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Abstract. It is shown that a countable symmetric multiplicative subgroup
G = −H ∪ H with H ⊂ R∗+ is the group of self-similarities of a Gaussian-
Kronecker �ow if and only if H is additively Q-independent. In particular, a
real number s 6= ±1 is a scale of self-similarity of a Gaussian-Kronecker �ow if
and only if s is transcendental. We also show that each countable symmetric
subgroup of R∗ can be realized as the group of self-similarities of a simple
spectrum Gaussian �ow having the Foia³-Stratila property.

1. Introduction

Assume that T = (Tt)t∈R is a (measurable) measure-preserving �ow acting on
a standard probability Borel space (X,B, µ). Given s ∈ R∗, one says that it is
a scale of self-similarity of T if T is isomorphic to Ts := (Tst)t∈R. Denote by
I(T ) the set of all scales of self-similarities of T . Then T is called self-similar
if I(T ) 6= {±1}. Classical examples of self-similar �ows are given by horocycle
�ows where I(T ) equals either R∗ or R∗+ [19]. A systematic study of the problem
of self-similarity has been done recently in [4] and [6]. In particular, I(T ) turns
out to be a multiplicative subgroup of R∗ ([6]) which is Borel ([4]), and one of
the main problems in this domain is to classify all Borel subgroups of R∗ that
may appear as groups of self-similarities of ergodic �ows; see also [3], [13], [24],
[25] for a recent contribution to other aspects of the problem of self-similarity of
ergodic �ows. From this point of view the subclass of so called GAG �ows [17]1

of the class of Gaussian �ows is especially attractive since self-similarities appear
there as natural invariants, see (1.1) below. By de�nition, GAG �ows are those
Gaussian �ows whose ergodic self-joinings remain Gaussian. All Gaussian �ows
with simple spectrum are GAG �ows [17]. If T σ = (Tσt )t∈R denotes the Gaussian
�ow determined by a �nite positive (continuous) measure σ on R+ and the �ow is
GAG then

(1.1) I(T σ) is equal to the (multiplicative) group −I(σ) ∪ I(σ),

where I(σ) = {s ∈ R∗+ : σs ≡ σ} and σs = (Rs)∗(σ) denotes the image of σ via
the map Rs : x 7→ sx [17]. Recall that −1 is always a scale of self-similarity for a
Gaussian �ow.
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1In [15] as well as in [17] only Gaussian automorphisms are considered, however all results can

be rewritten for Gaussian �ows.
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In this note we focus on the problem of self-similarities in some subclasses of
simple spectrum Gaussian �ows. We �rst recall already known results. Classically,
if σ is concentrated on an additively Q-independent Borel set A ⊂ R+ then the
Gaussian �ow T σ has simple spectrum, see [2]. Moreover, the subgroup H :=
I(T σ) ∩ R∗+ is an additively Q-independent set. Indeed, suppose that H is not an
additively Q-independent set. That is, for some distinct h1, . . . , hm ∈ H we have

(1.2)

m∑
i=1

kihi = 0 with ki ∈ Z, i = 1, . . . ,m and

m∑
i=1

k2i > 0.

Denote by H0 ⊂ H the multiplicative subgroup generated by h1, . . . , hm. Since
H0 ⊂ I(T σ), we have σh ≡ σ for h ∈ H0, thus the Borel set B =

⋂
h∈H0

hA has
full σ-measure, is Q-independent, and is literally H0-invariant. Take any non-zero
x ∈ B. Then the elements hix ∈ B, i = 1, . . . ,m, are distinct. Now, (1.2) yields

m∑
i=1

ki(hix) = x

m∑
i=1

kihi = 0,

so B is not independent, a contradiction. On the other hand, in [6], it is shown
that whenever a countable group H ⊂ R∗+ satis�es:

(1.3)
For each polynomial P ∈ Q[x1, . . . , xm] if there is
a collection of distinct elements h1, . . . , hm in H such that
P (h1, . . . , hm) = 0 then P ≡ 0,

then there exists a probability σ concentrated on a Borel Q-independent set such
that I(T σ) = −H∪H. It is not di�cult to see that the condition (1.3) is equivalent
to saying that H is an additively Q-independent set.

Theorem 1.1 ([6]). Assume that G = −H ∪ H, where H ⊂ R∗+ is a countable
multiplicative subgroup. Then G can be realized as I(T σ) for a Gaussian �ow
whose spectral measure σ is concentrated on a Borel Q-independent set if and only
if H is an additively Q-independent set.

Note that for H cyclic generated by s ∈ R+, the Q-independence condition
is equivalent to saying that s is transcendental. Hence, by Theorem 1.1, a real
number s can be realized as a scale of self-similarity of a Gaussian �ow whose
spectral measure is concentrated on a Q-independent Borel set if and only if s is
transcendental.

On the other hand, there are no restrictions on H in the class of all Gaussian
�ows having simple spectrum.

Theorem 1.2 ([4]). For each countable subgroup H ⊂ R∗+ there exists a simple
spectrum Gaussian �ow T σ such that I(T σ) = −H ∪H.

Note that, in particular, the above result of Danilenko and Ryzhikov brings
the positive answer to the open problem [14] of existence of Gaussian �ows T σ
with simple spectrum such that σ is not concentrated on a Q-independent set;
indeed, whenever H is not an additively Q-independent set, by Theorem 1.1, the
spectral measure σ resulting from Theorem 1.2 cannot be concentrated on a Borel
Q-independent set. See also [3] for constructions of Gaussian �ows with zero entropy
and having uncountable groups of self-similarities.

Our aim is to continue investigations on realization of countable subgroups as
the groups of self-similarities in further restricted classes of Gaussian �ows whose
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spectral measures are classical from the harmonic analysis point of view. Recall
some basic notions. For every s ∈ R let ξs : R→ S1 be given by ξs(t) = exp(2πist).
A �nite positive Borel measure σ on R is called Kronecker if for each f ∈ L2(R, σ),
|f | = 1 σ-a.e., there exists a sequence (tn) ⊂ R, tn →∞, such that

(1.4) ξtn → f in L2(R, σ).

Each measure σ concentrated on a Kronecker set [12], [18] is a Kronecker measure.
Indeed, Kronecker sets are compact subsets of R on which each continuous func-
tion of modulus one is a uniform limit of characters. Kronecker sets are examples
of Q-independent sets [18]. In general, as shown in [15], a Kronecker measure is
concentrated on a Borel set which is the union of an increasing sequence of Kro-
necker sets, hence a Kronecker measure is concentrated on a Borel Q-independent
set, and the restriction on H in Theorem 1.1 applies. This turns out to be the only
restriction as the main result of the note shows.

Theorem 1.3. Assume that G = −H ∪ H, where H ⊂ R∗+ is a countable multi-

plicative subgroup. Then G can be realized as I(T σ) 2 for a Gaussian-Kronecker
�ow if and only if H is an additively Q-independent set. In particular, h ∈ R+

can be a scale of self-similarity for a Gaussian-Kronecker �ow if and only if h is
transcendental.

An extremal case when two dynamical systems are non-isomorphic is the dis-
jointness in the Furstenberg sense [7], see also [9], [11], [14], [23] for disjointness
results in ergodic theory. We would like also to emphasize that the notion of dis-
jointness turned out to be quite meaningful in the problem of non-correlation with
the Möbius function of sequences of dynamical origin [1]: we need that an automor-
phism T has the property that T p and T q are disjoint for any two di�erent primes.
In connection with that we will prove the following.

Theorem 1.4. Assume that T σ = (Tσt )t∈R is a Gaussian-Kronecker �ow. If s ∈
Q\{±1} then Tσs is disjoint from Tσ1 . For every Gaussian-Kronecker automorphism
T : (X,B, µ) → (X,B, µ) the iterations Tn, Tm are disjoint for any two distinct
natural numbers n,m.

If s is irrational then there exists a Gaussian-Kronecker �ow T σ such that Tσs
and Tσ1 have a non-trivial common factor.

An importance of Kronecker measures in ergodic theory follows from the follow-
ing remarkable result of Foia³ and Stratila [5] (see also [2], and remarks on that
result in [15] and [21]):

(1.5)

If (St)t∈R is an ergodic �ow of a standard probability
Borel space (Y, C, ν), f ∈ L2(Y, C, ν) is real and the spectral measure
σf of f is the symmetrization of a Kronecker measure,
then the (stationary) process (f ◦ St)t∈R is Gaussian.

In [15], any measure σ satisfying the assertion (1.5) of Foia³-Stratila theorem is
called an FS measure. Each Kronecker measure is a Dirichlet measure3 [18], but as

2In a sense, we can also control the �ows T σs for s /∈ −H ∪H; we will prove their disjointness
from T σ , see the proof of this theorem.

3A probability Borel measure σ on R is Dirichlet, if (1.4) is satis�ed for f = 1. From the
dynamical point of view, Dirichlet measures correspond to rigidity: a �ow T is rigid if T tn → Id
for some tn →∞.
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shown in [15], there are FS measures which are not Dirichlet measures (see Figure 1).
Moreover, in [21], it is announced that each continuous measure concentrated on

Kronecker
measures

FS measures

Dirichlet measures

Figure 1. Di�erent classes of measures

an independent Helson4 set is a Kronecker measure (for some examples in [21],
the resulting Gaussian �ows have no non-trivial rigid factors). We will strenghten
Theorem 1.2 to the following result.

Theorem 1.5. Any symmetric countable group G ⊂ R∗ can be realized as the
group of self-similarities of a simple spectrum Gaussian �ow T σ with σ being an
FS measure.

In particular, in connection with the forementioned question from [14], there
is an FS measure for which the Gaussian �ow has simple spectrum but σ is not
concentrated on a Q-independent set. These are apparently the �rst examples of
FS measures which are not concentrated on Q-independent Borel sets but yield
Gaussian �ows with simple spectrum (cf. [15] and [21]).

At the end of the note we will discuss self-similarity properties of Gaussian �ows
arising from a �typical� measure or from the maximal spectral types of a �typical�
�ow (cf. the disjointness results from [4]).

Theorem 1.6. Assume that 0 ≤ a < b. For a �typical� σ ∈ P([a, b]) the �ow T σ is
Gaussian-Kronecker such that for each |r| 6= |s| the �ows T σr and T σs are disjoint.
In particular I(T σ) = {±1}.

For a �typical� �ow T of a standard probability Borel space (X,B, µ), for its

maximal spectral type σT we have: T σT |R+ has simple spectrum and for |r| 6= |s|
the �ows T (σT |R+ )r and T (σT |R+ )s are disjoint. In particular I(T σT |R+ ) = {±1}.

2. Notation and basic results

Assume that T = (Tt)t∈R is a measurable5 measure-preserving �ow acting on
a standard probability Borel space (X,B, µ). It then induces a (continuous) one-
parameter group of unitary operators acting on L2(X,B, µ) by the formula Ttf =
f ◦ Tt. By Bochner's theorem, the function t 7→

∫
X
Ttf · f dµ determines the so

called spectral measure σf of f for which σ̂f (t) =
∫
X
Ttf · f dµ, t ∈ R. Usually, one

only considers spectral measures of f ∈ L2
0(X,B, µ), that is, of elements with zero

mean (the spectral measure of the constant function c is equal to |c|2δ0). Then
σf is a �nite positive Borel measure on R. Among spectral measures there are
maximal ones with respect to the absolute continuity relation. Each such maximal

4A ⊂ R is called Helson if for some δ > 0 and each complex Borel measure κ concentrated on
A the supt∈R

∣∣∫
R e

2πitx dκ(x)
∣∣ is bounded away from the δ-fraction of the total variation of κ.

5Measurability means that for each f ∈ L2(X,B, µ) the map t 7→ f ◦ Tt is continuous.
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measure is called a maximal spectral type measure and, by some abuse of notation,
it will be denoted by σT . We refer the reader to [11] and [14] for some basics about
spectral theory of unitary representations of locally compact Abelian groups in the
dynamical context.

Assume that T is ergodic and let S = (St)t∈R be another ergodic �ow (acting
on (Y, C, ν)). Any probability measure ρ on (X × Y,B ⊗ C) which is (Tt × St)t∈R-
invariant and has marginals µ and ν respectively, is called a joining of T and S. If,
additionally, the �ow ((Tt×St)t∈R, ρ) is ergodic then ρ is called an ergodic joining 6.
The ergodic joinings are extremal points in the simplex of all joinings. If the set
of joinings is reduced to contain only the product measure then one speaks about
disjointness of T and S [7] and we will write T ⊥ S. Similar notions appear when
one considers automorphisms. Note that whenever for some t 6= 0, Tt ⊥ St then
T ⊥ S. Note also that whenever

(2.1) T is weakly mixing then T ⊥ S if and only if T1 ⊥ S1.

Indeed, if T1 6⊥ S1 then there exists an ergodic joining ρ between them di�erent
than the product measure. Then, ρ◦(Tr×Sr) for 0 ≤ r < 1 has the same properties.

By disjointness of T and S,
∫ 1

0
ρ ◦ (Tr × Sr) dr = µ⊗ ν. But T1 is weakly mixing,

so µ⊗ ν is an ergodic joining of T1 and S1, and therefore ρ ◦ (Tr ×Sr) = µ⊗ ν. We
refer the reader to [9] for the theory of joinings in ergodic theory.

A �ow T is called Gaussian if there is a T -invariant subspace H ⊂ L2
0(X,B, µ)

of the zero mean real-valued functions such that all non-zero variables from H are
Gaussian and the smallest σ-algebra making all these variables measurable equals
B. A Gaussian �ow is ergodic if and only if the maximal spectral type on H is
continuous (and then T is weakly mixing). Since Gaussian variables are real, it is
not hard to see that their spectral measures are symmetric, that is, for f ∈ H, σf
is invariant under the map R−1 : x 7→ −x.

A standard way to obtain a (weakly mixing) Gaussian �ow is to start with a
�nite positive continuous Borel measure σ on R+. Consider the symmetrization
σ̃ = σ+ (R−1)∗σ

7. We let V = (Vt)t∈R denote the one-parameter group of unitary
operators on L2(R, σ̃) de�ned by Vt(f)(x) = e2πitxf(x). Then the correspondence

(2.2) f(x) 7→ f(−x)

yields the unitary conjugation of V and its inverse. Let (X,B, µ) be a Gaussian
probability space, that is, a standard probability space together with an in�nite
dimensional, closed, real and B-generating subspace H ⊂ L2(X,B, µ) whose all
non-zero variables are Gaussian. We then consider H + iH, so called complex
Gaussian space, and de�ne an isomorphic copy of V on it. It is then standard to
show (see e.g. [17], Section 2) that V has a unique extension to a (measurable) �ow
T σ = (Tσt ) of (X,B, µ) for which UTσt |H+iH = Vt, t ∈ R. By the same token, the
correspondence (2.2) extends to an isomorphism of (X,B, µ) which conjugates the
Gaussian �ow and its inverse (Tσ−t)t∈R.

A Gaussian �ow T σ is called Gaussian-Kronecker (FS resp.) if σ is a continuous
Kronecker (FS resp.) measure. Following [17], a Gaussian �ow T σ (with the

6If T = S then we speak about self-joinings.
7In general, when f is a measurable map from (X,B) to (Y, C) and κ is a probability measure

on X then f∗(κ) is the measure on Y de�ned by f∗(κ)(C) = κ(f−1(C)).
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Gaussian space H) is called GAG if for each its ergodic self-joining η the space

{f(x) + g(y) : f, g ∈ H}

consists solely of Gaussian variables (the �ow (Tσt ×Tσt )t∈R is then a Gaussian �ow
as well). We have [17]

Gaussian
-Kronecker
flows

FS-flows

simple spectrum flows

GAG flows

Figure 2. Di�erent subclasses of GAG �ows

For all these classes of �ows we have that if T σ is in the class, so is T σs for s 6= 0.
In general, Gaussian �ows given by equivalent measures are isomorphic. It fol-

lows from [17] that any isomorphism between a GAG �ow T σ and another Gaussian
�ow T ν is entirely determined by a unitary isomorphism of restrictions of the uni-
tary actions (Tσt )t∈R and (T νt )t∈R to their Gaussian subspaces. That is, in the GAG
situation, T σ are T ν are isomorphic if and only if σ ≡ ν. If we apply that to σ and
σs for s ∈ R+ we will immediately get (1.1) to hold (in the GAG case).

We will now prove the following.

Proposition 2.1. Assume that T σ is GAG. Fix s 6= 0. Then the sets of self-
joinings of T σ and of self-joinings of Tσs are the same. (Hence ergodic self-joinings
are also the same.) In particular, the factors and the centralizer of the �ow and of
the time s-automorphism are the same.

Proof. This follows from the proof of Theorem 6.1 in [10] which asserts that such
an equality of the sets of self-joinings takes place whenever each ergodic self-joining
of the �ow is an ergodic self-joining for the time-s automorphism. In the GAG case,
by de�nition, such ergodic joinings for the �ow T σ are Gaussian joinings, so they
are automatically ergodic for the Tσs [17]. �

Corollary 2.2. Assume that T σ is GAG. Then Tσs is a GAG automorphism for
each s 6= 0.

We will also make use of the following results.

Theorem 2.3 ([17]). Assume that T σ is GAG and let T η be an arbitrary Gaussian
�ow. Then T σ ⊥ T η if and only if σ̃ ⊥ η̃ ∗ δr for each r ∈ R.

Proposition 2.4 ([15]). If σ1 and σ2 are measures with the FS property and T σ1 ⊥
T σ2 then σ = 1

2 (σ1 + σ2) is also an FS measure.
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3. Auxiliary lemmas

Given a compact subset X ⊂ R denote by P(X) the set of all Borel probabil-
ity measures concentrated on X endowed with the usual weak topology which is
compact and metrizable: if {fn : n ≥ 1} is a dense set in C(X) then

(3.1) d(σ, η) =

∞∑
n=1

1

2n

∣∣∫ fn dσ − ∫ fn dη∣∣
1 +

∣∣∫ fn dσ − ∫ fn dη∣∣
de�nes a metric compatible with the weak topology. Denote U(X) = {f ∈ C(X) :
|f | = 1} which is a closed subset of C(X) in the uniform topology, in particular
U(X) is a Polish space.

Lemma 3.1. Assume that X = [a, b]. Let {h0, h1, . . . , hm} ⊂ R∗ be a Q-independent

set. Then for each f ∈ U
(⋃m

j=0 hjX
)
and ε > 0

(3.2)
Af,ε(h1, . . . , hm) :={

σ ∈ P ([a, b]) : (∃t ∈ R) ‖f − ξt‖L2(R, 1
m+1

∑m
j=0 σhj )

< ε
}

is open and dense in P([a, b]).

Proof. The set Af,ε(h1, . . . , hm) is clearly open, so we need to show its denseness in
P(X). Since discrete measures with a �nite number of atoms form a dense subset of

P(X) we take ν =
∑N
s=1 asδys with ys ∈ [a, b], as > 0, s = 1, . . . , N and

∑N
s=1 as =

1 and �x δ > 0. All we need to show is to �nd a subset {x1, . . . , xN} ⊂ [a, b] such
that |xs − ys| < δ for s = 1, . . . , N and such that the set

L :=

m⋃
j=0

{hjx1, . . . , hjxN} is Q-independent.

Indeed, in this case by Kronecker's theorem, the set L is a �nite Kronecker set, so the

measure 1
m+1

∑m
j=0

(∑N
s=1 asδxs

)
hj

is Kronecker, whence belongs toAf,ε(h1, . . . , hm)

and it δ-approximates ν. To show that x1, . . . , xN can be selected so that L is Q-
independent, consider the algebraic varieties of the form(z1, . . . , zN ) ∈ X×N :

m∑
j=0

N∑
s=1

kjshjzs = 0


for some non-zero integer matrix (kjs). Since

m∑
j=0

N∑
s=1

kjshjzs =

N∑
s=1

 m∑
j=0

kjshj

 zs

and
∑m
j=0 kjshj 6= 0 whenever (k0s, . . . , kms) 6= (0, . . . , 0) (and there are such

vectors since the matrix (kjs) is not zero), each such variety has N -dimensional
Lebesgue measure zero. Since there are only countably many such varieties in-
volved, we may discard the union S of them from [a, b]×N . Now, each choice of
(x1, . . . , xN ) from (y1 − δ, y1 + δ)× . . .× (yN − δ, yN + δ) \ S satis�es our require-
ments. �
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Lemma 3.2. Given H ⊂ R∗+ a countable subset which is a Q-independent set, the
set of continuous (Kronecker) measures σ ∈ P([a, b]) for which the measure

(3.3)
∑
h∈H

ahσh is a Kronecker measure (on R)

for each choice of ah ≥ 0,
∑
h∈H ah = 1, is a Gδ and dense subset of P([a, b]).

Proof. Denote by Pc([a, b]) the set of continuous measures which is a Gδ and dense
subset of P([a, b]). Let H = {h0, h1, h2, . . .}. For every m ≥ 0 �x a countable dense

family
{
g
(m)
i : i ≥ 1

}
⊂ U (

⋃m
i=0 hi[a, b]). Then, by Lemma 3.1, the set

Pc([a, b]) ∩
∞⋂
m=1

∞⋂
i=1

∞⋂
p=1

A
g
(m)
i , 1p

(h1, . . . , hm)

is Gδ and dense in P([a, b]) and it remains to show that this is precisely the set of
measures satisfying (3.3). Indeed, given m ≥ 1, the set

Km(H) := Pc([a, b]) ∩
∞⋂
i=1

∞⋂
p=1

A
g
(m)
i , 1p

(h1, . . . , hm)

is precisely the set of continuous Kronecker measures σ ∈ P([a, b]) such that the
measure 1

m+1

∑m
i=0 σhi is a Kronecker measure (on the real line). Moreover, each

measure absolutely continuous with respect to a Kronecker measure is also a Kro-
necker measure [15]. Therefore the set Km(H) is equal to the set of all Kronecker
measures σ ∈ P([a, b]) such that

∑m
i=0 biσhi is Kronecker for arbitrary choice of

bi ≥ 0,
∑m
i=0 bi = 1. Finally, for each m ≥ 1,

1∑m
i=0 ahi

m∑
i=0

ahiσhi �
1

m+ 1

m∑
i=0

σhi ,

so if for each m ≥ 1 the measure 1
m+1

∑m
i=0 σhi is Kronecker, so is

∑
h∈H ahσh. �

Remark 3.3. The idea of the above proofs is taken from a letter that has been sent to
us by T.W. Körner. In this letter, T.W. Körner shows that given a transcendental
number h ∈ R, for a �typical� (in the Hausdor� metric) closed subset K ⊂ [a, b]
the set K ∪hK is Kronecker and uncountable. The proofs are the same since �nite
sets are dense in the Hausdor� metric and if h is transcendental then given distinct
y1, . . . , yN ∈ [a, b] and δ > 0 we can �nd qi ∈ Q so that for xi := h2iqi we have
|xi − yi| < δ for i = 1, . . . , N and clearly the set {x1, . . . , xN , hx1, . . . , hxN} is Q-
independent. It only remains to notice that uncountable closed subsets are typical
in the Hausdor� metric.

Note also that using the proofs of Lemmas 3.1 and 3.2, given H ⊂ R∗+ a count-
able multiplicative subgroup which is additively Q-independent, we obtain that a
typical (with respect to the Hausdor� distance) closed subset K ⊂ [a, b] has the
property that for each �nite subset C ⊂ H the set

⋃
h∈C hK is Kronecker, so the

set
⋃
h∈H hK is a Q-independent Fσ-set.

We will also need the following �compactQ-independent set� version of Lemma 3.2.

Lemma 3.4. Assume that K ⊂ R is a compact uncountable set. Assume that
H ⊂ R∗+ is a countable set which is additively Q-independent. Assume moreover
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that the set
⋃
h∈H hK is Q-independent. Then the set of continuous (Kronecker)

measures σ concentrated on K for which the measure

(3.4)
∑
h∈H

ahσh is a Kronecker measure

for each choice of ah ≥ 0,
∑
h∈H ah = 1, is a Gδ and dense subset of P(K).

Proof. This follows from the proofs of Lemmas 3.1 and 3.2, where in addition the
proof of Lemma 3.1 is simpli�ed; indeed, for any choice of {y1, . . . , yN} ⊂ K the
set
⋃m
j=0{hjy1, . . . , hjyN} is Q-independent by assumption (so we may take xi = yi

for i = 1, . . . , N). �

Remark 3.5. For any non-trivial compact interval [a, b] ⊂ R denote by P [a,b]
c (R)

the set of measures ν ∈ Pc(R) such that ν([a, b]) > 0. Since the map Pc(R) 3
ν 7→ ν([a, b]) ∈ R is continuous, the set P [a,b]

c (R) is open and dense in Pc(R).

Let us consider the map ∆ = ∆[a,b] : P [a,b]
c (R) → Pc([a, b]) such that ∆(ν) is

the conditional probability measure ν( · |[a, b]). This map is continuous and the

preimage of any dense subset of Pc([a, b]) is dense in P [a,b]
c (R). Indeed, let A ⊂

Pc([a, b]) be dense and take any ν ∈ P [a,b]
c (R). Then there exists a sequence (ν̃n)n≤1

in A such that ν̃n → ∆(ν) weakly. For every n ≥ 1 de�ne νn ∈ P [a,b]
c (R) so that

the restriction of νn to [a, b] is ν([a, b])ν̃n and the measures νn and ν coincide on
R \ [a, b]. Then ∆(νn) = ν̃n ∈ A and νn → ν weakly. Consequently, the preimage

∆−1A of any Gδ dense subset A ⊂ Pc([a, b]) is Gδ dense in P [a,b]
c (R).

Before we prove a certain disjointness property of Kronecker measures, we will
need the following general observation.

Lemma 3.6. Let (X,B) be a standard Borel space and let ϕ : X → X be a
measurable map. Let σ be a �nite positive continuous Borel measure on X such that
the map ϕ : (X,σ)→ (X,ϕ∗σ) is almost everywhere invertible. Assume that σ({x ∈
X : ϕ(x) = x}) = 0 and that the measures σ and ϕ∗σ are not mutually singular.
Then there exists a measurable set A ∈ B such that σ(A) > 0, σ(A ∩ ϕ−1A) = 0
and the measures σ and ϕ∗σ restricted to A are equivalent.

Proof. By assumption, there exists Y ∈ B such that σ(Y ) > 0 and the measures σ
and ϕ∗σ restricted to Y are equivalent. It follows that if A ∈ B, A ⊂ Y , σ(A) > 0,
then the measures σ and ϕ∗σ restricted to A are also equivalent.

Case 1. Suppose that there exists B ∈ B such that B ⊂ Y and σ(B \ϕ(B)) > 0.
Set A := B \ϕ(B). Then σ(A) > 0 and A∩ϕ−1A = (B \ϕ(B))∩ (ϕ−1B \B) = ∅.
Since A ⊂ B ⊂ Y , our claim follows.

Case 2. Suppose that for every B ∈ B with B ⊂ Y we have σ(B \ ϕ(B)) = 0.
As σ and ϕ∗σ restricted to Y are equivalent, it follows that

(3.5) 0 = ϕ∗σ(B \ ϕ(B)) = σ(ϕ−1B \B) for every B ⊂ Y.

We now show that there exists A ∈ B such that A ⊂ Y , σ(A) > 0 and σ(A∩ϕ−1A) =
0, which gives our assertion. Suppose that, contrary to our claim, for every A ∈ B
with A ⊂ Y the condition σ(A) > 0 implies σ(A ∩ ϕ−1A) > 0. It follows that

(3.6) σ(B \ ϕ−1B) = 0 for every measurable B ∈ B with B ⊂ Y.
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Indeed, otherwise for some B as above, A := B \ ϕ−1(B) ⊂ Y would be of positive
σ-measure and since

(B \ ϕ−1B) ∩ ϕ−1(B \ ϕ−1B) = (B \ ϕ−1B) ∩ (ϕ−1B \ ϕ−2B) = ∅,

and we would get σ(A ∩ ϕ−1A) = 0, a contradiction.
Now, (3.5) combined with (3.6) gives σ(B4ϕ−1B) = 0 for every B ∈ B with

B ⊂ Y . It follows that ϕ(x) = x for σ-a.e. x ∈ Y , contrary to assumption. �

For any real s let θs : R → R, θs(t) = t + s. Recall that for every n ∈ Z and
z1, z2 ∈ S1 we have

(3.7) |zn1 − zn2 | ≤ |n||z1 − z2|.

Lemma 3.7. Let σ be a continuous Kronecker measure on R. Then for every
s ∈ Q∗ \ {1} and r ∈ R we have σ ⊥ σs ∗ δr.

Proof. Suppose that, contrary to our claim, there exists s ∈ Q∗ \ {1} and r ∈ R
such that σ 6⊥ σs ∗ δr. Let ϕ := θr ◦Rs. Then ϕ : R→ R is an invertible map with
one �xed point and σs ∗ δr = ϕ∗σ. By Lemma 3.6, there exists a Borel set A0 ⊂ R
such that σ(A0) > 0, σ(A0 ∩ ϕ−1A0) = 0 and the measures σ, ϕ∗σ restricted to
A0 are equivalent. Thus σ(ϕ−1A0) > 0. Let A1, A2 ⊂ A0 be disjoint Borel subsets
such that σ(ϕ−1A1) > 0 and σ(ϕ−1A2) > 0.

Let s = q/p with p and q relatively prime integer numbers. Choose z0 ∈ S1 such
that zq0 6= 1. Let us consider the measurable map f : R → S1 such that f(x) = z0
if x ∈ ϕ−1A2 and f(x) = 1 otherwise. Since σ is a Kronecker measure, there
exists a sequence (tn)n∈N of real numbers such that ξtn → f in L2(R, σ). Thus
ξtn ◦ ϕ−1 → f ◦ ϕ−1 in L2(R, ϕ∗σ). Since

g0n(x) := χA0
(x) |exp(2πitnx)− 1| ≤ |ξtn(x)− f(x)|

g1n(x) := χA1(x)
∣∣exp(2πitns

−1(x− r))− 1
∣∣ ≤ ∣∣ξtn(ϕ−1x)− f(ϕ−1x)

∣∣
g2n(x) := χA2

(x)
∣∣exp(2πitns

−1(x− r))− z0
∣∣ ≤ ∣∣ξtn(ϕ−1x)− f(ϕ−1x)

∣∣ ,
it follows that (g0n) tends to zero in measure σ and the sequences (g1n), (g2n) tend
to zero in measure ϕ∗σ. As σ ≡ ϕ∗σ on A0 and A1, A2 ⊂ A0, the sequences (g1n),
(g2n) tend to zero in measure σ, as well. Fix

(3.8) 0 < ε <
|zq0 − 1|

2(|p|+ |q|)
.

Then there exist measurable sets A′k ⊂ Ak, k = 0, 1, 2 and n ∈ N such that for
k = 0, 1, 2

σ(Ak \A′k) <
1

4
min(σ(A1), σ(A2)) and gkn(x) < ε for all x ∈ A′k.

Therefore for k = 1, 2 we have

σ(Ak \A′0) ≤ σ(A0 \A′0) <
1

4
σ(Ak) and σ(Ak \A′k) <

1

4
σ(Ak),
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so σ(A′0 ∩ A′k) > σ(Ak)/2 > 0. Choose two real numbers x1 ∈ A′0 ∩ A′1 and
x2 ∈ A′0 ∩A′2. Then

|exp(2πitnx1)− 1| = g0n(x1) < ε,

∣∣∣∣exp(2πitn
p

q
(x1 − r))− 1

∣∣∣∣ = g1n(x1) < ε,

|exp(2πitnx2)− 1| = g0n(x2) < ε,

∣∣∣∣exp(2πitn
p

q
(x2 − r))− z0

∣∣∣∣ = g2n(x2) < ε.

In view of (3.7),

|exp(2πitnp x1)− 1| < |p|ε, |exp(2πitnp(x1 − r))− 1| < |q|ε,
|exp(2πitnp x2)− 1| < |p|ε, |exp(2πitnp(x2 − r))− zq0 | < |q|ε.

Hence

|exp(2πitnpr)− 1| < (|p|+ |q|)ε, |exp(2πitnpr)z
q
0 − 1| < (|p|+ |q|)ε,

so

|1− zq0 | < 2(|p|+ |q|)ε,
contrary to (3.8). �

Let us now consider the space P(R) of all Borel probability measures on R
endowed with the weak topology.

By supp(σ) we always mean the topological support of the measure σ. Let us
recall that

if σ ∈ P(R) has supp(σ) = R
then the set {ν ∈ P(R) : ν � σ} is dense in P(R).

(3.9)

Denote by Pc(R) the set of all continuous members of P(R) (this is a Gδ and dense
subset of P(R)).

The proof of the lemma below is a slight modi�cation of the proof of Lemma 3.1
from [4].

Lemma 3.8. The set

S = {σ ∈ Pc(R) : σs ⊥ σ ∗ δt for each 1 6= s ∈ R∗, t ∈ R}

is Gδ and dense in P(R).

Proof. Denote by I the family of open subset of R which are �nite unions of open
intervals. Recall that for two measures σ, ν ∈ P(R)

(3.10) σ ⊥ ν ⇐⇒ ∀n∈N ∃O∈I σ(O) < 1/n and ν(O) > 1− 1/n.

For any compact rectangle I × J ⊂ (R∗ \ {1}) × R denote by V(I × J) the set of
all �nite covers of I × J by compact rectangles contained in (R∗ \ {1})×R. Notice
that for each open subset O ∈ I the map

(3.11) Pc(R)× R∗ × R 3 (σ, s, r) 7→ σs ∗ δr(O) ∈ R

is continuous. Therefore, given a compact rectangle F ⊂ (R∗ \ {1}) × R and an
open subset O ∈ I the map

fF,O : Pc(R) 3 σ 7→
(
σ(O), max

(s,r)∈F
σs ∗ δr(O)

)
∈ R2
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is continuous. Let

S̃ =
⋂
I 631

⋂
J

⋂
n∈N

⋃
κ∈V(I×J)

⋂
F∈κ

⋃
O∈I

f−1F,O ((1− 1/n,∞)× (−∞, 1/n)) ,

where I and J run over closed intervals with rational endpoints. Then S̃ is a Gδ
set.

We claim that S̃ = S. Indeed, let σ ∈ S. Let I 63 1 and J ⊂ R be compact
intervals and n ∈ N. By assumption and (3.10), for every (s0, r0) ∈ I × J there
exists an open set Os0,r0 ∈ I such that

σ(Os0,r0) > 1− 1/n and σs0 ∗ δr0(Os0,r0) < 1/n.

Since the map (3.11) is continuous, there exist open rectangles U ′s0,r0 ⊂ Us0,r0 ⊂ R2

such that (s0, r0) ∈ U ′s0,r0 and a compact rectangle Fs0,r0 ⊂ (R∗\{1})×R satisfying
U ′s0,r0 ⊂ Fs0,r0 ⊂ Us0,r0 such that

σs ∗ δr(Os0,r0) < 1/n for all (s, r) ∈ Us0,r0 .

Since I × J is compact and {U ′s,r : (s, r) ∈ I × J} is its open cover, there exists a
�nite cover κ := {Fs1,r1 , . . . , Fsk,rk} of I × J . It follows that

fFsj,rj ,Osj,rj (σ) ∈ (1− 1/n,∞)× (−∞, 1/n) for all j = 1, . . . , k,

thus σ ∈ S̃.
Suppose that σ ∈ S̃ and �x s0 ∈ R∗ \ {1}, r0 ∈ R and n ∈ N. Next choose I 63 1

and J ⊂ R compact intervals such that (s0, r0) ∈ I × J . By assumption, there
exists a �nite cover κ ∈ V(I × J) such that for every F ∈ κ there exists OF ∈ I
with

σ(OF ) > 1− 1/n and σs ∗ δr(OF ) < 1/n for all (s, r) ∈ F.

Choosing F ∈ κ for which (s0, r0) ∈ F and applying (3.10) we have that σ and
σs0 ∗ δr0 are orthogonal, so σ ∈ S.

It remains to show that S is dense. To this end we use the proof of Proposition
3.4 in [4]. Namely, in this proposition there is a construction of a weakly mixing
�ow T such that for a certain sequence of real numbers uk →∞ we have: for each
l ∈ N

(3.12) T−duk → 10−l for d = 1− 10−l and

(3.13) T−cuk → 0 uniformly in c ∈ [1, 10l]

(the convergence takes place in the weak operator topology). It follows that

(3.14) σTd ⊥ σTc ∗ δt
for all t ∈ R; indeed, (3.12) and (3.13) mean respectively

ξuk → 10−l weakly in L2(R, σTd),

and

ξuk → 0 weakly in L2(R, σTc).
It is easy to see that the latter condition implies

ξuk → 0 weakly in L2(R, σTc ∗ δt)

for each t ∈ R, and the mutual singularity (3.14) follows.



ON THE SELF-SIMILARITY PROBLEM FOR GAUSSIAN-KRONECKER FLOWS 13

Now, in view of (3.14), σT ⊥ σTc/d ∗δt/d, and since in (3.13) c can be replaced by
−c, it follows that σT ∈ S. It is also clear that S is closed under taking absolutely
continuous measures. Since suppσT = R 8, the result follows from (3.9). �

Recall also the following basic observation.

Lemma 3.9. Let s = (sj)j≥1 be a sequence of positive numbers and let g = (gj)j≥1
be a sequence of uniformly bounded continuous functions. Then the set

Ws,g =
{
ν ∈ P(R) : (∃ tn →∞) (∀ j ≥ 1) ξsjtn → gj weakly in L2(R, ν)

}
is Gδ in P(R).

Proof. Let (fm)m≥1 be a sequence of continuous functions on R uniformly bounded
by 1, which is linearly dense in L2(R, ν) for every ν ∈ P(R). Set

R(n, ε) =

µ ∈ P(R) :
∑
m,j≥1

1

2m+j

∣∣∣∣∫
R

(
e2πisjnx − gj(x)

)
fm(x) dµ(x)

∣∣∣∣ < ε

 .

The set R(n, ε) is open. To complete the proof it su�ces to notice that

Ws,g =
⋂

Q3ε>0

⋂
m≥1

⋃
n≥m

R(n, ε).

�

Lemma 3.10. Let H ⊂ R∗+ be a countable multiplicative subgroup. Then for a
typical ν ∈ P(R) the measure η :=

∑
h∈H ahνh (with ah > 0 and

∑
h∈H ah = 1)

yields a Gaussian �ow T η|R+ with simple spectrum.

Proof. Set G = −H ∪H and let H = {si : i ≥ 0} (s0 = 1). In [4], Danilenko and
Ryzhikov constructed a rank-1 �ow T preserving a σ-�nite measure µ (the �ow acts
on (X,B, µ)) such that if σ = σT denotes its maximal spectral type on L2(X,B, µ)
then the Gaussian �ow

(3.15) T (
∑
i≥1

1

2i
σsi)|R+ has simple spectrum.

To prove this, they used the following properties of T :
a) T√2s ∈WCP (Ts)

9 for each s ∈ H,

b) 1
q I + q−1

q Ts ∈WCP (Ts) for each s ∈ H and q ∈ N,
c) for each �nite sequence s1 < s2 < · · · < sk of elements of H and each

1 ≤ l0 ≤ k there exists tj →∞ such that
(i) Ttjsj → 1

2k I if 1 ≤ l ≤ k, l 6= l0,

(ii) Ttjsl0 →
1
2kTsl0 .

Notice that the conditions a), b) and c) can be expressed as follows in terms of
weak convergence of continuous and bounded functions in L2(R, σ):

a') for each s ∈ H there exists a sequence nk →∞ such that

ξsnk → ξ√2s,

8This fact is well known for Z-actions, e.g. [20], Chapter 3, and can be easily rewritten using
special representation of �ows. See also the proof of Theorem A in [22].

9An operator Q belongs to the weak closure of powers WCP(R) if for an increasing sequence
(mj) of integers, Rmj → P in the weak operator topology.
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b') for each s ∈ H and q ∈ N there exists a sequence nk →∞ such that

ξsnk →
1

q
+
q − 1

q
ξs,

c') for each �nite sequence s1 < s2 < · · · < sk of elements of H and each
1 ≤ l0 ≤ k there exists tj →∞ such that
(i) ξtjsj → 1

2k if 1 ≤ l ≤ k, l 6= l0,

(ii) ξtjsl0 →
1
2k ξsl0 .

The arguments used in the proof of Theorem 4.4 in [4] show that for each continuous
probability measure σ on R conditions a'), b') and c') imply the simplicity of

spectrum of the �ow T (
∑
k≥1

1

2k
σsk )|R+ . Moreover, by Lemma 3.9, the set of measures

ν ∈ P(R) satisfying these conditions is Gδ. We will show now that it is also dense
in P(R). Notice that conditions a'), b') and c') hold also in L2(R, ν) for any ν � σ.
Since σT is the maximal spectral type of a rank-1 in�nite measure-preserving �ow
T , the Gelfand spectrum of the corresponding Koopman representation is equal
to R. It follows that the topological support of σT is full and therefore the result
follows from (3.9). �

4. Proofs of theorems

Proof of Theorem 1.3. (based on Lemmas 3.2 and 3.8.) Using these two lemmas,
for a �typical� (continuous, Kronecker) measure σ ∈ P([a, b]) we have (with ah > 0,
and

∑
h∈H ah = 1)

−H ∪H ⊂ I(T η),

where η :=
∑
h∈H ahσh is a Kronecker measure and moreover

(4.1) σs ⊥ σ ∗ δt
for each non-zero real s 6= 1 and arbitrary t ∈ R. All we need to show is that when
s /∈ −H ∪H then ηs 6≡ η. However if s /∈ H then even more is true: η ⊥ ηs ∗ δt for
arbitrary t ∈ R and s /∈ {0, 1}. It follows that

η̃s ⊥ η̃ ∗ δt
for each s /∈ −H∪H and t ∈ R. In view of Theorem 2.3, it follows that T η is disjoint
from T ηs (isomorphic to T ηs ) for s /∈ −H ∪H. In particular, −H ∪H = I(T η) and
the result follows. �

Proof of Theorem 1.3. (based on Lemma 3.4.) Given H ⊂ R∗+ a multiplicative
subgroup which is an additively Q-independent set, in [6], there is a construction

of a perfect compact set K such that K̂ :=
⋃
h∈H hK is independent and for K̃ :=

−K̂∪K̂ the following holds: (rK̃+t)∩K̃ is countable whenever |r| /∈ H and t ∈ R is
arbitrary. Using Lemma 3.4 �nd a (continuous, Kronecker) measure σ ∈ P(K) such

that η :=
∑
h∈H ahσh is a Kronecker measure. Then η is concentrated on K̂. All

we need to show is that if |r| /∈ H, then the symmetrization of ηr is not equivalent
to the symmetrization of η. This is however clear, since the symmetrization of ηr
is a continuous measure concentrated on rK̃. As in the previous proof we deduce
that for s /∈ −H ∪H we obtain disjointness of the corresponding �ows. �

Proof of Theorem 1.4. First notice that directly from Lemma 3.7, it follows that
whenever σ is a Kronecker measure then for each r1, r2 ∈ Q∗, r1 6= r2, we have

σr1 ⊥ σr2 ∗ δt for each t ∈ R.
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It follows that σ̃r1 ⊥ σ̃r2∗δt for all t ∈ R, so by Theorem 2.3, the Gaussian-Kronecker
�ows T σr1 and T σr2 are disjoint. In view of (2.1), it follows that T

σr1
1 ⊥ Tσr21 , thus

Tσr1 ⊥ T
σ
r2 .

Now suppose that T = Tσ : (X,B, µ) → (X,B, µ) is a Gaussian-Kronecker
automorphism, i.e. σ = σ0 + σ0 for a continuous Kronecker measure σ0 ∈ P(T).10

Denote by σ′ the image of σ0 via the map T 3 z 7→ Arg(z)/2π ∈ [0, 1). Then σ′ is
a continuous Kronecker measure on R such that (ξ1)∗σ̃

′ = σ and σ̃′ ∗ δm ⊥ σ̃′ for

all m ∈ N. Denote by H the Gaussian space of the �ow T σ′ . Then the Koopman
operator of Tσ

′

1 has simple spectrum on H and its spectral type is (ξ1)∗σ̃
′ = σ, see

Appendix in [16]. Since the spectral type of ζ1 (with respect to Tσ
′

1 ) is (ξ1)∗σ̃
′ = σ,

it follows that ζ1 ◦ (Tσ
′

1 )n, n ∈ Z, span the space H. Thus Tσ′1 is isomorphic to Tσ.
By the �rst assertion of the theorem, it follows that Tnσ is disjoint from Tmσ for any
pair of distinct natural numbers.

In order to prove the second part of the theorem note that if s is irrational
then the set {1, s} is Q-independent, so by Lemma 3.2 we can �nd a (continuous,
Kronecker) measure σ ∈ P([a, b]) such that η := 1

2 (σ+ σs) is a Kronecker measure.
Since σs � η and σs � ηs the Gaussian-Kronecker �ows T η and T ηs have a
common non-trivial (Gaussian) factor. Its time one map is a common non-trivial
factor of T η1 and T ηs1 and it remains to notice that the Gaussian automorphism T ηs1
is isomorphic to T ηs . �

Proof of Theorem 1.5. Let H = G ∩R∗+ and let (ah)h∈H be positive numbers such
that

∑
h∈H ah = 1. By Lemmas 3.8, 3.10 and Lemma 3.2 (applied to H = {1})

combined with Remark 3.5, there exists ν′ ∈ Pc(R) such that

(i) ν′s ⊥ ν′ ∗ δt for all s ∈ R∗ \ {1} and t ∈ R;
(ii) the Gaussian �ow T (

∑
h∈H ahν

′
s)|R+ has simple spectrum

(iii) ν := ∆(ν′) ∈ Pc([a, b]) is a Kronecker measure

(in fact, for a �typical� ν′ ∈ Pc(R) the properties (i)-(iii) hold). Since the conditions
(i) and (ii) hold also for any measure absolutely continuous with respect to ν,
the Kronecker measure ν satis�es (i) and (ii) as well. Therefore, setting σ :=∑
h∈H ahνs, by (ii), the Gaussian �ow T σ has simple spectrum. The same argument

as in the proof of Theorem 1.3 shows that (i) together with (ii) imply I(T σ) =
−H ∪ H and T νs ⊥ T νr whenever |r| 6= |s|. Each Kronecker measure νh, h ∈ H
is an FS measure so, by Proposition 2.4, it follows that σ =

∑
h∈H ahνs is an FS

measure 11, which completes the proof. �

Proof of Theorem 1.6. The �rst part follows from Lemma 3.8 along the same lines
as the �rst proof of Theorem 1.3 (for H = {1}).

In view of Corollary 2 in [16], a typical �ow T has the SC property,12 which is
equivalent to the fact that T σT has simple spectrum. In particular, it implies that
T σT is GAG.

In order to prove that σT ⊥ (σT )s∗δr, s ∈ R∗\{1}, r ∈ R for a typical �ow T we
follow the proof of Theorem 3.2 from [4] (using Lemma 3.8 and the existence of a

10T stands for {z ∈ C : |z| = 1}.
11We use here the elementary fact that the L2-limit of a sequence of Gausian variables remains

Gaussian.
12The SC property means that if we set σ = σT then for each n ≥ 2 the conditional measures

of the disintegration of σ⊗n over σ∗n via the map Rn 3 (x1, . . . , xn) 7→ x1 + · · · + xn ∈ R are
purely atomic with n! atoms.
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�ow satisfying (3.14)). Since T σT is GAG for a typical �ow T , by Proposition 2.3,
it follows that T (σT )s and T (σT )r are disjoint wherever |r| 6= |s|. �

Question. Is there a Kronecker measure σ ∈ P(R+) such that I(T σ) is uncount-
able?
This question is to be compared with Ryzhikov's question whether there is a weakly
mixing, non-mixing �ows with uncountable group of self-similarities, see [3], Prob-
lem (1).

References

1. J. Bourgain, P. Sarnak, T. Ziegler, Disjointness of Möbius from horocycles �ows, arXiv
1110.0992.

2. I.P. Cornfeld, S.V. Fomin, Y.G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1982.
3. A. Danilenko, Flows with uncountable but meager group of self-similarities, Contemporary

Math. 567 (2012), 99-105.
4. A. Danilenko, V.V. Ryzhikov, On self-similarities of ergodic �ows, Proc. London Math. Soc.

104 (2012), 431-454.
5. C. Foia³, S. Stratila, Ensembles de Kronecker dans la théorie ergodique, C.R. Acad. Sci.

Paris, série A 267, 166-168.
6. K. Fr�aczek, M. Lema«czyk, On the self-similarity problem for ergodic �ows, Proc. London

Math. Soc. 99 (2009), 658-696.
7. H. Furstenberg, Disjointness in ergodic theory, minimal sets and diophantine approximation,

Math. Syst. Th. 1 (1967), 1-49.
8. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton

University Press, Princeton, New Jersey, 1981.
9. E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs 101, AMS,

Providence, RI, 2003.
10. A. del Junco, D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory

Dynam. Systems 7 (1987), 531-557.
11. A. Katok, J.-P. Thouvenot, Spectral Properties and Combinatorial Constructions in Ergodic

Theory, Handbook of dynamical systems. Vol. 1B, 649-743, Elsevier B. V., Amsterdam, 2006.
12. T.-W. Körner, Some results on Kronecker, Dirichlet and Helson sets, Annales Inst. Fourier,

20 (1970), 219-324.
13. J. Kuªaga, On the self-similarity problem for smooth �ows on orientable surfaces, Ergodic

Theory Dynam. Systems (2011), published online, DOI: 10.1017/S0143385711000459.
14. M. Lema«czyk, Spectral Theory of Dynamical Systems, Encyclopedia of Complexity and

System Science, Springer-Verlag (2009), 8554-8575.
15. M. Lema«czyk, F. Parreau, On the disjointness problem for Gaussian automorphisms, Proc.

Amer. Math. Soc. 127 (1999), 2073-2081.
16. M. Lema«czyk, F. Parreau, Special �ows over irrational rotations with the simple convolu-

tions property, preprint available http://www-users.mat.umk.pl/~mlem/publications.php.
17. M. Lema«czyk, F. Parreau, J.-P. Thouvenot, Gaussian automorphisms whose ergodic self-

joinings are Gaussian, Fund. Mah. 164 (2000), 253-293.
18. L.-A. Lindahl, F. Poulsen, Thin Sets in Harmnonic Analysis, Lecture Notes in Pure and

Applied Mathematics, Marcel Dekker, Inc. New York, 1971.
19. B. Marcus, The horocycle �ow is mixing of all orders, Invent. Math. 46 (1978), 201-209.
20. M.G. Nadkarni, Spectral Theory of Dynamical Systems, Birkhäuser Advanced Texts 1998.
21. F. Parreau, On the Foia³ and Stratila theorem, Proc. Conference on Erg odic Theory and

Dynamical Systems, Toru« 2000, 106-108, available http://www-users.mat.umk.pl/~mlem.
22. W.C. Ridge, Spectrum of a composition operator, Proc. Amer. Math. Soc. 37, (1973), 121-

127.
23. T. de la Rue, Joinings in ergodic theory, Encyclopedia of Complexity and System Science,

Springer-Verlag (2009), 5037-5051.
24. V.V. Ryzhikov, Intertwinings of tensor products, and the centralizer of dynamical systems,

Sb. Math. 188 (1997), 67-94.
25. V.V. Ryzhikov, On disjointness of mixing rank one actions, arxiv:1109.0671.



ON THE SELF-SIMILARITY PROBLEM FOR GAUSSIAN-KRONECKER FLOWS 17

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
ul. Chopina 12/18, 87-100 Toru«, Poland

E-mail address: fraczek@mat.umk.pl

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
ul. Chopina 12/18, 87-100 Toru«, Poland

E-mail address: joanna.kulaga@gmail.com

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
ul. Chopina 12/18, 87-100 Toru«, Poland

E-mail address: mlem@mat.umk.pl


