SPECTRAL PROPERTIES OF COCYCLES OVER ROTATIONS

Krzysztof Frączek *

Abstract

Let $T: \mathbb{T}^d \to \mathbb{T}^d$ be an ergodic rotation. Given $\varphi: \mathbb{T}^d \to \mathbb{T}$ a smooth cocycle we show that the set

$$\{f \in L^{2}(\mathbb{T}^{d+1}, \lambda_{d+1}) : \hat{\sigma}_{f}(n) = (U^{n}_{T_{\varphi}}f, f) = O(\frac{1}{|n|^{rw(\varphi)}})\},\$$

where $rw(\varphi)$ is the rank of the winding vector of φ is dense in the orthocomplement of the eigenfunctions of T. In particular the skew product diffeomorphism $T_{\varphi} : \mathbb{T}^{d+1} \to \mathbb{T}^{d+1}$ given by

$$T_{\varphi}(z,\omega) = (Tz,\varphi(z)\omega)$$

has countable Lebesgue spectrum in that orthocomplement. We construct an ergodic rotation T of \mathbb{T}^2 and a real analytic cocycle on $\tilde{\varphi} : \mathbb{T}^2 \to \mathbb{R}$ such that an extension $T_{\exp(2\pi i \tilde{\varphi})}$ is mixing in the orthocomplement of the eigenfunctions of T.

Introduction

Let \mathbb{T}^d be a d-dimensional torus. We will consider an ergodic rotation of the d-dimensional torus given by

$$T(z_1, ..., z_d) = (z_1 e^{2\pi i \alpha_1}, ..., z_d e^{2\pi i \alpha_d})$$

where $\alpha_1, ..., \alpha_d, 1$ are independent over \mathbb{Q} . By a *cocycle* we mean a smooth map $\varphi : \mathbb{T}^d \to \mathbb{T}$. Then, by Fubini Theorem a transformation $T_{\varphi} : (\mathbb{T}^{d+1}, \lambda_{d+1}) \to (\mathbb{T}^{d+1}, \lambda_{d+1})$ given by

$$T_{\varphi}(z,\omega) = (Tz,\varphi(z)\omega)$$

preserves Lebesgue measure λ_{d+1} . The automorphism T_{φ} is called an *extension* of T.

Such a cocycle φ can be represented as

 $\varphi(e^{2\pi i x_1}, \dots, e^{2\pi i x_d}) = e^{2\pi i (\tilde{\varphi}(x_1, \dots, x_d) + m_1 x_1 + m_d x_d)}$

^{*}Research partly supported by KBN grant 2 P301 031 07 (1994)

where $m_1, ..., m_d \in \mathbb{Z}$ and $\tilde{\varphi} : \mathbb{R}^d \to \mathbb{R}$ is smooth, periodic of period 1 in each coordinate. In this representation of φ , the vector $(m_1, ..., m_d) \in \mathbb{Z}^d$ is unique, while $\tilde{\varphi}$ is unique up to an additive integer constant.

The vector $w(\varphi) = (m_1, ..., m_d)$ we call the winding vector of a cocycle φ . The number $rw(\varphi) = card\{i : i = 1, ..., d, m_i \neq 0\}$ we call the rank of the winding vector of a cocycle φ . For d = 1 the winding vector is equal to the degree $d(\varphi)$ of φ .

In 1991, P. Gabriel, M. Lemańczyk and P. Liardet [4] proved that

Proposition 1. If $d(\varphi) = 0$ and $\tilde{\varphi}$ is absolutely continuous, then the maximal spectral type of T_{φ} is singular and is not mixing in the orthocomplement of the eigenfunctions of T.

In 1993, A. Iwanik, M. Lemańczyk and D. Rudolph [8] proved that

Proposition 2. If $d(\varphi) \neq 0$ and $\tilde{\varphi}$ is absolutely continuous and $\tilde{\varphi}'$ is of bounded variation, then T_{φ} has countable Lebesgue spectrum in the orthocomplement of the eigenfunctions of T and the set

$$\{f \in L^2(\mathbb{T}^2, \lambda_2) : \hat{\sigma}_f(n) = (U^n_{T_{\varphi}}f, f) = O(\frac{1}{|n|})\}$$

is dense in that orthocomplement.

This result is a strengthening of an earlier result by Kushnirenko [11] (see also [2] pp.344).

We can interpret Proposition 1 and 2 as certain facts giving rise to a spectral stability of T_{φ} where φ is a character of \mathbb{T} : indeed if we multiply φ by a smooth cocycle ψ of degree zero spectral properties of T_{φ} and $T_{\varphi\psi}$ remain the same.

In this paper we will generalize these facts to multidimensional rotations for non zero winding vector smooth cocycles. In Section 3 we show that for $\varphi \in C^2(\mathbb{T})$, T_{φ} has countable Lebesgue spectrum in the orthocomplement of the eigenfunctions of T and for $\varphi \in C^{2d}(\mathbb{T})$, the set

$$\{f \in L^2(\mathbb{T}^{d+1}, \lambda_{d+1}) : \hat{\sigma}_f(n) = (U_{T_{\varphi}}^n f, f) = O(\frac{1}{|n|^{rw(\varphi)}})\}$$

is dense in that orthocomplement.

For zero winding vector smooth cocycles and $d \geq 2$ our result are rather to suggest that no spectral stability property holds. In Section 4 we construct an ergodic rotation T of \mathbb{T}^2 and a real analytic cocycle on $\varphi : \mathbb{T}^2 \to \mathbb{T}$ such that an extension T_{φ} is mixing in the orthocomplement of the eigenfunctions of T.

1 Notation and facts from spectral theory

The substance of this section is classical (e.g. for an irrational rotation of the circle see [5], [8] and [13]).

Let U be a unitary operator on a separable Hilbert space H. For any $f \in H$ we define the cyclic space $\mathbb{Z}(f) = span\{U^n f : n \in \mathbb{Z}\}$. By the spectral measure σ_f of f we mean a Borel measure on \mathbb{T} determined by the equalities

$$\hat{\sigma}_f(n) = \int_{\mathbb{T}} z^n d\sigma_f = (U^n f, f)$$

for $n \in \mathbb{Z}$.

Theorem 1.1 (spectral theorem). There exists a sequence $f_1, f_2, ...$ in H such that

(1)
$$H = \bigoplus_{n=1}^{\infty} \mathbb{Z}(f_n) \quad and \quad \sigma_{f_1} \gg \sigma_{f_2} \dots$$

Moreover, for any sequence $f'_1, f'_2, ...$ in H satisfying (1) we have $\sigma_{f_1} \equiv \sigma_{f'_1}, \sigma_{f_2} \equiv \sigma_{f'_2}, ...$

The spectral type of σ_{f_1} (the equivalence class of measures) will be called the maximal spectral type of U. U is said to have Lebesgue spectrum if $\sigma_{f_1} \equiv \lambda$ where λ is Lebesgue measure on the circle. It is said that U has Lebesgue spectrum of uniform multiplicity if $\sigma_{f_n} \equiv \lambda$ for n = 1, 2, ..., k and $\sigma_{f_n} \equiv 0$ for n > k where $k \in \mathbb{N} \cup \{\infty\}$.

Let X be an infinite abelian group which is metric, compact and monothetic. Let \mathcal{B} be a σ -algebra of Borel sets on X and μ be Haar measure on X. We will denote H the space $L^2(X, \mathcal{B}, \mu)$. We will consider an ergodic rotation of the group X given by $Tx = a \cdot x$, where a is a cyclic generator of X.

For a cocycle (here by a cocycle we mean any Borel map) $F: X \to \mathbb{T}$ we will consider a unitary operator $U: H \to H$ given by

$$(Uf)(x) = F(x)f(Tx).$$

Lemma 1.2. The maximal spectral type of the operator U is either discrete or continuous singular or Lebesgue.

Lemma 1.3. If the maximal spectral type of the operator U is Lebesgue then the multiplicity function of U is uniform.

Lemma 1.4. Suppose that $f \in H$ and $\sum_{n=-\infty}^{\infty} |(U^n f, f)|^2 < +\infty$. Then $\sigma_f \ll \lambda$.

Denote

$$F^{(n)}(x) = \begin{cases} F(x)F(Tx)...F(T^{n-1}x) & \text{if } n > 0\\ 1 & \text{if } n = 0\\ (F(T^nx)F(T^{n+1}x)...F(T^{-1}x))^{-1} & \text{if } n < 0 \end{cases}$$

Corollary 1.1. Suppose,

$$\sum_{n=-\infty}^{\infty} |\int_X F^{(n)}(x)d\mu(x)|^2 < +\infty.$$

Then U has Lebesgue spectrum of uniform multiplicity.

Let G be a compact abelian group, m its Haar measure and $\varphi : X \to G$ a cocycle. We will consider the extension $T_{\varphi} : (X \times G, \mu \times m) \to (X \times G, \mu \times m)$ given by

$$T_{\varphi}(x,g) = (Tx,\varphi(x)g)$$

Let us decompose

$$L^2(X \times G, \mu \times m) = \bigoplus_{\chi \in \widehat{G}} H_{\chi}$$

where

$$H_{\chi} = \{ f : f(x,g) = h(x)\chi(g), h \in L^{2}(X,\mu) \}.$$

Observe that H_{χ} is closed $U_{T_{\varphi}}$ -invariant subspace of $L^2(X \times G, \mu \times m)$, where $U_{T_{\varphi}} = f \circ T_{\varphi}$.

Lemma 1.5. The operator $U_{T_{\varphi}}: H_{\chi} \to H_{\chi}$ is unitarily equivalent to $U_{\chi}: H \to H$, where

$$(U_{\chi}h)(x) = \chi(\varphi(x))h(Tx).$$

2 Functions of bounded variation and absolutely continuous functions

Let I^d denote the closed *d*-dimensional unit cube. By a *partition* P of I^d , we mean a partition into cubes given by sequences

$$\{(\eta_0^{(j)}, \eta_1^{(j)}, ..., \eta_{m_j}^{(j)}) : 0 = \eta_0^{(j)} \le ... \le \eta_{m_j}^{(j)} = 1, \ j = 1, ..., d\}.$$

Given such a partition, we define, for j = 1, ..., d and $i = 1, ..., m_j - 1$ the operator $\Delta_{j,i} : \mathbb{C}^{I^d} \to \mathbb{C}^{I^d}$ by

$$\Delta_{j,i} f(x^{(1)}, ..., x^{(d)}) =$$

$$f(x^{(1)}, ..., x^{(j-1)}, \eta_{i+1}^{(j)}, x^{(j+1)}, ..., x^{(d)}) - f(x^{(1)}, ..., x^{(j-1)}, \eta_i^{(j)}, x^{(j+1)}, ..., x^{(d)})$$

However, if it does not rise to a confusion, we will rather write

$$\Delta_j f(x^{(1)}, ..., x^{(j-1)}, \eta_i^{(j)}, x^{(j+1)}, ..., x^{(d)}) \text{ instead of } \Delta_{j,i} f(x^{(1)}, ..., x^{(j-1)}, \eta_i^{(j)}, x^{(j+1)}, ..., x^{(d)}).$$

For $j \neq j'$ and $0 \leq i \leq m_j - 1$, $0 \leq i' \leq m_{j'} - 1$ we have

$$\Delta_{j,i}\Delta_{j',i'}f = \Delta_{j',i'}\Delta_{j,i}f$$

and for $j_1, ..., j_p$ such that $j_s \neq j_{s'}$ for $s \neq s'$ we will write

$$\Delta_{j_1,\dots,j_p} = \Delta_{j_1,i_1}\dots\Delta_{j_p,i_p}$$

where by the domain of $\Delta_{j_1,...,j_p}$ we mean only points $(x^{(1)},...,x^{(d)}), x^{(j_s)} = \eta_{i_s}^{(j_s)}$ for some i_s .

Let Q be a closed d-dimensional cube $\prod_{i=1}^{d} [a^{(i)}, b^{(i)}] \subset I^d$. Given Q define for j = 1, ..., d the operator $\Delta_j^*|_Q : \mathbb{C}^{I^d} \to \mathbb{C}^{I^d}$ by

$$\Delta_j^*|_Q f(x^{(1)}, ..., x^{(d)}) =$$

$$\begin{split} &f(x^{(1)},...,x^{(j-1)},b^{(j)},x^{(j+1)},...,x^{(d)}) - f(x^{(1)},...,x^{(j-1)},a^{(j)},x^{(j+1)},...,x^{(d)}) \\ &\text{and let } \Delta^*_{j_1,...,j_p}|_Q \text{ stand for } \Delta^*_{j_1}|_Q...\Delta^*_{j_p}|_Q. \end{split}$$

Definition 2.1. For a function $f: I^d \to \mathbb{C}$ we set

$$Var^{(d)}f = \sup_{P \in \mathcal{P}} \sum_{i_1=0}^{m_1-1} \dots \sum_{i_d=0}^{m_d-1} |\Delta_{1\dots d}f(\eta_{i_1}^{(1)}, \dots, \eta_{i_d}^{(d)})|,$$

where \mathcal{P} is the family of all partitions P of I^d . If $Var^{(d)}f$ is finite, then f is said to be of bounded variation on I^d in the sense of Vitali.

Definition 2.2. Let $f: I^d \to \mathbb{C}$ be a function of bounded variation in the sense of Vitali. Suppose that the restriction of f to each face $F = \{(x^{(1)}, ..., x^{(d)}) : x^{(i_s)} = 0, s = 1, ..., k\}$ where $1 \leq i_1 < ... < i_k \leq d$ (k = 1, ..., d) is of bounded variation on F in the sense of Vitali. Then f is said to be of bounded variation on I^d in the sense of Hardy and Krause.

In what follows functions of bounded variation are those of bounded variation in the sense of Hardy and Krause.

Remark. If a function is of bounded variation, then it is integrable in sense of Riemann (for d = 2, see [7] §448).

Given $0 \le p \le n$ on the set S_n all permutations of $\{1, ..., n\}$ consider the following equivalence relation

$$\sigma\equiv\sigma'\quad\text{iff}\quad\sigma(\{1,...,p\})=\sigma'(\{1,...,p\})$$

We will consider an expression $F(i_1, ..., i_n)$, $(i_k \in \mathbb{N})$ such that

(2)
$$F(i_{\sigma(1)},...,i_{\sigma(n)}) = F(i_{\sigma'(1)},...,i_{\sigma'(n)}) \text{ whenever } \sigma \equiv \sigma'.$$

By

....

$$\sum_{i_1,\dots,i_n;p}^* F(i_1,\dots,i_n) \text{ we denote the sum } \sum_{[\sigma]\in S_N/\equiv} F(i_{\sigma(1)},\dots,i_{\sigma(n)}).$$

Let $f: I^d \to \mathbb{C}$ be a function of bounded variation. Given $0 \leq k \leq d$ and $(a^{(k+1)}, ..., a^{(d)}) \in I^{d-k}$ consider the function $g: I^k \to \mathbb{C}$ given by

$$g(x^{(1)},...,x^{(k)}) = f(x^{(1)},...,x^{(k)},a^{(k+1)},...,a^{(d)}).$$

For each $0 \le p \le d - k$ consider

$$F_p(k+1,...,d) = Var^{(k+p)} f(\underbrace{\vdots,\ldots,\vdots}_{k+p \text{ coordinates}}^k, 0, ..., 0)$$

and notice that expressions of this kind satisfy (2).

Lemma 2.1.

$$Var^{(k)}g \le \sum_{p=0}^{d-k} \sum_{k+1,...,d;p}^{*} Var^{(k+p)}f(\overbrace{\cdot,...,\cdot}^{k+p}, 0, ..., 0).$$

Proof. We first prove (by induction on l) that for a function $h: I^l \to \mathbb{C}$ and $(y^{(1)}, ..., y^{(l)}) \in I^l$ and a partition given by $\{(0, y^{(j)}, 1) : j = 1, ..., l\}$ we have

(3)
$$h(y^{(1)},...,y^{(l)}) - h(0,...,0) = \sum_{p=1}^{l} \sum_{1,...,l;p}^{*} \Delta_{1...p} f(0,...,0).$$

- **1.** Obviously, (3) holds for l = 1.
- **2.** Assuming (3) to hold for l, we will prove it for l + 1.

$$h(y^{(1)}, ..., y^{(l+1)}) - h(0, ..., 0) =$$

$$h(y^{(1)}, ..., y^{(l)}, y^{(l+1)}) - h(0, ..., 0, y^{(l+1)}) + \Delta_{l+1}h(0, ..., 0) =$$

$$\sum_{p=1}^{l} \sum_{1,...,l;p}^{*} \Delta_{1...p} {}_{l+1}h(0, ..., 0) + \sum_{p=1}^{l} \sum_{1,...,l;p}^{*} \Delta_{1...p}h(0, ..., 0) + \Delta_{l+1}h(0, ..., 0) =$$

$$\sum_{p=1}^{l+1} \sum_{1,...,l+1;p}^{*} \Delta_{1...p}h(0, ..., 0).$$

Let P be a partition of I^k given by $\{(\eta_0^{(j)}, \eta_1^{(j)}, ..., \eta_{m_j}^{(j)}) : 0 = \eta_0^{(j)} \le ... \le \eta_{m_j}^{(j)} = 1, j = 1, ..., k\}$. Consider a partition P' of I^d given by $\{(\eta_0^{(j)}, \eta_1^{(j)}, ..., \eta_{m_j}^{(j)}) : 0 = \eta_0^{(j)} \le ... \le \eta_{m_j}^{(j)} = 1, j = 1, ..., k\} \cup \{(0, a^{(j)}, 1) : j = k + 1, ..., d\}$. Then

$$\sum_{i_{1}=0}^{m_{1}-1} \dots \sum_{i_{k}=0}^{m_{k}-1} |\Delta_{1\dots k}g(\eta_{i_{1}}^{(1)}, \dots, \eta_{i_{k}}^{(k)})| =$$

$$\sum_{i_{1}=0}^{m_{1}-1} \dots \sum_{i_{k}=0}^{m_{k}-1} |\Delta_{1\dots k}f(\eta_{i_{1}}^{(1)}, \dots, \eta_{i_{k}}^{(k)}, a^{(k+1)}, \dots, a^{(d)})| \leq$$

$$\sum_{p=0}^{d-k} \sum_{k+1,\dots,d;p}^{*} \sum_{i_{1}=0}^{m_{1}-1} \dots \sum_{i_{k}=0}^{m_{k}-1} |\Delta_{1\dots k+p}f(\eta_{i_{1}}^{(1)}, \dots, \eta_{i_{k}}^{(k)}, 0, \dots, 0)| \leq$$

$$\sum_{p=0}^{d-k} \sum_{k+1,...,d;p}^{*} Var^{(k+p)} f(\underbrace{\cdot,...,\cdot}_{k+p}, 0, ..., 0)$$

and consequently

$$Var^{(k)}g \le \sum_{p=0}^{d-k} \sum_{k+1,...,d;p}^{*} Var^{(k+p)}f(\overbrace{\cdot,...,\cdot}^{p+k}, 0, ..., 0). \blacksquare$$

Let P be a partition of I^d given by $\{(\eta_0^{(j)}, \eta_1^{(j)}, ..., \eta_{m_j}^{(j)}) : 0 = \eta_0^{(j)} \le ... \le \eta_{m_j}^{(j)} = 1, \ j = 1, ..., d\}$. Then

$$\delta(P) = \max_{\{(i_1,\dots,i_d): 0 \le i_s \le m_s - 1\}} \prod_{j=1}^d |\eta_{i_j+1}^{(j)} - \eta_{i_j}^{(j)}|$$

we will be called the *diameter* of the partition P.

Definition 2.3. Let $f, g : I^d \to \mathbb{C}$ and let f be bounded. If for each sequence of partitions P_k given by $\{(\eta_0^{(j,k)}, \eta_1^{(j,k)}, ..., \eta_{m_{j,k}}^{(j,k)}) : j = 1, ..., d\}$ such that $\lim_{k\to\infty} \delta(P_k) = 0$ and for any sequence $\{\xi_{i_1...i_d}^{(k)} : i_s = 1, ..., m_{s,k} - 1, s = 1, ..., d, k \in \mathbb{N}\}$ where $\xi_{i_1...i_d}^{(k)} \in \prod_{j=1}^d \left[\eta_{i_j}^{(j,k)}, \eta_{i_j+1}^{(j,k)}\right]$ we have

$$\lim_{k \to \infty} \sum_{i_1=0}^{m_{1,k}-1} \dots \sum_{i_d=0}^{m_{d,k}-1} f(\xi_{i_1\dots i_d}^{(k)}) \Delta_{1\dots d} g(\eta_{i_1}^{(1,k)}, \dots, \eta_{i_d}^{(d,k)}) = I,$$

then I is called the Riemann-Stieltjes integral of and is denoted $\int_{I^d} f dg$.

Remark. If f, g both are functions of bounded variation and if one of the functions is continuous then $\int_{I^d} f dg$ exists (for d = 2, see [7] §448).

Remark. If $\int_{I^d} f dg$ exists and g is of bounded variation in the sense of Vitali, then

$$\left|\int_{I^d} f dg\right| \le \sup_{x \in I^d} |f(x)| Var^{(d)} g.$$

Let $f,g:I^d\to\mathbb{C}$ both be functions of bounded variation and let one of them is continuous. For $0\le p\le d$ consider

$$F_p(1,...,d) = \Delta_{p+1..d}^*|_{I^d} \int_{I^p} g(\underbrace{\cdot,...,\cdot}_{p \text{ coord.}},0,...,0) df(\underbrace{\cdot,...,\cdot}_{p \text{ coord.}},0,...,0)$$

and notice that expressions of this kind satisfy (2).

Theorem 2.2 (integration by parts). We have

$$\int_{I^d} f dg = \sum_{p=0}^d (-1)^p \sum_{1,...,d;p}^* \Delta_{p+1..d}^*|_{I^d} \int_{I^p} g(\overbrace{\cdot,...,\cdot}^p, 0, ..., 0) df(\overbrace{\cdot,...,\cdot}^p, 0, ..., 0).$$

Proof. For d = 2, see [7] §448. We can prove this theorem using Lemma 5.2 from [10] ch.2 §5.

Corollary 2.1. If f and g be periodic of period 1 in each coordinate, then

$$\int_{I^d} f dg = (-1)^d \int_{I^d} g df. \blacksquare$$

Given $0 = s_0 \leq s_1 \leq ... \leq s_{k-1} \leq s_k = n$ on the set S_n all permutations of $\{1, ..., n\}$ consider the following equivalence relation

$$\sigma \equiv \sigma' \quad \text{iff} \quad \sigma(\{s_{l-1}+1, ..., s_l\}) = \sigma'(\{s_{l-1}+1, ..., s_l\}) \text{ for } l = 1, ..., k.$$

We will consider an expression $F(i_1, ..., i_n), (i_k \in \mathbb{N})$ such that

(4)
$$F(i_{\sigma(1)},...,i_{\sigma(n)}) = F(i_{\sigma'(1)},...,i_{\sigma'(n)}) \text{ whenever } \sigma \equiv \sigma'.$$

By

 i_1

$$\sum_{j,...,i_n;s_1,...,s_{k-1}}^* F(i_1,...,i_n) \text{ we denote the sum } \sum_{[\sigma] \in S_N / \equiv} F(i_{\sigma(1)},...,i_{\sigma(n)}).$$

Let $f_1, ..., f_k: I^d \to \mathbb{C}$ be functions of bounded variation. For $0 = s_0 \le s_1 \le ... \le s_{k-1} \le s_k = n$ consider

$$F_{s_1...s_k}(1,...,d) = \prod_{r=1}^k \sum_{\alpha_r=0}^{d-s_r+s_{r-1}} \sum_{1,...,s_{r-1},s_r+1,...,d;\alpha_r}^* Var^{(\alpha_r+s_r-s_{r-1})} f_r(\underbrace{\cdot,...,\cdot}_{\alpha_r},0,...,0,\cdot,...,0,\ldots,0) = \underbrace{\sum_{s_{r-1}}^k \sum_{\alpha_r=0}^{d-s_r+s_{r-1}} \sum_{s_r=1}^k \sum_{s_r=1}^{d-s_r+s_{r-1}} \sum_{s_$$

and notice that expressions of this kind satisfy (4).

Lemma 2.3. The product $f_1 \cdot \ldots \cdot f_k$ is of bounded variation and we have

$$Var^{(d)}f_{1} \cdot \ldots \cdot f_{k} \leq \sum_{\substack{0=s_{0} \leq s_{1} \leq \ldots \leq s_{k-1} \leq s_{k} = d \ 1, \ldots, d; s_{1}, \ldots, s_{k-1}} \sum_{r=1}^{k} \prod_{\substack{r=1 \\ \alpha_{r}=0}}^{d-s_{r}+s_{r-1}} \sum_{\substack{1, \ldots, s_{r-1}, s_{r}+1, \ldots, d; \alpha_{r} \\ Var^{(\alpha_{r}+s_{r}-s_{r-1})}f_{r}(\underbrace{\cdot, \ldots, \cdot, 0, \ldots, 0, \cdot, \ldots, \cdot, 0, \ldots, 0)}_{s_{r}}.$$

Let $f: I^d \to \mathbb{C}$ be a function of bounded variation. For $0 = s_0 < s_1 < \ldots < s_{k-1} < s_k = d$ consider

$$F_{s_1...s_k}(1,...,d) = \prod_{r=1}^{k} \sum_{\alpha_r=0}^{d-s_r+s_{r-1}} \sum_{1,...,s_{r-1},s_r+1,...,d;\alpha_r}^{*} Var^{(\alpha_r+s_r-s_{r-1})} f(\underbrace{\cdot,...,\cdot}_{\alpha_r},0,...,0,\cdot,...,0,...,0,\ldots,0)$$

and notice that expressions of this kind satisfy (4).

Lemma 2.4. Assume that there exists a real number a such that $0 < a \le |f(x)|$ for every $x \in I^d$. Then $\frac{1}{f}: I^d \to \mathbb{C}$ is a function of bounded variation and we have

$$Var^{(d)} \stackrel{-}{\underline{f}} \leq \sum_{k=1}^{d} \frac{1}{a^{k+1}} \sum_{0=s_0 < s_1 < \dots < s_{k-1} < s_k = d} \sum_{1,\dots,d;s_1,\dots,s_{k-1}}^{*} \prod_{r=1}^{k} \sum_{\alpha_r=0}^{d-s_r+s_{r-1}} \sum_{1,\dots,s_{r-1},s_r+1,\dots,d;\alpha_r}^{*} Var^{(\alpha_r+s_r-s_{r-1})} f(\underbrace{\cdot,\dots,\cdot,0,\dots,0,\cdot,\dots,\cdot,0,\dots,0}_{s_r}). \blacksquare$$

Definition 2.4. We say that a function $f: I^d \to \mathbb{C}$ has the *derivative in the* sense of Vitali at $(x^{(1)}, ..., x^{(d)}) \in I^d$ if there exists limit

$$\lim_{\substack{(h^{(1)},...,h^{(d)})\to 0\\h^{(i)}\neq 0, 0 < x^{(i)}+h^{(i)} < 1}} \frac{\Delta_{1..d}^*|_{\prod_{i=1}^d \left[x^{(i)},x^{(i)}+h^{(i)}\right]} f(x^{(1)},...,x^{(d)})}{h^{(1)}...h^{(d)}}.$$

This limit is called the *derivative* of f and is denoted $Df(x^{(1)}, ..., x^{(d)})$.

Remark. If
$$f \in C^d(I^d)$$
 then $Df(x) = \frac{\partial^d f}{\partial x^{(1)} \dots \partial x^{(d)}}(x)$ (see [12] ch.7 §1).

Remark. If a function $f: I^d \to \mathbb{C}$ is of bounded variation in the sense of Vitali, then f has the derivative in the sense of Vitali almost everywhere (see [12] ch.7 §2).

Definition 2.5. (inductive) A function $f: I^d \to \mathbb{C}$ is said to be *differentiable* in the sense of Hardy and Krause

-for d = 1 if it is differentiable in the ordinary sense,

-for d > 1 if it has the derivative in the sense of Vitali in every point and for any j = 1, ..., d and $a \in I$ the function $f_j : I^d \to \mathbb{C}$

$$f_j(x^{(1)}, ..., x^{(d-1)}) = f(x^{(1)}, ..., x^{(j-1)}, a, x^{(j)}, ..., x^{(d-1)})$$

is differentiable in the sense of Hardy and Krause.

In what follows by differentiable functions we mean those which are differentiable in the sense of Hardy and Krause. The derivative of $f(\hat{x}^{(1)}, ..., x^{(i_1)}, ..., x^{(i_k)}, ..., \hat{x}^{(d)})$ is denoted $D_{x^{(i_1)}...x^{(i_k)}}f(x)$.

Let $f: I^d \to \mathbb{C}$ be a differentiable function. For $0 = s_0 < s_1 < ... < s_{k-1} < s_k = d$ consider

$$F_{s_1...s_k}(1,...,d) = \prod_{r=1}^k D_{x^{(s_{r-1}+1)}...x^{(s_r)}} f(x)$$

and notice that expressions of this kind satisfy (4).

Lemma 2.5. The function $\exp f: I^d \to \mathbb{C}$ is differentiable and we have

$$D \exp f(x) = \exp f(x) \sum_{k=1}^{a} \sum_{0=s_0 < s_1 < \dots < s_{k-1} < s_k = d} \sum_{1,\dots,d;s_1,\dots,s_{k-1}} \prod_{r=1}^{k} D_{x^{(s_{r-1}+1)} \dots x^{(s_r)}} f(x). \blacksquare$$

-

The number $|P| = \prod_{i=1}^{d} (b^{(i)} - a^{(i)})$ is called the *substance* of the cube $P = \prod_{i=1}^{d} [a^{(i)}, b^{(i)}].$

Definition 2.6. A function $f: I^d \to \mathbb{C}$ is said to be absolutely continuous in the sense of Vitali if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every system of cubes $Q_1, ..., Q_n$ such that $|Q_i \cap Q_j| = 0$ for any $1 \le i \ne j \le n$ if $|Q_1| + ... + |Q_n| < \delta$ then

$$|\Delta_{1..d}^*|_{Q_1}f| + \ldots + |\Delta_{1..d}^*|_{Q_n}f| < \varepsilon.$$

Remark. If a function is absolutely continuous in the sense of Vitali then is of bounded variation in the sense of Vitali (see [12] ch.7 §3).

Definition 2.7. Let $f: I^d \to \mathbb{C}$ be an absolutely continuous function in the sense of Vitali. Suppose the restriction f of each face $F = \{(x^{(1)}, ..., x^{(d)}) : x^{(i_s)} = 0, s = 1, ..., k\}$ where $1 \leq i_1 < ... < i_k \leq d$ (k = 1, ..., d) is absolutely continuous function in the sense of Vitali. Then f is said to be absolutely continuous function in the sense of Hardy and Krause.

In what follows functions absolutely continuous are those absolutely continuous in the sense of Hardy and Krause.

Remark. If a function f is of bounded variation and g is absolutely continuous then

$$\int_{I^d} f dg = \int_{I^d} f Dg d\lambda_d$$

(see [12] ch.7 §3 and [7] §448¹).

Lemma 2.6. Let $f: I^d \to \mathbb{C}$ be an absolutely continuous function. Then for every $g(a^{(k+1)}, ..., a^{(d)}) \in I^{d-k}$ the function $g: I^k \to \mathbb{C}$ given by

$$g(x^{(1)}, ..., x^{(k)}) = f(x^{(1)}, ..., x^{(k)}, a^{(k+1)}, ..., a^{(d)})$$

is absolutely continuous.

Proof. Similarly as the proof of Lemma 2.1. ■

Remark. If a function $f: I^d \to \mathbb{R}$ is absolutely continuous then the function $\exp if: I^d \to \mathbb{C}$ is absolutely continuous.

3 Spectral properties in the case where the winding vector is not equal to zero

Lemma 3.1. Let $f: I^d \to \mathbb{R}$ be an absolutely continuous function such that for any j = 1, ..., d and $x \in I^d$ we have $\Delta_j^*|_{I^d} f(x) \in \mathbb{Z}$. Suppose, $D_{x^{(i_1)}..x^{(i_k)}} f$ is the function of bounded variation for $1 \leq i_1 < ... < i_k \leq d$ and there exists real a number a > 0 such that for any $x \in I^d$ we have

$$\left|\sum_{k=1}^{d} (2\pi i)^{k} \sum_{0=s_{0} < s_{1} < \ldots < s_{k-1} < s_{k} = d} \sum_{1,\ldots,d;s_{1},\ldots,s_{k-1}}^{*} \prod_{r=1}^{k} D_{x^{(s_{r-1}+1)} \ldots x^{(s_{r})}} f(x)\right| \ge a > 0.$$

Then

$$\begin{aligned} \left| \int_{I^{d}} \exp 2\pi i f(x) dx \right| \leq \\ \sum_{l=1}^{d} \frac{1}{a^{l+1}} \sum_{0=t_{0} < t_{1} < \ldots < t_{l-1} < t_{l} = d} \sum_{1,\ldots,d;t_{1},\ldots,t_{l-1}}^{*} \prod_{p=1}^{l} \prod_{\alpha_{p}=0}^{d-t_{p}+t_{p-1}} \sum_{1,\ldots,t_{p-1},t_{p}+1,\ldots,d;\alpha_{p}}^{*} \\ \sum_{k=1}^{d} (2\pi)^{k} \sum_{0=s_{0} < s_{1} < \ldots < s_{k-1} < s_{k} = d} \sum_{1,\ldots,d;s_{1},\ldots,s_{k-1}}^{*} \sum_{0=u_{0} \leq u_{1} \leq \ldots \leq u_{k-1} \leq u_{k}\alpha_{p}+t_{p}-t_{p-1}}^{*} \\ \sum_{1,\ldots,\alpha_{p},t_{p-1}+1,\ldots,t_{p};u_{1},\ldots,u_{k-1}}^{*} \prod_{r=1}^{k} \prod_{\beta_{r}=0}^{d-t_{p}+t_{p-1}+u_{r}-u_{r-1}}^{*} \sum_{1,\ldots,u_{r-1},u_{r}+1,\ldots,\alpha_{p},t_{p-1}+1,\ldots,t_{p};\beta_{r}}^{*} \\ Var^{(\beta_{r}+u_{r}-u_{r-1})} D_{x^{(s_{r-1}+1)}\dots x^{(s_{r})}} f(\underbrace{\cdot,\ldots,\cdot}_{\beta_{r}},0,\ldots,0,\cdot,\ldots,\cdot,0,\ldots,0). \end{aligned}$$

Proof. An application of Lemma 2.3 and Lemma 2.4 and integration by parts gives that

$$\begin{split} |\int_{I^d} \exp 2\pi i f(x) dx| \leq \\ |\int_{I^d} 1/(\sum_{k=1}^d (2\pi i)^k \sum_{0=s_0 < s_1 < \dots < s_{k-1} < s_k = d} \sum_{1,\dots,d;s_1,\dots,s_{k-1}}^* \prod_{r=1}^k D_{x^{(s_{r-1}+1)} \dots x^{(s_r)}} f) d\exp 2\pi i f(x)| = \\ |\int_{I^d} \exp 2\pi i f(x) d(1/\sum_{k=1}^d (2\pi i)^k \sum_{0=s_0 < s_1 < \dots < s_{k-1} < s_k = d} \sum_{1,\dots,d;s_1,\dots,s_{k-1}}^* \prod_{r=1}^k D_{x^{(s_{r-1}+1)} \dots x^{(s_r)}} f)| \leq \\ Var^{(d)} (1/\sum_{k=1}^d (2\pi i)^k \sum_{0=s_0 < s_1 < \dots < s_{k-1} < s_k = d} \sum_{1,\dots,d;s_1,\dots,s_{k-1}}^* \prod_{r=1}^k D_{x^{(s_{r-1}+1)} \dots x^{(s_r)}} f)| \leq \\ Var^{(d)} (1/\sum_{k=1}^d (2\pi i)^k \sum_{0=s_0 < s_1 < \dots < s_{k-1} < s_k = d} \sum_{1,\dots,d;s_1,\dots,s_{k-1}} \prod_{r=1}^k D_{x^{(s_{r-1}+1)} \dots x^{(s_r)}} f) \leq \\ Var^{(d)} (1/\sum_{k=1}^d (2\pi i)^k \sum_{0=s_0 < s_1 < \dots < s_{k-1} < s_k = d} \sum_{1,\dots,d;s_1,\dots,s_{k-1}} \prod_{r=1}^k D_{x^{(s_{r-1}+1)} \dots x^{(s_r)}} f) \leq \\ Var^{(d)} (1/\sum_{k=1}^d (2\pi i)^k \sum_{0=s_0 < s_1 < \dots < s_{k-1} < s_k = d} \sum_{1,\dots,d;s_1,\dots,s_{k-1}} \prod_{r=1}^k D_{x^{(s_{r-1}+1)} \dots x^{(s_r)}} f) \leq \\ Var^{(d)} (1/\sum_{k=1}^d (2\pi i)^k \sum_{0=s_0 < s_1 < \dots < s_{k-1} < s_k = d} \sum_{1,\dots,d;s_1,\dots,s_{k-1}} \prod_{r=1}^k D_{x^{(s_{r-1}+1)} \dots x^{(s_r)}} f) \leq \\ Var^{(d)} (1/\sum_{k=1}^d (2\pi i)^k \sum_{0=s_0 < s_1 < \dots < s_{k-1} < s_k = d} \sum_{1,\dots,d;s_1,\dots,s_{k-1}} \prod_{r=1}^k D_{x^{(s_{r-1}+1)} \dots x^{(s_r)}} f) \leq \\ Var^{(d)} (1/\sum_{k=1}^d (2\pi i)^k \sum_{0=s_0 < s_1 < \dots < s_{k-1} < s_k < d} \prod_{r=1}^k D_{x^{(s_{r-1}+1)} \dots x^{(s_r)}} f) \leq \\ Var^{(d)} (1/\sum_{k=1}^d (2\pi i)^k \sum_{0=s_0 < s_1 < \dots < s_{k-1} < d} \prod_{r=1}^k D_{x^{(s_{r-1}+1)} \dots x^{(s_r)}} f) \leq \\ Var^{(d)} (1/\sum_{k=1}^d (2\pi i)^k \sum_{0=s_0 < s_1 < \dots < s_{k-1} < d} \prod_{r=1}^k D_{x^{(s_{r-1}+1)} \dots x^{(s_r)}} f) \leq \\ Var^{(d)} (1/\sum_{k=1}^d (2\pi i)^k \sum_{0=s_0 < s_1 < \dots < s_{k-1} < d} \prod_{r=1}^k D_{x^{(s_{r-1}+1)} \dots x^{(s_r)}} f) \leq \\ Var^{(d)} (1/\sum_{k=1}^k D_{x^{(s_{r-1}+1)} \dots$$

$$\begin{split} \sum_{l=1}^{d} \frac{1}{a^{l+1}} & \sum_{0=t_0 < t_1 < \ldots < t_{l-1} < t_l = d} \sum_{1, \ldots, d; t_1, \ldots, d; t_1, \ldots, t_{l-1}} \prod_{p=1}^{l} \sum_{\alpha_p = 0}^{d-t_p + t_{p-1}} \sum_{1, \ldots, t_{p-1}, t_p + 1, \ldots, d; \alpha_p}^{*} \\ & \sum_{k=1}^{d} (2\pi)^k \sum_{0=s_0 < s_1 < \ldots < s_{k-1} < s_k = d} \sum_{1, \ldots, d; s_1, \ldots, s_{k-1}}^{*} Var^{(\alpha_p + t_p - t_{p-1})} \prod_{r=1}^{k} \\ & D_{x^{(s_{r-1}+1)} \ldots x^{(s_r)}} f(\underbrace{\cdot, \ldots, \cdot, 0, \ldots, 0, \cdot, \ldots, \cdot, 0, \ldots, 0}) \leq \\ & \underbrace{\underbrace{\int_{l=1}^{d} \frac{1}{a^{l+1}}}_{l=1} \sum_{0=t_0 < t_1 < \ldots < t_{l-1} < t_l = d} \sum_{1, \ldots, d; t_1, \ldots, t_{l-1}}^{*} \prod_{p=1}^{l} \sum_{\alpha_p = 0}^{d-t_p + t_{p-1}} \sum_{1, \ldots, t_{p-1}, t_p + 1, \ldots, d; \alpha_p} \\ & \sum_{k=1}^{d} (2\pi)^k \sum_{0=s_0 < s_1 < \ldots < s_{k-1} < s_k = d} \sum_{1, \ldots, d; s_1, \ldots, s_{k-1}}^{*} 0 = u_0 \le u_1 \le \ldots \le u_{k-1} \le u_k \alpha_p + t_p - t_{p-1} \\ & 1, \ldots, \alpha_p, t_{p-1} + 1, \ldots, t_p; u_1, \ldots, u_{k-1} r = 1} \sum_{\beta_r = 0}^{k} \frac{d^{-t_p + t_{p-1}}}{1, \ldots, u_{r-1}, u_r + 1, \ldots, \alpha_p, t_{p-1} + 1, \ldots, t_p; \beta_r} \\ & Var^{(\beta_r + u_r - u_{r-1})} D_{x^{(s_{r-1}+1)} \ldots x^{(s_r)}} f(\underbrace{\cdot, \ldots, 0, \ldots, 0, \cdot, \ldots, \cdot, 0, \ldots, 0). \blacksquare \\ & \underbrace{\underbrace{\int_{s_r}^{g_r} u_{r-1}} u_{r-1}}^{u_{r-1}} u_{r-1} \end{bmatrix}$$

Lemma 3.2. Let $\alpha_1, ..., \alpha_d, 1$ be independent over \mathbb{Q} real numbers. Assume that $\tilde{\varphi} : I^d \to \mathbb{R}$ is an absolutely continuous function, which is periodic of period 1 in each coordinate. Suppose, $D_{x^{(i_1)}...x^{(i_k)}}\tilde{\varphi}$ is the function of bounded variation for each $1 \leq i_1 < ... < i_k \leq d$. Then for any $(m_1,...,m_d) \in \mathbb{Z}^d$ where $m_i \neq 0$ for i = 1, ..., d and $N \in \mathbb{Z} \setminus \{0\}$ there exists a polynomial F of 4^d variables with nonnegative coefficients such that

$$\begin{split} |\int_{I^d} \exp 2\pi i N(\tilde{\varphi}^{(n)}(x) + \sum_{k=1}^d m_k n x^{(k)}) dx| \leq \\ \frac{1}{|n|^d} F(Var^{(r)} D_{x^{(i_1)} \dots x^{(i_k)}} f(0, \dots, 0, \stackrel{j_1}{\cdot}, 0, \dots, 0, \stackrel{j_r}{\cdot}, 0, \dots, 0) : \\ 1 \leq i_1 < \dots < i_k \leq d, \ 1 \leq j_1 < \dots < j_r \leq d) \end{split}$$

where $\alpha = (\alpha_1, ..., \alpha_d)$ and

$$\tilde{\varphi}^{(n)}(x) = \begin{cases} \tilde{\varphi}(x) + \dots + \tilde{\varphi}(x + (n-1)\alpha) & for \quad n > 0\\ 0 & for \quad n = 0\\ -(\tilde{\varphi}(x + n\alpha) + \dots + \tilde{\varphi}(x - \alpha)) & for \quad n < 0. \end{cases}$$

Proof. Let $f(x^{(1)}, ..., x^{(d)}) = N(\tilde{\varphi}^{(n)}(x) + \sum_{k=1}^{d} m_k n x^{(k)})$. Then

$$\begin{array}{lcl} D_{x^{(i)}}f(x) &=& N(D_{x^{(i)}}\tilde{\varphi}^{(n)}(x)+m_in) \mbox{ for } i=1,...,d \mbox{ and } \\ D_{x^{(i_1)}...x^{(i_k)}}f(x) &=& ND_{x^{(i_1)}...x^{(i_k)}}\tilde{\varphi}^{(n)}(x) \mbox{ for } 1\leq i_1<...< i_k\leq d \mbox{ and } k>1. \end{array}$$

We will consider a real number $\frac{1}{2} > \varepsilon > 0$. Since for each $1 \leq i_1 < ... < i_k \leq d$ the function $D_{x^{(i_1)}...x^{(i_k)}}\tilde{\varphi}(x)$ is integrable in the sense of Riemann and the rotation of α is monoergodic, there exists a natural number n_0 such that for any $|n| \ge n_0, 1 \le i_1 < \dots < i_k \le d$ and $x \in I^d$ we have

$$\left|\frac{D_{x^{(i_1)}\dots x^{(i_k)}}\tilde{\varphi}^{(n)}(x)}{n} - \int_{I^d} D_{x^{(i_1)}\dots x^{(i_k)}}\tilde{\varphi}(x)dx\right| < \varepsilon.$$

From

$$\begin{split} \int_{I^d} D_{x^{(i_1)}...x^{(i_k)}} \tilde{\varphi}(x) dx = \\ \int_{I^{d-k}} (\int_{I^k} D_{x^{(i_1)}...x^{(i_k)}} \tilde{\varphi}(x) dx^{(i_1)}...dx^{(i_k)}) dx^{(1)}...dx^{(i_1)}...dx^{(i_k)}...dx^{(d)} = \\ \int_{I^{d-k}} \Delta^*_{i_1..i_k} \tilde{\varphi}(x) dx^{(1)}...dx^{(i_1)}...dx^{(i_k)}...dx^{(d)} = 0 \end{split}$$

we obtain that for $|n| \ge n_0$

$$|D_{x^{(i_1)}\dots x^{(i_k)}}\tilde{\varphi}^{(n)}(x)| < \varepsilon |n|.$$

Let $|n| \geq \max(n_0, d! 2^{d-2} M)$ where $M = \max_{i=1,..,d} |m_i| + 1$. Then for any $x \in I^d$ we have

$$\begin{split} |\sum_{k=1}^{d} (2\pi i)^{k} \sum_{0=s_{0} < s_{1} < \ldots < s_{k-1} < s_{k} = d} \sum_{1,\ldots,d;s_{1},\ldots,s_{k-1}} \prod_{r=1}^{k} D_{x^{(s_{r-1}+1)} \ldots x^{(s_{r})}} f(x)| \ge \\ (2\pi |N|)^{d} \prod_{k=1}^{d} |D_{x^{(k)}} \tilde{\varphi}^{(n)}(x) + m_{k} n| - \\ \sum_{k=1}^{d-1} (2\pi |N|)^{k} \sum_{0=s_{0} < s_{1} < \ldots < s_{k-1} < s_{k} = d} \sum_{1,\ldots,d;s_{1},\ldots,s_{k-1}} \prod_{r=1}^{k} |D_{x^{(s_{r-1}+1)} \ldots x^{(s_{r})}} \tilde{\varphi}^{(n)}(x) + na_{s_{r-1}+1 \ldots s_{r}}| \ge \\ \\ \\ \end{bmatrix}$$

where

$$a_{s_{r-1}+1\dots s_r} = \begin{cases} m_{i_{s_r}} & for \quad s_{r-1}+1 = s_r \\ 0 & for \quad s_{r-1}+1 < s_r \end{cases}$$
$$\geq (2\pi|N|)^d \prod_{k=1}^d |n|(|m_k| - \varepsilon) - \sum_{k=1}^{d-1} (2\pi|N|)^k \sum_{0=s_0 < s_1 < \dots < s_{k-1} < s_k = d} \sum_{1,\dots,d;s_1,\dots,s_{k-1}}^* (M|n|)^k \geq 0$$

$$(\pi |Nn|)^d - d!(2M\pi |Nn|)^{d-1} \ge (\pi |N|)^d |n|^{d-1} (|n| - d!2^{d-1}M) \ge \frac{1}{2}(\pi |Nn|^d) = C|n|^d.$$

By Lemma 3.1 we have

$$\begin{split} |\int_{I^d} \exp 2\pi i N(\tilde{\varphi}^{(n)}(x) + \sum_{k=1}^d m_k n x^{(k)}) dx| \leq \\ \sum_{l=1}^d \frac{1}{C^{l+1} |n|^{d(l+1)}} \sum_{0=t_0 < t_1 < \ldots < t_{l-1} < t_l = d} \sum_{1,\ldots,d_l = 1}^* \sum_{p=0}^{*} \prod_{1,\ldots,l_p = 1}^l \sum_{1,\ldots,d_p = 0}^{d-t_p + t_{p-1}} \sum_{1,\ldots,t_p = 1, t_p + 1,\ldots,d_l = 1}^* \sum_{p=0}^* \sum_{1,\ldots,t_p = 1, t_p + 1,\ldots,d_l = 1}^* \sum_{p=0}^{*} \sum_{1,\ldots,t_p = 1, t_p + 1,\ldots,d_l = 1}^* \sum_{p=0}^* \sum_{1,\ldots,t_p = 1}^* \sum_{p=0}^* \sum_{1,\ldots,u_{p-1} + u_r - u_{r-1}} \sum_{p=0}^* \sum_{1,\ldots,u_{p-1} + 1,\ldots,u_p, t_{p-1} + 1,\ldots,u_p,$$

Remark. With the same assumption as the one in Lemma 3.2 we can prove that for any $(r_1, ..., r_d) \in \mathbb{Z}^d$ there exists a polynomial F of 4^d variables with nonnegative coefficients such that

$$\left|\int_{I^{d}} \exp 2\pi i (N\tilde{\varphi}^{(n)}(x) + \sum_{k=1}^{d} (Nm_{k}n + r_{k})x^{(k)})dx\right| \le \frac{F}{|n|^{d}}.$$

Theorem 3.3. Let $\alpha_1, ..., \alpha_d, 1$ be independent over \mathbb{Q} real numbers. Let a cocycle $\varphi : \mathbb{T}^d \to \mathbb{T}$ be represented as

$$\varphi(e^{2\pi i x_1}, ..., e^{2\pi i x_d}) = e^{2\pi i (\tilde{\varphi}(x_1, ..., x_d) + m_1 x_1 + m_d x_d)}$$

where $\tilde{\varphi}: I^d \to \mathbb{R}$ satisfies the same assumption as the one in Lemma 3.2. If $rw(\varphi) = k > 0$ then the set

$$\{f \in L^2(\mathbb{T}^{d+1}, \lambda_{d+1}) : \hat{\sigma}_f(n) = (U_{T_{\varphi}}^n f, f) = O(\frac{1}{|n|^k})\}$$

is dense in the orthocomplement of the eigenfunctions of T.

Proof. For simplicity we may assume that $m_1 \neq 0, ..., m_k \neq 0$. By Lemma 2.1 there exists a real number M > 0 such that for any $1 \le i_1 < \dots, i_p \le k$, $1 \le j_1 < \dots, j_l \le k$ and $(x^{(k+1)}, \dots, x^{(d)}) \in I^{d-k}$ we have

$$Var^{(l)}D_{x^{(i_1)}..x(i_p)}\tilde{\varphi}(0,...,0,\overset{j_1}{\cdot},0,...,0,\overset{j_l}{\cdot},0,...,0,x^{(k+1)},...,x^{(d)}) \leq M$$

Let P be a trigonometric polynomial given by

$$P(z_1, ..., z_d, \omega) = \sum_{r_1 = -R_1}^{R_1} \dots \sum_{r_d = -R_d}^{R_d} \sum_{s = -S}^{S} \sum_{s \neq 0}^{A_{r_1...r_ds}} z_1^{r_1} \dots z_d^{r_d} \omega^s$$

where $a_{r_1...r_ds} \in \mathbb{C}$. Then

r

$$\begin{split} |(U_{T_{\varphi}}^{n}P,P)| &= |\int_{\mathbb{T}^{d+1}} P(T^{n}z,\varphi^{(n)}(z)\omega)\bar{P}(z,\omega)dzd\omega| = \\ & |\int_{I^{d+1}} \sum_{r_{1},\dots,r_{d},s} a_{r_{1}\dots r_{d}s} \exp 2\pi i [\sum_{j+1}^{d} r_{j}(x^{(j)} + n\alpha_{j}) + \\ & + s\tilde{\varphi}^{(n)}(x) + s\sum_{j=1}^{d} m_{j}(nx^{(j)} + \frac{(n-1)n}{2}\alpha_{j}) + sy] \\ & \sum_{r_{1}',\dots,r_{d}',s'} \bar{a}_{r_{1}'\dots r_{d}'s'} \exp 2\pi i (\sum_{j=1}^{d} r_{j}'x^{(j)} + s'y)dx^{(1)}\dots dx^{(d)}dy| \leq \\ & \sum_{r_{1},\dots,r_{d}',r_{1}',\dots,r_{d}',s} |a_{r_{1}\dots r_{d}s}a_{r_{1}'\dots r_{d}'s}|| \int_{I^{d}} \exp 2\pi i [s\tilde{\varphi}^{(n)}(x) + [sn\sum_{j=1}^{d} m_{j}x^{(j)} + \sum_{j=1}^{d} (r_{j} - r_{j}')x^{(j)}]dx| \\ & \sum_{r_{1},\dots,r_{d},r_{1}',\dots,r_{d}',s} |a_{r_{1}\dots r_{d}s}a_{r_{1}'\dots r_{d}'s}|| \int_{I^{d-k}} \exp 2\pi i \sum_{j=k+1}^{d} (r_{j} - r_{j}')x^{(j)} dx^{(k+1)}\dots dx^{(d)}| \\ & |\int_{I^{k}} \exp 2\pi i [s\tilde{\varphi}^{(n)}(x) + sn\sum_{j=1}^{k} m_{j}x^{(j)} + \sum_{j=1}^{k} (r_{j} - r_{j}')x^{(j)}]dx^{(1)}\dots dx^{(k)}| \leq \\ \end{split}$$

$$\sum_{r_1, \dots, r_d, r'_1, \dots, r'_d, s} |a_{r_1 \dots r_d s} a_{r'_1 \dots r'_d s}| \frac{F_{s, r_1 - r'_1, \dots, r_k - r'_k}(M)}{|n|^k} = O(\frac{1}{|n|^k}). \blacksquare$$

Corollary 3.1. If $\varphi \in C^{2d}$ and $rw(\varphi) = k > 0$ then the set

$$\{f \in L^2(\mathbb{T}^{d+1}, \lambda_{d+1}) : \hat{\sigma}_f(n) = (U_{T_{\varphi}}^n f, f) = O(\frac{1}{|n|^k})\}$$

is dense in the orthocomplement of the eigenfunctions of T.

Let $w(\varphi) \neq 0$. For simplicity we assume that $m_1 \neq 0$. Suppose, there exists a real number R > 0 such that for each $(x^{(2)}, ..., x^{(d)}) \in I^{d-1}$

$$Var^{(1)}\frac{\partial\tilde{\varphi}}{\partial x^{(1)}}(\cdot, x^{(2)}, ..., x^{(d)}) \le R$$

In the same manner as in the proof of Theorem 3.3 we can show that

$$\hat{\sigma}_{\chi_N}(n) = O(\frac{1}{|n|})$$
 for $N \neq 0$

where $\chi_N(z_1, ..., z_d, \omega) = \omega^N$. From this and by Corollary 1.1 we conclude that T_{φ} has countable Lebesgue spectrum in the orthocomplement of the eigenfunctions of T.

Corollary 3.2. If $\varphi \in C^2$ and $w(\varphi) \neq 0$ then T_{φ} has countable Lebesgue spectrum in the orthocomplement of the eigenfunctions of T.

4 Spectral properties in the case where the winding vector is equal zero

Lemma 4.1. If $0 < |x| \le |y| \le \frac{1}{2}$, then

(5)
$$4|x| \le |e^{2\pi i x} - 1| \le 2\pi |x|$$

(6)
$$\frac{2}{\pi} |\frac{y}{x}| \le |\frac{e^{2\pi i y} - 1}{e^{2\pi i x} - 1}| \le |\frac{y}{x}|$$

Lemma 4.2. Assume $n \in \mathbb{N}$ and take $a \in \mathbb{R}$ such that 0 < a < 1. Then there exist n pair wise disjoint subintervals $I_1, ..., I_n$ of I such that for $x \in I \setminus \bigcup_{i=1}^n I_i$ we have $|\cos n\pi x| \ge a$ moreover $|I_i| = \frac{a}{n}$.

Proof. Set
$$I_i = \left[\frac{2i-1}{2n} - \frac{a}{2n}, \frac{2i-1}{2n} + \frac{a}{2n}\right]$$
. Then
 $I \setminus \bigcup_{i=1}^n I_i = \bigcup_{i=1}^n \left[\frac{2i-2}{2n}, \frac{2i-1}{2n} - \frac{a}{2n}\right] \cup \left(\frac{2i-1}{2n} + \frac{a}{2n}, \frac{2i}{2n}\right].$

If $x \in I \setminus \bigcup_{i=1}^{n} I_i$, then there exists a natural number *i* such that

$$x \in [\frac{2i-2}{2n}, \frac{2i-1}{2n} - \frac{a}{2n}) \cup (\frac{2i-1}{2n} + \frac{a}{2n}, \frac{2i}{2n}].$$

Then $\frac{a}{2n} < |x - \frac{2i-1}{2n}| \le \frac{1}{2n}$, whence $\frac{a}{2} < |nx - \frac{2i-1}{2}| \le \frac{1}{2}$ and finally

$$a < 2|nx - \frac{2i-1}{2}| \le |\sin \pi (nx - i + \frac{1}{2})| \le |\cos \pi nx|.$$

Lemma 4.3. Let $f : I \to \mathbb{R}$ be an absolutely continuous function such that f' is of bounded variation and f'(0) = f'(1), $f(1) - f(0) \in \mathbb{Z}$. Suppose there exists a real number a such that $|f'(x)| \ge a > 0$ for $x \in I \setminus \bigcup_{i=1}^{s} (a_i, b_i)$ (where $0 \le a_1 < b_1 < \ldots < a_s < b_s < 1$ or $0 < a_1 < b_1 < \ldots < a_s < 1 < b_s$). Then

(7)
$$|\int_0^1 e^{2\pi i f(x)} dx| \le \frac{1}{2\pi} \frac{Varf'}{a^2} + \frac{s}{\pi a} + \sum_{i=1}^s (b_i - a_i).$$

Proof. Let $D = \bigcup_{i=1}^{s} (a_i, b_i)$ and $a_{s+1} = a_1$. Then

$$\begin{split} |\int_{0}^{1} e^{2\pi i f(x)} dx| &\leq |\int_{I\setminus D} e^{2\pi i f(x)} dx| + \sum_{i=1}^{s} (b_{i} - a_{i}) = \\ &\int_{I\setminus D} \frac{1}{2\pi i f'(x)} de^{2\pi i f(x)} | + \sum_{i=1}^{s} (b_{i} - a_{i}) = \\ |\sum_{i=1}^{s} (\frac{e^{2\pi i f(a_{i+1})}}{2\pi f'(a_{i+1})} - \frac{e^{2\pi i f(b_{i})}}{2\pi f'(b_{i})} - \frac{1}{2\pi} \int_{b_{i}}^{a^{i+1}} e^{2\pi i f(x)} d\frac{1}{f'(x)})| + \sum_{i=1}^{s} (b_{i} - a_{i}) \leq \\ \frac{1}{2\pi} \sum_{i=1}^{s} (\frac{1}{|f'(a_{i})|} + \frac{1}{|f'(b_{i})|}) + \frac{1}{2\pi} \sum_{i=1}^{s} Var_{[b_{i},a_{i+1}]} \frac{1}{f'(x)}) + \sum_{i=1}^{s} (b_{i} - a_{i}) \leq \\ \frac{1}{2\pi} \frac{Varf'}{a^{2}} + \frac{s}{\pi a} + \sum_{i=1}^{s} (b_{i} - a_{i}). \blacksquare \end{split}$$

Given a real number $\alpha \in [0, 1)$, let $[0; a_1, a_2, ...]$ be its continued fraction expansion where a_n are positive integer numbers. Put

$$q_0 = 1, q_1 = a_1, q_{n+1} = a_{n+1}q_n + q_{n-1},$$

 $p_0 = 0, p_1 = 1, p_{n+1} = a_{n+1}p_n + p_{n-1}.$

The rationals p_n/q_n are called the *convergents* of α and the inequality

$$\frac{1}{2q_nq_{n+1}} < |\alpha - \frac{p_n}{q_n}| < \frac{1}{q_nq_{n+1}}$$

holds.

Given $A, B \ge 2$, we say that a pair $(\alpha, \beta) \in [0, 1)^2$ satisfies (A, B) if there exists strictly increasing sequences $\{n_k\}, \{m_k\}$ of natural numbers such that

(8)
$$B^{8s_{2m_k}} < \frac{1}{2}q_{2n_k+1}$$

(9)
$$A^{8q_{2n_{k+1}}} < \frac{1}{2}s_{2m_k+1}$$

where p_n/q_n and r_n/s_n are convergents of α and β . Obviously, the set $\{(\alpha, \beta) : (\alpha, \beta) \text{ satisfies } (A, B)\}$ is uncountable. For a pair (α, β) satisfying (A, B) we define real analytic functions $\psi_1, \psi_2 : \mathbb{R} \to \mathbb{R}$ periodic of period 1 given by

$$\psi_1(x) = \sum_{k=1}^{\infty} \frac{1}{2\pi i q_{2n_k} A^{q_{2n_k}}} (e^{2\pi i q_{2n_k} x} - e^{-2\pi i q_{2n_k} x})$$
$$\psi_2(y) = \sum_{k=1}^{\infty} \frac{1}{2\pi i s_{2m_k} A^{s_{2m_k}}} (e^{2\pi i s_{2m_k} y} - e^{-2\pi i s_{2m_k} y}).$$

We first prove

Lemma 4.4. For any integer numbers $h_1, h_2, N \neq 0$ we have

$$\lim_{|m|\to\infty}\int_{I^2}e^{2\pi i[N(\psi_1^{(m)}(x)+\psi_2^{(m)}(y))+h_1x+h_2y]}dxdy=0.$$

Corollary 4.1. If (α, β) satisfies (A, B) then $\alpha, \beta, 1$ are independent over \mathbb{Q} .

Proof. Suppose, $\alpha, \beta, 1$ are dependent over \mathbb{Q} . Then there exist $m_1, m_2, m_3 \in \mathbb{Z}$ such that $m_1\alpha + m_2\beta = m_3$. Let t_n/u_n are convergents of $m_1\alpha$ and $m_2\beta$. Then

$$\sum_{p=0}^{u_n-1} \psi_1(\cdot + p|m_1|\alpha), \sum_{p=0}^{u_n-1} \psi_2(\cdot + p|m_2|\beta)$$

uniformly converges to 0 (see [6], p. 189). From

$$\psi_1^{(u_n|m_1m_2|)}(x) + \psi_2^{(u_n|m_1m_2|)}(y) =$$

 $\sum_{k=0}^{|m_1|-1} \sum_{l=0}^{|m_2|-1} \sum_{p=0}^{u_n-1} (\psi_1(x+k\alpha+l|m_1|u_n\alpha+p|m_1|\alpha)+\psi_2(y+k|m_2|u_n\beta+l\beta+p|m_2|\beta))$

we have

e

$$\sup_{(x,y)\in I^{2}} |\psi_{1}^{(u_{n}|m_{1}m_{2}|)}(x) + \psi_{2}^{(u_{n}|m_{1}m_{2}|)}(y)|$$

$$\leq |m_{1}m_{2}|(\sup_{x\in I}|\sum_{p=0}^{u_{n}-1}\psi_{1}(x+p|m_{1}|\alpha)| + \sup_{y\in I}|\sum_{p=0}^{u_{n}-1}\psi_{2}(y+p|m_{2}|\beta)|)$$

 $\psi_1^{(u_n|m_1m_2|)}(\cdot) + \psi_2^{(u_n|m_1m_2|)}(\cdot)$

uniformly converges to 0 in I^2 . It follows that

$$\lim_{n \to \infty} \int_{I^2} e^{2\pi i (\psi_1^{(u_n \mid m_1 m_2 \mid)}(x) + \psi_2^{(u_n \mid m_1 m_2 \mid)}(y))} dx dy = 1,$$

which contradicts Lemma 4.4. \blacksquare

Proof of Lemma 4.4. From (8) and (9) for every $k \in \mathbb{N}$

$$B^{8s_{2m_k}} < \frac{1}{2}q_{2n_k+1} < \frac{1}{2}s_{2m_k+1}$$
$$A^{8q_{2n_k}} < \frac{1}{2}s_{2m_{k-1}+1} < \frac{1}{2}q_{2n_k+1}$$

Hence for any $m \ge \min(A^{8q_{2n_1}}, B^{8s_{2m_1}})$ there exists natural number k such that

$$A^{8q_{2n_k}} \le m \le \frac{1}{2}q_{2n_k+1}$$

or

$$B^{8s_{2m_k}} \le m \le \frac{1}{2}s_{2m_k+1}.$$

In the first case

$$\left|\int_{I^2} e^{2\pi i [N(\psi_1^{(m)}(x) + \psi_2^{(m)}(y)) + h_1 x + h_2 y]} dx dy\right| =$$

$$|\int_{I} e^{2\pi i [N(\psi_{1}^{(m)}(x)+h_{1}x]} dx|| \int_{I} e^{2\pi i [N(\psi_{2}^{(m)}(y))+h_{2}y]} dy| \leq |\int_{I} e^{2\pi i [N(\psi_{1}^{(m)}(x)+h_{1}x]} dx|.$$
 From

From

$$\psi_1'(x) = \sum_{l=1}^{\infty} \frac{1}{A^{q_{2n_l}}} (e^{2\pi i q_{2n_l} x} + e^{-2\pi i q_{2n_l} x})$$

it follows that for any natural number \boldsymbol{m}

$$\begin{split} |\psi_1^{(m)'}(x)| &= |\sum_{j=0}^{m-1} \psi_1'(x+j\alpha)| = \\ \sum_{l=1}^{\infty} \frac{1}{A^{q_{2n_l}}} (e^{2\pi i q_{2n_l}x} \frac{e^{2\pi i q_{2n_l}m\alpha} - 1}{e^{2\pi i q_{2n_l}\alpha} - 1} + e^{-2\pi i q_{2n_l}x} \frac{e^{-2\pi i q_{2n_l}m\alpha} - 1}{e^{-2\pi i q_{2n_l}\alpha} - 1})| = \\ |\sum_{l=1}^{\infty} \frac{1}{A^{q_{2n_l}}} \frac{e^{2\pi i q_{2n_l}m\alpha} - 1}{e^{2\pi i q_{2n_l}\alpha} - 1} (e^{2\pi i q_{2n_l}x} + e^{-2\pi i q_{2n_l}(x+(m-1)\alpha)})| \ge \\ \frac{2}{A^{q_{2n_k}}} |\frac{e^{2\pi i q_{2n_k}m\alpha} - 1}{e^{2\pi i q_{2n_k}\alpha} - 1}||\cos 2\pi q_{2n_k}(x + \frac{(m-1)\alpha}{2})| - \end{split}$$

hence

$$\sum_{l=1}^{k-1} \frac{1}{A^{q_{2n_l}}} \frac{4}{|e^{2\pi i q_{2n_l}\alpha} - 1|} - \sum_{l=k+1}^{\infty} \frac{2}{A^{q_{2n_l}}} |\frac{e^{2\pi i q_{2n_l}m\alpha} - 1}{e^{2\pi i q_{2n_l}\alpha} - 1}|.$$

From $|q_{2n_l}\alpha - p_{2n_l}| > \frac{1}{2q_{2n_l+1}}$ and (5) we have

$$|e^{2\pi i q_{2n_l}\alpha} - 1| \ge 4|q_{2n_l}\alpha - q_{2n_l}| > \frac{2}{q_{2n_l+1}}$$

hence $\frac{1}{|e^{2\pi i q_{2n_l}\alpha}-1|} < \frac{q_{2n_l+1}}{2}$ for any natural l. From $m \leq \frac{1}{2}q_{2n_l+1}$ and $|q_{2n_l}\alpha - p_{2n_l}| < \frac{1}{q_{2n_l+1}}$ for any $l \geq k$ it follows that

$$0 < |q_{2n_l}\alpha - p_{2n_l}| \le |mq_{2n_l}\alpha - mp_{2n_l}| \le \frac{1}{2}q_{2n_l+1}|q_{2n_l}\alpha - p_{2n_l}| < \frac{1}{2}.$$

From (6) for $l \ge k$

$$\frac{m}{2} \le |\frac{e^{2\pi i q_{2n_l} m \alpha} - 1}{e^{2\pi i q_{2n_l} \alpha} - 1}| \le m.$$

From Lemma 4.2 there exist subintervals $I_1, ..., I_{2q_{2n_k}}$ of I such that for any $x \in I \setminus \bigcup_{i=1}^{2q_{2n_k}} I_i$ we have

$$|\cos 2\pi q_{2n_k}(x+\frac{(m-1)\alpha}{2})| \ge \frac{1}{A^{q_{2n_k}}};$$

moreover $|I_i| = \frac{1}{2q_{2n_k}A^{q_{2n_k}}}$ for $i = 1, ..., 2q_{2n_k}$. It follows that for $x \in I \setminus \bigcup_{i=1}^{2q_{2n_k}} I_i$ we have

$$|\psi_1^{(m)'}(x)| \ge -2\sum_{l=1}^{k-1} \frac{q_{2n_l+1}}{A^{q_{2n_l}}} + \frac{m}{A^{2q_{2n_k}}} - \sum_{l=k+1}^{\infty} \frac{2m}{A^{q_{2n_l}}} \ge m$$

$$-q_{2n_{k-1}+1} + \frac{m}{A^{2q_{2n_k}}} - \frac{2m}{A^{q_{2n_{k+1}}}} \frac{A}{A-1} \ge -q_{2n_k} + \frac{m}{A^{2q_{2n_k}}} - \frac{4m}{A^{q_{2n_k+1}}}.$$

From $A^{8q_{2n_k}} \leq m \leq \frac{1}{2}q_{2n_k+1}$ we have

$$4q_{2n_k} \le A^{6q_{2n_k}} = \frac{A^{8q_{2n_k}}}{A^{2q_{2n_k}}} \le \frac{m}{A^{2q_{2n_k}}} \quad and \quad q_{2n_k} + 2 \le A^{8q_{2n_k}} \le \frac{1}{2}q_{2n_k+1}$$

hence

$$16A^{2q_{2n_k}} \le A^{2q_{2n_k}+4} \le A^{2q_{2n_k}+1}.$$

For this reason for $x \in I \setminus \bigcup_{i=1}^{2q_{2n_k}} I_i$

$$|\psi_1^{(m)'}(x)| \ge -\frac{m}{4A^{2q_{2n_k}}} + \frac{m}{A^{2q_{2n_k}}} - \frac{m}{4A^{2q_{2n_k}}} = \frac{m}{2A^{2q_{2n_k}}},$$

hence $|N\psi_1^{(m)'}(x) + h_1| \ge |N| \frac{m}{2A^{2q_{2n_k}}} - |h_1|$. From (7) for any natural *m* such that $\frac{m}{A^{2q_{2n_k}}} \ge A^{6q_{2n_k}} \ge 4|\frac{h_1}{N}|$ we have

$$|\int_{I} e^{2\pi i [N(\psi_{1}^{(m)}(x)+h_{1}x]} dx| \leq \frac{1}{2\pi} \frac{Var(N\psi_{1}^{(m)'}+h_{1})}{(\frac{|N|m}{4A^{2q_{2}n_{k}}})^{2}} + \frac{2q_{2n_{k}}}{\pi \frac{|N|m}{4A^{2q_{2}n_{k}}}} + \frac{1}{A^{q_{2n_{k}}}} \leq \frac{1}{2\pi} \frac{Var(N\psi_{1}^{(m)'}+h_{1})}{(\frac{|N|m}{4A^{2q_{2}n_{k}}})^{2}} + \frac{1}{\pi \frac{|N|m}{4A^{2q_{2}n_{k}}}} \leq \frac{1}{2\pi} \frac{Var(N\psi_{1}^{(m)'}+h_{1})}{(\frac{|N|m}{4A^{2q_{2}n_{k}}})^{2}} + \frac{1}{\pi \frac{|N|m}{4A^{2q_{2}n_{k}}}} \leq \frac{1}{2\pi} \frac{Var(N\psi_{1}^{(m)'}+h_{1})}{(\frac{|N|m}{4A^{2q_{2}n_{k}}})^{2}} + \frac{1}{\pi \frac{|N|m}{4A^{2q_{2}n_{k}}}} \leq \frac{1}{2\pi} \frac{Var(N\psi_{1}^{(m)'}+h_{1})}{(\frac{|N|m}{4A^{2q_{2}n_{k}}})^{2}} + \frac{1}{\pi \frac{|N|m}{4A^{2}}} \leq \frac{1}{2\pi} \frac{Var(N\psi_{1}^{(m)'}+h_{1})}{(\frac{|N|m}{4A^{2}})^{2}} + \frac{1}{\pi \frac{|N|m}{4A^{2}}} \leq \frac{1}{\pi \frac{|N|m}{4A^{2}}} \leq \frac{1}{\pi \frac{|N|m}{4A^{2}}} + \frac{1}{\pi \frac{|N|m}{4A^{2}}} \leq \frac{1}{\pi \frac{|N|m}{4A^{2}}} + \frac{1}{\pi \frac{|N|m}{4A^{2}}} \leq \frac{1}{\pi \frac{|N|m}{4A^{2}}} \leq \frac{1}{\pi \frac{|N|m}{4A^{2}}} + \frac{1}{\pi \frac{|N|m}{4A^{2}}} \leq \frac{1}{\pi \frac{|N|m}{$$

$$\frac{8}{\pi} \frac{A^{4q_{2n_k}}}{|N|^2 m^2} |N| m Var \psi_1' + \frac{8A^{4q_{2n_k}}}{\pi |N| m} + \frac{1}{A^{q_{2n_k}}} \le \frac{8}{\pi} \frac{A^{4q_{2n_k}}}{|N| m} (Var \psi_1' + 1) + \frac{1}{A^{q_{2n_k}}} \le \frac{c_1}{A^{q_{2n_k}}}.$$

Similarly we can get that there exists a constant c_2 such that if $B^{8s_{2m_k}} \leq m \leq \frac{1}{2}s_{2m_k+1}$ then

$$\left|\int_{I} e^{2\pi i [N(\psi_{2}^{(m)}(y) + h_{2}y]]} dy\right| \le \frac{c_{2}}{B^{s_{2m_{k}}}}.$$

Therefore

$$\lim_{m \to \infty} \int_{I^2} e^{2\pi i [N(\psi_1^{(m)}(x) + \psi_2^{(m)}(y)) + h_1 x + h_2 y]} dx dy = 0.$$

If m < 0 then

$$\begin{split} |\int_{I^2} e^{2\pi i [N(\psi_1^{(m)}(x) + \psi_2^{(m)}(y)) + h_1 x + h_2 y]} dx dy| = \\ |\int_{I^2} e^{2\pi i [N - (\psi_1^{(-m)}(x + m\alpha) + \psi_2^{(-m)}(y + m\beta)) + h_1 x + h_2 y]} dx dy| = \\ |\int_{I^2} e^{2\pi i [N(\psi_1^{(-m)}(x) + \psi_2^{(-m)}(y)) - h_1 x - h_2 y]} dx dy|. \end{split}$$

It follows that

$$\lim_{|m| \to \infty} \int_{I^2} e^{2\pi i [N(\psi_1^{(m)}(x) + \psi_2^{(m)}(y)) + h_1 x + h_2 y]} dx dy = 0. \blacksquare$$

Lemma 4.5. Let $U : H \to H$ be a unitary operator on a Hilbert space H. Then the set $\{h \in H : \lim_{|m|\to\infty} (U^m h, h) = 0\}$ is closed in H.

Proof. Let $h_n \in H$ be a sequence such that $\lim_{|m|\to\infty}(U^mh_n, h_n) = 0$ which convergence to $h \in H$. Let $\varepsilon > 0$. We take a natural number n such that $\|h - h_n\| < \min\{\frac{\varepsilon}{2(2\|h\|+1)}, 1\}$. Let m_0 be a natural number such that for any $|m| \ge m_0$ we have $|(U^mh_n, h_n)| < \frac{\varepsilon}{2}$. Then for $|m| \ge m_0$

$$|(U^{m}h,h)| = |(U^{m}(h-h_{n}),h) + (U^{m}h_{n},h-h_{n}) + (U^{m}h_{n},h_{n})| \le \|h-h_{n}\| \|h\| + \|h_{n}\| \|h-h_{n}\| + |(U^{m}h_{n},h_{n})| \le \|h-h_{n}\| (2\|h\| + 1) + |(U^{m}h_{n},h_{n})| < \varepsilon. \blacksquare$$

Theorem 4.6. There exist real numbers α and β such that $\alpha, \beta, 1$ are independent over \mathbb{Q} and a cocycle $\varphi : \mathbb{T}^2 \to \mathbb{T}$ given by

$$\varphi(e^{2\pi ix}, e^{2\pi iy}) = e^{2\pi i(\psi_1(x) + \psi_2(y))}$$

where ψ_1, ψ_2 are real analytic function which are periodic of period 1 such that T_{φ} is mixing in the orthocomplement of the eigenfunctions of T where T is the rotation on \mathbb{T}^2 given by $T(z_1, z_2) = (e^{2\pi i \alpha} z_1, e^{2\pi i \beta} z_2)$.

Proof. We take $\alpha, \beta, \psi_1, \psi_2$ like in Lemma 4.4. By Lemma 4.5 is sufficient to show that T_{φ} is mixing in the set of trigonometric polynomials given by

$$P(z_1, z_2, \omega) = \sum_{k_1 = -K_1}^{K_1} \sum_{k_2 = -K_2}^{K_2} \sum_{l = -L}^{L} a_{k_1, k_2, l} z_1^{k_1} z_2^{k_2} \omega^l$$

where $a_{k_1,k_2,l} \in \mathbb{C}$.

$$\begin{split} |(U_{T_{\varphi}}^{m}P,P)| &= \\ |\int_{\mathbb{T}^{3}} \sum_{k_{1},k_{2},l} a_{k_{1},k_{2},l} e^{2\pi i (\alpha k_{1}+\beta k_{2})} z_{1}^{k_{1}} z_{2}^{k_{2}} (\varphi^{(m)}(z_{1},z_{2}))^{l} \omega^{l} \sum_{k_{1}',k_{2}',l'} \bar{a}_{k_{1}',k_{2}',l'} z_{1}^{-k_{1}'} z_{2}^{-k_{2}'} \omega^{-l'} dz_{1} dz_{2} d\omega| = \\ |\sum_{k_{1},k_{2},k_{1}',k_{2}',l} a_{k_{1},k_{2},l} \bar{a}_{k_{1}',k_{2}',l'} e^{2\pi i (\alpha k_{1}+\beta k_{2})} \int_{\mathbb{T}^{2}} z_{1}^{k_{1}-k_{1}'} z_{2}^{k_{2}-k_{2}'} (\varphi^{(m)}(z_{1},z_{2}))^{l} dz_{1} dz_{2}| \leq \\ \sum_{k_{1},k_{2},k_{1}',k_{2}',l} |a_{k_{1},k_{2},l} \bar{a}_{k_{1}',k_{2}',l'}|| \int_{I^{2}} e^{2\pi i [l(\psi_{1}^{(m)}(x)+\psi_{2}^{(m)}(y))+(k_{1}-k_{1}')x+(k_{2}-k_{2}')y]} dx dy|. \end{split}$$

Consequently $\lim_{|m|\to\infty} |(U^m_{T_{\varphi}}P, P)| = 0$ and the proof is complete.

References

- [1] G.H. Choe, Spectral types of skewed irrational rotations, preprint.
- [2] I.P. Cornfeld, S.W. Fomin, J.G. Sinai, *Ergodic Theory*, Springer-Verlag, Berlin, 1982.
- [3] H. Furstenberg, Strict ergodicity and transformations on the torus, Amer. J. Math. 83 (1961), 573-601.
- [4] P. Gabriel, M. Lemańczyk, P. Liardet, Ensemble d'invariants pour les produits croisés de Anzai, Mémoire SMF no. 47, tom 119(3), 1991.
- [5] H. Helson, Cocycles on the circle, J. Operator Th. 16 (1986), 189-199.
- [6] M. Herman, Sur la conjugaison difféomorphismes du cercle ka des rotation, Publ. Mat. IHES 49 (1979), 5-234.
- [7] E. W. Hobson, The Theory of Functions of a Real Variable, vol 1, Cambridge Univ. Press, 1950.
- [8] A. Iwanik, M. Lemańczyk, D. Rudolph, Absolutely continuous cocycles over irrational rotations, Isr. J. Math. 83 (1993), 73-95.
- [9] A.W. Kočergin, On the absence of mixing in special flows over the rotation of a circle and in flows on two dimensional torus, Dokl. Akad. Nauk SSSR 205(3) (1972), 515-518.

- [10] L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences, John Wiley & Sons, New York, 1974.
- [11] A.G. Kushnirenko, Spectral properties of some dynamical systems with polynomial divergence of orbits, Moscow Univ. Math. Bull. 29 no.1 (1974), 82-87.
- [12] S. Lojasiewicz, An Introduction to Theory of Real Functions, John Wiley & Sons, Chichester, 1988.
- [13] W. Parry, *Topics in Ergodic Theory*, Cambridge Univ. Press., Cambridge, 1981.

Krzysztof Frączek, Department of Mathematics and Computer Science, Nicholas Copernicus University, ul. Chopina $12/18,\,87\text{-}100$ Toruń, Poland fraczek@mat.uni.torun.pl