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Abstract

Let T : T — T¢ be an ergodic rotation. Given ¢ : TY — T a smooth
cocycle we show that the set

1

|n|rw(¢)

{f € LX(T" Nay1) : 64(n) = (UZ, £, f) = O( )}

where rw(¢p) is the rank of the winding vector of ¢ is dense in the ortho-
complement of the eigenfunctions of 7. In particular the skew product
diffeomorphism T, : T4T! — T4t given by

To(z,w) = (T2 ¢(2)w)

has countable Lebesgue spectrum in that orthocomplement. We construct
an ergodic rotation T of T? and a real analytic cocycle on ¢ : T? — R
such that an extension Texp(2rig) is mixing in the orthocomplement of the
eigenfunctions of 7'

Introduction

Let T? be a d-dimensional torus. We will consider an ergodic rotation of the
d-dimensional torus given by

T (21, ..., 2q) = (2167 | .., zq€?™1%)

where aq,...,aq4, 1 are independent over Q.
By a cocycle we mean a smooth map ¢ : T¢ — T. Then, by Fubini Theorem a
transformation T}, : (T Agy1) — (T, A\g41) given by

To(2,w) = (T2, p(2)w)

preserves Lebesgue measure A\g11. The automorphism T, is called an extension
of T.
Such a cocycle ¢ can be represented as

2mix, 271'1:91'(1) _ eQm’(cﬁ(xl,..A,x(i)+m1x1+mdxd)

(e sy €
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where mq,....mq € Z and ¢ : R — R is smooth, periodic of period 1 in each
coordinate. In this representation of o, the vector (my,...,mq) € Z? is unique,
while ¢ is unique up to an additive integer constant.

The vector w(p) = (my,...,mq) we call the winding vector of a cocycle ¢. The
number rw(y) = card{i : i = 1,...,d, m; # 0} we call the rank of the winding
vector of a cocycle ¢. For d = 1 the winding vector is equal to the degree d(y)
of .

In 1991, P. Gabriel, M. Lemanczyk and P. Liardet [4] proved that

Proposition 1. If d(¢) = 0 and @ is absolutely continuous, then the mazimal
spectral type of T, is singular and is not mizing in the orthocomplement of the
eigenfunctions of T.

In 1993, A. Iwanik, M. Lemanczyk and D. Rudolph [8] proved that

Proposition 2. Ifd(p) # 0 and ¢ is absolutely continuous and @' is of bounded
variation, then T, has countable Lebesgue spectrum in the orthocomplement of
the eigenfunctions of T and the set

1

(7 € (T2 %) 65 (n) = (U, £.) = O

)}

is dense in that orthocomplement.

This result is a strengthening of an earlier result by Kushnirenko [11] (see
also [2] pp.344).
We can interpret Proposition 1 and 2 as certain facts giving rise to a spectral
stability of T, where ¢ is a character of T: indeed if we multiply ¢ by a smooth
cocycle 9 of degree zero spectral properties of T, and T, remain the same.

In this paper we will generalize these facts to multidimensional rotations
for non zero winding vector smooth cocycles. In Section 3 we show that for
¢ € C*(T), T, has countable Lebesgue spectrum in the orthocomplement of the
eigenfunctions of T and for ¢ € C?4(T), the set

1

{f € LT Aay1) : 64(n) = (UL f, ) = Ol—w
n]

)}

is dense in that orthocomplement.

For zero winding vector smooth cocycles and d > 2 our result are rather to
suggest that no spectral stability property holds. In Section 4 we construct an
ergodic rotation 7" of T? and a real analytic cocycle on ¢ : T? — T such that an
extension T, is mixing in the orthocomplement of the eigenfunctions of T'.

1 Notation and facts from spectral theory

The substance of this section is classical (e.g. for an irrational rotation of the
circle see [5], [8] and [13]).



Let U be a unitary operator on a separable Hilbert space H. For any f € H
we define the cyclic space Z(f) = span{U"f : n € Z}. By the spectral measure
o¢ of f we mean a Borel measure on T determined by the equalities

5y(n) = / 2oy = (U], )

for n € Z.

Theorem 1.1 (spectral theorem). There exists a sequence fi, fa,... in H
such that

(1) H=&,",Z(f.,) and o5 > of,... .

Moreover, for any sequence f1, f3, ... in H satisfying (1) we have oy, = 0y, 05, =
Ufév oo .

The spectral type of o, (the equivalence class of measures) will be called the
mazimal spectral type of U. U is said to have Lebesgue spectrum if oy, = A where
A is Lebesgue measure on the circle. It is said that U has Lebesgue spectrum of
uniform multiplicity if o5, = A for n = 1,2,...,k and o5, = 0 for n > k where
ke NU{oo}.

Let X be an infinite abelian group which is metric, compact and monothetic.
Let B be a o-algebra of Borel sets on X and p be Haar measure on X. We will
denote H the space L*(X,B,p). We will consider an ergodic rotation of the
group X given by Tz = a - x, where a is a cyclic generator of X.

For a cocycle (here by a cocycle we mean any Borel map) F : X — T we will
consider a unitary operator U : H — H given by

Uf)(@) = F(x)f(Tx).

Lemma 1.2. The mazimal spectral type of the operator U is either discrete or
continuous singular or Lebesgue.

Lemma 1.3. If the mazimal spectral type of the operator U is Lebesgue then
the multiplicity function of U is uniform.

Lemma 1.4. Suppose that f € H and Y - |(U"f, [)|? < +o0. Then o5 <
A

Denote

F(z)F(Tx)..F(T" 2) if n>0
Fi) () = i om0
(F(T'z)F(T" ). . F(T7x))~t if n<0

Corollary 1.1. Suppose,

> |/XF<”>(x)dﬂ(x)\2 < +oo.

n=—oo

Then U has Lebesgue spectrum of uniform multiplicity.



Let G be a compact abelian group, m its Haar measure and ¢ : X — G a
cocycle. We will consider the extension T, : (X x G, x m) — (X x G, x m)
given by
Let us decompose

LX(X x Gypxm) =D Hy
xeé
where
Hy={f: f(z.9) = h(z)x(g),h € L*(X, )}.
Observe that H, is closed Ur,-invariant subspace of L?(X x G, x m), where
UTW = f [©] Tw.

Lemma 1.5. The operator Ur, : Hy — H, is unitarily equivalent to Uy : H —
H, where

(Uxh)(x) = x(p(x))h(T).

2 Functions of bounded variation and absolutely
continuous functions

Let I¢ denote the closed d-dimensional unit cube. By a partition P of I¢, we
mean a partition into cubes given by sequences

{(n(()]),ny),...,n%) :0= 77(()]) <. < 77,(,]13 =1,j=1,...d}.
Given such a partition, we define, for j = 1,...,.d and 7 = 1,...,m; — 1 the
operator A, : CI* — C!* by
Aj7if(l‘(1),...,.’lj‘(d)) =
f(iC(l), ~-w$(j_1)777§i)1»33(j+1), soey ‘r(d)) - f(x(l)v «-'79€(j_1)777§j)795(j+1), 7x(d))

However, if it does not rise to a confusion, we will rather write
Ajf(a:(l), AN nl(j),sc(jﬂ), ...,x(d)) instead of Aj,if(gc(l), ...,x(j_l),ngj),x(j“), ...,x(d)).
For j# 7 and 0 <i<m; —1, 0 <¢ <mj; — 1 we have
Ajiljrinf =05 Ajif
and for ji, ..., jp such that js # js for s # s’ we will write

Ajl’m,jp = Ajl,ir“A

j}l!i})
where by the domain of A;, .. ; we mean only points (z1), ..., z(9)), zUs) = ngs)
for some 7.



Let @ be a closed d-dimensional cube H?Zl[a(i), b®] c I, Given Q define for
j =1,...,d the operator A¥|q : c" = ! vy
Al f(aW, . 2@ =
F@D, gD @) G0 @) pp®) a0 q6) pG+) (@)
and let A% . | stand for A} [g...A] |o-

Definition 2.1. For a function f : I? — C we set

mlfl mdfl

Var®f=sup 3 .. 3. A af 0,

i1=0 iq=0

where P is the family of all partitions P of I?. If Var(® f is finite, then f is
said to be of bounded variation on I? in the sense of Vitali.

Definition 2.2. Let f : I¢ — C be a function of bounded variation in the sense
of Vitali. Suppose that the restriction of f to each face F = {(z(, ..., z(®) :
20s) = 0,5 =1,...,k} where 1 < i; < ... < i <d (k= 1,...,d) is of bounded
variation on F' in the sense of Vitali. Then f is said to be of bounded variation
on I in the sense of Hardy and Krause.

In what follows functions of bounded variation are those of bounded variation
in the sense of Hardy and Krause.

Remark. If a function is of bounded variation, then it is integrable in sense of
Riemann (for d = 2, see [7] §448).

Given 0 < p < n on the set S, all permutations of {1,...,n} consider the
following equivalence relation

c=o it o{1,...,p})=c{1,....,0})
We will consider an expression F'(i1, ..., i), (ix € N) such that
(2) Fio), - io(n)) = Fio/(1)s - i/ (n)) Whenever o = o’
By
i F(i1,...,i,) we denote the sum Z F(ig(1ys - lo(n))-
T [6]€Sn /=

Let f : I — C be a function of bounded variation. Given 0 < k < d and
(a®*D .. a@) € I%F consider the function g : I* — C given by

g(:v(l), ...,x(k)) = f(:L‘(l), B D) a(d)).



For each 0 < p < d — k consider

Fy(k+1,...,d) = Var*+®) f( 7737772 0,..,0)
k+p coordinates
and notice that expressions of this kind satisfy (2).
Lemma 2.1.

k+p

Vark g<Z i Var(k+p)f( s ey 0).

p=0k+1,....d;p

Proof. We first prove (by induction on ) that for a function h : I' — C and
(W, ...,y®) € I' and a partition given by {(0,40),1):5 =1,...,1} we have

l *
(3) hyD, . y®) = 00,..,0) =D Y Ay, f(0,...,0).

1. Obviously, (3) holds for [ = 1.
2. Assuming (3) to hold for I, we will prove it for [ + 1.
By, ey ) = (0, .., 0) =

h(yM, .y y DY — (0, ..., 0,y D) 4 Ay (0, ..., 0) =

l * *
SN A0, 00+ 30 3T AL A(0, .0, 0) + Ayt (0, ..., 0) =
p=11,..Lp p=11,..l;p

1+1 *

SN AL, ...,0).

p=11,...,l+1p

Let P be a partition of I* given by {(77(()]), 775]),. ,77,(7{3) 0= (j) < 17( -
1, j=1,..,k}. Consider a partition P' of I? given by {(né]),ngj),. ,ny(rjlz) :
0=nP <. <o =1,5=1,..,k}U{(0,a9,1): j=k+1,...d}. Then

mlfl mkfl

k
S D g )] =

i1=0 i =0

mlfl mk—l

k
Z Z |A1kf(771(11)3 anz(k)a (k+1)7"'aa(d))| S

11 =0 1.=0

my—1 mp—1

Z S S A F 00, 0)] <

d
p=0k+1,....d;p 11=0 i =0



k+il7

Z z*: Var+p) (77,0, ...,0)

p=0 k+1,..., d;p

and consequently

p+k

VarFg < Z Z Var(k“’)f( ,...,0). H

p=0 k+1,.

Let P be a partition of I given by {(77(()]),779),. ,77%3) 10 = n(()j) <

n%) =1, j=1,..,d}. Then

§5(P) =
)= . 77d)rgg>;<mg_1}]—[lm b=

we will be called the diameter of the partition P.

Definition 2.3. Let f,g : I¢ — C and let f be bounded. If for each se-
( (J k)’n(j k)7 7"77(}7"]}6}()2) : j = 1’ "'7d} Such
that limg_,o, 6(Px) = 0 and for any sequence {5

1. Zd
1,...,d, k € N} where 51(5) i € HJ_ [nz(j’k),nfjfﬂ we have

quence of partitions Py given by {

. is = 1,...,ms,k - 1, s =

mlkl md, k— 1

. K d,k
11m Z Z f gll Zd dg(nz(ll )’ ’nz(d )) - I’

k—oo
11 =0 1q=0

then I is called the Riemann-Stieltjes integral of and is denoted fld fdg.

Remark. If f g both are functions of bounded variation and if one of the
functions is continuous then [, fdg exists (for d = 2, see [7] §448).
Remark. If | 7a fdg exists and g is of bounded variation in the sense of Vitali,
then
| [ fdg| < sup |f(2)[Var'Dyg.
I zeld

Let f,g: I? — C both be functions of bounded variation and let one of them
is continuous. For 0 < p < d consider

Fy(1,....d) = A;;H“dhd/ Gy 30,0 O)AF (s oy 50,00, 0)
Ipr ~— N— "

p coord. p coord.
and notice that expressions of this kind satisfy (2).

Theorem 2.2 (integration by parts). We have

p p

d
~ =
/Id fdg =Y (-1 Z Ay d|ld/ g(TI0,..,0)df (70, 0).
p=0 d



Proof. For d = 2, see 7] §448. We can prove this theorem using Lemma
5.2 from [10] ch.2 §5. ®

Corollary 2.1. If f and g be periodic of period 1 in each coordinate, then

| g =0t [ gir.m

Given 0 = s < 51 < ... < 81 < s = n on the set S,, all permutations of
{1,...,n} consider the following equivalence relation

c=o it o({si-1+1,.,8}) =0d{si-1+1,..,8}) forl=1,.. k.
We will consider an expression F(iy,...,i,), (ix € N) such that
(4) Fig(1)s - to(n)) = Flio/(1)s i/ (n)) Whenever o =o',
By
Z F(i1,...,in) we denote the sum Z F(ig(1ys s lo(n))-
B yeeerin ST e Sh1 [o]€SN /=

Let fi, ..., fr : I¢ — C be functions of bounded variation. For 0 = sy < s; <
... < 8p_1 < 8 = n consider

k d *

—Sr+S,—
H QTZ:O ! Z Var(ar-‘rsr—sr—l)fr(-’...7-70’_,_’07.7'”7,707“.70)

r=1 1,..,8r—1,8-+1,....d;r

e
—_———
Sr—1
Sy
and notice that expressions of this kind satisfy (4).
Lemma 2.3. The product fi - ... fr is of bounded variation and we have

Var'Df - fi <

k d—sr+sr_1 *

> RIS >

0=50<s51<...<8p_1<sp=d 1,...,d;$1,...,8,—1 r=1 a,=0 1,...,8r—1,8,+1,...,d;p

Varlertsr=sr=1 ¢ (. .0,..,0,-..,-,0,..,0). &
N——

S



Let f: I? — C be a function of bounded variation. For 0 = sy < s1 < ... <
Sk_1 < S = d consider
Fs . (1,...,d) =

k d—sp+sr_1 *

,1;[1 Z Z Varlertsr=sr=1 (. .0,...,0,-,...,-,0,...,0)

a,=0 1,..., Sr—1,8r+1,..., d;a a,

~—_———

Sp_1

Sy
and notice that expressions of this kind satisfy (4).
Lemma 2.4. Assume that there exists a real number a such that 0 < a < |f(x)|

for every x € I%. Then % : 19 — C is a function of bounded variation and we
have

Var@l <
f

d * k d—sr+sr_1 *
1
> ) > I X )
k=1 0=s0<81<...<sp—1<8p=d 1,...,d;81,..,8,—1 7=1  a,=0  1,..s,_1,8-+1,....d;ar

Varlertsr=s=1 (. .0,..,0,-..,-0,..0). 0
——"

Qo

Sr—1

Sr

Definition 2.4. We say that a function f : I? — C has the derivative in the
sense of Vitali at (1), ...,x(D) € I if there exists limit

. Af.d‘nal[w<t),x(i>+h<i)]f(l’(l)a ey D)
lim = .

@ @y A .. h(d)
h()£0,0<2() 4 h(D <1

This limit is called the derivative of f and is denoted D f(z(™), ..., 2(®).

Remark. If f € C%(I%) then Df(x) = 5ot () (see [12] ch.7 §1).
Remark. If a function f : I — C is of bounded variation in the sense of Vitali,

then f has the derivative in the sense of Vitali almost everywhere (see [12] ch.7
§2).

Definition 2.5. (inductive) A function f : I% — C is said to be differentiable
in the sense of Hardy and Krause

-for d = 1 if it is differentiable in the ordinary sense,

-for d > 1 if it has the derivative in the sense of Vitali in every point and for
any j =1,...,d and a € I the function f; : I* — C

Fi@®, ey = @M 20D g 20D dm D)

is differentiable in the sense of Hardy and Krause.



In what follows by differentiable functions we mean those which are differen-
tiable in the sense of Hardy and Krause. The derivative of f(2(1), ...,z . 20 3(d)
is denoted D¢y ) f(2).

Let f: I? — C be a differentiable function. For 0 = sg < §1 < ... < Sp_1 <
s = d consider

k
Fsl...sk (L EEE) d) = H DI(ST—1+1>___:E(51~)f(‘r)
r=1

and notice that expressions of this kind satisfy (4).

Lemma 2.5. The function exp f : I* — C is differentiable and we have
d *

k
Dexp f(x) = exp f(z) Z Z Z H D cratn pop f(@). B
k=10=50<81<...<8p_1<8p=d 1,...,d;81,...,8, -1 r=1
The number |P| = []%,(6® — a®) is called the substance of the cube
P= H?Zl [a(i),b(i)]_
Definition 2.6. A function f : I — C is said to be absolutely continuous in
the sense of Vitali if for every € > 0 there exists 6 > 0 such that for every
system of cubes @1, ..., @, such that |@; N Q;| =0 for any 1 < i # j < n if
|Q1] + ... + [@n| < 6 then

AT glou fl+ . +IAT 4le. fl <e

Remark. If a function is absolutely continuous in the sense of Vitali then
is of bounded variation in the sense of Vitali (see [12] ch.7 §3).

Definition 2.7. Let f : I? — C be an absolutely continuous function in the
sense of Vitali. Suppose the restriction f of each face F = {(zV),...,z(®) :
x0s) = 0,5 = 1,...,k} where 1 < i; < ... < i < d (k= 1,...,d) is absolutely
continuous function in the sense of Vitali. Then f is said to be absolutely
continuous function in the sense of Hardy and Krause.

In what follows functions absolutely continuous are those absolutely contin-
uous in the sense of Hardy and Krause.
Remark. If a function f is of bounded variation and g is absolutely continuous

then
|, rda= [ £Dgix,
(see [12] ch.7 §3 and [7] §4481).

Lemma 2.6. Let f : I? — C be an absolutely continuous function. Then for
every g(a*tV .. a(D) € I?=F the function g : I* — C given by

g(x(l), ey x(k)) = f(z(l), ey gkt a(d))
18 absolutely continuous.

Proof. Similarly as the proof of Lemma 2.1. B
Remark. If a function f : I? — R is absolutely continuous then the function
expif : I* — C is absolutely continuous.

10



3 Spectral properties in the case where the wind-
ing vector is not equal to zero

Lemma 3.1. Let f : I? — R be an absolutely continuous function such that for

any j = 1,....d and x € I¢ we have Ax|raf(x) € Z. Suppose, D,y a0 f is

the function of bounded variation for 1 < i1 < ... < ix < d and there exists real
a number a > 0 such that for any x € I we have

d * k
1> (2mi) > > 2.0 pen f@)] = a>0.

k=1 0=s0<51<...<s8p_1<skp=d 1,...,d;51,...,5, 1 7=1
Then
|/ exp 2mi f(x)dx| <
Id

d 1 * 1 d—tp+ip_a *
> > > I X >
=1 O=to<t1<..<tj_1<t;=d1,..., dity,..., ti—1 p=1 a,=0 1. tp—1,tp+1,..., d;ap
d *
> ()" > > >
k=1 0=s50<51<...<Sp—1<sp=d1,...,d;s1,...,5,—1 O=uo<u1 <...<up_1 <upop+t,—tp_1
* k d—tp+tp_1+ur—u,_1 *
1,.,ap,tp—1+1,. tpiut,..,up—1 r=1 Br=0 Lour—1,urt1, 0, tp—1+1, 0558
FUp—Up—
VarBrtur=u—0p iy oy f G 0,000, 0y -, 0, 1, 0).
——
Br
—_————
Up—1
U

Proof. An application of Lemma 2.3 and Lemma 2.4 and integration by
parts gives that

|/ exp 2mi f (x)dx| <
Jd

d * k
s 1/ (2mi) > > I Duciitv pion Pdexp2mif(z)| =

k=1 0=50<51<...<8kp_1<s8p=d 1,...,d;s1,...,8k—1 7=1

*

d k
[ e 2mif@a) Y (e 3 S [ Duerien e f) <
k=1

0=s50<s51<...<Sp—-1<sp=d1,..., d;S1 4.y Sp—17=1

S¥

*

k
Var®(1/ Z(Zm’)k Z Z H D roitn g f) <

k=1 0=s0<81<...<Sk—1<8kp=d 1,...,d;$1,...,8,—1 =1

11



1 d—tp+tp_a *

Shy S Iy 0x

a
=1 0=to<t1<...<tj—1<t;=d1,....d;t1,....,t;—1 p=1 ap=0 1. tp_1,tp+1,...,djoy
d * k
g (2m)k g g Var(ertts=te-1) H
k=1 0=s50<51<...<Sp—1<sp=d1,...,d;S1,...,5k—1 r=1
Dx(sr—l“),,,z(SMf('v iy 50,000,404, 0,00, 0) <
——
Qp
tp—1
tp
d 1 * 1 d—tpttp— *
Py > > I X >
=1 O=to<t1<...<tj_1<t;=d1,...,d;t1,....t; 1 p=1 a,=0 L. tp_1,tp+1,... . d;ap
*
(2m)" > > >
k=1 0=s50<51<...<Sp—1<sp=d1,...,d;s1,...,5,—1 O=uo<u1 <...<up_1 S{upop+t,—tp_1
* k d—tp+tp 1+ur—u,_1 *
1, ,ap,tp—1+1,. tpiut,..up—1 r=1 Br=0 Lour—1,urtl, 0ty 141,58
U — Uy —
Varrtwr=uw—0p o FCyens 00000, e+, 0, .., 0).1
——
6)"
—_———
Upr—1
Uy

Lemma 3.2. Let oy, ..., a4, 1 be independent over Q real numbers. Assume that
¢ IY — R is an absolutely continuous function, which is periodic of period 1
in each coordinate. Suppose, D_ ) )@ is the function of bounded variation
for each 1 < iy < ... < iy, < d. Then for any (my,...,mq) € Z* where m; # 0
fori=1,...d and N € Z\ {0} there exists a polynomial F of 4% variables with
nonnegative coefficients such that

d
|/ exp 2miN (g™ (x) + kanm(k))da?| <
1 k=1

1 .
WF(var<T)D$<,-1>w<ik)f(o, .,0,7%,0,...,0,

1<ii<..<ip<d,1<ji<..<j<d)
where o = (v, ..., aq) and

o)+ ..+g(z+(n—1a) for n>0
P (2) = 0 for n=0
—(@(x +na)+ ...+ ¢z —a)) for n<O.

12



Proof. Let f(z™M, ..., z(D) = N(¢™ (z) + 2¢_, mgna*)). Then

D, f(x) = N(Dyw»@™ (z)+mn) fori=1,...,d and
Dxul)mm(ik)f(x) = NDI(h)__'z(ik)(ﬁ(") (l‘) forl1<ii<..<ipy<dandk > 1.

We will consider a real number % >e > 0.

Since for each 1 <4y < ... < i < d the function D_ ¢,y ) @(z) is integrable

in the sense of Riemann and the rotation of o is monoergodic, there exists a

natural number ng such that for any |n| > ng, 1 <4; < ... <ip < d and z € I?

we have

D iy ptin @™ (x
n

/ D,y i @(x)de] < e.

From

/ Dz(il)“.z(ik)@(ff)dl':

Id

/d k( . Dz(il)“'w(ik)@(z)dx(il)...dx(ik))dl’(l)...dlfzil)...dl',(\ik)...daj(d) =
I I

Azl szO( )dl'(l)...dxzil) dx(lk dr (d) _ -0

Jd—k

we obtain that for |n| > ng

IDyiny. w0 @™ ()] < €lnl.

Let |n| > max(ng,d!29"2M) where M = max;—1,_q|m;| + 1. Then for any
x € I we have

d * k
| Z(Qm’)k Z Z H D, 4 e f(@)] >

k=1 0=s50<81<...<Sp_1<8pg=d 1,...,d;S1,...,8,—1 =1

d
@aND? ] 1Dao @™ (x) + myn|—

k=1
d—1
32|V ¥ SR | R CTE SR P
k=1 0=50<s51<...<Sp_1<sp=d1,..., d;81 ..y sp_17=1
where

a _Jom, for s+ 1=s,
sr-1tl..er = 0 for s,_1+1<s,

d

> 2r|ND T 1 l(ime| —e)—
k=1
d—1 *
> _(2rIN])* > >, (M)
k=1 0=s50<s51<...<8p-1<sp=d1,...,d;S1,...,5k -1
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(m|Nn|)? — d|(2M=|Nn|)?~1 >
_ _ 1
(x| N n|* (In] = d12¢7' M) > 5(W|and) = Cln|.

By Lemma 3.1 we have

|/ exp 2miN (g™ ( +kanz(k Ydx| <
k=1

d I d—tpt+ty,_1 *

> e % > I L %

=1 O=to<t1<...<ti—1<ti=d1,....d;t1,....,t;_1 p=1 ap=0  1,...,tp_1,tp+1,....d;ap

* *

(2m)* 2. D b 2.

0=s50<s51<...<sp_1<sp=d1,...,d;s1,....,5,_1 0Su1 <...<up 1 <ap+tp—tp 1 Lap,tp_1+1,. tpiur,. ., uk—1

el
I &
—

k d—tp+tp_14+ur—ur_1 *
r=1 Br=0 Loup—1,ur+1,0p,tp 141, 0t 558y
ot Ur— U — ~(n
Var® 1)(ND$<.gT,,1+1>__4CE(ST)<p( )(~, ey 5050050545004, 0, 0, 0)4nas,41.s,) <
———
Br
Up_1
Uy
* 1 d—tp+tp_1 *

S XY M Y%

0<t1<...<tj_1<d 1,....dst1,....t;_1 p=1  ap=0 1,1, 1,tp+1,....dsap

*

ki 2x|ND)* 5 5 5

0=s50<s51<...<sp_1<sxp=d1,...,d;s1,....,5, 1 0Su1 <...<up 1 Sop+tp—tp—1

* k d—tp+tp 1+ur—upr_1 *
> I X > n
1, 0p,tp—14+1,. tpsur,..up—1 r=1 Br=0 1o upr—1,ur 41, ap,tp 141,00t 56,
d
VarPrtur—u—1)p 5(...) < S
ar 2Gr—1tD (s Pl ) S ‘n|d(l+1) = |n|d .
=1

Remark. With the same assumption as the one in Lemma 3.2 we can prove
that for any (r1,...,7q) € Z¢ there exists a polynomial F of 47 variables with
nonnegative coefficients such that

F

d
\ | exp 2mi(NG™ (x) + ; Nmgn + rp)z®)dz| < Tl



Theorem 3.3. Let ay,...,a4,1 be independent over Q real numbers. Let a
cocycle ¢ : T* — T be represented as

27Ty 278 (G( 1,50, Ta) +MmiT1+mazq)

(e sy €

2T g ) —e

where ¢ : I® — R satisfies the same assumption as the one in Lemma 3.2. If
rw(p) =k > 0 then the set

o

{f € LT, Xay1) 1 64(n) = (UF, f. f) = O(|n|k)}

is dense in the orthocomplement of the eigenfunctions of T

Proof. For simplicity we may assume that m; # 0,...mj; # 0. By

Lemma 2.1 there exists a real number M > 0 such that for any 1 < i1 <
ip<k,1<j1<.,ji<kand (x*+D |z @) € [97F we have

Var(l)D;v(t1),.a:(ip)¢(07 "'707 ! 307 "'707j'l7 Oa ey O; I(kJrl)v ax(d)) < M

Let P be a trigonometric polynomial given by

Ry Ry S
‘s T
P(z1, ..y 24, w) = E g E Ury.orgs?y -2yt w®

ri=—R; rq=—Rg s=—85 s#0

where a,, . r,s € C. Then

(URPP) =] | PT"2¢" (2)w)P(z,w)dzdu] =

Td+1

|/[d+1 Z ar, Tdsexp27rzZr (9 4 nay)+

T1yeeny Td,S J+1
d N (n=1)n
+50™ (z) + 5 Z m(nz') + T&j) + sy]
j=1
d .
Z Ay ..t XD 27ri(Z T;ﬂ?(]) + §'y)daMV . .daDdy| <
Ty’ j=1

Ary.orgsQr) ot exp?m s +[sn Yy m; j)Jr (r; 77“ x(J) dx
1 d 1- 90 J

S st [ en S (- e dath. s
Ty Tds T e 058 Jj=k+1

k
| / exp 2mi[s@™ (x) + anm] ) + Z(rj - r;)x(j)]dx(l)...dac(k)\ <
j=1

15



Fo, v (M 1
Z |ar1.“rd,sari...r’ds| SR M 7k( ):O(i).

Corollary 3.1. If p € C?? and rw(p) = k > 0 then the set

Lo

{f € LAT™ Map1) 1 65(n) = (U, f, f) = ot
n
is dense in the orthocomplement of the eigenfunctions of T.H

Let w(y) # 0. For simplicity we assume that m; # 0. Suppose, there exists
a real number R > 0 such that for each (z(?),...,2(®) ¢ 141

dp
Oz ()

In the same manner as in the proof of Theorem 3.3 we can show that

Var® (2@, . 2Dy <R

Gyn(n) = O(i) for N £0

|

where xn (21, ..., zq,w) = w. From this and by Corollary 1.1 we conclude that
T, has countable Lebesgue spectrum in the orthocomplement of the eigenfunc-
tions of T.

Corollary 3.2. If ¢ € C? and w(p) # 0 then T, has countable Lebesgue
spectrum in the orthocomplement of the eigenfunctions of T.1

4 Spectral properties in the case where the wind-
ing vector is equal zero

Lemma 4.1. If 0 < |z| < |y| < 3, then

%) sla] < |62 — 1] < 2na],
©) 28 <21 g,
Tl T le2min 1 = g

Lemma 4.2. Assume n € N and take a € R such that 0 < a < 1. Then there
ezist n pair wise disjoint subintervals I, ..., I, of I such that for x € I\U;_, I;

we have |cosnmx| > a moreover |I;| = £.

Proof. Set [; = [2-1 — o 2114 ] Then

2n 2n’ 2n

20—2 21—1 a 2t —1 a 21
I\i:LJlIi: le[ 2n ' 2n _%)U( 2n +%’%]'

1=

16



If # € I\ U}, I, then there exists a natural number i such that

20—2 21 —1 a)U(Qi—l+a 2i]
o2n ' 2n 2n 2n 2n’ 2n°

z €|

2i—1 1 2i—1) o 1
Then 5= < |z — 5| < 5-, whence § < |[nx — =5=| < 5 and finally

1
a < 2nx — |<|sm7r(na:—z+ )\<\cos7mx| [ |
Lemma 4.3. Let f : I — R be an absolutely continuous function such that
I’ is of bounded variation and f'(0) = f'(1), f(1) — f(0) € Z. Suppose there
exists a real number a such that |f'(z)] > a >0 for x € I\ J;_,(a;,b;) (where
0<a1 <bh <..<as<bs<lor0<a <b <..<as<1<bs). Then

1 l S
. 1 Varf s
7 szf(:v)d < 2 b
O e g T
Proof. Let D =J;_,(a;,b;) and as41 = a1. Then

1 S
|/ 2Tt g < | 27 () g | 4 Z(bi —a;) =
0

I\D i=1

1 , °
_— d62mf(x) + b; —a;) =
| /I\D 2T [+2 (- )

. . i+1
s e2mif(aitn)  2mif(b: : s

_ )_i “ orifa) L o
:1(27Tf’(ai+1) 27 f'(b;) 27r/bi ‘ df’(:r))‘—’—z(bl ai) <

=1

S

1 1
2 ;(U/(al)' ‘fl ZV Tlbi,aiva] 777 f/ Z

1 Varf' s >
— — b
27 a? + Ta + ;(
Given a real number a € [0,1), let [0;a1,as,...] be its continued fraction

expansion where a,, are positive integer numbers. Put
g =1, q =a, An+1 = On+19n + Qn—1,

po=0, p1 =1, pny1 = Any1Pn + Pn-1-

The rationals p, /¢, are called the convergents of o and the inequality
1 Pn 1

BN LY
2Gnqn+1 qn gndn+1

17



holds.
Given A, B > 2, we say that a pair («, 3) € [0,1)? satisfies (A, B) if there exists
strictly increasing sequences {ny}, {my} of natural numbers such that

1

(8) BSs2m,C < §q2nk+1
1

(9) APk < §s2mk+1

where p,, /¢, and r, /s, are convergents of o and .

Obviously, the set {(a, 0) : («, B) satisfies (A, B)} is uncountable.

For a pair (o, 3) satisfying (A, B) we define real analytic functions ¢, s : R —
R periodic of period 1 given by

= 1
ﬂ)l (.’ﬂ) = Z '7(627Tiqznkw o 6727riq2”kz)

k=
1
_ 27iSom . Y —2TiS2m,,. Y
= E — (e k) — e kY).
v2(y) 218, A% ( )

We first prove

Lemma 4.4. For any integer numbers hy, ha, N # 0 we have

lim egﬂi[N(w§"") (@)+ 5™ () +hiz+hay] dxdy = 0.

[m|—o0 Jr2

Corollary 4.1. If (a, 3) satisfies (A, B) then «, 8,1 are independent over Q.

Proof. Suppose, a, 3, 1 are dependent over Q. Then there exist my, my, m3 €
Z such that mia + mof8 = ms. Let t,/u, are convergents of mia and msf3.
Then

Up—1 Up—1
> i+ plmale), > (- + plma|B)
p=0 p=0

uniformly converges to 0 (see [6], p. 189). From

gl (@) gt () =

[m1|—1|m2|—1u,—1

>0 Y (h(atkadt|ma lunaplma o)+ (y+klma|un B+18+plma|3))

k=0 1=0 p=0

we have
sup [pi ™D () ogpfrimimaD )
(zy)el?
Up—1 Up—1
< |mams|(sup| > iz + plmala)| +sup)| > aly + plma|B)))
x p=0 p=0

18



hence
wgunlmlmgl)() + ’(/}éunlmlmQD()

uniformly converges to 0 in I?. It follows that

lim [ 2ot 2 @kl ) g g g
n—oo 12 ’

which contradicts Lemma 4.4. B

Proof of Lemma 4.4. From (8) and (9) for every k € N

1 1
B < SQn+1 < 552mk+1

2
1
ABTny < —Somp_141 < =Q2n;+1-
2 2
Hence for any m > min(A842n1 | B8%2m1) there exists natural number k such that
A842n 1
r<m< §Q2nk+1

or .
B8s2mi < < 5 52mi+1-

In the first case

| / 2 (2N ™) @)+ () a+han] g g |
I

[ i shtgg) [ O Wy < | [ i,
I I I

From

1
27than —2miqan, T
wl Z AQ2nL t+e )

it follows that for any natural number m

m—1
™ (@) =1 > ¥ (@ + ja) =

7=0
13 L (i T L i €T L
=1 AquLl 2772q2nl -1 6*27"73]271104 . =

gl me — 1 2mi 27ig2s, (z+(m—1)a)
Tiq2n, T —2miqan, (T —
‘Z qunl Pz (e”™zm® 4 e q2n, )| >

2 eZriaam,ma (m -1«
= L) cos 2mga, -+ 2212

e27riq2nkoc

19



2Tquin mo _ ]

k—1
1
ZAan, ‘627”‘127” _ Z AQQn, 27T’Lq2nl —1 ‘

I=k+1

From |gon, & — pan,| > — and (5) we have

2112

|e27riq2nl(¥ _ 1| 2 4|q2mOé - q2nz| >

q2n;+1
hence qu}” — < L2 for any natural I. From m < 3go,,41 and [go,, @
Pany| < g for any I > k it follows that
1
0 < |g2n, @ — pan,| < |Mmgan,a — mpay,, | < qznl+1|qzma Pany | < 5
2 2°
From (6) for | > k
m e27riq2nlma -1
— < |l <m
2 e27rzq2nla ~1

From Lemma 4.2 there exist subintervals Ii,..., Iaq,, of I such that for any
z e I\ U™ I we have

(m—1)a 1
N2 g
2 AT2ng

fori=1,...,2qo,, .

| cos 2mqan, (z +

1
moreover |I;| = S AT
"k

It follows that for x € '\ U?fl"’“ 1; we have

k—1

(m)’ q2nl+1
|w1 (1;)| Z 72 Aq2nl AQQan Aq2nl -
=1 I=k+1
m 2m A m 4m

Qa1 T T T T a7 2 et e T g
A A A-1 A A

8q2n 1
From A®®x < m < 5qon,+1 We have
6q2n, _ A2k 8¢an 1
4(]an < APPr = ATy, < m and q2on, +2 < A% < 5q2n,+1
hence
1642927k < A202n, 4 < A2020 41

For this reason for z € I\ [J72" I,

(m)’ m m . m - m
[ (@) = T4 A2, + A202n, 4 A202n, 9 A2420;

hence |N7,Z)(m) () + hi| > |N| — |h1]. From (7) for any natural m such

2A2q2"k
that —si— > A% > 4|7 i) we have
| 27 N(¢§m>(x)+h1x]d | < 1 Var(Nw i +h1) + 2qan, 1
( \N\m )2 T ‘Nlm A(mnk —
4A2q2”k 4A2q2”k
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8 Atdzny 8 Atdzny 1
= INEm oz | NImVary| + N[ +qunk <

A4q2"k 1 C1
|N| (Vary) +1) + Taony < Aoy

Similarly we can get that there exists a constant co such that if B8s2my, < <
%Ska-l-l then

N (m) h
|/ 271'1[ (11’2 (y)+ Zy dy‘ < Bszmk.

Therefore
lim TN W™ (@)+05™ () +hiwthayl g gy — ().

m—oo Jra

If m < 0 then

‘ o2milN( (@) +98™ (1) +haz+hay] dxdy| =

| eQm‘[N_(wgfm) (x+ma)+¢,;*M>(y+mﬁ))+h1x+h2y] dxdy| —

| (2N (5 —m)(x)+w2—m)(y))—hlx—hzy]dl‘dy‘_
It follows that

|W}|1moo 2 e27ri[N( §M)($)+w2m)(y))+h1$+h2y]d$dy —0.1
- I

Lemma 4.5. Let U : H — H be a unitary operator on a Hilbert space H. Then
the set {h € H : lim|,| oo (U™h, h) = 0} is closed in H.

Proof. Let h, € H be a sequence such that lim | (U™ hp,h,) = 0
which convergence to h € H. Let € > 0. We take a natural number n such that
| h—hy|I< min{m, 1}. Let mg be a natural number such that for any
|m| > mgo we have [(U™hy,, hy,)| < §. Then for |m| > my

(U™h,h)| = |(U™(h = hy), ) + (U™ by b — hy) + (U™ hi, hy)| <
7= T (Il B AL A1 P (1F = B | (U™ Py B )| <
[ 7=t [| [ 2] +1) + [(U™ By )| < . B

Theorem 4.6. There exist real numbers o and 3 such that o, 3,1 are indepen-
dent over Q and a cocycle ¢ : T2 — T given by

(p(e%rix’ 627riy) — 62ﬂi(¢1($)+¢2(y))

where 11,109 are real analytic function which are periodic of period 1 such that
T, is mizing in the orthocomplement of the eigenfunctions of T' where T is the
rotation on T? given by T(z1, z2) = (€2™% 21, ¥ P 2,).
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Proof. We take «, 3,11, 19 like in Lemma 4.4. By Lemma 4.5 is sufficient
to show that 7T}, is mixing in the set of trigonometric polynomials given by

k
P(z1,22,w) E E E Ak oy 123 202w

k1=—Ky ko=—Ks l=—L l#0

where ay, ,,; € C.

2 k k ki _k
|/ Dk gy €T ORI 202 (00 (21, 2))
k1,ka,l ki kbl

[(Ur, P, P)| =

E ' 5 2mi(ak: +8k k1—k} k2 —kj !
| akhkz,lak’l,ké,l'e mi(ak1+3 2)/ 2] 122 2(¢(M)(21’Z2)) d21d22| S
k1 ko k] K 1 b

S ko v / 2Tl (@) 408" (W) ks =kt (oKW s gy
2R2, 1:725
12

k1,k2,kq ks,

Consequently lim ;| \(U;Z; P, P)| = 0 and the proof is complete. B

References

[1]
2]

[3]

[4]

[5]
[6]

[7]

18]

[9]

G.H. Choe, Spectral types of skewed irrational rotations, preprint.

I.P. Cornfeld, S.W. Fomin, J.G. Sinai, FErgodic Theory, Springer-Verlag,
Berlin, 1982.

H. Furstenberg, Strict ergodicity and transformations on the torus, Amer.
J. Math. 83 (1961), 573-601.

P. Gabriel, M. Lemarczyk, P. Liardet, Ensemble d’invariants pour les
produits croisés de Anzai, Mémoire SMF no. 47, tom 119(3), 1991.

H. Helson, Cocycles on the circle, J. Operator Th. 16 (1986), 189-199.

M. Herman, Sur la conjugaison difféeomorphismes du cercle
ka des rotation, Publ. Mat. THES 49 (1979), 5-234.

E. W. Hobson, The Theory of Functions of a Real Variable, vol 1, Cam-
bridge Univ. Press, 1950.

A. Iwanik, M. Lemanczyk, D. Rudolph, Absolutely continuous cocycles
over irrational rotations, Isr. J. Math. 83 (1993), 73-95.

A.W. Kocergin, On the absence of mizing in special flows over the rotation
of a circle and in flows on two dimensional torus, Dokl. Akad. Nauk SSSR
205(3) (1972), 515-518.

22

K k. gy
g AR k1021 1z2 2wl dzydzgdw| =



[10] L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences, John Wi-
ley & Sons, New York, 1974.

[11] A.G. Kushnirenko, Spectral properties of some dynamical systems with
polynomial divergence of orbits, Moscow Univ. Math. Bull. 29 no.1 (1974),
82-87.

[12] S. Lojasiewicz, An Introduction to Theory of Real Functions, John Wiley
& Sons, Chichester, 1988.

[13] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press., Cambridge,
1981.

Krzysztof Fraczek, Department of Mathematics and Computer Science,
Nicholas Copernicus University, ul. Chopina 12/18, 87-100 Torur, Poland
fraczek@mat.uni.torun.pl

23



