MIXING AUTOMORPHISMS WHICH ARE MARKOV QUASI-EQUIVALENT BUT NOT WEAKLY ISOMORPHIC

KRZYSZTOF FRĄCZEK, AGATA PIĘKNIEWSKA, AND DARIUSZ SKRENTY

Abstract

Using Gaussian cocycles over a mixing Gaussian automorphism T, we construct two mixing extensions of T which are Markov quasi-equivalent and are not weakly isomorphic.

1. Introduction

Assume that (X, \mathcal{B}, μ) is a probability standard Borel space and let T be its automorphism. Then T induces a unitary Koopman operator U_{T} acting on $L^{2}(X, \mathcal{B}, \mu)$ by the formula $U_{T} f=f \circ T$. Note that U_{T} is an example of a Markov operator (i.e. of a continuous linear operator between L^{2}-spaces, doubly stochastic and preserving the cone of nonnegative functions.

In [12], Vershik introduced the concept of Markov quasi-equivalence (MQ-equiv.) between automorphisms, namely, if T_{i} is an automorphism of $\left(X_{i}, \mathcal{B}_{i}, \mu_{i}\right), i=1,2$, then T_{1} and T_{2} are said to be MQ-equiv. if there are Markov operators

$$
\begin{aligned}
& \Phi: L^{2}\left(X_{1}, \mathcal{B}_{1}, \mu_{1}\right) \rightarrow L^{2}\left(X_{2}, \mathcal{B}_{2}, \mu_{2}\right), \\
& \Psi: L^{2}\left(X_{2}, \mathcal{B}_{2}, \mu_{2}\right) \rightarrow L^{2}\left(X_{1}, \mathcal{B}_{1}, \mu_{1}\right)
\end{aligned}
$$

both with dense range and satisfying

$$
\Phi \circ U_{T_{1}}=U_{T_{2}} \circ \Phi, \quad \Psi \circ U_{T_{2}}=U_{T_{1}} \circ \Psi .
$$

The concept of MQ-equiv. is closely related to the notion of joinings and we refer the reader to [2] and [12] for more information on this subject.

We recall also that the MQ-equiv. is related to classical notions equivalence in the theory of dynamical systems in the following manner:

$$
\begin{align*}
& \text { Isomorphism } \Rightarrow \text { Weak isomorphism } \\
& \quad \Rightarrow \text { MQ-equiv. } \Rightarrow \text { Spectral isomorphism. } \tag{1}
\end{align*}
$$

[^0]Vershik in [12], asked whether MQ-equiv. implies weak isomorphism, and the negative answer was given in [2]. It follows that in (1) no reversed implication holds. The constructions in [2] yield ergodic automorphisms, but since some ideas from [3] are used, the automorphisms considered in [2] are extensions of discrete spectrum automorphisms, in particular they are not weakly mixing.

The aim of the present note is to extend the main result from [2] and provide mixing automorphisms which are MQ-equiv. but not weakly isomorphic. We will use a theory of so called GAG automorphisms developed in [5] (for the general theory of Gaussian automorphisms we refer the reader to [1]) and use Gaussian cocycles [4].

2. Gaussian automorphisms and Gaussian cocycles

We will recall now necessary facts from [4] and [5] needed for the sequel.

Assume that σ is a finite continuous symmetric Borel measure on $\mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$. Then, on the space $X_{\sigma}=\mathbb{R}^{\mathbb{Z}}$ endowed with the natural Borel structure there exists a probability measure μ_{σ} (called a Gaussian measure) such that the process $\left(P_{n}\right)_{n \in \mathbb{Z}}$ defined by

$$
P_{n}: X_{\sigma} \rightarrow \mathbb{R}, \quad P_{n}(\omega)=\omega_{n} \quad \text { for } \quad n \in \mathbb{Z}
$$

is a real stationary centered Gaussian process whose spectral measure is σ, i.e.

$$
\widehat{\sigma}(n)=\int_{\mathbb{T}} z^{n} d \sigma(z)=\int_{X_{\sigma}} P_{n} P_{0} d \mu_{\sigma} \quad \text { for all } n \in \mathbb{Z}
$$

If we denote by T_{σ} the shift transformation on X_{σ} then the automorphism $T_{\sigma}:\left(X_{\sigma}, \mu_{\sigma}\right) \rightarrow\left(X_{\sigma}, \mu_{\sigma}\right)$ is a (standard) Gaussian automorphism with the real Gaussian space

$$
H_{\sigma}=\overline{\operatorname{span}}\left\{P_{n}=P_{0} \circ T_{\sigma}^{n}: n \in \mathbb{Z}\right\} \subset L^{2}\left(X_{\sigma}, \mu_{\sigma}\right) .
$$

The space H_{σ} corresponds to the subspace \mathscr{H}_{σ} of $L^{2}(\mathbb{T}, \sigma)$ consisting of functions g satisfying $g(\bar{z})=\overline{g(z)}$. In this representation, the action of $U_{T_{\sigma}}$ on H_{σ} is given by $V(g)(z)=z g(z)$, while the variable P_{0} corresponds to the constant function $\mathbf{1}=\mathbf{1}_{\mathbb{T}}$. If $g \in \mathscr{H}_{\sigma}\left(\simeq H_{\sigma}\right)$ is of modulus 1 (a.e.), then it determines a unitary operator W on $L^{2}(\mathbb{T}, \sigma)$ acting by the formula $W(f)(z)=g(z) f(z)$. Moreover, $W \circ V=V \circ W$. Then, there is a unique extension of W to a unitary operator U_{S} on $L^{2}\left(X_{\sigma}, \mu_{\sigma}\right)$, where $S:\left(X_{\sigma}, \mu_{\sigma}\right) \rightarrow\left(X_{\sigma}, \mu_{\sigma}\right)$ and S belongs to the Gaussian centralizer $C^{g}\left(T_{\sigma}\right)$ of T_{σ} (i.e. the set of all elements of centralizer $C\left(T_{\sigma}\right)$ which preserve the Gaussian space). Because of the continuity of σ, T_{σ} is ergodic, in fact, weakly mixing.

Following [5], T_{σ} is called GAG (or σ is a GAG measure) if for each $T_{\sigma} \times T_{\sigma}$-invariant and ergodic measure ρ on $\mathbb{R}^{\mathbb{Z}} \times \mathbb{R}^{\mathbb{Z}}$ with marginals μ_{σ}
we have all non-zero variables $\left(\omega, \omega^{\prime}\right) \mapsto Q(\omega)+Q^{\prime}\left(\omega^{\prime}\right)$ Gaussian whenever $Q, Q^{\prime} \in H_{\sigma}$. All Gaussian automorphisms with simple spectrum are GAG (see [5]).

For the theory of cocycles we refer the reader to [10. Fix T_{σ} and let G be a second countable locally compact Abelian group. Then each measurable $f: X_{\sigma} \rightarrow G$ is called a cocycle. Such a cocycle is said to be a coboundary if the equation $f=j-j \circ T_{\sigma}$ has a measurable solution $j: X_{\sigma} \rightarrow G$ (because of ergodicity of T_{σ}, j is unique up to a constant). Given a cocycle $f: X_{\sigma} \rightarrow G$ we can define the corresponding group extension T_{f} on $\left(X_{\sigma} \times G, \mu_{\sigma} \otimes \lambda_{G}\right)$ (with λ_{G} a Haar measure on G) by setting

$$
T_{f}(x, g)=(T x, f(x)+g) .
$$

Each variable $Q \in H_{\sigma}$ is called a (real) Gaussian cocycle. A Gaussian cocycle Q is called a Gaussian coboundary if it is a coboundary with $j \in H_{\sigma}{ }^{1}$. The following result has been proved in [4]:

Proposition 1 ([4). Assume that $Q \in H_{\sigma}$. Then the following conditions are equivalent:
(i) $Q: X_{\sigma} \rightarrow \mathbb{R}$ is a coboundary;
(ii) $Q: X_{\sigma} \rightarrow \mathbb{R}$ is a Gaussian coboundary;
(iii) $e^{2 \pi i Q}: X_{\sigma} \rightarrow \mathbb{T}$ is a coboundary;
(iv) there exists $|c|=1$ such that $e^{2 \pi i Q}=c \cdot \xi / \xi T$ for some measurable $\xi: X_{\sigma} \rightarrow \mathbb{T}$.

We will need the following properties of σ :

$$
\begin{align*}
& \frac{1}{1-z} \notin L^{2}(\mathbb{T}, \sigma)^{2} \tag{2}\\
& T_{\sigma} \text { is mixing GAG. } \tag{3}
\end{align*}
$$

We describe how the two properties can be achieved. We start with T_{η} an arbitrary mixing GAG (for example simple spectrum mixing Gaussian) [5], then we translate the spectral measure η so that 1 belongs to the topological support of the translation and then symmetrize the measure to obtain a GAG measure σ_{1} (see Proposition 11 in [5) with 1 in the topological support, and still $T_{\sigma_{1}}$ is mixing. In view of Lemma 5 [4] there is $0 \neq h \in \mathscr{H}_{\sigma_{1}}$ so that h is not an $L^{2}\left(\mathbb{T}, \sigma_{1}\right)$-coboundary and finally take $\sigma=|h|^{2} \sigma_{1} \ll \sigma_{1}$. Then 1 is not an $L^{2}(\mathbb{T}, \sigma)$-coboundary, which yields (2). Since $\sigma \ll \sigma_{1}, T_{\sigma}$ is both GAG and mixing.

3. Coalescence of two-sided cocycle extensions

Let us fix $T=T_{\sigma}$ a standard Gaussian automorphism which is GAG (and (2) are assumed to hold); its process representation is denoted

[^1]by $\left(P_{n}\right)_{n \in \mathbb{Z}}$ and the Gaussian space $H_{\sigma}=\operatorname{span}\left\{P_{n}: n \in \mathbb{Z}\right\}$. Set $f=P_{0}$. As in [4], fix α which is a transcendental complex number of modulus 1 and define $W \in U\left(L^{2}(\mathbb{T}, \sigma)\right)$ by setting $(W j)(z)=g(z) j(z)$, where $g(z)=\alpha$ on the upper half of the circle and $g(z)=\bar{\alpha}$ otherwise. This isometry extends in a unique way to $S \in C^{g}(T)$. We will consider now a class of automorphisms which are group extensions of T given by cocycles taking values in $\mathbb{T}^{\mathbb{Z}}$:
\[

$$
\begin{equation*}
T_{\ldots, i_{-1}, i_{0}, i_{1}, \ldots}:=T_{\ldots, \ldots \exp \left(2 \pi i f \circ S^{i-1}\right), \exp \left(2 \pi i f \circ S^{i_{0}}\right), \exp \left(2 \pi i f \circ S^{i_{1}}\right), \ldots} \tag{4}
\end{equation*}
$$

\]

In view of [3] and [4] have the following:

> the automorphism (4) is ergodic for arbitrary sequence
of integers $\left(i_{k}\right)_{k \in \mathbb{Z}}$, provided that $i_{k} \neq i_{l}$ whenever $k \neq l$.
Recall also that in [4] the following has been proved: for all $U \in C^{g}(T)$, $j \in H_{\sigma}, n_{1}, \ldots, n_{t}, r \in \mathbb{Z}$ and pairwise distinct integers p_{1}, \ldots, p_{t}

$$
\begin{align*}
& \text { if } n_{1} f \circ S^{p_{1}}+\cdots+n_{t} f \circ S^{p_{t}}-f \circ S^{r} \circ U=j-j \circ T \\
& \text { then } t=1 \text { and } n_{1}= \pm 1 . \tag{6}
\end{align*}
$$

Indeed (the argument from [4), we rewrite the above as

$$
n_{1}(g(z))^{p_{1}}+\cdots+n_{t}(g(z))^{p_{t}}-(g(z))^{r} u(z)=k(z)(1-z),
$$

where $u \in \mathscr{H}_{\sigma}$ is of modulus 1 (and $k \in \mathscr{H}_{\sigma}$). If we put $Q(z)=$ $n_{1} z^{p_{1}}+\cdots+n_{t} z^{p_{t}}$ and $l(z)=Q(g(z))-(g(z))^{r} u(z)$ then

$$
|l(z)| \geq||Q(g(z))|-1|=||Q(\alpha)|-1| \quad \text { for all } \quad z \in \mathbb{T}
$$

Suppose that $t \geq 2$ or $t=1$ with $\left|n_{1}\right| \neq 1$. Since α is transcendental, the modulus of $Q(\alpha)$ cannot be equal to 1 . Therefore there is a constant $A>0$ such that $|l(z)|>A$ (σ-a.e.). Consequently, the function $z \mapsto$ $1 /(1-z)=k(z) / l(z)$ is in \mathscr{H}_{σ}. Once more we obtain that P_{0} is a coboundary.
Proposition 2. Assume that $\bar{i}=\left(i_{k}\right)_{k \in \mathbb{Z}}$ is a strictly increasing sequence of integer numbers. If $\left(i_{k}\right)_{k \in \mathbb{Z}}$ is an arithmetic sequence, i.e. the sequence $\left(i_{k+1}-i_{k}\right)_{k \in \mathbb{Z}}$ is constant, then $T_{\bar{i}}=T_{\ldots, i_{-1}, i_{0}, i_{1}, \ldots}$ is coalescent, that is, each endomorphism commuting with $T_{\bar{i}}$ is invertible.

Proof. In view of (5), $T_{\bar{i}}$ is ergodic. Since T is GAG, it is a canonical factor of its group extension [5], therefore if $\widetilde{U} \in C\left(T_{\bar{i}}\right)$ then

$$
\widetilde{U}=U_{\xi, v}, \quad U_{\xi, v}(x, g)=(U x, v(g) \cdot \xi(x)),
$$

where $U \in C^{g}(T), \xi: X_{\sigma} \rightarrow \mathbb{T}^{\mathbb{Z}}$ is measurable and $v: \mathbb{T}^{\mathbb{Z}} \rightarrow \mathbb{T}^{\mathbb{Z}}$ is a continuous algebraic epimorphism (see [7], [8]). Moreover, $v \circ \psi / \psi \circ U=$ $\xi / \xi \circ T$, where

$$
\psi=\left(\ldots, \exp \left(2 \pi i f \circ S^{i_{-1}}\right), \exp \left(2 \pi i f \circ S^{i_{0}}\right), \exp \left(2 \pi i f \circ S^{i_{1}}\right), \ldots\right)
$$

Using Proposition 1 and the form of v we obtain that on each coordinate $r \in \mathbb{Z}$ we must have

$$
n_{1} f \circ S^{i_{p_{1}}}+\cdots+n_{t} f \circ S^{i_{p_{t}}}-f \circ S^{i_{r}} \circ U=j_{r}-j_{r} \circ T
$$

with $n_{1}, \ldots, n_{t} \in \mathbb{Z}, j_{r} \in H_{\sigma}$. By (6), it follows that $t=1$ and $n_{1}= \pm 1$. Therefore, $v\left(\left(z_{r}\right)_{r \in \mathbb{Z}}\right)=\left(\left(z_{\pi(r)}^{m_{r}}\right)_{r \in \mathbb{Z}}\right)$, where $\pi: \mathbb{Z} \rightarrow \mathbb{Z}$ and $m_{r}= \pm 1$ for $r \in \mathbb{Z}$, whence

$$
m_{r} f \circ S^{i_{\pi(r)}}-f \circ S^{i_{r}} \circ U=j_{r}-j_{r} \circ T
$$

Since $S, U \in C^{g}(T)$, it follows that

$$
m_{r} f \circ S^{i_{\pi(r)}-i_{r}}-f \circ U=c o b .
$$

and for $r \neq s$ we obtain that

$$
m_{r} f \circ S^{i_{\pi(r)}-i_{r}}-m_{s} f \circ S^{i_{\pi(s)}-i_{s}}=c o b .
$$

However, because of ergodicity of $T_{\ldots, j_{-1}, j_{0}, j_{1}, \ldots}$ for any choice of sequence $\left(j_{k}\right)$ of distinct integer numbers (see (5) we must have

$$
i_{\pi(r)}-i_{r}=\text { const } \quad \text { and } \quad m_{r}=\text { const } .
$$

Since the sequence $\left(i_{k}\right)_{k \in \mathbb{Z}}$ is arithmetic, it follows that π is a permutation (translation on \mathbb{Z}). Therefore, v is invertible, hence $\widetilde{U}=U_{\xi, v}$ is invertible and the result follows.

Similar arguments to those above apply to show the following criterion for the isomorphism of skew products of the form $T_{\bar{i}}$.
Proposition 3. Given two strictly increasing sequences $\bar{i}=\left(i_{k}\right)_{k \in \mathbb{Z}}$ and $\bar{j}=\left(j_{k}\right)_{k \in \mathbb{Z}}$ of integers, the two automorphisms $T_{\bar{i}}$ and $T_{\bar{j}}$ are isomorphic if and only if there exists $m \in \mathbb{Z}$ and a permutation π : $\mathbb{Z} \rightarrow \mathbb{Z}$ such that $j_{\pi(k)}-i_{k}=m$ for all $k \in \mathbb{Z}$.

As an application, consider two extensions $T_{\bar{i}}, \bar{i}=(\ldots,-1,0,1,2, \ldots)$ and $T_{\bar{j}}, \bar{j}=(\ldots,-1,0,2,3, \ldots)$. They are not isomorphic. Indeed, otherwise there exists $m \in \mathbb{Z}$ and a permutation $\pi: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $j_{\pi(k)}=m+i_{k}=m+k$ for all $k \in \mathbb{Z}$. Therefore, $j_{\pi(-m+1)}=1$, which is a contradiction.

Remark 1. It has been already noticed in 8 that whenever an automorphism R is coalescent and R is weakly isomorphic to R^{\prime} then R is isomorphic to R^{\prime}. By Proposition 2, $T_{\ldots,-1,0,1,2, \ldots}$ is coalescent. It follows that $T_{\ldots,-1,0,1,2, \ldots}$ and $T_{\ldots,-1,0,2,3, \ldots}$ are not weakly isomorphic as well.

Remark 2. Note that not every ergodic automorphism $T_{\ldots, i_{-1}, i_{0}, i_{1}, \ldots}$ is coalescent. For example, the non-invertible map

$$
(x, \underline{z}) \mapsto\left(S^{2} x, \ldots, z_{-1}, z_{0}, \stackrel{0}{z_{2}}, z_{3}, z_{4}, \ldots\right)
$$

is an element of the centralizer of $T_{\ldots,-6,-4,-2,0,1,2,3, \ldots}$.

4. Main RESULT

Let T be an ergodic automorphism of (X, \mathcal{B}, μ). We take $\varphi: X \rightarrow \mathbb{T}$ so that the group extension T_{φ} is ergodic. Then assume that we can find S acting on $(X, \mathcal{B}, \mu), S \circ T=T \circ S$ (that is, $S \in C(T)$), such that if we set $G=\mathbb{T}^{\mathbb{Z}}$ and define

$$
\psi: X \rightarrow G, \quad \psi(x)=\left(\ldots, \varphi\left(S^{-1} x\right), \varphi(x), \varphi(S x), \varphi\left(S^{2} x\right), \ldots\right)
$$

then T_{ψ} is ergodic as well. Put now $T_{1}=T_{\psi}$ and let us take a factor T_{2} of T_{1} obtained by "forgetting" the first \mathbb{T}-coordinate. In other words on ($X \times \mathbb{T}^{\mathbb{Z}}, \mu \otimes \lambda_{\mathbb{T}^{\mathbb{Z}}}$) we consider two automorphisms
$T_{1}(x, \underline{z})=\left(T x, \ldots, z_{-1} \cdot \varphi\left(S^{-1} x\right), z_{0} \cdot \stackrel{0}{\varphi}(x), z_{1} \cdot \varphi(S x), z_{2} \cdot \varphi\left(S^{2} x\right), \ldots\right)$,
$T_{2}(x, \underline{z})=\left(T x, \ldots, z_{-1} \cdot \varphi\left(S^{-1} x\right), z_{0} \cdot \varphi(x), z_{1} \cdot \varphi\left(S^{2} x\right), z_{2} \cdot \varphi\left(S^{3} x\right), \ldots\right)$, where $\underline{z}=\left(\ldots, z_{-1}, \stackrel{0}{z_{0}}, z_{1}, z_{2}, \ldots\right)$. For $n \in \mathbb{Z}$ define $I_{n}: X \times \mathbb{T}^{\mathbb{Z}} \rightarrow$ $X \times \mathbb{T}^{\mathbb{Z}}$ by setting

$$
I_{n}(x, \underline{z})=\left(S^{n} x, \ldots, z_{n-1}, \stackrel{0}{z_{n}}, z_{n+2}, z_{n+3}, \ldots\right)
$$

Then I_{n} is measure-preserving and $I_{n} \circ T_{1}=T_{2} \circ I_{n}$. Therefore

$$
\begin{equation*}
U_{T_{1}} \circ U_{I_{n}}=U_{I_{n}} \circ U_{T_{2}} \tag{7}
\end{equation*}
$$

with $U_{I_{n}}$ being an isometry (which is not onto) and

$$
U_{I_{n}}^{*} F(x, \underline{z})=\int_{\mathbb{T}} F\left(S^{-n} x, \ldots, z_{-n}^{0}, \ldots, \stackrel{n}{z_{0}}, z, z_{1}, \ldots\right) d z
$$

Denote by $l_{0}(\mathbb{Z})$ the subspace of $l^{2}(\mathbb{Z})$ of complex sequences $\bar{x}=$ $\left(x_{n}\right)_{n \in \mathbb{Z}}$ such that $\left\{n \in \mathbb{Z}: x_{n} \neq 0\right\}$ is finite.

Proposition 4 ([2]). There exists a nonnegative sequence $\bar{a}=\left(a_{n}\right)_{n \in \mathbb{Z}} \in$ $l^{2}(\mathbb{Z})$ such that $\sum_{n \in \mathbb{Z}} a_{n}=1$ and
(8) for every $\bar{x}=\left(x_{n}\right)_{n \in \mathbb{Z}} \in l^{2}(\mathbb{Z})$ if $\bar{a} * \bar{x} \in l_{0}(\mathbb{Z})$ then $\bar{x}=\overline{0}$.

Let $\bar{a}=\left(a_{n}\right)_{n \in \mathbb{Z}} \in l^{2}(\mathbb{Z})$ be a nonnegative sequence such that $\sum_{n \in \mathbb{Z}} a_{n}=$ 1 and (8) holds. Let $J: L^{2}\left(X \times \mathbb{T}^{\mathbb{Z}}, \mu \otimes \lambda_{\mathbb{T}^{\mathbb{Z}}}\right) \rightarrow L^{2}\left(X \times \mathbb{T}^{\mathbb{Z}}, \mu \otimes \lambda_{\mathbb{T}^{\mathbb{Z}}}\right)$ stand for the Markov operator defined by

$$
J=\sum_{n \in \mathbb{Z}} a_{n} U_{I_{n}}
$$

In view of (7), J intertwines $U_{T_{1}}$ and $U_{T_{2}}$.
Denote by Fin $=\mathbb{Z}^{\oplus \mathbb{Z}}$ which is naturally identified with the dual of $\mathbb{T}^{\mathbb{Z}}$. Let us consider the following two operations on Fin. For $A=$ $\left(A_{s}\right)_{s \in \mathbb{Z}} \in$ Fin (only finitely many $A_{s} \neq 0$) we set

$$
\widehat{A}=\left(\widehat{A}_{s}\right)_{s \in \mathbb{Z}}=\left\{\begin{array}{lll}
\widehat{A}_{s}=A_{s} & \text { if } & s \leq 0 \\
\widehat{A}_{s}=A_{s-1} & \text { if } & s>1 \\
\widehat{A}_{1}=0 &
\end{array}\right.
$$

and given $B=\left(B_{s}\right)_{s \in \mathbb{Z}} \in F$ in such that $B_{1}=0$ we put

$$
\widetilde{B}=\left(\widetilde{B}_{s}\right)_{s \in \mathbb{Z}}= \begin{cases}\widetilde{B}_{s}=B_{s} & \text { if } \quad s \leq 0 \\ \widetilde{B}_{s}=B_{s+1} & \text { if } \quad s>0 .\end{cases}
$$

Of course,

$$
\widetilde{\widehat{A}}=A \quad \text { and } \quad \widehat{\widetilde{B}}=B
$$

For $A=\left(A_{s}\right)_{s \in \mathbb{Z}} \in$ Fin and $n \in \mathbb{Z}$ let

$$
A+n=\left((A+n)_{s}\right)_{s \in \mathbb{Z}}
$$

where $(A+n)_{s}=A_{s-n}$ for $s \in \mathbb{Z}$. We have

$$
\begin{equation*}
(\widehat{A}+n)_{n+1}=\widehat{A}_{n+1-n}=\widehat{A}_{1}=0 \tag{9}
\end{equation*}
$$

Assume that $B=\left(B_{s}\right)_{s \in \mathbb{Z}} \in$ Fin and $B_{n+1}=0$; then the element

$$
\begin{equation*}
\widetilde{B-n} \text { is the unique element } C \in \text { Fin such that } \widehat{C}+n=B . \tag{10}
\end{equation*}
$$

Let \sim stand for the equivalence relation in Fin defined by $A \sim B$ if $A=B+n$ for some $n \in \mathbb{Z}$. Denote by $F i n_{0}$ a fundamental domain for this relation.

Lemma 5 (cf. [2]). J has trivial kernel.
Proof. Each $F \in L^{2}\left(X \times \mathbb{T}^{\mathbb{Z}}, \mu \otimes \lambda_{\mathbb{T}^{\mathbb{Z}}}\right)$ can be written as

$$
F(x, \underline{z})=\sum_{A \in F i n} f_{A}(x) A(\underline{z}),
$$

where

$$
A(\underline{z})=\Pi_{s \in \mathbb{Z}} z_{s}^{A_{s}} \text { whenever } A=\left(A_{s}\right)_{s \in \mathbb{Z}} \text { and } f_{A} \in L^{2}(X, \mu) .
$$

Note that $\sum_{A \in F i n}\left\|f_{A}\right\|_{L^{2}(X, \mu)}^{2}=\|F\|_{L^{2}\left(X \times \mathbb{T}^{\mathbb{Z}}, \mu \otimes \lambda_{\mathbb{T}}\right)}^{2}$. Since

$$
U_{I_{n}}\left(f_{A} \otimes A\right)(x, \underline{z})=\left(f_{A} \otimes A\right)\left(I_{n}(x, \underline{z})\right)=f_{A}\left(S^{n} x\right)(\widehat{A}+n)(\underline{z})
$$

we have

$$
J F(x, \underline{z})=\sum_{n \in \mathbb{Z}} \sum_{A \in F i n} a_{n} f_{A}\left(S^{n} x\right)(\widehat{A}+n)(\underline{z}) .
$$

By (9), $(\widehat{A}+n)_{n+1}=0$, so by changing "the index": substituting $\widehat{A}+n=: B$ and using (10) (from which it follows that $A=\widetilde{B-n}$) we obtain

$$
J F(x, \underline{z})=\sum_{B \in F i n} \sum_{n \in \mathbb{Z}, B_{n+1}=0} a_{n} f_{\widetilde{B-n}}\left(S^{n} x\right) B(\underline{z})=\sum_{B \in F i n} \widetilde{F}_{B}(x) B(\underline{z}),
$$

where $\widetilde{F}_{B}(x)=\sum_{n \in \mathbb{Z}, B_{n+1}=0} a_{n} f_{\widetilde{B-n}}\left(S^{n} x\right)$. For every $B \in$ Fin $_{0}$ and $x \in X$ we define $\xi^{B}(x)=\left(\xi_{n}^{B}(x)\right)_{n \in \mathbb{Z}}$ by setting

$$
\xi_{-n}^{B}(x)=\left\{\begin{array}{ccc}
f_{B-n} & \left.S^{n} x\right) & \text { if }
\end{array} B_{n+1}=0 .\right.
$$

Therefore, for $k \in \mathbb{Z}$

$$
\begin{aligned}
\widetilde{F}_{B+k}(x) & =\sum_{n \in \mathbb{Z},(B+k)_{n+1}=0} a_{n} f_{B-n+k}\left(S^{n} x\right) \\
& =\sum_{n \in \mathbb{Z}, B_{(n-k)+1}=0} a_{n} f_{B-(n-k)}\left(S^{-(k-n)}\left(S^{k} x\right)\right) \\
& =\sum_{n \in \mathbb{Z}} a_{n} \xi_{k-n}^{B}\left(S^{k} x\right)=\left[\bar{a} *\left(\xi^{B}\left(S^{k} x\right)\right)\right]_{k} .
\end{aligned}
$$

Suppose that $J(F)=0$. It follows that for all $k \in \mathbb{Z}$ and $B \in F^{2} n_{0}$ we have $\left[\bar{a} *\left(\xi^{B}\left(S^{k} x\right)\right)\right]_{k}=\widetilde{F}_{B+k}(x)=0$ for μ-a.e. $x \in X$, whence a.s. we also have $\left[\bar{a} *\left(\xi^{B}(x)\right)\right]_{k}=0$. Letting k run through \mathbb{Z} we obtain that $\bar{a} *\left(\xi^{B}(x)\right)=\overline{0}$ for μ-a.e. $x \in X$. On the other hand $\xi^{B}(x) \in l^{2}(\mathbb{Z})$ for almost every $x \in X$. In view of (8), $\xi^{B}(x)=\overline{0}$ for every $B \in F_{i n}$ and for a.e. $x \in X$, hence $f_{\widetilde{A}}=0$ for every $A \in$ Fin with $A_{1}=0$. It follows that $f_{A}=0$ for every $A \in$ Fin, consequently $F=0$.
Lemma 6 (cf. [2]). J* has trivial kernel.
Proof. Let

$$
F(x, \underline{z})=\sum_{A \in F i n} f_{A}(x) A(\underline{z}) .
$$

Then

$$
U_{I_{n}}^{*}\left(f_{A} \otimes A\right)(x, \underline{z})=f_{A}\left(S^{-n} x\right) \int_{\mathbb{T}} A\left(\ldots, z_{-n}, \ldots,{\underset{z}{0}}_{0}, \stackrel{n+1}{z}, \stackrel{n+2}{z_{1}}, \ldots\right) d z .
$$

It follows that

$$
U_{I_{n}}^{*}\left(f_{A} \otimes A\right)(x, \underline{z})=\left\{\begin{array}{cll}
f_{A}\left(S^{-n} x\right) \widetilde{A-n}(\underline{z}) & \text { if } & A_{n+1}=0 \\
0 & \text { if } & A_{n+1} \neq 0
\end{array}\right.
$$

It follows that

$$
\begin{aligned}
J^{*} F(x, \underline{z}) & =\sum_{A \in F i n} \sum_{n \in \mathbb{Z}, A_{n+1}=0} a_{n} f_{A}\left(S^{-n} x\right) \widetilde{A-n}(\underline{z}) \\
& =\sum_{B \in F i n} \sum_{n \in \mathbb{Z}} a_{n} f_{\widehat{B}+n}\left(S^{-n} x\right) B(\underline{z}) \\
& =\sum_{A \in F i n, A_{1}=0} \sum_{n \in \mathbb{Z}} a_{n} f_{A+n}\left(S^{-n} x\right) \widetilde{A}(\underline{z}) .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
J^{*} F(x, \underline{z}) & =\sum_{A \in F i n_{0}} \sum_{k \in \mathbb{Z},(A-k)_{1}=0} \sum_{n \in \mathbb{Z}} a_{n} f_{A+n-k}\left(S^{-n} x\right) \widetilde{A-k}(\underline{z}) \\
& =\sum_{A \in F i n_{0}} \sum_{k \in \mathbb{Z},(A-k)_{1}=0}\left[\bar{a} *\left(\zeta^{A}\left(S^{-k} x\right)\right)\right]_{k} \widetilde{A-k}(\underline{z})
\end{aligned}
$$

where $\zeta^{A}(x)=\left(\zeta_{l}^{A}(x)\right)_{l \in \mathbb{Z}}$ is given by $\zeta_{l}^{A}(x)=f_{A-l}\left(S^{l} x\right)$.

Suppose that $J^{*}(F)=0$. It follows that $\left[\bar{a} * \zeta^{A}\left(S^{-k} x\right)\right]_{k}=0$ for every $A \in \operatorname{Fin}_{0}$ and $k \in \mathbb{Z}$ with $A_{k+1}=0$ and for a.e. $x \in X$. Hence $\bar{a} *\left(\zeta^{A}(x)\right) \in l_{0}(\mathbb{Z})$ for μ-a.e. $x \in X$ (the only possibly non-zero terms of the convolved sequence have indices belonging to $\left\{s \in \mathbb{Z}:(A-1)_{s} \neq\right.$ $0\}$). Since $\zeta^{A}(x) \in l^{2}(\mathbb{Z})$, in view of $(8), \zeta^{A}(x)=\overline{0}$ for every $A \in$ Fin $_{0}$ and for μ-a.e. $x \in X$. Thus $f_{A}=0$ for all $A \in$ Fin and consequently $F=0$.

Theorem 7. Automorphisms $T_{\ldots,-1,0,1,2, \ldots}$ and $T_{\ldots,-1,0,2,3, \ldots}$ are mixing and Markov quasi-equivalent but are not weakly isomorphic.

Proof. By assumption (3), T is mixing. In view of (5) both its skew product extensions $T_{\ldots,-1,0,1,2, \ldots}$ and $T_{\ldots,-1,0,2,3, \ldots}$ are ergodic, hence they are also mixing. By Lemmas 5 and 6 , there exists an operator with dense range and trivial kernel intertwining the Koopman operators associated to $T_{\ldots,-1,0,1,2, \ldots}$ and $T_{\ldots,-1,0,2,3, \ldots}$. It follows that $T_{\ldots,-1,0,1,2, \ldots}$ and $T_{\ldots,-1,0,2,3 \ldots}$ are Markov quasi-equivalent. Finally, by Remark 1, they are not weakly isomorphic.

Remark 3. Since a Gaussian mixing automorphism is mixing of all orders (see [6]), from the result of Rudolph about multiple mixing of isometric extensions (see [9]), it follows that automorphisms $T_{\text {...,-1,0,1,2,... }}$ and $T_{\ldots,-1,0,2,3, \ldots}$ are also mixing of all orders.

Remark 4. In Section 2 the measure σ was chosen to satisfy (2) and (3). Here is another way of specifying it. For a mixing GAG T_{η} let $\sigma=\eta * \eta$. Then T_{σ} is also both mixing and GAG (the latter is unpublished result of F. Parreau). Since the Fourier coefficients of σ are non-negative, $T_{e^{2 \pi i P_{0}}}$ has countable Lebesgue spectrum in the orthocomplement of $L^{2}\left(X_{\sigma}, \mu_{\sigma}\right)$ (see Corollary 4 in (4). Hence P_{0} is not a Gaussian coboundary and the conditions (2) and (3) hold. Moreover, $\left\|P_{0}^{(n)}\right\|_{L^{2}\left(X_{\sigma}, \mu_{\sigma}\right)}^{2}$ grows linearly with $|n|$ (where $P_{0}^{(1)}=P_{0}$, $P_{0}^{(n+1)}=P_{0}^{(n)}+P_{0} \circ T^{n}$ for all $n \in \mathbb{Z}$). Therefore using the same arguments as in [11, Lemma 4.2] we obtain automorphisms $T_{\text {...,-1,0,1,2,... }}$ and $T_{\ldots,-1,0,2,3, \ldots}$ in Theorem 7 with countable Lebesgue spectrum in the orthocomplement of $L^{2}\left(X_{\sigma}, \mu_{\sigma}\right)$.

Acknowledgements. The authors would like to thank the referee for a question leading to Remark 4.

References

[1] I.P. Cornfeld, S.V. Fomin, Y.G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1982.
[2] K. Frączek, M. Lemańczyk, A note on quasi-similarity of Koopman operators, Journal London Math. Soc. (2) 82 (2010), 361-375.
[3] M. Lemańczyk, Weakly isomorphic transformations that are not isomorphic, Probab. Theory Related Fields 78 (1988), 491-507.
[4] M. Lemańczyk, E. Lesigne, D. Skrenty, Multiplicative Gaussian cocycles, Aequationes Math. 61 (2001), 162-178.
[5] M. Lemańczyk, F. Parreau, J.-P. Thouvenot, Gaussian automorphisms whose ergodic self-joinings are Gaussian, Fund. Mah. 164 (2000), 253-293.
[6] V.P. Leonov, The use of the characteristic functional and semi-invariants in the ergodic theory of stationary processes, Dokl. Akad. Nauk 133 (1960), 523526.
[7] M.K. Mentzen, Ergodic properties of group extensions of dynamical systems with discrete spectra, Studia Math. 101 (1991), 20-31.
[8] D. Newton, Coalescence and spectrum of automorphisms of a Lebesgue space, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19 (1971), 117-122.
[9] D. Rudolph, k-fold mixing lifts to weakly mixing isometric extensions, Ergodic Theory Dynam. Systems 5 (1985), 445-447.
[10] K. Schmidt, Cocycle of Ergodic Transformation Groups, Lect. Notes in Math. Vol. 1, Mac Milan Co. of India, 1977.
[11] D. Skrenty, Absolutely continuous spectrum of some group extensions of Gaussian actions, Discrete Contin. Dyn. Syst. 26 (2010), no. 1, 365-378.
[12] A.M. Vershik, Polymorphisms, Markov processes, and quasi-similarity, Discrete and Continuous Dynam. Systems 13 (2005), 1305-1324.

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina $12 / 18,87-100$ Toruń, Poland

E-mail address: fraczek@mat.umk.pl, agatka@mat.umk.pl, darsk@mat.umk.pl

[^0]: Date: January 13, 2013.
 Research is partially supported by the Narodowe Centrum Nauki Grant DEC2011/03/B/ST1/00407.

[^1]: ${ }^{1}$ Note that it means that if $f \in \mathscr{H}_{\sigma}$ corresponds to Q, then $f(z)=\xi(z)-$ $V(\xi)(z)=\xi(z)(1-z)$ for some $\xi \in L^{2}(\mathbb{T}, \sigma)$; equivalently $f(z) /(1-z) \in L^{2}(\mathbb{T}, \sigma)$.
 ${ }^{2}$ This is equivalent to saying that $\mathbf{1}_{\mathbb{T}}$ is not an $L^{2}(\mathbb{T}, \sigma)$-coboundary, or that P_{0} is not a Gaussian coboundary.

