
Ergod. Th. & Dynam. Sys. (2003), , 1�14
Printed in the United Kingdom c© 2003 Cambridge University Press

A class of special �ows over irrational

rotations which is disjoint from mixing �ows

K. Fr¡czek† and M. Lema«czyk †
† Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,

ul. Chopina 12/18, 87-100 Toru«, Poland
(e-mail: fraczek@mat.uni.torun.pl, mlem@mat.uni.torun.pl)

(Received )

Abstract. It is proved that special �ows over irrational rotations and under
functions whose Fourier coe�cients are of order O(1/|n|) are disjoint in the sense of
Furstenberg from all mixing �ows. This is an essential strengthening of a classical
result by Ko£ergin on the absence of mixing of special �ows built over irrational
rotations and under bounded variation roof functions.

1. Introduction
Assume that T is an ergodic automorphism of a probability standard space (X,B, µ)
and let f be a positive function on X of integral 1. Denote by T f the special
�ow built from T and f . In 1972, it was shown by Ko£ergin in [13], that special
�ows built over an irrational rotation Tx = x + α and under the roof function f

of bounded variation are not mixing. On the other hand a further weakening of
regularity of f and some Diophantine restrictions on α may lead to mixing �ows,
see [4], [12], [14], [15] (most of special �ows in these papers turn out to be special
representations of some smooth �ows on surfaces). The absence of mixing when
f is of bounded variation is caused by the Denjoy�Koksma inequality, it makes
the limit distributions of the set {(f (qn)

0 )∗µ} be concentrated on a �nite interval
(here {qn} stands for the sequence of denominators of α and f0 = f −

∫
X

f dµ).
Ko£ergin's result on the absence of mixing is then generalized in [18] to the case of
f whose Fourier coe�cients are of order O(1/|n|), while in a recent paper [16] by
Ko£ergin, it has been shown that a further weakening does not seem to be possible.
Namely, if Ψ : (0, δ) → R is a positive concave function satisfying Ψ(0+) = 0 and
Ψ′(0+) = +∞ then there exists a positive function f whose modulus of continuity
is of order Ψ and whose Fourier coe�cients are of order O(Ψ(1/|n|)) such that for
some irrational rotation T , the special �ow T f is mixing. On the other hand, in
† Research partly supported by KBN grant 5 P03A 027 21(2001).
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2 K. Fr¡czek, M. Lema«czyk

[18] it is shown that whenever T is an ergodic rotation and T f is mixing then in
the space P(R) of Borel probability measures on R the sequence of distributions

{(f (n)
0 )∗µ} converges to the Dirac measure at ∞. (1)

Recently, this latter result has been improved by K. Schmidt in [25]: (1) holds in
an arbitrary mixing special �ow over an ergodic T . The case {(f (qn)

0 )∗µ} tends to
a measure concentrated on a �nite interval (where {qn} is a rigidity time for T )
excludes mixing and moreover it may be considered as an opposite condition to (1).
It turns out that not only mixing is excluded in such a case but a much stronger
result holds.
Theorem 1.1. If T is ergodic, {qn} its rigidity time, f ∈ L2(X, µ) is a positive
function for which there exists c > 0 such that f (k)(x) ≥ ck a.s. for all k ∈ N large
enough, and the sequence {f (qn)

0 } is bounded in L2(X, µ) then the special �ow T f

is disjoint in the sense of Furstenberg from all mixing �ows.
The main ingredient of the proof of Theorem 1.1 is to show that whenever

{(f (qn)
0 )∗µ} converges to a distribution P (which is concentrated on R) then the

sequence of the operators {(T f )qn
} on L2(Xf , µf ) converges (in the weak operator

topology) to the operator
∫

R(T f )−t dP (t) (see Proposition 4.1 below). Suppose now
that S = {St}t∈R is a mixing �ow on (Y, C, ν) and ρ is a joining between T f and
S. Thus ∫

Xf×Y

g
(
(T f )tx

)
h(y) dρ(x, y) =

∫
Xf×Y

g(x)h(S−ty) dρ(x, y)

for each g ∈ L2(X,B, µ) and h ∈ L2(Y, C, ν). Since S is mixing and (T f )qn
→∫

R(T f )−s dP (s), by passing to the limits along the sequence {qn}, we obtain∫
R

(∫
Xf×Y

g
(
(T f )−sx

)
h(y) dρ(x, y)

)
dP (s) =

∫
Xf×Y

g(x)h(y) dµf (x) dν(y).

Since the product measure µf ⊗ ν is ergodic, for P -a.a. s ∈ R and each g ∈
L2(X,B, µ) and h ∈ L2(Y, C, ν) we have∫

Xf×Y

g
(
(T f )−sx

)
h(y) dρ(x, y) =

∫
Xf×Y

g(x)h(y) dµf (x) dν(y).

By taking s ∈ R for which the above property holds and noticing that the product
measure is invariant under (T f )s × IdY we conclude that ρ = µf ⊗ ν.

In particular, Ko£ergin's �ows under roof functions, which are uniformly
separated from zero on the circle and whose Fourier coe�cients are of order O(1/|n|)
are disjoint from mixing �ows. If additionally in Theorem 1.1, f ∈ L∞ and the
sequence {‖f (qn)

0 ‖∞} is bounded, the integral form of the limit of {(T f )qn} allows
us to prove more: T f is even spectrally disjoint from an arbitrary mixing �ow. In
particular, Ko£ergin's �ows with roof function of bounded variation are spectrally
disjoint from all mixing �ows. If in Theorem 1.1, P is not a Dirac measure, then
the integral operator is decomposable (that is, it corresponds to a non�ergodic
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A class of special �ows over irrational rotations 3

self�joining of T f ) and this is quite opposite phenomenon to what is observed in
Gaussian systems (see [19] and Section 3 below). In fact, we prove that once P

is not a Dirac measure, our special �ow is disjoint from all Gaussian �ows. In
particular, cocycles considered in [6], [20] and [22] lead to special �ows which are
disjoint from all Gaussian �ows, whence we obtain some classes of smooth �ows on
the 2�torus (see [3] and [5] for further details) which are disjoint from all Gaussian
�ows. For other disjointness results from Gaussian systems see [10], [27].

2. Preliminaries
This section is mainly to �x notation. Moreover, we will brie�y put together
necessary de�nitions and some known facts about �ows that will be needed in
what follows.

2.1. Joinings between �ows The following basic information about joinings
between �ows can be either found or is an easy adaptation of the case of Z�actions
in [8], [11], [19], [24], [28].

Assume that S = {St}t∈R is a �ow on (X,B, µ). By a �ow we mean always a
so called measurable �ow, i.e. the map R 3 t → 〈f ◦ St, g〉 ∈ R is continuous for
each f, g ∈ L2(X,B, µ). Assume moreover that S is ergodic and let T = {Tt}t∈R be
another ergodic �ow de�ned on (Y, C, ν). By a joining between S and T we mean
any probability {St×Tt}t∈R�invariant measure on (X×Y,B⊗C) whose projections
on X and Y are equal to µ and ν respectively. The set of joinings between S and
T is denoted by J(S, T ). The subset of ergodic joinings is denoted by Je(S, T )
and we write J(S) and Je(S) instead of J(S,S) and Je(S,S) respectively. Ergodic
joinings are exactly extremal points in the simplex J(S, T ). Given ρ ∈ J(S, T )
de�ne an operator Φρ : L2(X,B, µ) → L2(Y, C, ν) by requiring that∫

X×Y

f(x)g(y) dρ(x, y) =
∫

Y

Φρ(f)(y)g(y) dν(y)

for each f ∈ L2(X,B, µ) and g ∈ L2(Y, C, ν). This operator has the following
Markov property

Φρ1 = Φ∗
ρ1 = 1 and Φρf ≥ 0 whenever f ≥ 0. (2)

Moreover,
Φρ ◦ St = Tt ◦ Φρ for each t ∈ R. (3)

In fact, there is a one-to-one correspondence between the set of Markov operators
Φ : L2(X,B, µ) → L2(Y, C, ν) satisfying (3) and the set J(S, T ), where the joining
ρ given by Φ is determined by the formula

ρ(A×B) =
∫

B

Φ(χA) dν

for each A ∈ B and B ∈ C. Markov operators corresponding to ergodic joinings
will be called indecomposable. Notice that the product measure corresponds to the
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Markov operator denoted by
∫
, where

∫
(f) equals the constant function

∫
X

f dµ.
Assume now that U = {Ut}t∈R is another ergodic �ow on (Z,D, η). If ρ ∈ J(S, T )
and κ ∈ J(T ,U), then Φκ◦Φρ is a Markov operator from L2(X,B, µ) → L2(Z,D, η)
and it satis�es (3) (with {Tt}t∈R replaced by {Ut}t∈R). It corresponds hence to a
unique joining of S and U which will be denoted by κ ◦ ρ. Even if κ and ρ are
ergodic, κ ◦ ρ need not be ergodic. If ρ =

∫
Y

ρy dν(y) and κ =
∫

Y
κy dν(y) are

disintegrations over Y of ρ and κ respectively then κ ◦ ρ is the projection on X ×Z

of the relative product ρ×Y κ which is de�ned by

ρ×Y κ =
∫

Y

ρy ⊗ κy dν(y).

If in the above construction S = T = U , κ = ρ and the above relative product is
ergodic then the �ow ({St×St}t∈R, ρ) is called relatively weakly mixing over the �rst
coordinate X. On J(S) we consider the weak operator topology. In this topology
J(S) becomes a metrizable compact semitopological semigroup in which ρn → ρ

i� 〈Φρn
f, g〉 → 〈Φρf, g〉 for each f, g ∈ L2(X,B, µ). For each t ∈ R, St can be

considered as a Markov operator on L2(X,B, µ). The corresponding self�joining is
denoted by µSt

and it is exactly the joining concentrated on the graph of St.
Following [7], S and T are called disjoint if J(S, T ) = {µ⊗ν}. Equivalently, the

operator
∫
is the only Markov operator that intertwines St and Tt (for each t ∈ R).

Each �ow S = {St}t∈R determines a unitary action, still denoted by S, of R on
L2(X,B, µ) by the formula

f 7→ f ◦ St.

The maximal spectral type of S on L2
0(X,B, µ) we denote by τS , while spectral

measure of f ∈ L2(X,B, µ) is denoted by τf,S or τf if S is understood. Classically,
if τS and τT are mutually singular (i.e. S and T are spectrally disjoint), then S
and T are disjoint.

Recall also that {qn} ⊂ R is said to be a rigidity sequence for the �ow S if
Sqn

→Id.

2.2. Special �ows Let T be an ergodic automorphism of a standard probability
space (X,B, µ). Denote by λ Lebesgue measure on R. Assume that f : X → R
is a measurable positive function such that

∫
X

f dµ = 1. The special �ow
T f = {(T f )t}t∈R built from T and f is de�ned on the space Xf = {(x, t) ∈
X×R : 0 ≤ t < f(x)} (considered with Bf the restriction of the product σ�algebra
and µf the restriction of the product measure µ ⊗ λ of X × R). Under the action
of the special �ow each point in Xf moves vertically at unit speed, and we identify
the point (x, f(x)) with (Tx, 0) (see e.g. [3], Chapter 11). Given m ∈ Z we put

f (m)(x) =


f(x) + f(Tx) + . . . + f(Tm−1x) if m > 0

0 if m = 0
−

(
f(Tmx) + . . . + f(T−1x)

)
if m < 0.

The action of T f can be well understood when we consider the following actions
on the space (X×R, µ⊗λ). First, let S−f : (X×R, µ⊗λ) → (X×R, µ⊗λ) denote
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A class of special �ows over irrational rotations 5

the skew product given by

S−f (x, r) = (Tx, r − f(x)).

Notice that (S−f )k(x, r) = (T kx, r − f (k)(x)) for each k ∈ Z. Let us consider the
quotient space Γf = X × R/ ∼, where the relation ∼ is de�ned by (x, r) ∼ (x′, r′)
i� (x, r) = (S−f )k(x′, r′) for an integer k. Since f (k)(x) → +∞, µ-a.e., with no loss
of generality we have that the set

{(x, r) ∈ X × R : 0 ≤ r < f(x)}

intersects equivalence class of ∼ in exactly one point (and hence can be identi�ed
with Γf ). Let σ = {σt}t∈R stand for the �ow on (X × R, µ⊗ λ) given by

σt(x, r) = (x, r + t).

Notice that σt commutes with S−f . Then the special �ow T f can be seen as the
quotient �ow of the action σ by the relation ∼. It follows that given (x, r) ∈ Xf

and t ∈ R there exists a unique k ∈ Z such that

(T f )t(x, r) = (S−f )k ◦ σt(x, r).

Let us recall that the Ambrose�Kakutani theorem says that under some natural
conditions, each �ow has a representation as a special �ow.

2.3. Gaussian �ows A �ow S = {St}t∈R on (X,B, µ) is called a Gaussian �ow if
there exists an in�nite dimensional real space H ⊂ L2

0(X,B, µ) which generates B,
which is invariant under all St, t ∈ R, and which all non�zero elements are Gaussian
variables. A classical result (see e.g. [3], Chapter 8 for the case of Z-actions) is
that a Gaussian �ow S is ergodic i� the spectral type of S on the Gaussian space
H is continuous. Then the whole �ow is weakly mixing. For a new joining theory
of Gaussian systems we refer the reader to [19]. That paper is written only for
Z�actions, but the extension to R�actions is straightforward.

3. Flows with an ergodic weak closure property
An ergodic �ow S = {St : t ∈ R} on a standard probability space (X,B, µ) is said
to have the ELF† property if S := {St : t ∈ R} ⊂ Je(S). Shortly, we will speak
about ELF �ows.
Remark. If S is mixing then S = {St}t∈R∪{

∫
}, so it is an ELF �ow. It is also easy

to see that all ergodic �ows with discrete spectrum have the ELF property. Below,
we will show that Gaussian �ows have the ELF property. More examples of ELF
�ows will be published elsewhere.

The following result can already be deduced from a description of so called
Gaussian joinings from [19], but we will give a direct proof.
† The name ELF has been proposed to us by F. Parreau, it comes from the French abbreviation
of ergodicité des limites faibles.
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6 K. Fr¡czek, M. Lema«czyk

Proposition 3.1. Each ergodic Gaussian �ow S is an ELF �ow.
Proof. Denote by H ⊂ L2

0(X,B, µ) the Gaussian space for S. Assume that µStn
→ ρ

in J(S). Take f, g ∈ H. Since f ◦ Stn
+ g ∈ H, for each r ∈ R we have∫

X
e2πir(f(Stn x)+g(x)) dµ(x) = e−2π2r2‖f◦Stn+g‖22 and therefore∫

X×X

e2πir(f(x)+g(y)) dρ(x, y) = lim
n→∞

∫
X

e2πir(f(Stn y)+g(y)) dµ(y) (4)

= e−2π2r2(‖Φρf+g‖22+‖f‖
2
2−‖Φρf‖22). (5)

It follows that f(x) + g(y) ∈ L2(X × X, ρ) is a Gaussian variable. Therefore the
space F = {f(x) + g(y) : f, g ∈ H} is a Gaussian space for the �ow ({St×St}t∈R, ρ)
and since the spectral type on F is equal to the spectral type of S on H, ρ is ergodic.
2

Recall that if a �ow is ergodic then all but a countable subset of its time
automorphisms are ergodic Z�actions (e.g. [3], p. 326).

Assume now that S is an ELF �ow. Hence S is a (compact) semitopological
semigroup. By the main result of [2] it follows that for every ρ such that Φρ ∈ S
the �ow ({St × St}t∈R, ρ) is relatively weakly mixing over its marginals. Indeed,
since ρ and ρ ◦ ρ are ergodic, for some t0, ρ and ρ ◦ ρ are ergodic for St0 × St0 . By
[2], the relative product ρ×X ρ is ergodic for (St0 × St0)× (St0 × St0), so the more
it is ergodic for the �ow {(St × St)× (St × St)}t∈R.
Lemma 3.1. Assume that S = {St}t∈R is an ELF �ow and let ρ ∈ S. Let
T = {Tt}t∈R be an ergodic �ow on (Y, C, ν). Assume that λ is an ergodic joining
of T and S. Then ρ ◦ λ is still ergodic.
Proof. We have: (X1 × X2, ρ) (where X1 = X2 = X) is relatively weakly mixing
over X1 and (Y × X1, λ) is relatively ergodic over X1, hence the relative product
λ ×X1 ρ is still relatively ergodic over X1 (see [28]). It is then ergodic and the
projection on Y ×X2 so is which means that ρ ◦ λ is indeed ergodic. 2

We will now show that some �ows are disjoint from ELF �ows. Let J : R →
J(T ,S) be a continuous function. Given a Borel probability measure P on R,
f ∈ L2(Y, C, ν) and g ∈ L2(X,B, µ) consider

〈〈f, g〉〉 =
∫

R
〈J(s)f, g〉 dP (s).

In this way we obtain a bilinear map 〈〈 · , · 〉〉 : L2(Y, C, ν) × L2(X,B, µ) → C for
which |〈〈f, g〉〉| ≤ ‖f‖2‖g‖2. Hence there exists a unique linear bounded operator
denoted by

∫
R J(s) dP (s) for which

〈
(∫

R
J(s) dP (s)

)
f, g〉 =

∫
R
〈f ◦ J(s), g〉 dP (s) (6)

for every f ∈ L2(Y, C, ν) and g ∈ L2(X,B, µ). Notice that
∫

R J(s) dP (s) ∈ J(T ,S).
Now suppose that J is a Markov operator, J ∈ J(T ,S). Then the map

R 3 t 7→ J ◦ Tt ∈ J(T ,S) (7)
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A class of special �ows over irrational rotations 7

is continuous. Assume additionally that J 6=
∫
. If J ◦ Tr = J then T−r is not

ergodic and it follows that the map (7) is at most countable to one. Therefore the
set {J ◦ Tt : t ∈ R} is a Borel subset in J(T ,S) (e.g. [26], Th. 4.12.4). If J is
additionally indecomposable, then the map (7) takes values in Je(T ,S). If by P ′

we denote the image of P via (7) then∫
R

J ◦ Ts dP (s) =
∫

Je(T ,S)

Φ dP ′(Φ),

in other words the latter integral represents the ergodic decomposition of the left-
hand side operator.
Proposition 3.2. Suppose that T = {Tt}t∈R is an ergodic �ow on (Y, C, ν) such
that for a sequence {tn} ⊂ R,

Ttn
→

∫
R

Ts dP (s),

where P is a Borel probability measure on R. Then
(i) T is disjoint from all mixing �ows;
(ii) T is disjoint from all weakly mixing ELF �ows whenever P is not a Dirac
measure.
Proof. We �rst prove (ii). Assume that S is an ELF �ow on (X,B, µ). Let
J : L2(Y, C, ν) → L2(X,B, µ) be a Markov operator corresponding to an ergodic
joining of T and S. We then have J ◦ Tt = St ◦ J and by passing to a subsequence
of {tn} if necessary, we have

J ◦
∫

R
Ts dP (s) = Φρ ◦ J,

where ρ = limn→∞ µStn
. In view of Lemma 3.1, Φρ ◦ J remains indecomposable.

Now J ◦
∫

R Ts dP (s) =
∫

R J ◦ Ts dP (s) by (6). It follows that
∫

R J ◦ Ts dP (s) is
indecomposable which is possible i� J ◦ Ts = const. P -a.e. If P is not a Dirac
measure we must have J = J ◦Tr for some r 6= 0. Hence T−r ◦J∗ = J∗. We obtain
that Im J∗ is contained in L2(I), where I stands for the σ�algebra of T−r�invariant
sets. Clearly, I is a factor of T . However, T−r acts on I as the identity map, so
the unitary action on L2(I) associated to T on I is a unitary representation of the
circle. It follows that the �ow T restricted to I has discrete spectrum. But J∗

settles a joining between S and T restricted to I. Since S is weakly mixing, J∗

must be trivial and the result follows.
(i) Assume now that S is mixing. By repeating the beginning of the proof of (ii)
we obtain that J ◦

∫
R Ts dP (s) =

∫
. Therefore, J ◦ Ts =

∫
for P -a.a. s ∈ R and we

must have J =
∫
. 2

4. Special �ows which have integral operators in the weak closure of their times
Assume that T : (X,B, µ) → (X,B, µ) is an ergodic automorphism. Let {qn} be
a rigidity time for T . Suppose that f ∈ L2(X, µ) is a positive function such that
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8 K. Fr¡czek, M. Lema«czyk∫
X

f(x) dµ(x) = 1 and
sup

n
‖f (qn)

0 ‖L2 =: C < +∞. (8)

By passing to a further subsequence if necessary we can assume that

(f (qn)
0 )∗µ → P

weakly in P(R) the set of Borel probability measures on R. Let C(R) denote the set
of all continuous functions ϕ : R → R such that limx→−∞ ϕ(x) = limx→+∞ ϕ(x) ∈
R.
Lemma 4.1. For every ϕ ∈ C(R), g ∈ L1(X,B, µ) and any measurable function
h : X → R we have ∫

X

ϕ
(
f

(qn)
0 (x) + h(x)

)
g(x) dµ(x) (9)

→
∫

X

∫
R

ϕ (t + h(x)) g(x) dP (t) dµ(x). (10)

Proof. We �rst recall that∫
X

(
ϕ ◦ f

(qn)
0

)
· g dµ →

∫
R

ϕ dP

∫
X

g dµ

whenever ϕ ∈ C(R) and g ∈ L1(X,B, µ) (see the proof of Proposition 8 in [20]).
This gives (9) in the case where h takes only �nitely many values. Indeed, suppose
that h =

∑k
j=1 hj · χAj . Then∫

X

ϕ
(
f

(qn)
0 (x) + h(x)

)
g(x) dµ(x)

=
k∑

j=1

∫
X

ϕ
(
f

(qn)
0 (x) + hj

)
(g · χAj )(x) dµ(x)

→
k∑

j=1

∫
R

ϕ(t + hj) dP (t)
∫

X

(g · χAj
)(x) dµ(x)

=
∫

X

∫
R

ϕ (t + h(x)) g(x) dP (t) dµ(x).

Therefore it su�ces to show that for every ε > 0 we can �nd a measurable function
hε : R → R taking �nitely many values such that for every natural n |

∫
X

ϕ
(
f

(qn)
0 (x) + h(x)

)
g(x) dµ(x)

−
∫

X
ϕ

(
f

(qn)
0 (x) + hε(x)

)
g(x) dµ(x)| < ε

(11)

and {
|
∫

X

∫
R ϕ(t + h(x))g(x) dP (t) dµ(x)

−
∫

X

∫
R ϕ(t + hε(x))g(x) dP (t) dµ(x)| < ε.

(12)

Fix ε > 0. Since ϕ is uniformly continuous we can �nd δ > 0 such that |s− t| < δ

implies |ϕ(s) − ϕ(t)| < ε/(2‖g‖L1). Let η be a positive real number such that
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A class of special �ows over irrational rotations 9∫
A
|g(x)| dµ(x) < ε/(4‖ϕ‖∞), whenever µ(A) < η. Finally we can choose a

measurable function hε : R → R which takes �nitely many values and such that

µ({x ∈ X : |hε(x)− h(x)| ≥ δ}) < η.

Then

|
∫

X

ϕ
(
f

(qn)
0 (x) + h(x)

)
g(x) dµ(x)−

∫
X

ϕ
(
f

(qn)
0 (x) + hε(x)

)
g(x) dµ(x)|

≤ 2
∫
{x∈X:|hε(x)−h(x)|≥δ}

‖ϕ‖∞|g(x)| dµ(x)

+
∫
{x∈X:|hε(x)−h(x)|<δ}

ε

2‖g‖L1
|g(x)| dµ(x) < ε

for every natural n. Similarly, we can show (12). 2

We will still need some more auxiliary facts about special �ows.
Lemma 4.2. For all measurable A,B ⊂ Xf we have

µf
(
(T f )tA ∩B

)
=

∑
k∈Z

µ⊗ λ
(
(S−f )kσtA ∩B

)
.

Proof. As we have already noticed, given t ∈ R and (x, r) ∈ Xf , (T f )t(x, r) =
(S−f )kσt(x, r) for a unique k ∈ Z. Thus given t ∈ R, the space Xf can be
partitioned into countably many subsets Xf

k (k ∈ Z) where (T f )t on Xf
k acts

as (S−f )kσt. Moreover, since (T f )t is an automorphism, the images (S−f )kσt(X
f
k )

are pairwise disjoint. The result follows from this observation. 2

Lemma 4.3. Suppose that A,B ⊂ X × R are measurable rectangles of the form
A = A1 ×A2, B = B1 ×B2. Then

µ⊗ λ
(
(S−f )kA ∩B

)
=

∫
T kA1∩B1

λ
(
(A2 + f (−k)(x)) ∩B2

)
dµ(x).

Proof. We have (x, t) ∈ (S−f )k(A1 ×A2)∩ (B1 ×B2) i� (x, t) = (T ky, r− f (k)(y)),
where (y, r) ∈ A1 × A2 and (x, t) ∈ B1 × B2. Thus (x, t) ∈ (S−f )k(A1 ×
A2) ∩ (B1 × B2) i� x ∈ T kA1 ∩ B1 and t ∈ (A2 − f (k)(T−kx)) ∩ B2. Since
f (k)(T−kx) = −f (−k)(x), the result follows. 2

Suppose that f ∈ L2(X, µ) is a positive function for which (8) holds and
moreover, there exist c > 0 and k0 ∈ N such that f (k)(x) ≥ ck for a.e. x ∈ X,
k ≥ k0.
Lemma 4.4. For every pair of bounded sets A2, B2 ⊂ R there exists a sequence
{ak} of positive numbers such that
(i) ∑

k∈Z ak < +∞
and
(ii)

∫
X

λ
(
(A2 − f

(qn)
0 (x) + f (k)(x)) ∩B2

)
dµ(x) ≤ ak for each n ∈ N and each

k ∈ Z.
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Proof. Set s := diam(A2 ∪ B2). Let k be an integer such that |k| > k1 :=
max(k0, s/c). Then∫

X

λ
(
(A2 − f

(qn)
0 (x) + f (k)(x)) ∩B2

)
dµ(x)

=
∫
{x∈X:|f(k)(x)−f

(qn)
0 (x)|≤s}

λ
(
(A2 − f

(qn)
0 (x) + f (k)(x)) ∩B2

)
dµ(x)

≤ s µ
(
{x ∈ X : |f (k)(x)− f

(qn)
0 (x)| ≤ s}

)
≤ s µ

(
{x ∈ X : |f (qn)

0 (x)| ≥ c|k| − s}
)

≤ sC2

(c|k| − s)2

by Chebyshev's inequality. Putting ak := sC2/(c|k| − s)2 whenever |k| > k1 and
ak := s otherwise we obtain our claim. 2

Here is the main result of this section.
Proposition 4.1. Let {qn} be a rigidity sequence for T . Suppose that f ∈ L2(X, µ)
is a positive function with

∫
X

f(x) dµ(x) = 1. Moreover, suppose that the sequence
{f (qn)

0 } is bounded in L2(X, µ), (f (qn)
0 )∗µ → P weakly in P(R) and there exists

c > 0 such that f (k)(x) ≥ ck for a.a. x ∈ X and for all k ∈ N large enough. Then

(T f )qn →
∫

R
(T f )−t dP (t).

Proof. First notice that all we need to show is that

µf
(
(T f )qn

A ∩B
)
→

∫
R

µf
(
(T f )−tA ∩B

)
dP (t)

for any pair of measurable rectangles A,B ⊂ Xf of the form A = A1 × A2,
B = B1 ×B2 such that A2, B2 ⊂ R are bounded. By Lemma 4.2,

µf
(
(T f )qnA ∩B

)
=

∑
k∈Z

µ⊗ λ
(
(S−f )k(S−f )qnσqnA ∩B

)
.

Using Lemma 4.3 we obtain
µf

(
(T f )qn

A ∩B
)

=
∑
k∈Z

∫
T qn+kA1∩B1

λ
(
(A2 + qn + f (−qn−k)(x)) ∩B2

)
dµ(x)

=
∑
k∈Z

∫
T qn+kA1∩B1

λ
(
(A2 − f

(qn)
0 (T−qnx) + f (−k)(T−qnx)) ∩B2

)
dµ(x)

=
∑
k∈Z

∫
T kA1∩T−qnB1

λ
(
(A2 − f

(qn)
0 (x) + f (−k)(x)) ∩B2

)
dµ(x).

By Lemma 4.4 and the rigidity of T along {qn} we have

µf
(
(T f )qnA ∩B

)
−

∑
k∈Z

∫
T kA1∩B1

λ
(
(A2 − f

(qn)
0 (x) + f (−k)(x)) ∩B2

)
dµ(x) → 0.
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Furthermore, by Lemma 4.1, for each k ∈ Z,∫
T kA1∩B1

λ
(
(A2 − f

(qn)
0 (x) + f (−k)(x)) ∩B2

)
dµ(x)

→
∫

T kA1∩B1

∫
R

λ
(
(A2 − t + f (−k)(x)) ∩B2

)
dP (t) dµ(x).

Using again Lemma 4.4 and then Lemmas 4.3 and 4.2, we conclude that

µf
(
(T f )qn

A ∩B
)

→
∫

R

∑
k∈Z

∫
T kA1∩B1

λ
(
(A2 − t + f (−k)(x)) ∩B2

)
dµ(x) dP (t)

=
∫

R

∑
k∈Z

µ⊗ λ
(
(S−f )kσ−tA ∩B

)
dP (t)

=
∫

R
µf

(
(T f )−tA ∩B

)
dP (t).

The proof is now complete. 2

Remark. The assertion of Proposition 4.1 also holds for the sequence {c · qn}n≥1 if∫
X

f dµ = c.

5. Proof of Theorem 1.1 and other consequences
Proof of Theorem 1.1. The proof follows directly from Proposition 3.2 (i) and
Proposition 4.1. 2

We will now derive some other corollaries of Proposition 3.2.
In [1] it has been proved that the sequence {‖f (qn)

0 ‖L2} is bounded provided that
T is an irrational rotation and f ∈ L2(T) is a function for which f̂(n) = O(1/|n|)
(n ∈ Z). We hence obtain the following.
Corollary 5.1. Assume that Tx = x + α is an irrational rotation and f̂(n) =
O(1/|n|). Assume moreover that f(x) ≥ c > 0 a.e. Then the special �ow T f is
disjoint from all mixing �ows. 2

It turns out that the integral form of the limit joining in Proposition 4.1 allows
us to strengthen the assertion of Theorem 1.1 in some special cases.
Corollary 5.2. Under the assumptions of Theorem 1.1, assume additionally that
the sequence {f (qn)

0 } is bounded in L∞. Then the special �ow T f is spectrally
disjoint from all mixing �ows. In particular, all Ko£ergin's �ows with the roof
function of bounded variation are spectrally disjoint from all mixing �ows.
Proof. Take g ∈ L2

0(X,B, µ) such that τg is a Rajchman measure (i.e. the Fourier
transform of τg vanishes at ∞). We then have

0 = lim
n→∞

〈g ◦ (T f )qn
, g〉 =

∫
R
〈g ◦ (T f )−s, g〉 dP (s).
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Therefore, ∫
R

P̂ (u) dτg(u) =
∫

R

(∫
R

e−isu dτg(u)
)

dP (s) = 0.

By taking any h in the cyclic space of g and repeating the above reasoning we
obtain that

∫
R P̂ (u) dν = 0 for every �nite measure ν absolutely continuous with

respect to τg. Therefore, P̂ (·) = 0, τg-a.e. On the other hand the measure P has
a compact topological support, because the sequence {f (qn)

0 } is bounded in L∞.
Thus its Fourier transform extends to an analytic function on the whole complex
plane. Since the measure τg is continuous we deduce that τg must be zero measure,
so g is constant equal to zero and the proof of the �rst part is complete.

If we assume that Tx = x + α is an irrational rotation and f is of bounded
variation then f is Riemann integrable and in particular the ergodic theorem in
L∞ holds for f . Therefore all assumptions of the general case are satis�ed and the
result follows. 2

As a direct consequence of Proposition 3.2 (ii) we obtain the following.

Corollary 5.3. Under the assumptions of Proposition 4.1, assume additionally
that the limit measure P is not a Dirac measure. Then the special �ow T f is disjoint
from all ELF �ows. In particular such �ows are disjoint from all Gaussian �ows.
2

Let us consider now special �ows over an irrational rotation Tx = x + α. As the
analysis in Section 4 of [20] shows, for each piecewise absolutely continuous cocycle
whose sum of jumps does not vanish, i.e.

∫
T Df(x)dx 6= 0, the limit measures

(along the sequence of denominators of α) P are absolutely continuous. As the
proof of Theorem 3 in [20] shows, even in case of su�ciently small perturbations
(in the variation norm) of the above functions, the limit measures are not discrete.
Therefore, such examples give rise to special �ows which are disjoint from all
Gaussian �ows.

If the function f is absolutely continuous, then {(f (qn)
0 )∗µ} goes to Dirac measure

at zero. However, for some functions f ∈ Ck−1(T) \Ck(T) and α's satisfying some
Diophantine condition the limit measures for the sequence {(f (qk+1

n )
0 )∗µ} (for k ≥ 1)

are not Dirac measures. More precisely, suppose that α ∈ T is an irrational number
such that

lim inf
n→∞

qk+1
n ‖qnα‖ = 0.

Let us denote by Ck+PAC
1,+ (T) the space of all (k−1)�di�erentiable positive functions

f : T → R of integral 1 such that Dk−1f is absolutely continuous and Dkf is
piecewise absolutely continuous. By passing to a further subsequence if necessary we
can assume that {qk+1

n } is a rigidity sequence for T (precisely that qk+1
n ‖qnα‖ → 0)

and the sequence {f (qk+1
n )

0 } is uniformly bounded (see Lemma 2.2.6 in [22]). Let
us consider the following two subsets of Ck+PAC

1,+ (T). By C1 denote the set of all
Ck+PAC

1,+ �functions f such that the sum of jumps of Dkf does not vanish. By
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C2 denote the set of all Ck+PAC
1,+ �functions f for which the sum of jumps of Dkf

vanishes and such that

lim
n→∞

{qnβi} = γi for i = 1, . . . , d

and γi, i = 1, . . . , d are pairwise distinct, where βi, i = 1, . . . , d are all discontinuities
of Dkf . Suppose that f ∈ C1 ∪ C2. Then there exist constants 0 < C < 1, M > 0
and there exists the collection of pairwise disjoint closed intervals {J (n)

j }qn−1
j=0 such

that for j = 0, ..., qn − 1 we have

|J (n)
j | ≥ C

qn
and x ∈ J

(n)
j ⇒ |Df

(qk+1
n )

0 (x)| ≥ Mqn

(see Lemma 2.2.9 in [22] and Corollary 3.2 in [6]). By the proof of Theorem 1.1 in
[6], it follows that

lim sup
n→∞

|
∫

T
e2πilf

(qk+1
n )

0 (x)dx| ≤ c < 1

for all l large enough. Now by the proof of Proposition 12 in [20], we conclude
that every limit measure of the sequence {(f (qk+1

n )
0 )∗µ} is not a Dirac measure.

Consequently, the functions from C1 ∪ C2 give rise to examples of some smooth
�ows on T2 (see [5]) which are disjoint from Gaussian �ows.

We conjecture however that all Ko£ergin's �ows with the roof function of
bounded variation are disjoint from all Gaussian �ows.
Remark. It follows from a general theory of loosely Bernoulli (LB) transformations
and �ows (see [21]), the result of de la Rue ([23]) on the existence of zero entropy
Gaussian systems which are LB, and the fact that each Gaussian automorphism is
embedable in a measurable �ow that for each irrational rotation Tx = x + α we
can �nd f ∈ L1(T) so that T f is a Gaussian �ow.
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