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Abstract. In this paper we study ergodic properties of the Poisson suspen-
sion (the ideal gas model) of the billiard flow (bt)t∈R on the plane with a
Λ-periodic pattern (Λ ⊂ R2 is a lattice) of polygonal scatterers. We prove
that if the billiard table is additionally rational then for a.e. direction θ ∈ S1

the Poisson suspension of the directional billiard flow (bθt )t∈R is weakly mix-
ing. This gives the weak mixing of the Poisson suspension of (bt)t∈R. We also
show that for a certain class of such rational billiards (including the periodic
version of the classical wind-tree model) the Poisson suspension of (bθt )t∈R is
not mixing for a.e. θ ∈ S1.

1. Introduction

In this paper we deal with billiard dynamical systems on the plane with a Λ-
periodic pattern (Λ ⊂ R2 is a lattice) of polygonal scatterers. We focus only on
a rational billiards, i.e. the angles between any pair of sides of the polygons (also
different polygons) are rational multiplicities of π. The most celebrated example
of such billiard table is the periodic version of the wind-tree model introduced by
P. and T. Ehrenfest in 1912 [10], in which the scatterers are Z2-translates of the
rectangle [0, a]× [0, b], where 0 < a, b < 1.

The billiard flow (bt)t∈R on a polygonal table T ⊂ R2 (the boundary of the table
consists of intervals) describes the unit speed free motion of a billiard ball, i.e. a
point mass, on the interior of T with elastic collision (angle of incidence equals to
the angle of reflection) from the boundary of T . The phase space T 1 of (bt)t∈R
consists of points (x, θ) ∈ T × S1 such that if x belongs to the boundary of T then
θ ∈ S1 is an inward direction. The billiard flow preserves the volume measure µ×λ,
where µ is the area measure on T and λ the Lebesgue measure on S1. For more
details on billiards see [24].

Suppose that T is the table of a Λ-periodic rational polygonal billiard. Then
the volume measure of T is infinite. Since the table is Λ-periodic, the set D ⊂ S1

of directions of all sides in T is finite. Denote by Γ the group of isometries of S1

generated by reflections through the axes with directions from D. Since the table
is rational, Γ is a finite dihedral group. Therefore the phase space T 1 splits into
the family T 1

θ = T × Γθ, θ ∈ S1/Γ of invariant subsets for (bt)t∈R. The restriction
of (bt)t∈R to T 1

θ is called the direction billiard flow in direction θ and is denoted by
(bθt )t∈R. The flow (bθt )t∈R preserves µθ the product of µ and the counting measure
of Γθ; this measure is also infinite. Using the standard unfolding process described
in [18] (see also [24]), we obtain a connected translation surface (MT , ωT ) such
that the directional linear flow (ϕT ,θt )t∈R on (MT , ωT ) is isomorphic to the flow
(bθt )t∈R for every θ ∈ S1. Moreover, (MT , ωT ) is a Z2-cover of a compact connected
translation surface.
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We are interested in ergodic properties of the directional flows (bθt )t∈R (or equiv-
alently (ϕT ,θt )t∈R) in typical (a.e.) direction. Recently, some progress has been
done in understanding this problem, especially for periodic wind-tree model. In
this model, Avila and Hubert in [2] proved the recurrence of (bθt )t∈R for a.e. direc-
tion. The non-ergodicity for a.e. direction was shown by the author and Ulcigrai in
[16]. Moreover, Delecroix, Hubert and Leliévre proved in [7] that for a.e. direction
the diffusion rate of a.e. orbit is 2/3. For more complicated scatterers some related
results were obtained in [8, 14, 26]. Ergodic properties for non-periodic wind-tree
models were also recently studied by Málaga Sabogal and Troubetzkoy in [22, 23].

Unlike the approach presented in the mentioned articles, we do not study the
dynamics of a single billiard ball (a point particle), i.e. the flow (bθt )t∈R. We are
interested in dynamical properties of infinite (countable and locally finite) configu-
rations of point particles without mutual interactions. Formally, we deal with the
Poisson suspension of the flow (bθt )t∈R modelling the ideal gas behaviour in T , see
[6, Ch. 9]. Given a measure-preserving flow (Tt)t∈R on an infinite measure space
(X,B, µ), its Poisson suspension (T ∗t )t∈R is a flow acting on the probability space
(X∗,B∗, µ∗) of infinite and locally finite configurations of particles in X. The mea-
sure µ∗ is the Poisson point process with intensity measure µ, i.e. the distribution
of the number of particles in any finite measure set A ∈ B is the Poisson distri-
bution with intensity µ(A), and (T ∗t )t∈R moves infinite configurations of particles
according to the flow (Tt)t∈R.

The main result of the paper is the following:

Theorem 1.1. Let (bt)t∈R be the billiard flow on a Λ-periodic rational polygonal
billiard table T . Then for a.e. θ ∈ S1 the Poisson suspension of the directional
billiard flow (bθt )t∈R is weakly mixing. Moreover, the Poisson suspension of (bt)t∈R
is also weakly mixing.

In fact, we prove much more general result (Theorem 5.4) concerning Zd-covers
of compact translation surfaces and their directional flows. Since (bθt )t∈R can be
treated as a directional flow on the translation surface (MT , ωT ), Theorem 1.1 is a
direct consequence of Theorem 5.4. Moreover, in Section 6 we give a criterion (The-
orem 6.3) for the absence of mixing for the Poisson suspension of typical directional
flows on some Zd-covers of compact translation surfaces. Its necessary condition
(the existence of “good” cylinders) for the absence of mixing coincides with the
condition for recurrence provided by [2]. This allows proving the absence of mixing
for the Poisson suspension of (bθt )t∈R (for a.e. direction) for the standard periodic
wind-tree model, as well as for other recurrent billiards studied in [14, Sec. 9] and
[26, Sec. 8.3].

2. Poisson point process and Poisson suspension

Let (X,B, µ) be a standard σ-finite atomless measure space with µ(X) =∞. De-
note by (X∗,B∗, µ∗) the associated Poisson point process. For relevant background
material concerning Poisson point processes, see [20] and [21]. Then X∗ is the space
of countable subsets (configurations) of X and the σ-algebra B∗ is generated by the
subsets of the form

CA,n := {x ∈ X∗ : card(x ∩A) = n} for A ∈ B with 0 < µ(A) < +∞ and n ≥ 0.

For every A ∈ B with 0 < µ(A) < +∞ denote by CA : X∗ → Z≥0 the measurable
map given by CA(x) = card(x ∩ A). Then µ∗ is a unique probability measure on
B∗ such that:

(i) for any pairwise disjoint collection of finite measure sets A1, . . . , Ak in B the
random variables CA1

, . . . , CAk on (X∗,B∗, µ∗) are jointly independent;
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(ii) for any A ∈ B with 0 < µ(A) < +∞ the random variable CA on (X∗,B∗, µ∗)
has Poisson distribution with intensity µ(A), i.e.

µ∗(CA,n) = e−µ(A)µ(A)n

n!
for n ≥ 0.

The existence and uniqueness of the measure µ∗ can be found, for instance, in [20].
Poisson suspension is a classical notion introduced in statistical mechanics to

model so called ideal gas. For an infinite measure-preserving dynamical system
its Poisson suspension is a probability measure-preserving system describing the
dynamics of infinite (countable) configurations of particles without mutual interac-
tions. For relevant background material we refer the reader to [6]. More formally,
for any (Tt)t∈R measure preserving flow on (X,B, µ) by its Poisson suspension we
mean the flow (T ∗t )t∈R acting on (X∗,B∗, µ∗) by T ∗t (x) = {Tty : y ∈ x}. Since
(T ∗t )t∈R preserves the measure of any set CA,n and these sets generate the whole
σ-algebra B∗, the flow preserves the probability measure µ∗.

A proof of the following folklore result for measure-preserving maps can be found
in [27] and [9]. In the setting of group actions, the proof runs in the same way.

Proposition 2.1. The flow (T ∗t )t∈R is ergodic if and only if it is weak mixing and
if and only if the flow (Tt)t∈R has no invariant subset of positive and finite measure.

The flow (T ∗t )t∈R is mixing if and only if for all A ∈ B with 0 < µ(A) < ∞ we
have µ(A ∩ T−tA)→ 0 as t→ +∞.

Let (X,B, µ) and (Y, C, ν) be two standard σ-finite atomless measure spaces.
Assume that (Tt)t∈R is a measure-preserving flow on (X×Y,B⊗C, µ×ν) such that
Tt(x, y) = (T yt x, y). Then (T yt )t∈R is a measure-preserving flow on (X,B, µ) for a.e.
y ∈ Y . By a standard Fubini argument, one gets the following result.

Lemma 2.2. Suppose that for a.e. y ∈ Y the flow (T yt )t∈R has no invariant subset
of positive and finite measure. Then the flow (Tt)t∈R enjoys the same property.

3. Zd-covers of compact translation surfaces

For relevant background material concerning translation surfaces and interval
exchange transformations (IETs) we refer the reader to [24], [28], [29] and [30]. Let
M be a be a surface (not necessary compact) and let ω be an Abelian differential
(holomorphic 1-form) onM . The pair (M,ω) is called a translation surface. Denote
by Σ ⊂M the set of zeros of ω. For every θ ∈ S1 = R/2πZ denote by Xθ = Xω

θ the
directional vector field in direction θ on M \ Σ, i.e. ω(Xθ) = eiθ on M \ Σ. Then
the corresponding directional flow (ϕθt )t∈R = (ϕω,θt )t∈R (also known as a translation
flow) on M \ Σ preserves the area measure µω (µω(A) = |

∫
A
i
2ω ∧ ω|).

We use the notation (ϕvt )t∈R for the vertical flow (corresponding to θ = π
2 ) and

(ϕht )t∈R for the horizontal flow respectively (θ = 0).
Assume that the surface M is compact. Suppose that M̃ is a Zd-covering of M

and p : M̃ → M is its covering map. For any holomorphic 1-form ω on M denote
by ω̃ the pullback of the form ω by the map p. Then (M̃, ω̃) is a translation surface,
called a Zd-cover of the translation surface (M,ω).

All Zd-covers of M up to isomorphism are in one-to-one correspondence with
H1(M,Z)d. For any pair ξ1, ξ2 in H1(M,Z) denote by 〈ξ1, ξ2〉 the algebraic inter-
section number of ξ1 with ξ2. Then the Zd-cover M̃γ determined by γ ∈ H1(M,Z)d

has the following properties: if σ : [t0, t1]→M is a close curve in M and

n := 〈γ, [σ]〉 = (〈γ1, [σ]〉, . . . , 〈γd, [σ]〉) ∈ Zd

([σ] ∈ H1(M,Z)), then σ lifts to a path σ̃ : [t0, t1]→ M̃γ such that σ(t1) = n ·σ(t0),
where · denotes the action of Zd by deck transformations on M̃γ .
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Let (M,ω) be a compact translation surface and let (M̃γ , ω̃γ) be its Zd-cover.
Let us consider the vertical flow (ϕ̃vt )t∈R on (M̃γ , ω̃γ) for which the flow (ϕvt )t∈R on
(M,ω) is uniquely ergodic. Let I ⊂ M \ Σ be a horizontal interval in (M,ω) with
no self-intersections. Then the Poincaré (first return) map T : I → I for the flow
(ϕvt )t∈R is a uniquely ergodic interval exchange transformation (IET). Denote by
(Iα)α∈A the family of exchanged intervals. Let τ : I → R>0 be the corresponding
first return time map. Then τ is constant over each interval Iα, α ∈ A.

For every α ∈ A we denote by ξα = ξα(ω, I) ∈ H1(M,Z) the homology class of
any loop formed by the orbit segment of (ϕvt )t∈R starting at any x ∈ Int Iα and
ending at Tx together with the segment of I that joins Tx and x.

Proposition 3.1 (see Lemma 2.1 in [16] for d = 1). Let I ⊂M \Σ be a horizontal
interval in (M,ω) with no self-intersections. Then for every γ ∈ H1(M,Z)d the
vertical flow (ϕ̃vt )t∈R on the Zd-cover (M̃γ , ω̃γ) has a special representation over the
skew product Tψγ,I : I × Zd → I × Zd of the form Tψγ,I (x,m) = (Tx,m+ ψγ,I(x)),
where ψγ,I : I → Zd is a piecewise constant function given by

ψγ,I(x) = 〈γ, ξα〉 =
(
〈γ1, ξα〉, . . . , 〈γd, ξα〉

)
if x ∈ Iα for α ∈ A. Moreover, the corresponding roof function τ̃ : I × Zd → R>0

is given by τ̃(x,m) = τ(x) for (x,m) ∈ I × Zd.

Remark 3.2. Since the roof function τ̃ is bounded and uniformly separated from
zero, the absence of invariant sets of finite and positive measure for the flow (ϕ̃vt )t∈R
on (M̃γ , ω̃γ) is equivalent the absence of invariant sets of finite and positive measure
for the skew product Tψγ,I .

Cocycles for transformations and essential values. Given an ergodic automorphism
T of a standard probability space (X,B, µ), a locally compact abelian second count-
able group G and a measurable map ψ : X → G, called a cocycle for T , consider
the skew-product extension Tψ acting on (X×G,B×BG, µ×mG) (BG is the Borel
σ-algebra on G) by

Tψ(x, y) = (Tx, y + ψ(x)).

Clearly Tψ preserves the product of µ and the Haar measure mG on G. Moreover,
for any n ∈ Z we have

Tnψ (x, y) = (Tnx, y + ψ(n)(x)),

where

ψ(n)(x) =

{ ∑
0≤j<n ψ(T jx) if n ≥ 0

−
∑
n≤j<0 ψ(T jx) if n < 0.

The cocycle ψ : X → G is called a coboundary for T if there exists a measurable
map h : X → G such that ψ = h− h ◦ T . Then ψ(n) = h− h ◦ Tn for every n ∈ Z.

An element g ∈ G is said to be an essential value of ψ : X → G, if for each open
neighborhood Vg of g in G and each B ∈ B with µ(B) > 0, there exists n ∈ Z such
that

µ
(
B ∩ T−nB ∩ {x ∈ X : ψ(n)(x) ∈ Vg}

)
> 0.

Proposition 3.3 (see Theorem 3.9 in [25]). The set of essential values EG(ψ) is
a closed subgroup of G. If ψ is a coboundary then EG(ψ) = {0}.

Proposition 3.4 (see Proposition 3.30 in [3]). If T is an ergodic automorphism of
(X,B, µ) then the cocycle ψ : X → G for T is a coboundary if and only if the skew
product Tψ : X ×G→ X ×G has an invariant set of positive and finite measure.
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Proposition 3.5 (see Corollary 2.8 in [5]). Let B be the σ–algebra of Borel sets of
a compact metric space (X, d) and let µ be a probability measure on B. Suppose that
T is an ergodic measure–preserving automorphism of (X,B, µ) for which there exist
a sequence of Borel sets (Cn)n≥1 and an increasing sequence of natural numbers
(hn)n≥1 such that

µ(Cn)→ α > 0, µ(Cn4T−1Cn)→ 0 and sup
x∈Cn

d(x, Thnx)→ 0.

If ψ : X → G is a measurable cocycle such that ψ(hn)(x) = gn for all x ∈ Cn and
gn → g, then g ∈ E(ψ).

4. Teichmüller flow and Kontsevich-Zorich cocycle

Given a compact connected oriented surface M , denote by Diff+(M) the group
of orientation-preserving homeomorphisms of M . Denote by Diff+

0 (M) the sub-
group of elements Diff+(M) which are isotopic to the identity. Let Γ(M) :=
Diff+(M)/Diff+

0 (M) be the mapping-class group. We will denote by T (M) the
Teichmüller space of Abelian differentials, that is the space of orbits of the natural
action of Diff+

0 (M) on the space of all Abelian differentials on M . We will denote
by M(M) the moduli space of Abelian differentials, that is the space of orbits of
the natural action of Diff+(M) on the space of Abelian differentials on M . Thus
M(M) = T (M)/Γ(M).

The group SL(2,R) acts naturally on T (M) and M(M) as follows. Given a
translation structure ω, consider charts for M given by local primitives of the
holomorphic 1-form. New charts defined by the post-composition of these charts
with an element of SL(2,R) and their derivative yield a new complex structure and
a new differential which is holomorphic with respect to this new complex structure,
thus a new translation structure. We denote by g · ω the translation structure
on M obtained acting by g ∈ SL(2,R) on a translation structure ω on M . The
Teichmüller flow (gt)t∈R is the restriction of this action to the diagonal subgroup
(diag(et, e−t))t∈R of SL(2,R) on T (M) and M(M). We will deal also with the
rotations (rθ)θ∈S1 that acts on T (M) and M(M) by rθω = eiθω. Then the flow
(ϕθt )t∈R on (M,ω) coincides with the vertical flow on (M, rπ/2−θω). Moreover, for
any Zd-cover (M̃γ , ω̃γ) the directional flow (ϕ̃θt )t∈R on (M̃γ , ω̃γ) in the direction

θ ∈ S1 coincides with the vertical flow (ϕ̃vt )t∈R on (M̃γ , ˜(rπ/2−θω)
γ
).

Kontsevich-Zorich cocycle. The Kontsevich-Zorich (KZ) cocycle (Ag)g∈SL(2,R) is
the quotient of the product action (g × Id)g∈SL(2,R) on T (M) ×H1(M,R) by the
action of the mapping-class group Γ(M). The mapping class group acts on the
fiber H1(M,R) by induced maps. The cocycle (Ag)g∈SL(2,R) acts on the homology
vector bundle

H1(M,R) = (T (M)×H1(M,R))/Γ(M)

over the SL(2,R)-action on the moduli spaceM(M).
Clearly the fibers of the bundle H1(M,R) can be identified with H1(M,R).

The space H1(M,R) is endowed with the symplectic form given by the algebraic
intersection number. This symplectic structure is preserved by the action of the
mapping-class group and hence it is invariant under the action of (Ag)g∈SL(2,R).

The standard definition of KZ-cocycle bases on cohomological bundle. A cor-
respondence between the homological and cohomological settings is established by
the Poincaré duality P : H1(M,R) → H1(M,R). This correspondence allow us to
define so called Hodge norm (see [13] for the cohomological bundle) on each fiber
of the bundle H1(M,R). The Hodge norm on the fiber H1(M,R) over ω ∈M(M)
will be denoted by ‖ · ‖ω.
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Generic directions. Let ω ∈ M(M) and denote byM = SL(2,R)ω the closure of
the SL(2,R)-orbit of ω inM(M). The celebrated result of Eskin, Mirzakhani and
Mohammadi, proved in [12] and [11], says thatM⊂M(M) is an affine SL(2,R)-
invariant submanifold. Denote by νM the corresponding affine SL(2,R)-invariant
probability measure supported onM. The measure νM is ergodic under the action
of the Teichmüller flow.

Theorem 4.1 (see Theorem 1.1 in [4]). For every φ ∈ Cc(M) and a.e. θ ∈ S1 we
have

(4.1) lim
T→∞

1

T

∫ T

0

φ(gtrθω) dt =

∫
M
φdνM.

Theorem 4.2 (see Theorem 2 in [19]). For a.e. direction θ ∈ S1 the directional
flows (ϕvt )t∈R and (ϕht )t∈R on (M, rθω) are uniquely ergodic.

All directions θ ∈ S1 for which the assertion of Theorems 4.1 and 4.2 hold are
called Birkhoff-Masur generic for the translation surface (M,ω).

5. Directional flows on Zd-covers and weak mixing of their Poisson
suspensions

Suppose that the direction 0 ∈ S1 is Birkhoff-Masur generic for (M,ω). Then
the vertical and horizontal flows on (M,ω) are uniquely ergodic. Let I ⊂ M \ Σ
(Σ is the set of zeros of ω) be a horizontal interval. Then the interval I has no
self-intersections and the Poincaré return map T : I → I for the flow (ϕvt )t∈R is
a uniquely ergodic IET. Denote by Iα, α ∈ A the intervals exchanged by T . Let
λα(ω, I) stands for the length of the interval Iα.

Denote by τ : I → R>0 the map of the first return time to I for the flow (ϕvt )t∈R.
Then τ is constant on each Iα and denote by τα = τα(ω, I) > 0 its value on Iα,
α ∈ A. Let us denote by δ(ω, I) > 0 the maximal number ∆ > 0 for which the set
Rω(I,∆) := {ϕvt x : t ∈ [0,∆), x ∈ I} is a rectangle in (M,ω) without any singular
point (from Σ).

Suppose that J ⊂ I is a subinterval. Denote by S : J → J the Poincaré return
map to J for the flow (ϕvt )t∈R. Then S is also an IET and suppose it exchanges
intervals (Jα)α∈A. The IET S is the induced transformation of T on J . Moreover,
all elements of Jα have the same time of the first return to J for the transformation
T and let us denote this return time by hα ≥ 0 for α ∈ A. Then I is the union
of disjoint towers {T jJα : 0 ≤ j < hα}, α ∈ A, i.e. the sets T jJα, for α ∈ A and
0 ≤ j < hα, are pairwise disjoint intervals.

The following result follows directly from Lemmas 4.12 and 4.13 in [15].

Lemma 5.1. Assume that for some ∆ > 0 the set Rω(J,∆) is a rectangle in (M,ω)
without any singular point. Let h =

[
∆/maxα∈A τα

]
. Then for every γ ∈ H1(M,Z)

and α ∈ A we have

(5.1) ψ
(hα)
γ,I (x) = 〈γ, ξα(ω, J)〉 and |Thαx− x| ≤ |J | for x ∈ Cα :=

⋃
0≤j≤h

T jJα.

The following result follows directly from Lemmas A.3 and A.4 in [14].

Lemma 5.2. If 0 ∈ S1 is Birkhoff-Masur generic for (M,ω) then there exist pos-
itive constants A,C, c > 0, a sequence of nested horizontal intervals (Ik)k≥0 in
(M,ω) and an increasing to infinity sequence of real numbers (tk)k≥0 with t0 = 0
such that for every k ≥ 0 we have

(5.2)
1

c
‖ξ‖gtkω ≤ max

α
|〈ξα(gtkω, Ik), ξ〉| ≤ c‖ξ‖gtkω for every ξ ∈ H1(M,R),
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(5.3) λα(gtkω, Ik) δ(gtkω, Ik) ≥ A and
1

C
≤ τα(gtkω, Ik) ≤ C for any α ∈ A.

Lemma 5.3. If 0 ∈ S1 is Birkhoff-Masur generic for (M,ω) then for every non-
zero γ ∈ H1(M,Z) the cocycle ψγ,I : I → Z (the interval I := I0 comes from
Lemma 5.2) is not a coboundary.

Proof. By Lemma 5.2, there exist a sequence of nested horizontal intervals (Ik)k≥0
in (M,ω) and an increasing to infinity sequence of real numbers (tk)k≥0 such that
(5.2) and (5.3) hold for k ≥ 0 and t0 = 0. Let I := I0 and denote by T : I → I
the Poincaré return map to I for the vertical flow (ϕvt )t∈R. Suppose, contrary to
our claim, that ψγ,I : I → Z is a coboundary with a measurable transfer function
u : I → R, i.e. ψγ,I = u− u ◦ T .

For every k ≥ 1 the Poincaré return map Tk : Ik → Ik to Ik for the vertical flow
(ϕvt )t∈R on (M,ω) is an IET exchanging intervals (Ik)α, α ∈ A. The length of (Ik)α
in (M,ω) is equal to λα(ω, Ik) = e−tkλα(gtkω, Ik) for α ∈ A. In view of (5.3), the
length of Ik in (M,ω) is

|Ik| =
∑
α∈A

e−tkλα(gtkω, Ik) ≤ Ce−tk
∑
α∈A

λα(gtkω, Ik)τα(gtkω, Ik) = Ce−tkµω(M).

By the definition of δ, the set Rω(Ik, e
tkδ(gtkω, Ik)) = Rgtkω(Ik, δ(gtkω, Ik)) is a

vertical rectangle in (M, gtkω) without any singular point. It follows that the set
Rω(Ik, e

tkδ(gtkω, Ik)) is a rectangle in (M,ω) without any singular point.
Denote by hkα ≥ 0 the first return time of the interval (Ik)α to Ik for the IET T .

Let
hk :=

[
etkδ(gtkω, Ik)/max

α∈A
τα(ω, I)

]
and Ckα :=

⋃
0≤j≤hk

T j(Ik)α.

Now Lemma 5.1 applied to J = Ik and ∆ = etkδ(gtkω, Ik) gives

(5.4) ψ(hkα)
γ,I (x) = 〈γ, ξα(ω, Ik)〉 and |Th

k
αx− x| ≤ |Ik| ≤ Ce−tkµω(M) for x ∈ Ckα

for every k ≥ 1 and α ∈ A. Moreover, by (5.3),

Leb(Ckα) = (hk+1)|(Ik)α| ≥
etkδ(gtkω, Ik)

maxα∈A τα
e−tkλα(gtkω, Ik) ≥ A

maxα∈A τα
=: a > 0.

By assumption, in view of (5.2), we have

‖γ‖gtkω ≤ cmax
α∈A
|〈γ, ξα(gtkω, Ik)〉|.

Choose B > 0 such that Leb(UB) < a/2 for UB = {x ∈ I : |u(x)| > B}.
For every m ≥ 1 let Jm := I \ (UB ∪ T−mUB). Then Leb(I \ Jm) < a and for
every x ∈ Jm we have both |u(x)| ≤ B, |u(Tmx)| ≤ B. As Leb(I \ Jhkα) < a and
Leb(Ckα) ≥ a, there exists xkα ∈ Ckα ∩ Jhkα . Therefore, by (5.4), for all k ≥ 1 and
α ∈ A we have

|〈γ, ξα(ω, Ik)〉| = |ψ(hkα)
γ,I (xkα)| = |u(xkα)− u(Th

k
αxkα)| ≤ |u(xkα)|+ |u(Th

k
αxkα)| ≤ 2B.

Since 〈γ, ξα(ω, Ik)〉〉 ∈ Z, passing to a subsequence, if necessary, we can assume that
for every α ∈ A the sequence (〈γ, ξα(ω, Ik)〉)k≥1 is constant. Since (5.4) holds and
Leb(Ckα) ≥ a > 0 for k ≥ 1 and α ∈ A, we can apply Proposition 3.5 to ψ = ψγ,I ,
Ck = Ckα and hk = hkα. This gives 〈γ, ξα(ω, Ik)〉 ∈ E(ψγ,I) for all k ≥ 1 and α ∈ A.
In view of Proposition 3.3, as ψγ,I is a coboundary, we have E(ψγ,I) = {0}, so
〈γ, ξα(ω, Ik)〉 = 0 for all k ≥ 1 and α ∈ A. Since 〈γ, ξα(gtkω, Ik)〉 = 〈γ, ξα(ω, Ik)〉,
(5.2) gives

‖γ‖gtkω ≤ cmax
α∈A
|〈γ, ξα(gtkω, Ik)〉| = 0.

It follows that γ = 0, contrary to γ 6= 0. Consequently, the cocycle ψγ,I is not a
coboundary for the IET T : I → I. �
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Theorem 5.4. Let (M,ω) be a compact connected translation surface and let
(M̃γ , ω̃γ) be its non-trivial Zd-cover (i.e. γ ∈ H1(M,Z)d is non-zero). Then for
a.e. θ ∈ S1 the Poisson suspension of the directional flow (ϕ̃θt )t∈R flow on (M̃γ , ω̃γ)
is weakly mixing.

Proof. By Theorems 4.1 and 4.2, the set Θ ⊂ S1 of all θ ∈ S1 for which π/2− θ is
Birkhoff-Masur generic for (M,ω) has full Lebesgue measure in S1. We will show
that for every θ ∈ Θ the directional flow (ϕ̃θt )t∈R flow on (M̃γ , ω̃γ) has no invariant
set of positive and finite measure. In view of Proposition 2.1, this gives weak mixing
of the corresponding Poisson suspension.

Suppose that θ ∈ Θ. Then 0 ∈ S1 is a Birkhoff-Masur generic direction for
(M, rπ/2−θω) and the flow (ϕ̃θt )t∈R on (M̃γ , ω̃γ) coincides with the vertical flow

(ϕ̃vt )t∈R on (M̃γ , ˜(rπ/2−θω)
γ
).

Assume that γ = (γ1, . . . , γd) and γj ∈ H1(M,Z) is non-zero for some 1 ≤ j ≤ d.
By Lemmas 5.2 and 5.3, there exists a horizontal interval in (M, rπ/2−θω) such
that ψγj ,I : I → Z is not a coboundary for the Poincaré return map T : I → I
for the vertical flow on (M, rπ/2−θω). Since ψγj ,I is the j-th coordinate function of
ψγ,I : I → Zd, the latter is also not a coboundary for T . In view of Proposition 3.4,
the skew product Tψγ,I on I×Zd has no invariant set of positive and finite measure.

By Proposition 3.1 and Remark 3.2, the vertical flow on (M̃γ , ˜(rπ/2−θω)
γ
) has no

invariant set of positive and finite measure as well. As the vertical flow (ϕ̃vt )t∈R

on (M̃γ , ˜(rπ/2−θω)
γ
) coincides with the directional flow (ϕ̃θt )t∈R on (M̃γ , ω̃γ), this

completes the proof. �

Proof of Theorem 1.1. The first part follows directly from Theorem 5.4 applied to
the Z2-cover (MT , ωT ). Non-triviality of the Z2-cover follows from the connectivity
of MT .

The second part is based on the fact that the billiard flow (bt)t∈R of T 1 is
metrically isomorphic to the flow (ϕTt )t∈R on MT × S1/Γ given by ϕTt (x, θ) 7→
(ϕT ,θt x, θ). By Theorem 5.4, for a.e. θ ∈ S1/Γ the flow (ϕT ,θt )t∈R has no invariant
subset of positive and finite measure. In view Lemma 2.2, the flow (ϕTt )t∈R enjoys
the same property. The proof is completed by applying Proposition 2.1. �

6. Absence of mixing

Let (M,ω) be a compact connected translation surface and let (M̃γ , ω̃γ) be its
Zd-cover determined by γ ∈ H1(M,Z)d. Denote by pγ : M̃γ → M the covering
map. Let dωγ be the geodesic distance on (M̃γ , ω̃γ). Of course, dωγ = drθωγ for every
θ ∈ S1. Denote by (ϕ̃vt )t∈R the vertical flow on (M̃γ , ω̃γ).

Definition (cf. Definition 1 in [2]). Given real numbers c, L, δ > 0, the Zd-cover
(M̃γ , ω̃γ) is called (c, L, δ)-recurrent if there exists a horizontal interval I ⊂M \ Σ
such that

• the set Rω(I, L) = {ϕvt x : x ∈ I, t ∈ [0, L)} is a vertical rectangle (without
singularities and overlaps) in (M,ω);

• µω(Rω(I, L)) ≥ c;
• for every x̃ ∈ p−1γ (Rω(I, L)) the points x̃ and ϕ̃vLx̃ belong to the same

horizontal leaf on (M̃γ , ω̃γ) and the distance between them along this leaf
is smaller than δ.
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Let M = SL(2,R)ω and let us consider the bundle HM1 (M,R) → M which is
the restriction of the homological bundle toM. Assume that

(6.1) HM1 (M,R) = K ⊕K⊥

is a continuous symplectic orthogonal splitting of the bundle which is (Ag)g∈SL(2,R)-
invariant. Denote by H1(M,R) = Kω′⊕K⊥ω′ the corresponding splitting of the fiber
over any ω′ ∈M.

A cylinder C on (M,ω) is a maximal open annulus filled by homotopic simple
closed geodesics. The direction of C is the direction of these geodesics and the
homology class of them is denoted by σ(C) ∈ H1(M,Z). A cylinder C on (M,ω′) ∈
M is called K-good if σ(C) ∈ K⊥ω′ ∩H1(M,Z). If a cylinder C on (M,ω) is K-good
and γ ∈ (Kω ∩H1(M,Z))d then C lifts to a cylinder on the Zd-cover (M̃γ , ω̃γ).

Proposition 6.1 (see the proof of Proposition 2 in [2]). Suppose that (M,ω∗) ∈M
has a vertical K-good cylinder. If the positive (gt)t∈R orbit of (M,ω) accumulates on
(M,ω∗) then for any γ ∈ (Kω ∩H1(M,Z))d there exists c > 0 and two sequences of
positive numbers (Ln)n≥1, (δn)n≥1 such that Ln → +∞, δn → 0 and the Zd-cover
(M̃γ , ω̃γ) is (c, Ln, δn)-recurrent for n ≥ 1.

For every Zd-cover (M̃γ , ω̃γ) let Dω
γ ⊂ M̃γ be a fundamental domain for the

deck group action so that the boundary of Dω
γ is a finite union of intervals. Then,

µω̃γ (Dω
γ ) = µω(M) ∈ (0,+∞).

Theorem 6.2. Suppose that (M,ω) has a K-good cylinder C. If π/2− θ ∈ S1 is a
Birkhoff generic direction then for every γ ∈ (Kω ∩H1(M,Z))d we have

lim inf
t→+∞

µω̃γ (Dω
γ ∩ ϕ̃θtDω

γ ) > 0.

Proof. Denote by θ0 ∈ S1 the direction of the cylinder C on (M,ω). Since the split-
ting (6.1) is (Ag)g∈SL(2,R)-invariant, C is a vertical K-good cylinder on the trans-
lation surface (M, rπ/2−θ0ω) ∈M. Since π/2− θ ∈ S1 is Birkhoff generic, applying
(4.1) to a sequence (φk)k≥1 in Cc(M) such that (supp(φk))k≥1 is a decreasing nested
sequence of non-empty compact subsets with the intersection {rπ/2−θ0ω}, there ex-
ists tn → +∞ such that gtn(rπ/2−θω)→ rπ/2−θ0ω. By Proposition 6.1, there exists
c > 0 and two sequences of positive numbers (Ln)n≥1, (δn)n≥1 such that Ln → +∞,
δn → 0 and the Zd-cover (M̃γ , ˜rπ/2−θωγ) is (c, Ln, δn)-recurrent for n ≥ 1. Let us

denote by (ϕ̃vt )t∈R the vertical flow on (M̃γ , ˜rπ/2−θωγ) which coincides with the

flow (ϕ̃θt )t∈R in direction θ ∈ S1 on (M̃γ , ω̃γ). Then there exists a sequence (In)n≥1
of horizontal intervals in (M, rπ/2−θω) such that Rrπ/2−θω(In, Ln) is a rectangle in
(M, rπ/2−θω) such that µω(Rrπ/2−θω(In, Ln)) = µrπ/2−θω(Rrπ/2−θ (In, Ln)) > c and
(6.2)
for every x̃ ∈ p−1γ (Rrπ/2−θω(In, Ln)) we have dωγ (x̃, ϕ̃vLn x̃) = d

rπ/2−θω
γ (x̃, ϕ̃vLn x̃) < δn.

As Dω
γ ⊂ M̃γ is a fundamental domain for the Zd-action of the deck group, we have

(6.3) µω̃γ (Dω
γ ∩ p−1γ (Rrπ/2−θω(In, Ln))) = µω(Rrπ/2−θ (In, Ln)) > c.

For every δ > 0 denote by ∂δDω
γ the δ-neighborhood in (M̃γ , d

ω
γ ) of the boundary

∂Dω
γ . Since µω̃γ (∂Dω

γ ) = 0, we have

(6.4) µω̃γ (∂δD
ω
γ )→ 0 as δ → 0.

In view of (6.2), we obtain

ϕ̃vLn
((
Dω
γ ∩ p−1γ (Rrπ/2−θω(In, Ln))

)
\ ∂δnDω

γ

)
⊂ Dω

γ .
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It follows that

µω̃γ (Dω
γ ∩ ϕ̃θLnD

ω
γ ) = µω̃γ (Dω

γ ∩ ϕ̃vLnD
ω
γ )

≥ µω̃γ
(
ϕ̃vLn

((
Dω
γ ∩ p−1γ (Rrπ/2−θω(In, Ln))

)
\ ∂δnDω

γ

))
≥ µω̃γ

(
Dω
γ ∩ p−1γ (Rrπ/2−θω(In, Ln))

)
− µω̃γ (∂δnD

ω
γ ).

By (6.3) and (6.4), this gives lim infn→+∞ µω̃γ (Dω
γ ∩ ϕ̃θLnD

ω
γ ) ≥ c > 0, which

completes the proof. �

In view of Proposition 2.1 and Theorem 4.1, this leads to the following result:

Theorem 6.3. Suppose that (M,ω) is a compact connected translation surface with
a K-good cylinder. Then for every γ ∈ (Kω ∩H1(M,Z))d and for a.e. θ ∈ S1 the
Poisson suspension of the directional flow (ϕ̃θt )t∈R on the Zd-cover (M̃γ , ω̃γ) is not
mixing.

Remark 6.4. The notion of K-good cylinder was introduced in [2] and applied to
prove recurrence for a.e. directional billiard flow in the standard periodic wind tree
model. The existence of K-good cylinders was also shown in more complicated
billiards on periodic tables in [14] and [26]. The paper [26] deals with Z2-periodic
patterns of polygonal scatterers with horizontal and vertical sides, moreover the
obstacles are horizontally and vertically symmetric. Some Λ-periodic patterns of
scatterers with horizontal and vertical sides are considered in [14] for any lattice Λ ⊂
R2; here obstacles are centrally symmetric. Among others, the existence of K-good
cylinders was shown for Λλ-periodic wind tree model (obstacles are rectangles),
where Λλ is any lattice of the form (1, λ)Z + (0, 1)Z. In view of Theorem 6.3, we
have the absence of mixing for the Poisson suspension of the directional billiard
flows (bθt )t∈R for a.e. θ ∈ S1 on all billiards tables considered in [2, 14, 26].
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