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Abstract

Let T be an ergodic and free Z%-rotation on the d-dimensional torus
T? given by

T (m17~~7md)(217 ) Zd)

2wi(ai1mi+...+agm 2mi(agimi+...+aggm
= (e (a11my 1d™Md) (eeg1my dd d)zd)7

Z1y.--5€
where (my1,...,mq) € Z%, (21, ..., 24) € T* and [a;x]jk=1..a € Ma(R). For
a continuous circle cocycle ¢ : Z¢XT? = T (¢m +n(2) = ¢pm (T n 2)Pn(z)
for any m,n € Z%), we define the winding matrix W (¢) of a cocycle ¢,
which is a generalization of the topological degree. We study spectral
properties of extensions given by

Ty: 2 XxTxT =T XT, (T )m(2,w) = (T m 2, dm(z)w).

We show that if ¢ is smooth (for example ¢ is of class C*) and det W (¢) #
0, then T 4 is mixing on the orthocomplement of the eigenfunctions of T'.
For d = 2 we show that if ¢ is smooth (for example ¢ is of class C*),
det W (¢) # 0 and T is a Z*-rotation of finite type, then T 4 has countable
Lebesgue spectrum on the orthocomplement of the eigenfunctions of T .
If rank W(¢) = 1, then T 4 has singular spectrum.

Introduction

Let X be a compact abelian group and let u be the probability Haar measure
of X. Assume that G is a countable discrete abelian group and ¢ : G — X is a
group homomorphism. We will call a G—action on X given by

T gz =2(g)x

the G—rotation on X. The G—rotation T is ergodic and free iff ® is monomorphic
and ®(G) is dense in X. Let H be a locally compact abelian group. Throughout
this paper H will be the circle or real line.
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Definition 0.1. By an H-cocycle of the G-rotation T' we mean a measur-
able function ¢ : G x X — H such that

Gg1g: (%) = bgy (T g,2) g, (2)
for any ¢g1,92 € G and x € X.

We will call ¢ suitably smooth if the function ¢, is smooth for any g € G.
Suppose that H is a compact group and let m be the probability Haar measure of
H. Given an H—cocycle ¢ consider the G-action T 4 : G — Aut(X xH, B, pxm)
given by

(T ¢)g(x, h) = (T gz, dg(x)h),

where B is the product o-algebra of the Boolean o-algebras and Aut(X x
H, B, x m) is the group of all measure—preserving automorphisms. The G-
action T is called an H-extension of T'. In this paper we will consider circle
extensions of rotations on the torus.

By T (d € N) we mean the d-dimensional torus {(z1,...,2z4) € C%|z| =
... = |zq| = 1}. We will also use the additive notation, i.e. we will identify the
group T? with the group R?/Z%. We will also identify functions on R¢/Z? with
the Z?periodic functions on R? (periodic of period 1 in each coordinates). Let
A4 denote the probability Lebesgue measure on T¢. Let ® : Z¢ — T% be a group
homomorphism. Then there exists a matrix o = [oi)jr=1...¢ € Mq(R) such
that

2mi(arimi+...Foramay) 27Ti(01d1m1+~-+04ddmd))
S e .

®(mq,....,mq) = (e ,e

Consider a Z?-rotation T on T? given by

Tm > = @(m) - = (e2wi(a11m1+...+a1dmd)zl 27Ti(o¢d1m1+...+addmd)zd)’

L€
where m = (my,...,my) € Z¢ and z = (21, ..., z4) € T%

Lemma 0.1. T is ergodic iff ma ¢ Z2 for any m € Z¢\ {0}. T is free iff
amT ¢ 7% for any m € 24\ {0}. A

Write T' ; = T(0 04.0...0) for j = 1,...,d. For any function ¢ : T¢ — T,
anyn € Z and j =1,...,d set
‘ P(2)U(T ; 2).. (T " 2) if n>0
w(w)(z) — 1 if n=0

(T 2) (T 2).. (T 2)7t if n<O.

J
Let ¢ : Z¢ x T* — T be a T-cocycle. Then ¢ can be represented as
bm(z) = ¢TI T e T 2) g (T T 2). 60" (2),

where ¢; = (b(o,...,o,i,o,...,o) for j = 1,...,d. Moreover, for any j, k = 1,...,d we
have

(1) 0;(T k 2)¢5(2) " = o(T j z)u(2) "



Suppose that ¢ is a continuous cocycle. Then ¢1, ..., ¢4 can be represented as

¢1(e2ﬂ'ix17.”7e27riwd) _ e2‘n’i(h1(11,..A,wd)+w1121+..4+w1dmd)
2mixT 2mix _ 27i(ha(x1,...,xq)F+wWag1x1+...+wWaqx
¢d(e 1e d) =  e2mi(ha(z1 d)Fwaizy dd d)7

where W(¢) = [wjk]jr=1..a € My(Z) and hq,...,hq : RY/Z% — R are con-
tinuous. In the above representation of ¢, the matrix W(¢) is unique, while
hi,...,hq are unique up to an additive integer constant. We call the matrix
W (¢) the winding matriz of the cocycle ¢.

For j =1,....,d let T : R?/Z% — R?/Z? be a translation given by

Tj(ml, . .Td) = (xl =+ Qljy ey Td 4+ Ozdj).
Let T be a Z-action on R?/Z4 given by Ty, = T{"™ o ... o Tj**. From (1) we
have

d

d
exp(2mi(h; (Tx @) —hj (@) + Y wjau)) = exp(2mi(h (T @) —hi(@)+ > wiiau;)).
=1 =1

It follows that
hi(Ty x) — hj(x) — (hi (T ) — hi(2)) + (War)jr — (Wa)g; = dji € Z.

Since
[ T2 = (@) = (bu(T2) () =0,
we have
hj(Ty, ) — hj(x) = hi (T @) — hi ()
for j,k=1,...,d and

(2) (Wa) — (Wa)' € My(Z).
For any function f: RY/Z? - R, any n € Z and j = 1,...,d set

f(x) + f(T; :c)+...+f(Tj"_1a:) if n>0
f("’j)(w) _ 0 if n=0
—(f(Tr o)+ f(T @) + .+ f(T ') if n<O.

Then h = h(¢) : Z¢ x RY/Z? — R given by
hon () = K™D (T2 T T @) + by (T3 T @) + .+ B (2)

is a real cocycle.

In the case d = 1, the cocycle ¢ has only one generator ¢; and the winding
matrix of ¢ is the topological degree of ¢;. Then we have some information on
spectral properties of T' 4. It has been proved by Choe in [1] that if ¢ is of class
C? and W(¢) # 0, then T, has countable Lebesgue spectrum on the ortho-
complement of the eigenfunctions of T'. The assumptions for ¢ were weakened
in [8] to ¢ absolutely continuous and ¢’ of bounded variation to get countable
Lebesgue spectrum. In [8] the authors have proved also that if ¢ is absolutely



continuous, then T 4 is mixing on the orthocomplement of the eigenfunctions of
T. In [7] a sufficient condition for countable Lebesgue spectrum is expressed in
terms of the Fourier coefficients of ¢. On the other hand, in [4] the authors have
proved that if W(¢) = 0 and ¢ is absolutely continuous, then T4 has singular
spectrum.

The aim of this paper is to study the spectral properties of cocycles for
d > 1. We will try to generalize the above results. We show that if ¢ is
weakly absolutely continuous and det W(¢) # 0, then T, is mixing on the
orthocomplement of the eigenfunctions of T'. For d = 2 we show that if we put
a stronger assumption on ¢ (for example ¢ of class C*), and T is a Z2-rotation
of finite type (i.e. T is slowly approximate to rational rotations), then T' 4 has
countable Lebesgue spectrum on the orthocomplement of the eigenfunctions of
T. In the case det W(¢) = 0 we prove that if rank W (¢) = 1 (or rank W(¢) =0
and there is an m € Z? \ {0} such that the automorphism T ,, is not ergodic)
and ¢ is absolutely continuous, then T" 4 has singular spectrum.

1 Notation and facts from spectral theory

Let U be a unitary representation of group G in a separable Hilbert space
H. For any f € H we define the cyclic space G(f) = span{U,f;¢9 € G}. By
the spectral measure oy of f we mean a Borel measure on G determined by the
equalities
[ 9o = @,t.5)
G
for all g € G.

Theorem 1.1 (spectral theorem). There exists a sequence f1, fa, ... in H
such that

(3) H=®,_,G(fn) and op > oy,... .

Moreover, for any sequence f1, f3, ... in 'H satisfying (3) we have oy, = 0y4;,05, =
Uféa ...

The spectral type of o, (the equivalence class of measures) will be called the
mazimal spectral type of U. U is said to have Haar spectrum if oy, = A, where A

is the Haar measure on G. It is said that U has spectrum of uniform multiplicity
if 04, = of, forn =1,2,...,k and o5, = 0 for n > k, where k eNU{oo}. We
say that an operator U is mizing if for any f, h € H we have

lim (U, f, h) = 0.
g—00

Consider a unitary representation U of the group G in L?(X x H,pu x m)
given by
Ugf(wv h) = (T g, ¢g(x)h)'
Let us decompose
L*(X x H,pux m) = P Hy,
xefi



where
My = {f; f(a,h) = E(x)x(h), € € L*(X, )}
Observe that H, is a closed U-invariant subspace of L?(X x H, p x m).

Lemma 1.2. (see [8]) The representation U : G — U(H,) is unitarily
equivalent to the representation U, : G — U(L*(X, p)) given by

(Ux)g&)(x) = x(pg(x))E(T y).

Proof. We define V : H, — L%*(X, u) by putting V f = &, where f(z,h) =
&(z)x(h). Then V is an isometry from H, onto L?(X, 1) and

Ugf(x,h) = (T gz, dg(x)h) = (T g2)x(dg(x))x(h),

SO
(VUgf)(2) = x(g(2))E(T g) = ((Ux)g€) () = ((Uy)gV [)(2),

and the lemma follows. B

We say the representation U is mizing on the orthocomplement of the eigen-
functions of T if U is mixing on the orthocomplement of H;. We say the repre-
sentation U has em Haar spectrum of uniform multiplicity on the orthocomple-
ment of the eigenfunctions of T' if U has Haar spectrum of uniform multiplicity
on the orthocomplement of H;.

Suppose that T is ergodic and free G—rotation. Let F' : G x X — T be a
T-cocycle. Consider a unitary representation of the group G in L?(X, u1) given
by

(Ugf)(x) = Fo(a) (T g).

Lemma 1.3. (see [8]) The mazimal spectral type of U is either discrete or
continuous singular or Haar and U has spectrum of uniform multiplicity. B

Lemma 1.4. (see [8]) Suppose that

lim [ Fy(zx)du(z) =0.
g—0 Jx

Then U is mixing. Moreover, if

S [ F@du()? <+,
g€G X

then U has Haar spectrum of uniform multiplicity.

Let T be an ergodic and free Z?-rotation on T¢. Let ¢ : Z¢ x T? — T be a
continuous cocycle. For any ¢ € Z and m € Z¢ set

sma=| [ @@)1az|=| [ @ratn@imy@eyg|
Td Td

By Lemma 1.4, we obtain:



Corollary 1.1. Suppose that for any q € Z\ {0} we have

lim Sy, =0.
m—o0 ’

Then the circle extension of T given by
Ty:ZxTIXT =TT, (T ¢)m(2,w) = (T m 2, om(2)w)

is mizing on the orthocomplement of the eigenfunctions of T'. Moreover, if for
any q € Z\ {0},

then T 4 has countable Lebesgue spectrum on this orthocomplement. M
Suppose that det W (¢) # 0. Consider a family of subsets of Z? of the form

d

d
_ d . | — gy —
Vi= {m €L \ {0}7 | Zm]wjl| - lrgnlca%(d|zm]wjk|}’ l=1,..d
j=1 j=1

d
Then Z¢ = U V,U{0}. To obtain either mixing or countable Lebesgue spectrum

=1
of T 4 it is enough to show that for every | = 1,...,d and ¢ € Z \ {0} we have
either

lim S =0
m
m—oo,meV 4

or

respectively. We will need the following simple lemma.

Lemma 1.5. There exists a constant C > 0 such that for any m €V, and
k=1,..,d we have

d
| < C1> - mjw;.
j=1
d
Proof. If m €V, then |cg| < |¢|, where ¢ = ijwjk for k=1,...,d.

j=1
Put W = W(¢). By the Cramer’s formulas we have

< |detW1k| + ...+ \dethk\

el < | det W] el
d
Hence for C = Z | det W,.5|/| det W| we obtain
r,s=1
d
|my| < C| ijwjl|. |
j=1



2 Mixing of circle extensions of Z%rotations

Let 7 : Z¢ x RY/Z4 — R?/7Z% be an ergodic Z%rotation on R%/Z9. For a
given m € Z% let the operator PL : L}(R?/Z%) — L'(R?/Z%) be defined by

[+ fTom + fT2, + ...+ fT 1

. = Ponf

in L!(R%/Z%). By Birkhoff’s ergodic theorem, the operator PL is well defined
and

P,:’;Lfon:Pf',lﬁ/ P,T;fdw:/ fdx, PL(foTm: ) =PLfoTm
Td Td

for any m’ € Z4.

Lemma 2.1. Let h : Z¢ x R?/Z% — R be an L' cocycle. Then for every
m € Z% we have

Plhym= | hm(x)dz.
Td

Proof. Since for any m’ € Z¢,
B © Ton# — B = hm 7 © T — T
we have
Pl b o Ty — P hyy = P hyryr 0 Ty — Pl By = 0.

It follows that PL h,, is T—invariant. By ergodicity of T, PL hy, is a constant
and equal to

/ Pl hp(x)dx = ho(z)dx . B
Td Td

Definition 2.1. We will say that a function f : RY/Z¢ — R is weakly
absolutely continuous (W AC for short) if f is a continuous function and for any
(T1, ey Tj—1,Tj41, oy ) € RI7L =1, ..., d the function

f(l‘l, ey Lj—15 5 Tj41, ...,J,‘d) . R/Z - R
is absolutely continuous and for any j = 1, ...,d we have a‘% € LY(R4/7%).

Obviously, if f is of class C' then f is WAC. We call a cocycle ¢ : Z¢x T¢ —
T WAC if the cocycle h : Z% x R?/Z% — R is W AC.

Lemma 2.2. Let T be an ergodic Z¢ rotation on RY/Z%. If h : 74 x
R?/Z% — R is a WAC cocycle, then for every m € Z% and | = 1,...,d we

have 9
pr_—
m@x;

In particular, for anyl,j = 1,...,d we have

hm = 0.

1 n,j .
lim fifg W) =0 in LY (RY/Z%).

n—oo n 01



Proof. Observe that B%Lh : 729 x RY/7Z4 — R is an L' cocycle. By

Lemma 2.1,

0 0

Pr — h,, =

— hm(x)dz =01
o (2)dw =0

Td 8.13[

Theorem 2.3. Let T be an ergodic Z%—rotation on T and let ¢ : 7% x T¢ —
T be a WAC cocycle. Consider the circle extension of T given by

Ty:Z8xTIXT = TXT, (T ¢)m(2,w0) = (T m 2, om(2)w).

If det W () # 0, then T 4 is mizing on the orthocomplement of the eigenfunc-
tions of T.

Proof. By Corollary 1.1, it is enough to show that for every [ =1, ...,d and
q € Z\ {0},

lim Sm,q = 0.
m—oo,meV;

Applying integration by parts for Stieltjes integrals, for m € V; we get

Sm,q

= |/ 2™ sk mfwf’f“(/ e%i‘I(hm(f”)*Z;'izlmiwf””)dxl)dscl...jn;l...d:vd|
Td—1 T

< / \/ezmq(hm(wHZj:lmiwﬂ“)dxl|d:1:1...d/9;l...dxd
Td-1 JT

1 . . d o —~
= 7 \ 2T iahm (%) 1o 2mig 3 oy MWL |dxy...dx;...dxg
2mlq 325 mjwy| Jra-r U
1 d o . —
= P ‘ ezﬂlqzjzl mjwﬂxlde%mqhm(m)|diZ?1...diEl...d1‘d
2rlg > 25—y mjwji| Jra-r S
1

. b —
= —g—— \ / 2mia(hm @+ T oy mywie) T p () da |day ... dzy...dzg
|Zj:1 mjw;;| JTi-1JT ox;

1 / 0
< —— | =—hm(x)|dz
| 5oy mywy| Jra O
d 8 1, (m,k)
=P x
> d\mk| ez ( )\dz.
= | Zj:l mjwj| Jre Mk

For n € Z\ {0} set

9y, (n.k)
_ aT;,hkn (x)
b, = max | —t———|dx.
1<k<d Jra n

Then b_,, = b,,. By Lemma 2.2, lim b, = 0.

n—0o0

If the sequence {nb, },en is bounded by M > 0, then

d
| e2m1q(hm (2)+m W (4) z T)d:li | < Z |;nkbmk | < B2MC . 1 ,
Td = 2252 mywil 211 [l



d
by Lemma 1.5. Since lim 1/2 |my| = 0, we obtain

lim ‘/ e2ria(hm@+mW (@) ”) g0 | _ ()
Td

m—oo,meV;

Suppose now that the sequence {nb,, },cz is unbounded. Fix £ > 0. We have
to show that there exists a constant R > 0 such that if m = (mq,...,mq) € m €
V; and max(Jmq], ..., |mgq|) > R, then

| o274 (hm () +m W (9) 2 * )d:l:\ <e.

Let ng be a natural number such that for [n| > ng we have b, < 575. Set

R = min{r € N;r > ng, max |nb,| < rb,}.
In|<r

Then for [n| > R we have b, < 55. If m € V; and max(|my|,...,|maq|) > R,
then the set D = {k € {1,...,d};|my| > R} is not empty. Choose kg € D.
Applying Lemma 1.5 we obtain

d
Z b < Z Chyy + Z C\mkbmk|

Sm,g <
k= 1|Z —vmwitl kgD k¢D
< €/2+ZC?R§£/2+ZCI)R<€,
kgD k¢D

which completes the proof. W

Corollary 2.1. If ¢ is of class C* and det W(¢) # 0, then T , is mizing
on the orthocomplement of the eigenfunctions of T .

3 On functions of bounded variation on I2

Let I = [0,1] and I? = [0,1] x [0,1]. In this section we will study some
properties of functions of bounded variation on I2. It will be useful to obtain
countable Lebesgue spectrum of T 4 in the case when d = 2.

For a closed rectangle Q = [a1, ag] x [by,bo] C I? the linear functional A :
C* — C is defined by

AL f = flaz,ba) — fla1,b2) — flaz,b1) + f(a1,b1).

By a partition P of I?, we mean a partition into rectangles [771(1)’771(1-)s-1] X

[771(22 )’ nl(g-)'rl] given by sequences

{0 0, )0 =n <. <n) =1, j=1,2}.

Given such a partitig)n, for iy = 0,...,my — 1 and i, = 0,...,my — 1, the linear
functional A% : C!I" — C is defined by
AiliQ _ A*
! D 0, x @ n®,1F

1 2 1 1 2 1 2
= f(nflllmlel) F@ ) = FalD ) + ralY ).



Definition 3.1. For a function f : I? — C, by the variation of f we mean

mi—1mo—1

(2) ¢ _ 1172
Var® f fg‘éﬁiz Ay,

11=0 i2=0

where P is the family of all partitions P of I2. If Var(?) f is finite, then f is said
to be of bounded variation on I? in the sense of Vitali.

Definition 3.2. A function f is said to be of bounded variation on I? in
the sense of Hardy and Krause if f is of bounded variation in the sense of Vitali
and both of the functions f(0,-), f(-,0) : I — C are of bounded variation in the
ordinary sense.

In what follows functions of bounded variation are those of bounded variation
in the sense of Hardy and Krause. We will denote by BV the space of all
functions of bounded variation on I2. We will consider the norm on BV given
by

| fllzy = sup | f(x)| + Var; f(-,0) + Var; £(0,-) + Var® f.

xel?
Recall that if a function is of bounded variation, then it is integrable in the
sense of Riemann (see [6] §448).
For m € Z set |m|; = max(|m/|, 1).

Lemma 3.1. Let f : I? — C be a function on bounded variation. If g : I —
C is a function given by g(t) = f({pt + c},{qt + d}), where p,q € Z, ¢,d € R,
then

Varrg < |plilgli[fllzv. B

Let f,g : I? — C be bounded functions. We will denote by flg fdg the
Riemann-Stieltjes integral of function f with respect to g (see [6] §381). Recall
that if both f and g are of bounded variation and if at least one of the functions
is continuous then [, fdg exists (see [6] §448) and

(4) |/, fdgl < sup |f(x)[VarPg.
12 z€el?

Theorem 3.2 (integration by parts). (See [6] §448.) Let f,g:I1?> — C
be functions of bounded variation and let at least one of them be continuous.

Then
[ gas = [ st [ atnarc0+ [ at.0d.0)
- / o(L)df (L) + / 9(0,)df(0,) + Ajug /M
I I

We say f : R?/Z? — C is of bounded variation if f|;2 is of bounded variation.
For any f : R?/Z%* — C, a,b € R set f,p(71,22) = (z1 + a,z2 +b). Then
Var(2)fa,b = Var(Q)f. By the previous theorem, we obtain:

Corollary 3.1. Let f,g: R?/Z? — C be functions of bounded variation and
let at least one of them be continuous. Then

/IQfdg=/I2gdf~

10



Lemma 3.3. If f,g € BV, then fg € BV and we have

I fallsv < 2| fllBvigllzy.- B

Recall that if f : I — C is of bounded variation and there exists a real
number a > 0 such that 0 < a < |f(z)| for any = € I, then the function 1/f is
of bounded variation and

1 VaI'[f
(5) Varl(}) < o

Lemma 3.4. Let f € BV and assume that there exists a real number a such

that for every x € I?* we have 0 < a < |f(x)|. Then 1/f € BV and

2
< ILfllBv n 2||f||BV. -

1
‘/ (2)
ar f a? a3

Definition 3.3. We say that a function f : I? — C is differentiable in the
sense of Vitali at (z1,x9) € I? if

im Arml,wl+h1]><[zz,z2+h2]f
(h1,h2)—(0,0) hihs ’

exists. This limit is called the derivative of f and is denoted by D f(x1,x2).

Remark. If f € C?(I?), then Df(x) = 8312ng (x) (see [12] ch.7 §1). If a

function f is of bounded variation in the sense of Vitali, then f is differentiable
in the sense of Vitali almost everywhere (see [12] ch.7 §2).

Definition 3.4. A function f is said to be differentiable in the sense of
Hardy and Krause at € I? if f is differentiable in the sense of Vitali and the
partial derivatives of f at x exist.

In what follows, by differentiable functions we mean those which are differ-
entiable in the sense of Hardy and Krause.

Lemma 3.5. Let f : I? — C be a differentiable function. Then the function
exp f : I? — C is differentiable and we have

Dexp f(x) = exp f(z) (D f () + %f(w)%f(w)) n

The number |P| = (b; — ay)(bs — ag) is called the substance of the rectangle
P = [a1,bl} X [ag,bg].

Definition 3.5. A function f : I? — C is said to be absolutely continuous
in the sense of Vitali if for every ¢ > 0 there exists § > 0 such that for every
system of rectangles @1, ..., @, such that Int Q; are pairwise disjoint,

Q1] + .. +|Qu] <0 = | AL, f I+ +[Ag, fl<e.

Remark. If a function is absolutely continuous in the sense of Vitali, then
it is of bounded variation in the sense of Vitali (see [12] ch.7 §3).

11



Definition 3.6. A function f is said to be s absolutely continuous on I>
in the sense of Hardy and Krause if f is absolutely continuous in the sense of
Vitali and both of the functions f(0,-), f(-,0) : I — C are absolutely continuous
in the ordinary sense.

In what follows absolutely continuous functions are those absolutely contin-
uous in the sense of Hardy and Krause. We will denote by AC the space of
function which are absolutely continuous on I2. A function f : R?/Z? — C is
absolutely continuous if f|;2 is absolutely continuous.

Recall that (see [12] ch.7 §3) if a function f is of bounded variation and g is
absolutely continuous, then

(6) fdg= [ fDgdx.
I2 I2

Lemma 3.6. Let f : I? — R be an absolutely continuous function such that
f(z1,1)—f(21,0), f(1,22)—f(0,22) € Z for any (z1,x2) € I? and D, aanl, a(% €
BYV. Suppose that there exists a real number a > 0 such that

e, 5}
IDS@) ~ 2ri g (@) (@) 2 a >0
for any x € I?. Then

IDfllBv + 2l 52, fllav |l 52; fllsv
2

\/ exp2mif(x)dx| <
12

a

N IDf 1%y + 167l 5% fl By 5% iy
a3 '

Proof. An application in succession (6), Lemma 3.5, integration by parts,
(4) and Lemma 3.4 gives that

1 1
| / exp2nif(@)dz| = —| |
2 2n' Jr2 Df = 2mig2- f 2 f

d627rif|

1 2mif 1
- 27| e ) ) |
T )2 Df =2mig—fo5;f
1 (2) 1

< —Var -

o Df —2migo-f7-f
_ IDf —2mig2= f 52 flsv N IDf —2mig2=f 32 fl By
- 2ma? ma’
- IDfl v +2ll3% fllavilz% fllsv
< 2

Jr||Df||2Bv + 167 22 f By 1 3% fl1 By

a3 ’

and the proof is complete. B

4 Koksma inequalities and Diophantine approxi-
mation on the torus

Definition 4.1. Let « 1, ..., 5 be a sequence in R%. By the discrepancy of

12



Tq,.., TN Wemean
1 N
D3 =5 — nt) — AXJ)|,
V(@1 LT N) EEB‘N;XJ({OC H = A

where 7 is the family of subcubes of I? of the form H?:l [0, 3;), where 0 < f3; < 1
for j=1,...,d and {x} = ({x1}, ..., {zq}) for & = (21, ..., 24q).
Remark. If v, ...,74, 1 are independent over Q, then Nlim Dy ({ny}N_)) =
0, where v = (1, .., 7d)-
Set ||z]| = ian’|a: + p| = min({z},1 — {«}) for any x € R. For any h =
pe

(h1, ..., hq) € Z* and = = (21, ..., 24) € R? denote

d d
<h,x>= Zhj;gj and |h| = ]‘_[maxﬂhj\7 1).
j=1

j=1

Definition 4.2. Let 7q,...,74, 1 be real numbers independent over Q. The
multinumber v = (71, ...,74) is called of type n > 1 if there exists C > 0 such
that for any h € Z¢\ {0}

C
<h~y>|>-—
I <hy> = g
We say - is of finite type if there exists 7 > 1 such that ~ is of type 7.

It follows from the definition that for any v € R? h € Z% and m € Z \ {0}
the multinumber ~ is of type n iff —~ is of type 7 iff v + h is of type n iff m~y
is of type 7.

Lemma 4.1. (See [10]) If v € R, (y1,72) € R? are of type 1, then there
exists L > 0 such that

" L
Di({my b)) < 57

« Llog N
D ({(ny1,ne)}102)) < Ni/@n=D)" L

If 41,72, 1 are linearly dependent over Q and 71,72 € R\ Q then there exist
t1,ta,t3 € Z, t1,ta # 0 such that t1v; + toye = t3. Take s1,s5 € Z such that
ﬁgSl — t182 = ng(tl,tQ).

Definition 4.3. Let v = (v1,72) be a pair such that at least one of the
numbers 7y, ys is irrational. Then the pair « is called of type n

(i) for 1,72, 1 rationally independent if « is of type n in the ordinary sense
(Definition 4.2),

ii) for 71,72, 1 rationally dependent and 71,72 € R\ Q if s1y1 + 82772 is of type
V1,7 Y1,
7 in the ordinary sense,

(iii) for o € Q if 71 is of type 7 in the ordinary sense.
Note that the second part of this definition is independent of the choice of

ty,t2, 81, S2.

13



Theorem 4.2 (Denjoy-Koksma inequality). Let f : R/Z — C be of
bounded variation and let {x,})_, be a sequence of real numbers. Then

1 N
7 22 F) = [ el < Di({on) ) Ve S

Theorem 4.3 (Koksma-Hlawka inequality). Let f : R?/Z? — C be of

bounded variation and let {(z%”,:cﬁf))}ﬁ:l be a sequence in R?. Then

N
1 *
3 Al a®) = [ el < Di((al))Var )
n=1
+Dx ({2} 1)Var1f(1, )
+D5 ({2, &)y ) Var? 1.
The proofs of the above theorems can be found in [10].

Theorem 4.4. Let v € R? be of type . Then there exists a linear operator
P, : LY(R?/Z%) — L*(R?/Z?) and a constant L > 0 such that for any function
f:R2?/7% — C of bounded variation and for any natural N > 2 we have

Llog N
ﬁ;f(wﬂw —Pyf(@) < Sre—p Ifllsv-

Moreover, Py f(x+v) = Py f(x) and [, P,f(x)dx = [, f(x)dz.
Proof. We will use the symbol Sy to denote

1 N-1
% D f@+n) = Py f()].
n=0

CASE 1. Suppose that 7;,72,1 are linearly independent over Q. Put

P, f(x fw fdX. By the Koksma-Hlawka inequality and Lemma 4.1,
Ly Lqilog N
SN < Nl/n (V&I'If( ) +Var1f(1,')) + mVar@)f

Llog N
N1/@n-1) 1flBv,

IN

where L, is the constant from Lemma 4.1 and L = 3L;.
CASE 2. Suppose that v5 = %, where p € Z,q € N. By the Denjoy-Koksma

inequality and Lemma 4.1, for any natural M and (z,72) € T? we have

Vary f(-, z2).

|7Zf351+n(I’Yl;3?2+np /fxxg dx|<M1/

Replace x2 by @2 + jp/q and f by fjy, 0 for j =0,...,¢ — 1. Sum up these ¢

inequalities. Dividing the resulting inequality by ¢ we get

qM—1

Z fxl—i—n'yhxg—&—n —fZ/facxg—l—] )dzx|
qu/ ZVarff T2+ J= )

14



For any natural N choose a natural number M such that ¢gM < N < (M +1)q.
Put P, f(z1,22) = i1 Jy f(z,22 + jp/q)dx. Then

N-1 q
1 P 1 .D

qM—1
Z a1+, s+ 0 —*Z/fl‘ $2+J )da|
n=0
M_NqM 1
+\qNM Z fw1+n71,:vz+n +f Z fla1+ s+ 0 )I
q n=qM
2(N —qM)
V. _ .
MWZ ary f(-, z2+1q)+ N S ()

Since N —¢M < g and N < 2¢qM,

2L1 K

(7) Sy < 2L sup |f(w) ZVarff 2t 52,

N xeT? Nl/n

By Lemma 3.1, we obtain

Llog N

SN > Nl/(277 1) ||f||BV7

where L = 2¢(L; + 1).

CASE 3. Suppose that v1,72,1 are linearly dependent over Q and 71,7 €
R\ Q. Then there exist t1,ta,t3 € Z, t1,ts # 0 such that t1y; +tays = t3. Take
S1,82 € 7 such that tos1 — t1892 = ng(tl,tQ). Set t = ng(tl,tQ) and

_ 51 52
b= [ ti/t taft ] '
Since B € M3(Z) and det B = 1, B : R?/Z? — R?/Z? is a group automorphism.
Consider the function g : R?/Z? — C given by g = fB~!. Then the function

g(,x2) : R/Z — C is of bounded variation for any zo € R. Replace vy, by
s171 + S272, f by g, ¢ by t, p by t3 in (7). Applying Lemma 3.1 we obtain

N-1 t
1 ts 1 g
% 3 ol +nlorm +om) + ) - t;/rg@:,yz + )] <

2 2L, Llog N
N ;gﬂ% |g(il?)| ]\/v1/77 ZV&I‘[Q >y Y2 +] ) Nl/(277 1) Hf”BV’

for any (y1,v2) € R?, where L = 2t(1 + Ly|t1||t2]). Put

t t it
Py f(z1,22) = /fB i 2tx2+J B)dx-

15



With notation y1 = s121 + sowe and yo = (L1271 + toxa)/t we have

N—-1

t .
1 . tix1 + toxo + 9t
E f($1+n717932+”72)**§ /fB Yo, 7222 %
t & Jx

Sy = | ;

)dz|

=] =
3
I
[=)

=2

t1xq + t2372 + i3

gB(x1 +nvyi, m2 +ny2) — < Z/ )dz|

|
2| -

3
o

=2

1 — ts 1 3
= |5 ngo gy +n(s17 + s272), 2 +00) — t;/qrg(xayz + - )da|
Llog N

Ny [z

5 Spectral properties of extensions of Z>-rotations

Let T : Z2 x T? — T2 be an ergodic and free Z?rotation given by

T(m m )(Zl 22) — (e2wi(a11m1+a12m2)217 62wi(a21m1+a22m2)22)

1,Mm2 ) .
Definition 5.1. We say the rotation T is of type n if both of the pair

(11, 1), (a2, a92) are of type 1. The rotation T said to be of finite type if

there exists n > 1 such that T is of type 7.

Lemma 5.1. Suppose that T is of type n. There exists a constant L > 0
such that if h : Z% x R?/Z% — R? is an absolutely continuous cocycle and the
cocycles g: ,aaTh are of bounded variation, then

1 0

Llog|N|
(8) N 8ﬂ;‘k

(N,J
(E N[/

|| h | Bv

for any |[N| > 2 and j, k =1,2.

Proof. It suffices to show that the inequality (8) is true for any natural N.
By Theorem 4.4,

1 0 (N,5) LlOgN
Naxkh P(alj,azj)(aixkhj” = Nl/(27l 1) || h ||BV

Observe that PL = Pg . Application Lemma 2.2 gives
0

(a1j,0025) (895 h ) =0.1

Theorem 5.2. Suppose that T is an ergodic and free Z>-rotation on T?
which is of finite type. Let ¢ : Z? x T?> — T be an absolutely continuous cocycle
such that the cocycles Dh, g: ,g—h are of bounded variation. If det W(¢) #
0, then T 4 has countable Lebesgue spectrum on the orthocomplement of the
eigenfunctions of T .

In view of Corollary 1.1 it is enough to prove that for any ¢ € Z \ {0} and
1=1,2,

16



where

sma. = | [, om(2)1dz]

— ‘ 627TiQ(hm(w1,I2)+(m1w11+m2w21)901+(m1w12+m2w22)$2)dx1dx2|.

We will prove the above condition only for [ = 1. The proof in the case [ = 2 is
similar.

Let n be a type of T'. Take a real number a such that max(1 — 1/(2n —
1),3/4) < a < 1. Then there exists K > 0 such that

log N N¢
©) N = Koy

for any natural N > 2. Set
M—1+KLCG(||7h1||Bv+|| h2\|Bv+H h1|\Bv+|| h2||Bv)

where C' and L are the constants from Lemma 1.5 and Lemma 5.1 respectively.
Lemma 5.3. There exists a constant R > 0 such that if m € V7 and
2M)Y 7D < lmywiy + mawa |,

then
R

1= |miw1 + mawas |’

Sm,

Proof. Applying Lemma 5.1, Lemma 1.5 and inequality (9) for any @ €
R? /72 we get

|52 hom ()| - |2 D (T (0, @) + |52 0572 ()]
|miwiy +mowar| T [miwy1 + mowa |
- KlellaHa%thBv + [mal®|| 52 hall Bv
o |miwi + mawa |
< M

|mywi1 + mawaq [1=°

It follows that for (2M)Y/ (=% < |mywi; + maws:| we have

0

1
|87x1hm(ﬂl)| < §|m1w11 + mowoan|
and
1
(10) |a7hm($) + miwi1 + mowai| > §|m1w11 + moway|.
1

Applying in succession integration by parts, (5) with (10), Lemma 3.1 and

17



Lemma 1.5 we obtain

Sm,q

— |/62ﬂ'iq(m1w12+m2w22)z2(/ 627fiq(hm($1112)+(m1w11+m2w21)11)d$1)dx2|
T

< / / 2miq(hom (21, Z2)+(m1“’11+m2“’21)11)dx1|dl‘2

< / / 1 de 27riq(hm(w)+(m1w11+m2w21)x1)|dx2
27r|q\ T (%1 ) +miw1 + maway
— /|/eZTriq(le(a:)+(m1w11+m2w21)x1)d 1 |d$t'}2
27T|‘1\ a‘zlh (=) +miwir + mawsy
1
< / Vors iz
27T|Q‘ h , T2) + miwi + mowar
< Var;am h ( LL‘Q)
N 7T|Q| [mywiy +m2w21|2
< 2 _lmltiml <||%||Bv 12225,
= 7lgl fmyiwin + mowa |2 zq
and finally
R
S <
"= mywn + mawar |
where R = 2C.([| 524 gy + [ 522 pv). ®
ox ox1 v

For a given s € N let us denote by Vi, the set

{m € Z*\{0}; s|miwiz+mawas| < [miwi1+mowar| < (s+1)|mywiz+mawssl}.
Then Vi = | V..

Lemma 5.4. There exists a constant R, > 0 such that if m € Vi and
(11) (4M s)Y =0 < lmywyy + mowa ],
then

R,
q —_
|miwi1 + mawey

Sm, Ba—1"

Proof. Analysis similar to that in the proof of Lemma 5.3 shows that for
any x € T?,

‘a%zhm(m)‘ |miwi1 + mawar |

|mywia + mowaa| T |miwi2 + mawas|
2sM 1
< <-.
|miwir + mawor|1—% T 2

Therefore
0 1
|£hm(iv) + mywia + Mmowaz| > §|m1w12 + Mmawaz|.
2

18



From the above inequality and (10) we have

0

0
|%hm($) + miwiy + m2w21\|%hm($) + mywiz + mowas| >
1 2

Z|m1w11 + mawar||miwia + mowas|.

It follows that

) 0 0
|thm(:1:)f2mq2(—hm($)+m1w11+m2w21)(7hm

x)+m m >
911 92 (z)+miwia+mowss)| >

q2|m1w11 + mawar||miwia + mowas|.
Applying Lemma 3.6 to the function

q(hm (1, z2) + (Miw11 + mowar)T1 + (Miwiz + Mawas)T2)

we get

Sm,q

d d
- IDhanll v + 2/ G || v | G || v
T @lmiwir + mowar [2[mywiz + mawas|?
1Dy + 167 | G 5y | Gz 1B
¢2|miwi1 + mowa [2|miwig + mowas|3
[ma|[|Dha|lBv + [ma|[|Dha| BV

<
T @lmiwir + mowar [2[mywiz + mawas|?
2(lma [l 32 11w + Imall| 5221 v) (I [l G2 | v + [mall| 522 || 5v)
¢2|miwi1 + mowa |2|miwig + mowas|?
(|m1]||Dhy| By + |mall|Dhel sy )?
glmiwir + mowar [3lmiwie + mawag |3
167 (Jma ||| 524 sy + [mall| 222 5v) 2 (Ima || 32 | v + [ma || 522 5v)?
?|miwi1 + mowa [3miwie + mowas |3
< [ma | + [mg|?
< 1
|miwi1 + mawar |2|mywi2 + mowsa|?
2 2\2
Ry (| l‘|m2| ) =
|miwi1 + mawar [3|miwie + mawas]
where
1 8h1 8]12 Ohy 2 Oha 2
Ry = 2(|Dh1|BV+||Dh2|Bv+2\/H 17 v+|| V\/||8@|BV+||6x2”BV
and
1 8h1 6h2 6h1 ahg
Ry = qj((”Dhl‘|BV+||Dh2||BV)2+167T(|| ||BV+|| ||BV)(H ||Bv+H ||Bv))-
By Lemma 1.5,
23102 4RQC4|m1w11 + m2w21|
Sm,q 2 3
|miwi2 + mawas| |mywi2 + mawas|

R |miwy1 + mawa |

|miwi2 + mowaa|3
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where R, = 2R;C? + 4RyC*. From (11) we have

1 2s |m1w11 +m2w21|1*“

|miwiz + mawsa| T [mawir + mowai| T 2M|mywiy + mawan|
1
|mywi1 + mawaq|®

Therefore
R,

< .
1= I mywyy + mawey [391

Sm

Proof of Theorem 5.2. Set U; = U{m € Vis; miwir + mawar| >
s=1
(4Ms)1/(1’“)}. The set {m € Uy; |miwi1 + mawsy| = k} has at most 2(2k + 1)
members. By Lemma 5.4, we have

R? o~ 5R%k = 1
2 * * 2
Z Sm’q < Z |m1w11 + m2w21‘6a72 < f6a—2 < 5R* Z k6a—3 < 09,
meU; meU; k=1 k=1

because 6a — 3 > 3/2. Set Z1, = {m € Vis; (2M)Y/ (=9 < |mywy; + mows | <
o0

(4Ms)1/(1_a)} and Z; = U Z1s. The set {m € Vig; |miw11 + mawoy| = k} has
s=1
at most 4k/s(s + 1) members. By Lemma 5.3,

Z ; Z :
s
m
4 |miwy1 + mawsa |?

meEZs meEZs
§)/-a)
e [(41\/1)Z ] 1 4k
= k%2 s(s+1)
In(4Ms)t/(1=a)
s(s+1)
8R? In(4Ms)

l—as(s+1)

IN

IN

8R?

IN

It follows that

SR? X In(4Ms)
2
Sg < < o0
m;Zl 4 lfag s(s+1)
Since the set Vi \ (Z1 UU;y) = {m € Vi;|miwi1 + mawar| < (2M)Y/ (=)} is
finite, we obtain that Z sfn, ¢ < 00, which completes the proof of the theorem.
meV;

Corollary 5.1. If T is of finite type and ¢ is of class C*, then T , has
countable Lebesgue spectrum on the orthocomplement of the eigenfunctions of
T.

Unfortunately, one cannot prove Theorem 5.2 in the case d > 2. For d > 2
we show that T 4 has countable Lebesgue spectrum in the simplest case when
¢ is an affine cocycle, i.e. the functions hq, ..., hy are constant.
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Theorem 5.5. Let T be an ergodic and free Z%-rotation on T¢. If ¢ :
7% x T — T is an affine cocycle and det W (¢) # 0, then T, has countable
Lebesgue spectrum on the orthocomplement of the eigenfunctions of T.

Proof. For any q € Z \ {0} and m € Z¢ we have

Srmg = | 627riqu(¢)wTd.’1}|.

Since W (¢)T : Z% — Z? is monomorphism, we obtain that s,, , = 0 for m # 0
and finally that Y, ;. 5%, , < co. B

6 The case det W(¢) =0

Given an irrational number « € [0, 1), let [0; a1, as, ...] be its continued frac-
tion expansion, where a,, are positive integers. Put

9% =1, ¢ =a1, gnt1 = ang1Gn + dn-1,
po=0,p1 =1, puy1 = Qny1Pn + Pn-1-
The rationals p, /q, are called the convergents of a.
Lemma 6.1. (See [4]) If f : R/Z — R is of bounded variation, then for any
zeR

(1) [f@)+ f(z+a) + o+ [+ (an— D) - g / f(x)dz] < Varf.

If f: R/Z — R is absolutely continuous, then

FO 4 FC+0) + oot £+ (g0 — D)) — g / f(z)da

converges uniformly to zero. B

Lemma 6.2. Let T : Z2 x T2 — T2 be an ergodic and free Z2-rotation given
by

27r1'(a11m1+a12m2)21 27ri(a21m1+a22m2)22)

T(ml,mQ)(Zlaz2) = (6 , €

such that the automorphism T (i, 1,) is not ergodic for some (k1, ko) € 72\ {0}.
If ¢ : 72 x T2 — T is an absolutely continuous T—cocycle such that

kE1wi1 + kowar = kiwiz + kawae = 0,

then the mazimal spectral type of T 4 is singular and T 4 is not mizing on the
orthocomplement of the eigenfunctions of T'.

Proof. Set

Cm,r

dm(2) dz
’]I‘Q

— / eQWir(hm(;m,x2)+(7n1w11+m2w21)x1 +(m1w12+m2w22)x2)d$1d$2.
T2
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In view of Lemma 1.2 and Lemma 1.3 it is enough to find a sequence {m ("},
in Z2 (m™ — oo, as n — oo) and a real number ¢ € R such that for any
r € Z \ {0} we have

2mirce

=€

lim ¢, ),
n—oo

Put a1 = a1k +a12ks and ag = aig1 ki + aasks. Since the rotation T’ (k1,k2)
is not ergodic, there exist integers [, Iy, I3, (13413 # 0) such that Iya; +locs = I3.
Take s1,s2 € Z such that s1ly — soly = ged(ly,lz). Put I = ged(ly,l2) and
a = syaq + saay. Let p, /g, be the convergents of la. Set

_ S1 52
b= [ Ll Lol }
Then B € M3(Z) and det B = 1. Consider the linear operator P : L'(R?/Z?) —
LY(R?/7Z?) given by

f(z1,22) /fB by —1—121‘2 —)dx.

Let f : R?/Z? — R be an absolutely continuous function. Then the function
fB~1(-,y) : R/Z — R is absolutely continuous for any y € R. Tt follows that

qn—1
Z f(z1 + jlag, ze + jlag) — qn P f(x1, x2)
§=0
qn—1
=Y B (y1 + jla, yo) /fB (z,y2)d
j=0
where y1 = s121 + soxg and yo = (l1z1 + lazg)/l. By Lemma 6.1, for any

(71,22) € R? we have

qn—1

lim Z f(@1 + jlar, 22 + jlag) — gu P f(21,22) = 0.

n—oo

3=0
Applying inequality (12) and Lemma 3.1 we get

qn—1

| D f@1 4 jlan, @z + jlag) — gu Pf (w1, 2)| < Varr fB™' (-, y2) < C| f|lsv-
=0

By Lebesgue’s bounded convergence theorem,

gn—1
(13) lim | Z fz1 + jlog, x2 + jlag) — ¢n Pf(x1, 22)|dx1dze = 0.

Since for any natural m we have

m—1
Rk miks) (%1, 72) Z P(iky iky) (21 + Jlo, 22 + jlag),
7=0
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the sequence {h(q, ik, gniks) — In PRk, 1k,) fnen converges to zero in L'(R?/7?),
by (13). Observe that P = Pq, ia,)- By Lemma 2.1,

Phk, iks) =/ Rty 1o ) A
’]1‘2
Put m ™ = (q,lk1, gulks). Then

Ry () 7qn\/ Py iz ) AN
T2

converges to zero in L'(R%/Z?). Without loss of generality we can assume that

lim eQﬂ'iqn fTQ Riky 1kg)dX — 6271'7:(:'

n—oo
Therefore
lim Pmm(2)'dz = lim 2N () (@1,72)
n—oo [r2 n—o0 [r2

_ lim 627Tirqn fTQ Rtk 1kg)dN — e27rirc

for any r € Z \ {0}, which proves the lemma. B
By the above lemma we have proved the following:

Theorem 6.3. Let T : Z? x T2 — T2 be an ergodic and free 72 -rotation and
let ¢ : Z2 x T2 — T be an absolutely continuous T—cocycle with W (¢) = 0. If
the automorphism T ., is not ergodic for some m € Z*\ {0}, then the mazimal
spectral type of T 4 is singular and T 4 is not mizing on the orthocomplement
of the eigenfunctions of T .

Theorem 6.4. Let T : 7Z? x T? — T? be an ergodic and free Z>-rotation.
If ¢ : Z? x T2 — T is an absolutely continuous T—cocycle and rank W (¢) = 1,
then the mazimal spectral type of T 4 is singular and T 4 is not mizing on the
orthocomplement of the eigenfunctions of T'.

Proof. By (2), Wa) — (Wa)T € My(Z) hence
W02 + W12t — Wa1Q — Wty = d € Z.

Since W (o) # 0, at least one of the pairs (wq1, —w11), (w2, —w12) is not equal
to zero. Assume that (wg1, —wi1) # 0. Put k; = we; and ks = —wy;. Then
kiwi1 + kowoy = 0. Since det W(¢) = 0, we have kjwis + kowse = 0. Set
o] = Oéllkl + 04121172 and Qo = 04211171 + a22k2. Then

w110 + Wiaig = —agq det W(gb) —dwi1 €7

and
Wa1 Q] + Waosg = —uao det W(¢) — dwyy € 7.

Therefore the rotation T (1, 1,) is not ergodic, because at least one of the pairs
(w11, w12), (wa1,waz) is not equal to zero. It follows that the rotation T' and
the cocycle ¢ satisfy the assumptions of Lemma 6.2, and the proof is complete.
|

Our considerations overlook the case when all rotations T, are ergodic and
W(¢) = 0. It would be interesting to answer the question: what kind of spectra
can be obtained in this case?
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