21|2|m1w12 +m2w22|2

+
2(|m1‖|∂h1

∂x1
‖BV + |m2‖|∂h2

∂x1
‖BV )(|m1‖|∂h1

∂x2
‖BV + |m2‖|∂h2

∂x2
‖BV )

q2|m1w11 +m2w21|2|m1w12 +m2w22|2

+
(|m1‖|Dh1‖BV + |m2‖|Dh2‖BV )2

q2|m1w11 +m2w21|3|m1w12 +m2w22|3

+
16π(|m1‖|∂h1

∂x1
‖BV + |m2‖|∂h2

∂x1
‖BV )2(|m1‖|∂h1

∂x2
‖BV + |m2‖|∂h2

∂x2
‖BV )2

q2|m1w11 +m2w21|3|m1w12 +m2w22|3

≤ R1
|m1|2 + |m2|2

|m1w11 +m2w21|2|m1w12 +m2w22|2

+R2
(|m1|2 + |m2|2)2

|m1w11 +m2w21|3|m1w12 +m2w22|3
,

where

R1 =
1
q2

(‖Dh1‖BV +‖Dh2‖BV +2
√
‖∂h1

∂x1
‖2BV + ‖∂h2

∂x1
‖2BV

√
‖∂h1

∂x2
‖2BV + ‖∂h2

∂x2
‖2BV

and

R2 =
1
q2

((‖Dh1‖BV +‖Dh2‖BV )2+16π(‖∂h1

∂x1
‖2BV +‖∂h2

∂x1
‖2BV )(‖∂h1

∂x2
‖2BV +‖∂h2

∂x2
‖2BV )).

By Lemma 1.5,

sm,q ≤ 2R1C
2

|m1w12 +m2w22|2
+

4R2C
4|m1w11 +m2w21|

|m1w12 +m2w22|3

≤ R∗|m1w11 +m2w21|
|m1w12 +m2w22|3

,
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where R∗ = 2R1C
2 + 4R2C

4. From (11) we have

1
|m1w12 +m2w22|

≤ 2s
|m1w11 +m2w21|

≤ |m1w11 +m2w21|1−a

2M |m1w11 +m2w21|

≤ 1
|m1w11 +m2w21|a

.

Therefore

sm,q ≤
R∗

|m1w11 +m2w21|3a−1
. �

Proof of Theorem 5.2. Set U1 =
∞⋃

s=1

{m ∈ V1s; |m1w11 + m2w21| ≥

(4Ms)1/(1−a)}. The set {m ∈ U1; |m1w11 +m2w21| = k} has at most 2(2k+ 1)
members. By Lemma 5.4, we have

∑
m∈U1

s2m,q ≤
∑

m∈U1

R2
∗

|m1w11 +m2w21|6a−2
≤

∞∑
k=1

5R2
∗k

k6a−2
≤ 5R2

∗

∞∑
k=1

1
k6a−3

<∞,

because 6a− 3 > 3/2. Set Z1s = {m ∈ V1s; (2M)1/(1−a) ≤ |m1w11 +m2w21| ≤

(4Ms)1/(1−a)} and Z1 =
∞⋃

s=1

Z1s. The set {m ∈ V1s; |m1w11 +m2w21| = k} has

at most 4k/s(s+ 1) members. By Lemma 5.3,∑
m∈Z1s

s2m,q ≤
∑

m∈Z1s

R2

|m1w11 +m2w21|2

≤ R2

[(4Ms)1/(1−a)]∑
k=1

1
k2

4k
s(s+ 1)

≤ 8R2 ln(4Ms)1/(1−a)

s(s+ 1)

=
8R2

1− a

ln(4Ms)
s(s+ 1)

.

It follows that ∑
m∈Z1

s2m,q ≤
8R2

1− a

∞∑
s=1

ln(4Ms)
s(s+ 1)

<∞.

Since the set V1 \ (Z1 ∪ U1) = {m ∈ V1; |m1w11 + m2w21| < (2M)1/(1−a)} is

�nite, we obtain that
∑

m∈V1

s2m,q <∞, which completes the proof of the theorem.

�

Corollary 5.1. If T is of �nite type and φ is of class C4, then T φ has
countable Lebesgue spectrum on the orthocomplement of the eigenfunctions of
T .

Unfortunately, one cannot prove Theorem 5.2 in the case d > 2. For d ≥ 2
we show that T φ has countable Lebesgue spectrum in the simplest case when
φ is an a�ne cocycle, i.e. the functions h1, ..., hd are constant.
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Theorem 5.5. Let T be an ergodic and free Zd�rotation on Td. If φ :
Zd × Td → T is an a�ne cocycle and detW (φ) 6= 0, then T φ has countable
Lebesgue spectrum on the orthocomplement of the eigenfunctions of T .

Proof. For any q ∈ Z \ {0} and m ∈ Zd we have

sm,q = |
∫

Td

e2πiq m W (φ) x T

dx |.

Since W (φ)T : Zd → Zd is monomorphism, we obtain that sm,q = 0 for m 6= 0
and �nally that

∑
m∈Zd s2m,q <∞. �

6 The case det W (φ) = 0

Given an irrational number α ∈ [0, 1), let [0; a1, a2, ...] be its continued frac-
tion expansion, where an are positive integers. Put

q0 = 1, q1 = a1, qn+1 = an+1qn + qn−1,

p0 = 0, p1 = 1, pn+1 = an+1pn + pn−1.

The rationals pn/qn are called the convergents of α.

Lemma 6.1. (See [4]) If f : R/Z → R is of bounded variation, then for any
x ∈ R

(12) |f(x) + f(x+ α) + ...+ f(x+ (qn − 1)α)− qn

∫
I

f(x)dx| ≤ Varf.

If f : R/Z → R is absolutely continuous, then

f(·) + f(·+ α) + ...+ f(·+ (qn − 1)α)− qn

∫
T
f(x)dx

converges uniformly to zero. �

Lemma 6.2. Let T : Z2×T2 → T2 be an ergodic and free Z2�rotation given
by

T (m1,m2)(z1, z2) = (e2πi(α11m1+α12m2)z1, e
2πi(α21m1+α22m2)z2)

such that the automorphism T (k1,k2) is not ergodic for some (k1, k2) ∈ Z2 \{0}.
If φ : Z2 × T2 → T is an absolutely continuous T�cocycle such that

k1w11 + k2w21 = k1w12 + k2w22 = 0,

then the maximal spectral type of T φ is singular and T φ is not mixing on the
orthocomplement of the eigenfunctions of T .

Proof. Set

cm,r =
∫

T2
φm(z)rd z

=
∫

T2
e2πir(hm(x1,x2)+(m1w11+m2w21)x1+(m1w12+m2w22)x2)dx1dx2.
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In view of Lemma 1.2 and Lemma 1.3 it is enough to �nd a sequence {m (n)}∞n=1

in Z2 (m (n) → ∞, as n → ∞) and a real number c ∈ R such that for any
r ∈ Z \ {0} we have

lim
n→∞

cm (n),r = e2πirc.

Put α1 = α11k1 +α12k2 and α2 = α21k1 +α22k2. Since the rotation T (k1,k2)

is not ergodic, there exist integers l1, l2, l3, (l21+l22 6= 0) such that l1α1+l2α2 = l3.
Take s1, s2 ∈ Z such that s1l2 − s2l1 = gcd(l1, l2). Put l = gcd(l1, l2) and
α = s1α1 + s2α2. Let pn/qn be the convergents of lα. Set

B =
[

s1 s2
l1/l l2/l

]
.

Then B ∈M2(Z) and detB = 1. Consider the linear operator P : L1(R2/Z2) →
L1(R2/Z2) given by

Pf(x1, x2) =
∫

T
fB−1(x,

l1x1 + l2x2

l
)dx.

Let f : R2/Z2 → R be an absolutely continuous function. Then the function
fB−1(·, y) : R/Z → R is absolutely continuous for any y ∈ R. It follows that

qn−1∑
j=0

f(x1 + jlα1, x2 + jlα2)− qnPf(x1, x2)

=
qn−1∑
j=0

fB−1(y1 + jlα, y2)− qn

∫
T
fB−1(x, y2)dx,

where y1 = s1x1 + s2x2 and y2 = (l1x1 + l2x2)/l. By Lemma 6.1, for any
(x1, x2) ∈ R2 we have

lim
n→∞

qn−1∑
j=0

f(x1 + jlα1, x2 + jlα2)− qnPf(x1, x2) = 0.

Applying inequality (12) and Lemma 3.1 we get

|
qn−1∑
j=0

f(x1 + jlα1, x2 + jlα2)− qnPf(x1, x2)| ≤ VarIfB
−1(·, y2) ≤ C‖f‖BV .

By Lebesgue's bounded convergence theorem,

(13) lim
n→∞

∫
T2
|
qn−1∑
j=0

f(x1 + jlα1, x2 + jlα2)− qnPf(x1, x2)|dx1dx2 = 0.

Since for any natural m we have

h(mlk1,mlk2)(x1, x2) =
m−1∑
j=0

h(lk1,lk2)(x1 + jlα1, x2 + jlα2),
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the sequence {h(qnlk1,qnlk2) − qnPh(lk1,lk2)}n∈N converges to zero in L1(R2/Z2),
by (13). Observe that P = P(lα1,lα2). By Lemma 2.1,

Ph(lk1,lk2) =
∫

T2
h(lk1,lk2)dλ.

Put m (n) = (qnlk1, qnlk2). Then

hm (n) − qn

∫
T2
h(lk1,lk2)dλ

converges to zero in L1(R2/Z2). Without loss of generality we can assume that

lim
n→∞

e2πiqn

∫
T2 h(lk1,lk2)dλ = e2πic.

Therefore

lim
n→∞

∫
T2
φm (n)(z)rd z = lim

n→∞

∫
T2
e2πirh

m (n) (x1,x2)

= lim
n→∞

e2πirqn

∫
T2 h(lk1,lk2)dλ = e2πirc

for any r ∈ Z \ {0}, which proves the lemma. �

By the above lemma we have proved the following:

Theorem 6.3. Let T : Z2×T2 → T2 be an ergodic and free Z2�rotation and
let φ : Z2 × T2 → T be an absolutely continuous T�cocycle with W (φ) = 0. If
the automorphism T m is not ergodic for some m ∈ Z2 \ {0}, then the maximal
spectral type of T φ is singular and T φ is not mixing on the orthocomplement
of the eigenfunctions of T .

Theorem 6.4. Let T : Z2 × T2 → T2 be an ergodic and free Z2�rotation.
If φ : Z2 × T2 → T is an absolutely continuous T�cocycle and rank W (φ) = 1,
then the maximal spectral type of T φ is singular and T φ is not mixing on the
orthocomplement of the eigenfunctions of T .

Proof. By (2), (Wα)− (Wα)T ∈M2(Z) hence

w11α12 + w12α22 − w21α11 − w22α21 = d ∈ Z.

Since W (φ) 6= 0, at least one of the pairs (w21,−w11), (w22,−w12) is not equal
to zero. Assume that (w21,−w11) 6= 0. Put k1 = w21 and k2 = −w11. Then
k1w11 + k2w21 = 0. Since detW (φ) = 0, we have k1w12 + k2w22 = 0. Set
α1 = α11k1 + α12k2 and α2 = α21k1 + α22k2. Then

w11α1 + w12α2 = −α21 detW (φ)− dw11 ∈ Z
and

w21α1 + w22α2 = −α22 detW (φ)− dw21 ∈ Z.
Therefore the rotation T (k1,k2) is not ergodic, because at least one of the pairs
(w11, w12), (w21, w22) is not equal to zero. It follows that the rotation T and
the cocycle φ satisfy the assumptions of Lemma 6.2, and the proof is complete.
�

Our considerations overlook the case when all rotations T m are ergodic and
W (φ) = 0. It would be interesting to answer the question: what kind of spectra
can be obtained in this case?
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