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Abstract

Let T : Td → Td be an ergodic rotation. Given ϕ : Td → T a smooth

cocycle we show that the set

{f ∈ L2(Td+1, λd+1) : σ̂f (n) = (Un
Tϕ

f, f) = O(
1

|n|rw(ϕ)
)},

where rw(ϕ) is the rank of the winding vector of ϕ is dense in the ortho-

complement of the eigenfunctions of T . In particular the skew product

di�eomorphism Tϕ : Td+1 → Td+1 given by

Tϕ(z, ω) = (Tz, ϕ(z)ω)

has countable Lebesgue spectrum in that orthocomplement. We construct

an ergodic rotation T of T2 and a real analytic cocycle on ϕ̃ : T2 → R
such that an extension Texp(2πiϕ̃) is mixing in the orthocomplement of the

eigenfunctions of T .

Introduction

Let Td be a d-dimensional torus. We will consider an ergodic rotation of the
d-dimensional torus given by

T (z1, ..., zd) = (z1e2πiα1 , ..., zde
2πiαd)

where α1, ..., αd, 1 are independent over Q.
By a cocycle we mean a smooth map ϕ : Td → T. Then, by Fubini Theorem a
transformation Tϕ : (Td+1, λd+1) → (Td+1, λd+1) given by

Tϕ(z, ω) = (Tz, ϕ(z)ω)

preserves Lebesgue measure λd+1. The automorphism Tϕ is called an extension
of T .
Such a cocycle ϕ can be represented as

ϕ(e2πix1 , ..., e2πixd) = e2πi(ϕ̃(x1,...,xd)+m1x1+mdxd)

∗Research partly supported by KBN grant 2 P301 031 07 (1994)

1



where m1, ...,md ∈ Z and ϕ̃ : Rd → R is smooth, periodic of period 1 in each
coordinate. In this representation of ϕ, the vector (m1, ...,md) ∈ Zd is unique,
while ϕ̃ is unique up to an additive integer constant.
The vector w(ϕ) = (m1, ...,md) we call the winding vector of a cocycle ϕ. The
number rw(ϕ) = card{i : i = 1, ..., d, mi 6= 0} we call the rank of the winding
vector of a cocycle ϕ. For d = 1 the winding vector is equal to the degree d(ϕ)
of ϕ.
In 1991, P. Gabriel, M. Lema«czyk and P. Liardet [4] proved that

Proposition 1. If d(ϕ) = 0 and ϕ̃ is absolutely continuous, then the maximal
spectral type of Tϕ is singular and is not mixing in the orthocomplement of the
eigenfunctions of T .

In 1993, A. Iwanik, M. Lema«czyk and D. Rudolph [8] proved that

Proposition 2. If d(ϕ) 6= 0 and ϕ̃ is absolutely continuous and ϕ̃′ is of bounded
variation, then Tϕ has countable Lebesgue spectrum in the orthocomplement of
the eigenfunctions of T and the set

{f ∈ L2(T2, λ2) : σ̂f (n) = (UnTϕ
f, f) = O(

1
|n|

)}

is dense in that orthocomplement.

This result is a strengthening of an earlier result by Kushnirenko [11] (see
also [2] pp.344).
We can interpret Proposition 1 and 2 as certain facts giving rise to a spectral
stability of Tϕ where ϕ is a character of T: indeed if we multiply ϕ by a smooth
cocycle ψ of degree zero spectral properties of Tϕ and Tϕψ remain the same.

In this paper we will generalize these facts to multidimensional rotations
for non zero winding vector smooth cocycles. In Section 3 we show that for
ϕ ∈ C2(T), Tϕ has countable Lebesgue spectrum in the orthocomplement of the
eigenfunctions of T and for ϕ ∈ C2d(T), the set

{f ∈ L2(Td+1, λd+1) : σ̂f (n) = (UnTϕ
f, f) = O(

1

|n|rw(ϕ)
)}

is dense in that orthocomplement.
For zero winding vector smooth cocycles and d ≥ 2 our result are rather to

suggest that no spectral stability property holds. In Section 4 we construct an
ergodic rotation T of T2 and a real analytic cocycle on ϕ : T2 → T such that an
extension Tϕ is mixing in the orthocomplement of the eigenfunctions of T .

1 Notation and facts from spectral theory

The substance of this section is classical (e.g. for an irrational rotation of the
circle see [5], [8] and [13]).
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Let U be a unitary operator on a separable Hilbert space H. For any f ∈ H
we de�ne the cyclic space Z(f) = span{Unf : n ∈ Z}. By the spectral measure
σf of f we mean a Borel measure on T determined by the equalities

σ̂f (n) =
∫

T
zndσf = (Unf, f)

for n ∈ Z.

Theorem 1.1 (spectral theorem). There exists a sequence f1, f2, ... in H
such that

(1) H =
⊕∞

n=1 Z(fn) and σf1 � σf2 ... .

Moreover, for any sequence f ′1, f
′
2, ... in H satisfying (1) we have σf1 ≡ σf ′1 , σf2 ≡

σf ′2 , ... .

The spectral type of σf1 (the equivalence class of measures) will be called the
maximal spectral type of U . U is said to have Lebesgue spectrum if σf1 ≡ λ where
λ is Lebesgue measure on the circle. It is said that U has Lebesgue spectrum of
uniform multiplicity if σfn

≡ λ for n = 1, 2, ..., k and σfn
≡ 0 for n > k where

k ∈ N ∪ {∞}.

Let X be an in�nite abelian group which is metric, compact and monothetic.
Let B be a σ-algebra of Borel sets on X and µ be Haar measure on X. We will
denote H the space L2(X,B, µ). We will consider an ergodic rotation of the
group X given by Tx = a · x, where a is a cyclic generator of X.
For a cocycle (here by a cocycle we mean any Borel map) F : X → T we will
consider a unitary operator U : H → H given by

(Uf)(x) = F (x)f(Tx).

Lemma 1.2. The maximal spectral type of the operator U is either discrete or
continuous singular or Lebesgue.

Lemma 1.3. If the maximal spectral type of the operator U is Lebesgue then
the multiplicity function of U is uniform.

Lemma 1.4. Suppose that f ∈ H and
∑∞
n=−∞ |(Unf, f)|2 < +∞. Then σf �

λ.

Denote

F (n)(x) =

 F (x)F (Tx)...F (Tn−1x) if n > 0
1 if n = 0

(F (Tnx)F (Tn+1x)...F (T−1x))−1 if n < 0

Corollary 1.1. Suppose,

∞∑
n=−∞

|
∫
X

F (n)(x)dµ(x)|2 < +∞.

Then U has Lebesgue spectrum of uniform multiplicity.
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Let G be a compact abelian group, m its Haar measure and ϕ : X → G a
cocycle. We will consider the extension Tϕ : (X ×G,µ×m) → (X ×G,µ×m)
given by

Tϕ(x, g) = (Tx, ϕ(x)g).

Let us decompose

L2(X ×G,µ×m) =
⊕
χ∈Ĝ

Hχ

where
Hχ = {f : f(x, g) = h(x)χ(g), h ∈ L2(X,µ)}.

Observe that Hχ is closed UTϕ
-invariant subspace of L2(X ×G,µ×m), where

UTϕ
= f ◦ Tϕ.

Lemma 1.5. The operator UTϕ
: Hχ → Hχ is unitarily equivalent to Uχ : H →

H, where
(Uχh)(x) = χ(ϕ(x))h(Tx).

2 Functions of bounded variation and absolutely

continuous functions

Let Id denote the closed d-dimensional unit cube. By a partition P of Id, we
mean a partition into cubes given by sequences

{(η(j)
0 , η

(j)
1 , ..., η(j)

mj
) : 0 = η

(j)
0 ≤ ... ≤ η(j)

mj
= 1 , j = 1, ..., d}.

Given such a partition, we de�ne, for j = 1, ..., d and i = 1, ...,mj − 1 the

operator ∆j,i : CId → CId

by

∆j,if(x(1), ..., x(d)) =

f(x(1), ..., x(j−1), η
(j)
i+1, x

(j+1), ..., x(d))− f(x(1), ..., x(j−1), η
(j)
i , x(j+1), ..., x(d))

However, if it does not rise to a confusion, we will rather write

∆jf(x(1), ..., x(j−1), η
(j)
i , x(j+1), ..., x(d)) instead of ∆j.if(x(1), ..., x(j−1), η

(j)
i , x(j+1), ..., x(d)).

For j 6= j′ and 0 ≤ i ≤ mj − 1, 0 ≤ i′ ≤ mj′ − 1 we have

∆j,i∆j′,i′f = ∆j′,i′∆j,if

and for j1, ..., jp such that js 6= js′ for s 6= s′ we will write

∆j1,...,jp = ∆j1,i1 ...∆jp,ip

where by the domain of ∆j1,...,jp we mean only points (x(1), ..., x(d)), x(js) = η
(js)
is

for some is.
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Let Q be a closed d-dimensional cube
∏d
i=1[a

(i), b(i)] ⊂ Id. Given Q de�ne for

j = 1, ..., d the operator ∆∗
j |Q : CId → CId

by

∆∗
j |Qf(x(1), ..., x(d)) =

f(x(1), ..., x(j−1), b(j), x(j+1), ..., x(d))− f(x(1), ..., x(j−1), a(j), x(j+1), ..., x(d))

and let ∆∗
j1,...,jp

|Q stand for ∆∗
j1
|Q...∆∗

jp
|Q.

De�nition 2.1. For a function f : Id → C we set

V ar(d)f = sup
P∈P

m1−1∑
i1=0

...

md−1∑
id=0

|∆1...df(η(1)
i1
, ..., η

(d)
id

)|,

where P is the family of all partitions P of Id. If V ar(d)f is �nite, then f is
said to be of bounded variation on Id in the sense of Vitali.

De�nition 2.2. Let f : Id → C be a function of bounded variation in the sense
of Vitali. Suppose that the restriction of f to each face F = {(x(1), ..., x(d)) :
x(is) = 0, s = 1, ..., k} where 1 ≤ i1 < ... < ik ≤ d (k = 1, ..., d) is of bounded
variation on F in the sense of Vitali. Then f is said to be of bounded variation
on Id in the sense of Hardy and Krause.

In what follows functions of bounded variation are those of bounded variation
in the sense of Hardy and Krause.

Remark. If a function is of bounded variation, then it is integrable in sense of
Riemann (for d = 2, see [7] �448).

Given 0 ≤ p ≤ n on the set Sn all permutations of {1, ..., n} consider the
following equivalence relation

σ ≡ σ′ i� σ({1, ..., p}) = σ′({1, ..., p})

We will consider an expression F (i1, ..., in), (ik ∈ N) such that

(2) F (iσ(1), ..., iσ(n)) = F (iσ′(1), ..., iσ′(n)) whenever σ ≡ σ′.

By

∗∑
i1,...,in;p

F (i1, ..., in) we denote the sum
∑

[σ]∈SN/≡

F (iσ(1), ..., iσ(n)).

Let f : Id → C be a function of bounded variation. Given 0 ≤ k ≤ d and
(a(k+1), ..., a(d)) ∈ Id−k consider the function g : Ik → C given by

g(x(1), ..., x(k)) = f(x(1), ..., x(k), a(k+1), ..., a(d)).
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For each 0 ≤ p ≤ d− k consider

Fp(k + 1, ..., d) = V ar(k+p)f(
k︷ ︸︸ ︷

·, ..., ·,
p︷ ︸︸ ︷

·, ..., ·︸ ︷︷ ︸
k+p coordinates

, 0, ..., 0)

and notice that expressions of this kind satisfy (2).

Lemma 2.1.

V ar(k)g ≤
d−k∑
p=0

∗∑
k+1,...,d;p

V ar(k+p)f(
k+p︷ ︸︸ ︷
·, ..., ·, 0, ..., 0).

Proof. We �rst prove (by induction on l) that for a function h : I l → C and
(y(1), ..., y(l)) ∈ I l and a partition given by {(0, y(j), 1) : j = 1, ..., l} we have

(3) h(y(1), ..., y(l))− h(0, ..., 0) =
l∑

p=1

∗∑
1,...,l;p

∆1...pf(0, ..., 0).

1. Obviously, (3) holds for l = 1.
2. Assuming (3) to hold for l, we will prove it for l + 1.

h(y(1), ..., y(l+1))− h(0, ..., 0) =

h(y(1), ...y(l), y(l+1))− h(0, ..., 0, y(l+1)) + ∆l+1h(0, ..., 0) =

l∑
p=1

∗∑
1,...,l;p

∆1...p l+1h(0, ..., 0) +
l∑

p=1

∗∑
1,...,l;p

∆1...ph(0, ..., 0) + ∆l+1h(0, ..., 0) =

l+1∑
p=1

∗∑
1,...,l+1;p

∆1...ph(0, ..., 0).

Let P be a partition of Ik given by {(η(j)
0 , η

(j)
1 , ..., η

(j)
mj ) : 0 = η

(j)
0 ≤ ... ≤ η

(j)
mj =

1 , j = 1, ..., k}. Consider a partition P ′ of Id given by {(η(j)
0 , η

(j)
1 , ..., η

(j)
mj ) :

0 = η
(j)
0 ≤ ... ≤ η

(j)
mj = 1, j = 1, ..., k} ∪ {(0, a(j), 1) : j = k + 1, ..., d}. Then

m1−1∑
i1=0

...

mk−1∑
ik=0

|∆1...kg(η
(1)
i1
, ..., η

(k)
ik

)| =

m1−1∑
i1=0

...

mk−1∑
ik=0

|∆1...kf(η(1)
i1
, ..., η

(k)
ik
, a(k+1), ..., a(d))| ≤

d−k∑
p=0

∗∑
k+1,...,d;p

m1−1∑
i1=0

...

mk−1∑
ik=0

|∆1...k+pf(η(1)
i1
, ..., η

(k)
ik
, 0, ..., 0)| ≤
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d−k∑
p=0

∗∑
k+1,...,d;p

V ar(k+p)f(
k+p︷ ︸︸ ︷
·, ..., ·, 0, ..., 0)

and consequently

V ar(k)g ≤
d−k∑
p=0

∗∑
k+1,...,d;p

V ar(k+p)f(
p+k︷ ︸︸ ︷
·, ..., ·, 0, ..., 0). �

Let P be a partition of Id given by {(η(j)
0 , η

(j)
1 , ..., η

(j)
mj ) : 0 = η

(j)
0 ≤ ... ≤

η
(j)
mj = 1 , j = 1, ..., d}. Then

δ(P ) = max
{(i1,...,id):0≤is≤ms−1}

d∏
j=1

|η(j)
ij+1 − η

(j)
ij
|

we will be called the diameter of the partition P .

De�nition 2.3. Let f, g : Id → C and let f be bounded. If for each se-

quence of partitions Pk given by {(η(j,k)
0 , η

(j,k)
1 , ..., η

(j,k)
mj,k) : j = 1, ..., d} such

that limk→∞ δ(Pk) = 0 and for any sequence {ξ(k)i1...id
: is = 1, ...,ms,k − 1, s =

1, ..., d, k ∈ N} where ξ(k)i1...id
∈

∏d
j=1

[
η
(j,k)
ij

, η
(j,k)
ij+1

]
we have

lim
k→∞

m1,k−1∑
i1=0

...

md,k−1∑
id=0

f(ξ(k)i1...id
)∆1..dg(η

(1,k)
i1

, ..., η
(d,k)
id

) = I,

then I is called the Riemann-Stieltjes integral of and is denoted
∫
Id fdg.

Remark. If f, g both are functions of bounded variation and if one of the
functions is continuous then

∫
Id fdg exists (for d = 2, see [7] �448).

Remark. If
∫
Id fdg exists and g is of bounded variation in the sense of Vitali,

then

|
∫
Id

fdg| ≤ sup
x∈Id

|f(x)|V ar(d)g.

Let f, g : Id → C both be functions of bounded variation and let one of them
is continuous. For 0 ≤ p ≤ d consider

Fp(1, ..., d) = ∆∗
p+1..d|Id

∫
Ip

g( ·, ..., ·︸ ︷︷ ︸
p coord.

, 0, ..., 0)df( ·, ..., ·︸ ︷︷ ︸
p coord.

, 0, ..., 0)

and notice that expressions of this kind satisfy (2).

Theorem 2.2 (integration by parts). We have∫
Id

fdg =
d∑
p=0

(−1)p
∗∑

1,...,d;p

∆∗
p+1..d|Id

∫
Ip

g(
p︷ ︸︸ ︷

·, ..., ·, 0, ..., 0)df(
p︷ ︸︸ ︷

·, ..., ·, 0, ..., 0).
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Proof. For d = 2, see [7] �448. We can prove this theorem using Lemma
5.2 from [10] ch.2 �5. �

Corollary 2.1. If f and g be periodic of period 1 in each coordinate, then∫
Id

fdg = (−1)d
∫
Id

gdf. �

Given 0 = s0 ≤ s1 ≤ ... ≤ sk−1 ≤ sk = n on the set Sn all permutations of
{1, ..., n} consider the following equivalence relation

σ ≡ σ′ i� σ({sl−1 + 1, ..., sl}) = σ′({sl−1 + 1, ..., sl}) for l = 1, ..., k.

We will consider an expression F (i1, ..., in), (ik ∈ N) such that

(4) F (iσ(1), ..., iσ(n)) = F (iσ′(1), ..., iσ′(n)) whenever σ ≡ σ′.

By

∗∑
i1,...,in;s1,...,sk−1

F (i1, ..., in) we denote the sum
∑

[σ]∈SN/≡

F (iσ(1), ..., iσ(n)).

Let f1, ..., fk : Id → C be functions of bounded variation. For 0 = s0 ≤ s1 ≤
... ≤ sk−1 ≤ sk = n consider

Fs1...sk
(1, ..., d) =

k∏
r=1

d−sr+sr−1∑
αr=0

∗∑
1,...,sr−1,sr+1,...,d;αr

V ar(αr+sr−sr−1)fr(·, ..., ·,︸ ︷︷ ︸
αr

0, ..., 0,

︸ ︷︷ ︸
sr−1

·, ..., ·,

︸ ︷︷ ︸
sr

0, ..., 0)

and notice that expressions of this kind satisfy (4).

Lemma 2.3. The product f1 · ... · fk is of bounded variation and we have

V ar(d)f1 · ... · fk ≤

∑
0=s0≤s1≤...≤sk−1≤sk=d

∗∑
1,...,d;s1,...,sk−1

k∏
r=1

d−sr+sr−1∑
αr=0

∗∑
1,...,sr−1,sr+1,...,d;αr

V ar(αr+sr−sr−1)fr(·, ..., ·,︸ ︷︷ ︸
αr

0, ..., 0,

︸ ︷︷ ︸
sr−1

·, ..., ·,

︸ ︷︷ ︸
sr

0, ..., 0). �
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Let f : Id → C be a function of bounded variation. For 0 = s0 < s1 < ... <
sk−1 < sk = d consider

Fs1...sk
(1, ..., d) =

k∏
r=1

d−sr+sr−1∑
αr=0

∗∑
1,...,sr−1,sr+1,...,d;αr

V ar(αr+sr−sr−1)f(·, ..., ·,︸ ︷︷ ︸
αr

0, ..., 0,

︸ ︷︷ ︸
sr−1

·, ..., ·,

︸ ︷︷ ︸
sr

0, ..., 0)

and notice that expressions of this kind satisfy (4).

Lemma 2.4. Assume that there exists a real number a such that 0 < a ≤ |f(x)|
for every x ∈ Id. Then 1

f : Id → C is a function of bounded variation and we
have

V ar(d)
1
f
≤

d∑
k=1

1
ak+1

∑
0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

k∏
r=1

d−sr+sr−1∑
αr=0

∗∑
1,...,sr−1,sr+1,...,d;αr

V ar(αr+sr−sr−1)f(·, ..., ·,︸ ︷︷ ︸
αr

0, ..., 0,

︸ ︷︷ ︸
sr−1

·, ..., ·,

︸ ︷︷ ︸
sr

0, ..., 0). �

De�nition 2.4. We say that a function f : Id → C has the derivative in the
sense of Vitali at (x(1), ..., x(d)) ∈ Id if there exists limit

lim
(h(1),...,h(d))→0

h(i) 6=0,0≤x(i)+h(i)≤1

∆∗
1..d|∏d

i=1[x(i),x(i)+h(i)]f(x(1), ..., x(d))

h(1)...h(d)
.

This limit is called the derivative of f and is denoted Df(x(1), ..., x(d)).

Remark. If f ∈ Cd(Id) then Df(x) = ∂df
∂x(1)...∂x(d) (x) (see [12] ch.7 �1).

Remark. If a function f : Id → C is of bounded variation in the sense of Vitali,
then f has the derivative in the sense of Vitali almost everywhere (see [12] ch.7
�2).

De�nition 2.5. (inductive) A function f : Id → C is said to be di�erentiable
in the sense of Hardy and Krause
-for d = 1 if it is di�erentiable in the ordinary sense,
-for d > 1 if it has the derivative in the sense of Vitali in every point and for
any j = 1, ..., d and a ∈ I the function fj : Id → C

fj(x(1), ..., x(d−1)) = f(x(1), ..., x(j−1), a, x(j), ..., x(d−1))

is di�erentiable in the sense of Hardy and Krause.
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In what follows by di�erentiable functions we mean those which are di�eren-
tiable in the sense of Hardy and Krause. The derivative of f(x̂(1), ..., x(i1), ..., x(ik), ..., x̂(d))
is denoted Dx(i1)...x(ik)f(x).

Let f : Id → C be a di�erentiable function. For 0 = s0 < s1 < ... < sk−1 <
sk = d consider

Fs1...sk
(1, ..., d) =

k∏
r=1

D
x(sr−1+1)...x(sr)f(x)

and notice that expressions of this kind satisfy (4).

Lemma 2.5. The function exp f : Id → C is di�erentiable and we have

D exp f(x) = exp f(x)
d∑
k=1

∑
0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

k∏
r=1

D
x(sr−1+1)...x(sr)f(x). �

The number |P | =
∏d
i=1(b

(i) − a(i)) is called the substance of the cube

P =
∏d
i=1

[
a(i), b(i)

]
.

De�nition 2.6. A function f : Id → C is said to be absolutely continuous in
the sense of Vitali if for every ε > 0 there exists δ > 0 such that for every
system of cubes Q1, ..., Qn such that |Qi ∩ Qj | = 0 for any 1 ≤ i 6= j ≤ n if
|Q1|+ ...+ |Qn| < δ then

|∆∗
1..d|Q1f |+ ...+ |∆∗

1..d|Qnf | < ε.

Remark. If a function is absolutely continuous in the sense of Vitali then
is of bounded variation in the sense of Vitali (see [12] ch.7 �3).

De�nition 2.7. Let f : Id → C be an absolutely continuous function in the
sense of Vitali. Suppose the restriction f of each face F = {(x(1), ..., x(d)) :
x(is) = 0, s = 1, ..., k} where 1 ≤ i1 < ... < ik ≤ d (k = 1, ..., d) is absolutely
continuous function in the sense of Vitali. Then f is said to be absolutely
continuous function in the sense of Hardy and Krause.

In what follows functions absolutely continuous are those absolutely contin-
uous in the sense of Hardy and Krause.
Remark. If a function f is of bounded variation and g is absolutely continuous
then ∫

Id

fdg =
∫
Id

fDgdλd

(see [12] ch.7 �3 and [7] �4481).

Lemma 2.6. Let f : Id → C be an absolutely continuous function. Then for
every g(a(k+1), ..., a(d)) ∈ Id−k the function g : Ik → C given by

g(x(1), ..., x(k)) = f(x(1), ..., x(k), a(k+1), ..., a(d))

is absolutely continuous.

Proof. Similarly as the proof of Lemma 2.1. �
Remark. If a function f : Id → R is absolutely continuous then the function
exp if : Id → C is absolutely continuous.
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3 Spectral properties in the case where the wind-

ing vector is not equal to zero

Lemma 3.1. Let f : Id → R be an absolutely continuous function such that for
any j = 1, ..., d and x ∈ Id we have ∆∗

j |Idf(x) ∈ Z. Suppose, Dx(i1)..x(ik)f is
the function of bounded variation for 1 ≤ i1 < ... < ik ≤ d and there exists real
a number a > 0 such that for any x ∈ Id we have

|
d∑
k=1

(2πi)k
∑

0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

k∏
r=1

D
x(sr−1+1)...x(sr)f(x)| ≥ a > 0.

Then

|
∫
Id

exp 2πif(x)dx| ≤

d∑
l=1

1
al+1

∑
0=t0<t1<...<tl−1<tl=d

∗∑
1,...,d;t1,...,tl−1

l∏
p=1

d−tp+tp−1∑
αp=0

∗∑
1,...,tp−1,tp+1,...,d;αp

d∑
k=1

(2π)k
∑

0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

∑
0=u0≤u1≤...≤uk−1≤ukαp+tp−tp−1

∗∑
1,..,αp,tp−1+1,..,tp;u1,..,uk−1

k∏
r=1

d−tp+tp−1+ur−ur−1∑
βr=0

∗∑
1,...,ur−1,ur+1,...,αp,tp−1+1,...,tp;βr

V ar(βr+ur−ur−1)D
x(sr−1+1)...x(sr)f(·, ..., ·,︸ ︷︷ ︸

βr

0, ..., 0,

︸ ︷︷ ︸
ur−1

·, ..., ·,

︸ ︷︷ ︸
ur

0, ..., 0).

Proof. An application of Lemma 2.3 and Lemma 2.4 and integration by
parts gives that

|
∫
Id

exp 2πif(x)dx| ≤

|
∫
Id

1/(
d∑
k=1

(2πi)k
∑

0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

k∏
r=1

D
x(sr−1+1)...x(sr)f)d exp 2πif(x)| =

|
∫
Id

exp 2πif(x)d(1/
d∑
k=1

(2πi)k
∑

0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

k∏
r=1

D
x(sr−1+1)...x(sr)f)| ≤

V ar(d)(1/
d∑
k=1

(2πi)k
∑

0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

k∏
r=1

D
x(sr−1+1)...x(sr)f) ≤

11



d∑
l=1

1
al+1

∑
0=t0<t1<...<tl−1<tl=d

∗∑
1,...,d;t1,...,tl−1

l∏
p=1

d−tp+tp−1∑
αp=0

∗∑
1,...,tp−1,tp+1,...,d;αp

d∑
k=1

(2π)k
∑

0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

V ar(αp+tp−tp−1)
k∏
r=1

D
x(sr−1+1)...x(sr)f(·, ..., ·,︸ ︷︷ ︸

αp

0, ..., 0,

︸ ︷︷ ︸
tp−1

·, ..., ·,

︸ ︷︷ ︸
tp

0, ..., 0) ≤

d∑
l=1

1
al+1

∑
0=t0<t1<...<tl−1<tl=d

∗∑
1,...,d;t1,...,tl−1

l∏
p=1

d−tp+tp−1∑
αp=0

∗∑
1,...,tp−1,tp+1,...,d;αp

d∑
k=1

(2π)k
∑

0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

∑
0=u0≤u1≤...≤uk−1≤ukαp+tp−tp−1

∗∑
1,..,αp,tp−1+1,..,tp;u1,..,uk−1

k∏
r=1

d−tp+tp−1+ur−ur−1∑
βr=0

∗∑
1,...,ur−1,ur+1,...,αp,tp−1+1,...,tp;βr

V ar(βr+ur−ur−1)D
x(sr−1+1)...x(sr)f(·, ..., ·,︸ ︷︷ ︸

βr

0, ..., 0,

︸ ︷︷ ︸
ur−1

·, ..., ·,

︸ ︷︷ ︸
ur

0, ..., 0).�

Lemma 3.2. Let α1, ..., αd, 1 be independent over Q real numbers. Assume that
ϕ̃ : Id → R is an absolutely continuous function, which is periodic of period 1
in each coordinate. Suppose, Dx(i1)...x(ik) ϕ̃ is the function of bounded variation
for each 1 ≤ i1 < ... < ik ≤ d. Then for any (m1, ...,md) ∈ Zd where mi 6= 0
for i = 1, ..., d and N ∈ Z \ {0} there exists a polynomial F of 4d variables with
nonnegative coe�cients such that

|
∫
Id

exp 2πiN(ϕ̃(n)(x) +
d∑
k=1

mknx
(k))dx| ≤

1
|n|d

F (V ar(r)Dx(i1)..x(ik)f(0, ..., 0,
j1· , 0, ..., 0,

jr· , 0, ..., 0) :

1 ≤ i1 < ... < ik ≤ d, 1 ≤ j1 < ... < jr ≤ d)

where α = (α1, ..., αd) and

ϕ̃(n)(x) =

 ϕ̃(x) + ...+ ϕ̃(x+ (n− 1)α) for n > 0
0 for n = 0

−(ϕ̃(x+ nα) + ...+ ϕ̃(x− α)) for n < 0.

12



Proof. Let f(x(1), ..., x(d)) = N(ϕ̃(n)(x) +
∑d
k=1mknx

(k)). Then

Dx(i)f(x) = N(Dx(i) ϕ̃(n)(x) +min) for i = 1, ..., d and

Dx(i1)...x(ik)f(x) = NDx(i1)...x(ik) ϕ̃(n)(x) for 1 ≤ i1 < ... < ik ≤ d and k > 1.

We will consider a real number 1
2 > ε > 0.

Since for each 1 ≤ i1 < ... < ik ≤ d the function Dx(i1)...x(ik) ϕ̃(x) is integrable
in the sense of Riemann and the rotation of α is monoergodic, there exists a
natural number n0 such that for any |n| ≥ n0, 1 ≤ i1 < ... < ik ≤ d and x ∈ Id
we have

|Dx(i1)...x(ik) ϕ̃(n)(x)
n

−
∫
Id

Dx(i1)...x(ik) ϕ̃(x)dx| < ε.

From ∫
Id

Dx(i1)...x(ik) ϕ̃(x)dx =∫
Id−k

(
∫
Ik

Dx(i1)...x(ik) ϕ̃(x)dx(i1)...dx(ik))dx(1)... ˆdx(i1)... ˆdx(ik)...dx(d) =∫
Id−k

∆∗
i1..ik

ϕ̃(x)dx(1)... ˆdx(i1)... ˆdx(ik)...dx(d) = 0

we obtain that for |n| ≥ n0

|Dx(i1)...x(ik) ϕ̃(n)(x)| < ε|n|.

Let |n| ≥ max(n0, d!2d−2M) where M = maxi=1,..,d |mi| + 1. Then for any
x ∈ Id we have

|
d∑
k=1

(2πi)k
∑

0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

k∏
r=1

D
x(sr−1+1)...x(sr)f(x)| ≥

(2π|N |)d
d∏
k=1

|Dx(k) ϕ̃(n)(x) +mkn|−

d−1∑
k=1

(2π|N |)k
∑

0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

k∏
r=1

|D
x(sr−1+1)...x(sr) ϕ̃

(n)(x)+nasr−1+1...sr
| ≥

where

asr−1+1...sr
=

{
misr

for sr−1 + 1 = sr
0 for sr−1 + 1 < sr

≥ (2π|N |)d
d∏
k=1

| n|(|mk| − ε)−

d−1∑
k=1

(2π|N |)k
∑

0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

(M |n|)k ≥

13



(π|Nn|)d − d!(2Mπ|Nn|)d−1 ≥

(π|N |)d|n|d−1(|n| − d!2d−1M) ≥ 1
2
(π|Nn|d) = C|n|d.

By Lemma 3.1 we have

|
∫
Id

exp 2πiN(ϕ̃(n)(x) +
d∑
k=1

mknx
(k))dx| ≤

d∑
l=1

1
Cl+1|n|d(l+1)

∑
0=t0<t1<...<tl−1<tl=d

∗∑
1,...,d;t1,...,tl−1

l∏
p=1

d−tp+tp−1∑
αp=0

∗∑
1,...,tp−1,tp+1,...,d;αp

d∑
k=1

(2π)k
∑

0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

∑
0≤u1≤...≤uk−1≤αp+tp−tp−1

∗∑
1,..,αp,tp−1+1,..,tp;u1,..,uk−1

k∏
r=1

d−tp+tp−1+ur−ur−1∑
βr=0

∗∑
1,...,ur−1,ur+1,...,αp,tp−1+1,...,tp;βr

V ar(βr+ur−ur−1)(ND
x(sr−1+1)...x(sr) ϕ̃

(n)(·, ..., ·,︸ ︷︷ ︸
βr

0, ..., 0,

︸ ︷︷ ︸
ur−1

·, ..., ·,

︸ ︷︷ ︸
ur

0, ..., 0)+nasr−1+1...sr
) ≤

d∑
l=1

1
Cl+1|n|d(l+1)

∑
0<t1<...<tl−1<d

∗∑
1,...,d;t1,...,tl−1

l∏
p=1

d−tp+tp−1∑
αp=0

∗∑
1,...,tp−1,tp+1,...,d;αp

d∑
k=1

(2π|N |)k
∑

0=s0<s1<...<sk−1<sk=d

∗∑
1,...,d;s1,...,sk−1

∑
0≤u1≤...≤uk−1≤αp+tp−tp−1

∗∑
1,..,αp,tp−1+1,..,tp;u1,..,uk−1

k∏
r=1

d−tp+tp−1+ur−ur−1∑
βr=0

∗∑
1,...,ur−1,ur+1,...,αp,tp−1+1,...,tp;βr

|n|

V ar(βr+ur−ur−1)D
x(sr−1+1)...x(sr) ϕ̃(...) ≤

d∑
l=1

|n|dl

|n|d(l+1)
Fl =

1
|n|d

F. �

Remark. With the same assumption as the one in Lemma 3.2 we can prove
that for any (r1, ..., rd) ∈ Zd there exists a polynomial F of 4d variables with
nonnegative coe�cients such that

|
∫
Id

exp 2πi(Nϕ̃(n)(x) +
d∑
k=1

(Nmkn+ rk)x(k))dx| ≤ F

|n|d
.
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Theorem 3.3. Let α1, ..., αd, 1 be independent over Q real numbers. Let a
cocycle ϕ : Td → T be represented as

ϕ(e2πix1 , ..., e2πixd) = e2πi(ϕ̃(x1,...,xd)+m1x1+mdxd)

where ϕ̃ : Id → R satis�es the same assumption as the one in Lemma 3.2. If
rw(ϕ) = k > 0 then the set

{f ∈ L2(Td+1, λd+1) : σ̂f (n) = (UnTϕ
f, f) = O(

1

|n|k
)}

is dense in the orthocomplement of the eigenfunctions of T .

Proof. For simplicity we may assume that m1 6= 0, ...,mk 6= 0. By
Lemma 2.1 there exists a real number M > 0 such that for any 1 ≤ i1 <
..., ip ≤ k , 1 ≤ j1 < ..., jl ≤ k and (x(k+1), ..., x(d)) ∈ Id−k we have

V ar(l)Dx(i1)..x(ip)ϕ̃(0, ..., 0,
j1· , 0, ..., 0,

jl· , 0, ..., 0, x(k+1), ..., x(d)) ≤M

Let P be a trigonometric polynomial given by

P (z1, ..., zd, ω) =
R1∑

r1=−R1

...

Rd∑
rd=−Rd

S∑
s=−S s 6=0

ar1...rdsz
r1
1 ...z

rd

d ω
s

where ar1...rds ∈ C. Then

|(UnTϕ
P, P )| = |

∫
Td+1

P (Tnz, ϕ(n)(z)ω)P̄ (z, ω)dzdω| =

|
∫
Id+1

∑
r1,...,rd,s

ar1...rds exp 2πi[
d∑
j+1

rj(x(j) + nαj)+

+sϕ̃(n)(x) + s
d∑
j=1

mj(nx(j) +
(n− 1)n

2
αj) + sy]

∑
r′1,...,r

′
d,s

′

ār′1...r′ds′ exp 2πi(
d∑
j=1

r′jx
(j) + s′y)dx(1)...dx(d)dy| ≤

∑
r1,...,rd,r′1,...,r

′
d,s

|ar1...rdsar′1...r′ds||
∫
Id

exp 2πi[sϕ̃(n)(x)+[sn
d∑
j=1

mjx
(j)+

d∑
j=1

(rj−r′j)x(j)]dx|

∑
r1,...,rd,r′1,...,r

′
d,s

|ar1...rdsar′1...r′ds||
∫
Id−k

exp 2πi
d∑

j=k+1

(rj − r′j)x
(j) dx(k+1)...dx(d)|

|
∫
Ik

exp 2πi[sϕ̃(n)(x) + sn
k∑
j=1

mjx
(j) +

k∑
j=1

(rj − r′j)x
(j)]dx(1)...dx(k)| ≤

15



∑
r1,...,rd,r′1,...,r

′
d,s

|ar1...rdsar′1...r′ds|
Fs,r1−r′1,...,rk−r′k(M)

|n|k
= O(

1
|n|k

). �

Corollary 3.1. If ϕ ∈ C2d and rw(ϕ) = k > 0 then the set

{f ∈ L2(Td+1, λd+1) : σ̂f (n) = (UnTϕ
f, f) = O(

1

|n|k
)}

is dense in the orthocomplement of the eigenfunctions of T .�

Let w(ϕ) 6= 0. For simplicity we assume that m1 6= 0. Suppose, there exists
a real number R > 0 such that for each (x(2), ..., x(d)) ∈ Id−1

V ar(1)
∂ϕ̃

∂x(1)
(·, x(2), ..., x(d)) ≤ R

In the same manner as in the proof of Theorem 3.3 we can show that

σ̂χN
(n) = O(

1
|n|

) for N 6= 0

where χN (z1, ..., zd, ω) = ωN . From this and by Corollary 1.1 we conclude that
Tϕ has countable Lebesgue spectrum in the orthocomplement of the eigenfunc-
tions of T .

Corollary 3.2. If ϕ ∈ C2 and w(ϕ) 6= 0 then Tϕ has countable Lebesgue
spectrum in the orthocomplement of the eigenfunctions of T .�

4 Spectral properties in the case where the wind-

ing vector is equal zero

Lemma 4.1. If 0 < |x| ≤ |y| ≤ 1
2 , then

(5) 4|x| ≤ |e2πix − 1| ≤ 2π|x|,

(6)
2
π
|y
x
| ≤ |e

2πiy − 1
e2πix − 1

| ≤ |y
x
|.

Lemma 4.2. Assume n ∈ N and take a ∈ R such that 0 < a < 1. Then there
exist n pair wise disjoint subintervals I1, ..., In of I such that for x ∈ I \

⋃n
i=1 Ii

we have | cosnπx| ≥ a moreover |Ii| = a
n .

Proof. Set Ii = [2i−1
2n − a

2n ,
2i−1
2n + a

2n ]. Then

I \
n⋃
i=1

Ii =
n⋃
i=1

[
2i− 2

2n
,
2i− 1

2n
− a

2n
) ∪ (

2i− 1
2n

+
a

2n
,

2i
2n

].
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If x ∈ I \
⋃n
i=1 Ii, then there exists a natural number i such that

x ∈ [
2i− 2

2n
,
2i− 1

2n
− a

2n
) ∪ (

2i− 1
2n

+
a

2n
,

2i
2n

].

Then a
2n < |x− 2i−1

2n | ≤ 1
2n , whence

a
2 < |nx− 2i−1

2 | ≤ 1
2 and �nally

a < 2|nx− 2i− 1
2

| ≤ | sinπ(nx− i+
1
2
)| ≤ | cosπnx|. �

Lemma 4.3. Let f : I → R be an absolutely continuous function such that
f ′ is of bounded variation and f ′(0) = f ′(1), f(1) − f(0) ∈ Z. Suppose there
exists a real number a such that |f ′(x)| ≥ a > 0 for x ∈ I \

⋃s
i=1(ai, bi) (where

0 ≤ a1 < b1 < ... < as < bs < 1 or 0 < a1 < b1 < ... < as < 1 < bs). Then

(7) |
∫ 1

0

e2πif(x)dx| ≤ 1
2π

V arf ′

a2
+

s

πa
+

s∑
i=1

(bi − ai).

Proof. Let D =
⋃s
i=1(ai, bi) and as+1 = a1. Then

|
∫ 1

0

e2πif(x)dx| ≤ |
∫
I\D

e2πif(x)dx|+
s∑
i=1

(bi − ai) =

|
∫
I\D

1
2πif ′(x)

de2πif(x)|+
s∑
i=1

(bi − ai) =

|
s∑
i=1

(
e2πif(ai+1)

2πf ′(ai+1)
− e2πif(bi)

2πf ′(bi)
− 1

2π

∫ ai+1

bi

e2πif(x)d
1

f ′(x)
)|+

s∑
i=1

(bi − ai) ≤

1
2π

s∑
i=1

(
1

|f ′(ai)|
+

1
|f ′(bi)|

) +
1
2π

s∑
i=1

V ar[bi,ai+1]
1

f ′(x)
) +

s∑
i=1

(bi − ai) ≤

1
2π

V arf ′

a2
+

s

πa
+

s∑
i=1

(bi − ai). �

Given a real number α ∈ [0, 1), let [0; a1, a2, ...] be its continued fraction
expansion where an are positive integer numbers. Put

q0 = 1, q1 = a1, qn+1 = an+1qn + qn−1,

p0 = 0, p1 = 1, pn+1 = an+1pn + pn−1.

The rationals pn/qn are called the convergents of α and the inequality

1
2qnqn+1

< |α− pn
qn
| < 1

qnqn+1
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holds.
Given A,B ≥ 2, we say that a pair (α, β) ∈ [0, 1)2 satis�es (A,B) if there exists
strictly increasing sequences {nk}, {mk} of natural numbers such that

(8) B8s2mk <
1
2
q2nk+1

(9) A8q2nk+1 <
1
2
s2mk+1

where pn/qn and rn/sn are convergents of α and β.
Obviously, the set {(α, β) : (α, β) satis�es (A,B)} is uncountable.
For a pair (α, β) satisfying (A,B) we de�ne real analytic functions ψ1, ψ2 : R →
R periodic of period 1 given by

ψ1(x) =
∞∑
k=1

1
2πiq2nk

Aq2nk
(e2πiq2nk

x − e−2πiq2nk
x)

ψ2(y) =
∞∑
k=1

1
2πis2mk

As2mk
(e2πis2mk

y − e−2πis2mk
y).

We �rst prove

Lemma 4.4. For any integer numbers h1, h2, N 6= 0 we have

lim
|m|→∞

∫
I2
e2πi[N(ψ

(m)
1 (x)+ψ

(m)
2 (y))+h1x+h2y]dxdy = 0.

Corollary 4.1. If (α, β) satis�es (A,B) then α, β, 1 are independent over Q.

Proof. Suppose, α, β, 1 are dependent over Q. Then there existm1,m2,m3 ∈
Z such that m1α + m2β = m3. Let tn/un are convergents of m1α and m2β.
Then

un−1∑
p=0

ψ1(·+ p|m1|α),
un−1∑
p=0

ψ2(·+ p|m2|β)

uniformly converges to 0 (see [6], p. 189). From

ψ
(un|m1m2|)
1 (x) + ψ

(un|m1m2|)
2 (y) =

|m1|−1∑
k=0

|m2|−1∑
l=0

un−1∑
p=0

(ψ1(x+kα+l|m1|unα+p|m1|α)+ψ2(y+k|m2|unβ+lβ+p|m2|β))

we have
sup

(x,y)∈I2
|ψ(un|m1m2|)

1 (x) + ψ
(un|m1m2|)
2 (y)|

≤ |m1m2|(sup
x∈I

|
un−1∑
p=0

ψ1(x+ p|m1|α)|+ sup
y∈I

|
un−1∑
p=0

ψ2(y + p|m2|β)|)
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hence
ψ

(un|m1m2|)
1 (·) + ψ

(un|m1m2|)
2 (·)

uniformly converges to 0 in I2. It follows that

lim
n→∞

∫
I2
e2πi(ψ

(un|m1m2|)
1 (x)+ψ

(un|m1m2|)
2 (y))dxdy = 1,

which contradicts Lemma 4.4. �

Proof of Lemma 4.4. From (8) and (9) for every k ∈ N

B8s2mk <
1
2
q2nk+1 <

1
2
s2mk+1

A8q2nk <
1
2
s2mk−1+1 <

1
2
q2nk+1.

Hence for any m ≥ min(A8q2n1 , B8s2m1 ) there exists natural number k such that

A8q2nk ≤ m ≤ 1
2
q2nk+1

or

B8s2mk ≤ m ≤ 1
2
s2mk+1.

In the �rst case

|
∫
I2
e2πi[N(ψ

(m)
1 (x)+ψ

(m)
2 (y))+h1x+h2y]dxdy| =

|
∫
I

e2πi[N(ψ
(m)
1 (x)+h1x]dx||

∫
I

e2πi[N(ψ
(m)
2 (y))+h2y]dy| ≤ |

∫
I

e2πi[N(ψ
(m)
1 (x)+h1x]dx|.

From

ψ′1(x) =
∞∑
l=1

1
Aq2nl

(e2πiq2nl
x + e−2πiq2nl

x)

it follows that for any natural number m

|ψ(m)′

1 (x)| = |
m−1∑
j=0

ψ′1(x+ jα)| =

|
∞∑
l=1

1
Aq2nl

(e2πiq2nl
x e

2πiq2nl
mα − 1

e2πiq2nl
α − 1

+ e−2πiq2nl
x e

−2πiq2nl
mα − 1

e−2πiq2nl
α − 1

)| =

|
∞∑
l=1

1
Aq2nl

e2πiq2nl
mα − 1

e2πiq2nl
α − 1

(e2πiq2nl
x + e−2πiq2nl

(x+(m−1)α))| ≥

2
Aq2nk

|e
2πiq2nk

mα − 1
e2πiq2nk

α − 1
|| cos 2πq2nk

(x+
(m− 1)α

2
)|−
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k−1∑
l=1

1
Aq2nl

4
|e2πiq2nl

α − 1|
−

∞∑
l=k+1

2
Aq2nl

|e
2πiq2nl

mα − 1
e2πiq2nl

α − 1
|.

From |q2nl
α− p2nl

| > 1
2q2nl+1

and (5) we have

|e2πiq2nl
α − 1| ≥ 4|q2nl

α− q2nl
| > 2

q2nl+1

hence 1

|e2πiq2nl
α−1|

<
q2nl+1

2 for any natural l. From m ≤ 1
2q2nl+1 and |q2nl

α −
p2nl

| < 1
q2nl+1

for any l ≥ k it follows that

0 < |q2nl
α− p2nl

| ≤ |mq2nl
α−mp2nl

| ≤ 1
2
q2nl+1|q2nl

α− p2nl
| < 1

2
.

From (6) for l ≥ k
m

2
≤ |e

2πiq2nl
mα − 1

e2πiq2nl
α − 1

| ≤ m.

From Lemma 4.2 there exist subintervals I1, ..., I2q2nk
of I such that for any

x ∈ I \
⋃2q2nk
i=1 Ii we have

| cos 2πq2nk
(x+

(m− 1)α
2

)| ≥ 1
Aq2nk

;

moreover |Ii| = 1
2q2nk

A
q2nk

for i = 1, ..., 2q2nk
.

It follows that for x ∈ I \
⋃2q2nk
i=1 Ii we have

|ψ(m)′

1 (x)| ≥ −2
k−1∑
l=1

q2nl+1

Aq2nl
+

m

A2q2nk
−

∞∑
l=k+1

2m
Aq2nl

≥

−q2nk−1+1 +
m

A2q2nk
− 2m
Aq2nk+1

A

A− 1
≥ −q2nk

+
m

A2q2nk
− 4m
Aq2nk+1

.

From A8q2nk ≤ m ≤ 1
2q2nk+1 we have

4q2nk
≤ A6q2nk = A

8q2nk

A
2q2nk

≤ m

A
2q2nk

and q2nk
+ 2 ≤ A8q2nk ≤ 1

2q2nk+1

hence
16A2q2nk ≤ A2q2nk

+4 ≤ A2q2nk+1 .

For this reason for x ∈ I \
⋃2q2nk
i=1 Ii

|ψ(m)′

1 (x)| ≥ − m

4A2q2nk
+

m

A2q2nk
− m

4A2q2nk
=

m

2A2q2nk
,

hence |Nψ(m)′

1 (x) + h1| ≥ |N | m

2A
2q2nk

− |h1|. From (7) for any natural m such

that m

A
2q2nk

≥ A6q2nk ≥ 4|h1
N | we have

|
∫
I

e2πi[N(ψ
(m)
1 (x)+h1x]dx| ≤ 1

2π
V ar(Nψ(m)′

1 + h1)

( |N |m
4A

2q2nk
)2

+
2q2nk

π |N |m
4A

2q2nk

+
1

Aq2nk
≤
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8
π

A4q2nk

|N |2m2
|N |mV arψ′1 +

8A4q2nk

π|N |m
+

1
Aq2nk

≤

8
π

A4q2nk

|N |m
(V arψ′1 + 1) +

1
Aq2nk

≤ c1
Aq2nk

.

Similarly we can get that there exists a constant c2 such that if B8s2mk ≤ m ≤
1
2s2mk+1 then

|
∫
I

e2πi[N(ψ
(m)
2 (y)+h2y]dy| ≤ c2

Bs2mk
.

Therefore

lim
m→∞

∫
I2
e2πi[N(ψ

(m)
1 (x)+ψ

(m)
2 (y))+h1x+h2y]dxdy = 0.

If m < 0 then

|
∫
I2
e2πi[N(ψ

(m)
1 (x)+ψ

(m)
2 (y))+h1x+h2y]dxdy| =

|
∫
I2
e2πi[N−(ψ

(−m)
1 (x+mα)+ψ

(−m)
2 (y+mβ))+h1x+h2y]dxdy| =

|
∫
I2
e2πi[N(ψ

(−m)
1 (x)+ψ

(−m)
2 (y))−h1x−h2y]dxdy|.

It follows that

lim
|m|→∞

∫
I2
e2πi[N(ψ

(m)
1 (x)+ψ

(m)
2 (y))+h1x+h2y]dxdy = 0. �

Lemma 4.5. Let U : H → H be a unitary operator on a Hilbert space H. Then
the set {h ∈ H : lim|m|→∞(Umh, h) = 0} is closed in H.

Proof. Let hn ∈ H be a sequence such that lim|m|→∞(Umhn, hn) = 0
which convergence to h ∈ H. Let ε > 0. We take a natural number n such that
‖ h − hn ‖< min{ ε

2(2‖h‖+1) , 1}. Let m0 be a natural number such that for any

|m| ≥ m0 we have |(Umhn, hn)| < ε
2 . Then for |m| ≥ m0

|(Umh, h)| = |(Um(h− hn), h) + (Umhn, h− hn) + (Umhn, hn)| ≤

‖ h− hn ‖‖ h ‖ + ‖ hn ‖‖ h− hn ‖ +|(Umhn, hn)| ≤

‖ h− hn ‖ (2 ‖ h ‖ +1) + |(Umhn, hn)| < ε. �

Theorem 4.6. There exist real numbers α and β such that α, β, 1 are indepen-
dent over Q and a cocycle ϕ : T2 → T given by

ϕ(e2πix, e2πiy) = e2πi(ψ1(x)+ψ2(y))

where ψ1, ψ2 are real analytic function which are periodic of period 1 such that
Tϕ is mixing in the orthocomplement of the eigenfunctions of T where T is the
rotation on T2 given by T (z1, z2) = (e2πiαz1, e2πiβz2).
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Proof. We take α, β, ψ1, ψ2 like in Lemma 4.4. By Lemma 4.5 is su�cient
to show that Tϕ is mixing in the set of trigonometric polynomials given by

P (z1, z2, ω) =
K1∑

k1=−K1

K2∑
k2=−K2

L∑
l=−L l 6=0

ak1,k2,lz
k1
1 zk22 ωl

where ak1,k2,l ∈ C.
|(UmTϕ

P, P )| =

|
∫

T3

∑
k1,k2,l

ak1,k2,le
2πi(αk1+βk2)zk11 zk22 (ϕ(m)(z1, z2))lωl

∑
k′1,k

′
2,l

′

āk′1,k′2,l′z
−k′1
1 z

−k′2
2 ω−l

′
dz1dz2dω| =

|
∑

k1,k2,k′1,k
′
2,l

ak1,k2,lāk′1,k′2,l′e
2πi(αk1+βk2)

∫
T2
z
k1−k′1
1 z

k2−k′2
2 (ϕ(m)(z1, z2))ldz1dz2| ≤

∑
k1,k2,k′1,k

′
2,l

|ak1,k2,lāk′1,k′2,l′ ||
∫
I2
e2πi[l(ψ

(m)
1 (x)+ψ

(m)
2 (y))+(k1−k′1)x+(k2−k′2)y]dxdy|.

Consequently lim|m|→∞ |(UmTϕ
P, P )| = 0 and the proof is complete. �
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