PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000-000 S 0002-9939(XX)0000-0

ON THE SELF-SIMILARITY PROBLEM FOR GAUSSIAN-KRONECKER FLOWS

KRZYSZTOF FRĄCZEK, JOANNA KUŁAGA, AND MARIUSZ LEMAŃCZYK

(Communicated by Nimish Shah)

ABSTRACT. It is shown that a countable symmetric multiplicative subgroup $G = -H \cup H$ with $H \subset \mathbb{R}^*_+$ is the group of self-similarities of a Gaussian-Kronecker flow if and only if H is additively \mathbb{Q} -independent. In particular, a real number $s \neq \pm 1$ is a scale of self-similarity of a Gaussian-Kronecker flow if and only if s is transcendental. We also show that each countable symmetric subgroup of \mathbb{R}^* can be realized as the group of self-similarities of a simple spectrum Gaussian flow having the Foiaş-Stratila property.

1. INTRODUCTION

Assume that $\mathcal{T} = (T_t)_{t \in \mathbb{R}}$ is a (measurable) measure-preserving flow acting on a standard probability Borel space (X, \mathcal{B}, μ) . Given $s \in \mathbb{R}^*$, one says that it is a scale of self-similarity of \mathcal{T} if \mathcal{T} is isomorphic to $\mathcal{T}_s := (T_{st})_{t \in \mathbb{R}}$. Denote by $I(\mathcal{T})$ the set of all scales of self-similarities of \mathcal{T} . Then \mathcal{T} is called *self-similar* if $I(\mathcal{T}) \neq \{\pm 1\}$. Classical examples of self-similar flows are given by horocycle flows where $I(\mathcal{T})$ equals either \mathbb{R}^* or \mathbb{R}^*_+ [19]. A systematic study of the problem of self-similarity has been done recently in [4] and [6]. In particular, $I(\mathcal{T})$ turns out to be a multiplicative subgroup of \mathbb{R}^* ([6]) which is Borel ([4]), and one of the main problems in this domain is to classify all Borel subgroups of \mathbb{R}^* that may appear as groups of self-similarities of ergodic flows; see also [3], [13], [24], [25] for a recent contribution to other aspects of the problem of self-similarity of ergodic flows. From this point of view the subclass of so called GAG flows $[17]^1$ of the class of Gaussian flows is especially attractive since self-similarities appear there as natural invariants, see (1.1) below. By definition, GAG flows are those Gaussian flows whose ergodic self-joinings remain Gaussian. All Gaussian flows with simple spectrum are GAG flows [17]. If $\mathcal{T}^{\sigma} = (T_t^{\sigma})_{t \in \mathbb{R}}$ denotes the Gaussian flow determined by a finite positive (continuous) measure σ on \mathbb{R}_+ and the flow is GAG then

(1.1) $I(\mathcal{T}^{\sigma})$ is equal to the (multiplicative) group $-I(\sigma) \cup I(\sigma)$,

where $I(\sigma) = \{s \in \mathbb{R}^*_+ : \sigma_s \equiv \sigma\}$ and $\sigma_s = (R_s)_*(\sigma)$ denotes the image of σ via the map $R_s : x \mapsto sx$ [17]. Recall that -1 is always a scale of self-similarity for a Gaussian flow.

©XXXX American Mathematical Society

²⁰¹⁰ Mathematics Subject Classification. Primary 37A10, 60G15; Secondary 43A05, 43A46.

 $^{^{1}}$ In [15] as well as in [17] only Gaussian automorphisms are considered, however all results can be rewritten for Gaussian flows.

In this note we focus on the problem of self-similarities in some subclasses of simple spectrum Gaussian flows. We first recall already known results. Classically, if σ is concentrated on an additively \mathbb{Q} -independent Borel set $A \subset \mathbb{R}_+$ then the Gaussian flow \mathcal{T}^{σ} has simple spectrum, see [2]. Moreover, the subgroup $H := I(\mathcal{T}^{\sigma}) \cap \mathbb{R}^*_+$ is an additively \mathbb{Q} -independent set. Indeed, suppose that H is not an additively \mathbb{Q} -independent set. That is, for some distinct $h_1, \ldots, h_m \in H$ we have

(1.2)
$$\sum_{i=1}^{m} k_i h_i = 0$$
 with $k_i \in \mathbb{Z}, i = 1, \dots, m$ and $\sum_{i=1}^{m} k_i^2 > 0$

Denote by $H_0 \subset H$ the multiplicative subgroup generated by h_1, \ldots, h_m . Since $H_0 \subset I(\mathcal{T}^{\sigma})$, we have $\sigma_h \equiv \sigma$ for $h \in H_0$, thus the Borel set $B = \bigcap_{h \in H_0} hA$ has full σ -measure, is \mathbb{Q} -independent, and is literally H_0 -invariant. Take any non-zero $x \in B$. Then the elements $h_i x \in B$, $i = 1, \ldots, m$, are distinct. Now, (1.2) yields

$$\sum_{i=1}^{m} k_i(h_i x) = x \sum_{i=1}^{m} k_i h_i = 0,$$

so B is not independent, a contradiction. On the other hand, in [6], it is shown that whenever a countable group $H \subset \mathbb{R}^*_+$ satisfies:

(1.3) For each polynomial
$$P \in \mathbb{Q}[x_1, \ldots, x_m]$$
 if there is
a collection of distinct elements h_1, \ldots, h_m in H such that
 $P(h_1, \ldots, h_m) = 0$ then $P \equiv 0$,

then there exists a probability σ concentrated on a Borel Q-independent set such that $I(\mathcal{T}^{\sigma}) = -H \cup H$. It is not difficult to see that the condition (1.3) is equivalent to saying that H is an additively Q-independent set.

Theorem 1.1 ([6]). Assume that $G = -H \cup H$, where $H \subset \mathbb{R}^*_+$ is a countable multiplicative subgroup. Then G can be realized as $I(\mathcal{T}^{\sigma})$ for a Gaussian flow whose spectral measure σ is concentrated on a Borel \mathbb{Q} -independent set if and only if H is an additively \mathbb{Q} -independent set.

Note that for H cyclic generated by $s \in \mathbb{R}_+$, the Q-independence condition is equivalent to saying that s is transcendental. Hence, by Theorem 1.1, a real number s can be realized as a scale of self-similarity of a Gaussian flow whose spectral measure is concentrated on a Q-independent Borel set if and only if s is transcendental.

On the other hand, there are no restrictions on H in the class of all Gaussian flows having simple spectrum.

Theorem 1.2 ([4]). For each countable subgroup $H \subset \mathbb{R}^*_+$ there exists a simple spectrum Gaussian flow \mathcal{T}^{σ} such that $I(\mathcal{T}^{\sigma}) = -H \cup H$.

Note that, in particular, the above result of Danilenko and Ryzhikov brings the positive answer to the open problem [14] of existence of Gaussian flows \mathcal{T}^{σ} with simple spectrum such that σ is not concentrated on a \mathbb{Q} -independent set; indeed, whenever H is not an additively \mathbb{Q} -independent set, by Theorem 1.1, the spectral measure σ resulting from Theorem 1.2 cannot be concentrated on a Borel \mathbb{Q} -independent set. See also [3] for constructions of Gaussian flows with zero entropy and having uncountable groups of self-similarities.

Our aim is to continue investigations on realization of countable subgroups as the groups of self-similarities in further restricted classes of Gaussian flows whose spectral measures are classical from the harmonic analysis point of view. Recall some basic notions. For every $s \in \mathbb{R}$ let $\xi_s : \mathbb{R} \to \mathbf{S}^1$ be given by $\xi_s(t) = \exp(2\pi i s t)$. A finite positive Borel measure σ on \mathbb{R} is called Kronecker if for each $f \in L^2(\mathbb{R}, \sigma)$, $|f| = 1 \sigma$ -a.e., there exists a sequence $(t_n) \subset \mathbb{R}, t_n \to \infty$, such that

(1.4)
$$\xi_{t_n} \to f \quad \text{in} \quad L^2(\mathbb{R}, \sigma).$$

Each measure σ concentrated on a Kronecker set [12], [18] is a Kronecker measure. Indeed, Kronecker sets are compact subsets of \mathbb{R} on which each continuous function of modulus one is a uniform limit of characters. Kronecker sets are examples of \mathbb{Q} -independent sets [18]. In general, as shown in [15], a Kronecker measure is concentrated on a Borel set which is the union of an increasing sequence of Kronecker sets, hence a Kronecker measure is concentrated on a Borel \mathbb{Q} -independent set, and the restriction on H in Theorem 1.1 applies. This turns out to be the only restriction as the main result of the note shows.

Theorem 1.3. Assume that $G = -H \cup H$, where $H \subset \mathbb{R}^*_+$ is a countable multiplicative subgroup. Then G can be realized as $I(\mathcal{T}^{\sigma})^2$ for a Gaussian-Kronecker flow if and only if H is an additively \mathbb{Q} -independent set. In particular, $h \in \mathbb{R}_+$ can be a scale of self-similarity for a Gaussian-Kronecker flow if and only if h is transcendental.

An extremal case when two dynamical systems are non-isomorphic is the disjointness in the Furstenberg sense [7], see also [9], [11], [14], [23] for disjointness results in ergodic theory. We would like also to emphasize that the notion of disjointness turned out to be quite meaningful in the problem of non-correlation with the Möbius function of sequences of dynamical origin [1]: we need that an automorphism T has the property that T^p and T^q are disjoint for any two different primes. In connection with that we will prove the following.

Theorem 1.4. Assume that $\mathcal{T}^{\sigma} = (T_t^{\sigma})_{t \in \mathbb{R}}$ is a Gaussian-Kronecker flow. If $s \in \mathbb{Q} \setminus \{\pm 1\}$ then T_s^{σ} is disjoint from T_1^{σ} . For every Gaussian-Kronecker automorphism $T : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ the iterations T^n , T^m are disjoint for any two distinct natural numbers n, m.

If s is irrational then there exists a Gaussian-Kronecker flow \mathcal{T}^{σ} such that T_s^{σ} and T_1^{σ} have a non-trivial common factor.

An importance of Kronecker measures in ergodic theory follows from the following remarkable result of Foiaş and Stratila [5] (see also [2], and remarks on that result in [15] and [21]):

If $(S_t)_{t\in\mathbb{R}}$ is an ergodic flow of a standard probability

(1.5) Borel space $(Y, \mathcal{C}, \nu), f \in L^2(Y, \mathcal{C}, \nu)$ is real and the spectral measure

 σ_f of f is the symmetrization of a Kronecker measure, then the (stationary) process $(f \circ S_t)_{t \in \mathbb{R}}$ is Gaussian.

In [15], any measure σ satisfying the assertion (1.5) of Foiaş-Stratila theorem is

called an FS measure. Each Kronecker measure is a Dirichlet measure³ [18], but as

²In a sense, we can also control the flows \mathcal{T}^{σ_s} for $s \notin -H \cup H$; we will prove their disjointness from \mathcal{T}^{σ} , see the proof of this theorem.

³A probability Borel measure σ on \mathbb{R} is Dirichlet, if (1.4) is satisfied for f = 1. From the dynamical point of view, Dirichlet measures correspond to rigidity: a flow \mathcal{T} is rigid if $T^{t_n} \to Id$ for some $t_n \to \infty$.

shown in [15], there are FS measures which are not Dirichlet measures (see Figure 1). Moreover, in [21], it is announced that each continuous measure concentrated on

FIGURE 1. Different classes of measures

an independent Helson^4 set is a Kronecker measure (for some examples in [21], the resulting Gaussian flows have no non-trivial rigid factors). We will strengthen Theorem 1.2 to the following result.

Theorem 1.5. Any symmetric countable group $G \subset \mathbb{R}^*$ can be realized as the group of self-similarities of a simple spectrum Gaussian flow \mathcal{T}^{σ} with σ being an FS measure.

In particular, in connection with the forementioned question from [14], there is an FS measure for which the Gaussian flow has simple spectrum but σ is not concentrated on a Q-independent set. These are apparently the first examples of FS measures which are not concentrated on Q-independent Borel sets but yield Gaussian flows with simple spectrum (cf. [15] and [21]).

At the end of the note we will discuss self-similarity properties of Gaussian flows arising from a "typical" measure or from the maximal spectral types of a "typical" flow (cf. the disjointness results from [4]).

Theorem 1.6. Assume that $0 \le a < b$. For a "typical" $\sigma \in \mathcal{P}([a, b])$ the flow \mathcal{T}^{σ} is Gaussian-Kronecker such that for each $|r| \ne |s|$ the flows \mathcal{T}^{σ_r} and \mathcal{T}^{σ_s} are disjoint. In particular $I(\mathcal{T}^{\sigma}) = \{\pm 1\}$.

For a "typical" flow \mathcal{T} of a standard probability Borel space (X, \mathcal{B}, μ) , for its maximal spectral type $\sigma_{\mathcal{T}}$ we have: $\mathcal{T}^{\sigma_{\mathcal{T}}|_{\mathbb{R}_+}}$ has simple spectrum and for $|r| \neq |s|$ the flows $\mathcal{T}^{(\sigma_{\mathcal{T}}|_{\mathbb{R}_+})_r}$ and $\mathcal{T}^{(\sigma_{\mathcal{T}}|_{\mathbb{R}_+})_s}$ are disjoint. In particular $I(\mathcal{T}^{\sigma_{\mathcal{T}}|_{\mathbb{R}_+}}) = \{\pm 1\}$.

2. NOTATION AND BASIC RESULTS

Assume that $\mathcal{T} = (T_t)_{t \in \mathbb{R}}$ is a measurable⁵ measure-preserving flow acting on a standard probability Borel space (X, \mathcal{B}, μ) . It then induces a (continuous) oneparameter group of unitary operators acting on $L^2(X, \mathcal{B}, \mu)$ by the formula $T_t f =$ $f \circ T_t$. By Bochner's theorem, the function $t \mapsto \int_X T_t f \cdot \overline{f} \, d\mu$ determines the so called *spectral measure* σ_f of f for which $\widehat{\sigma}_f(t) = \int_X T_t f \cdot \overline{f} \, d\mu$, $t \in \mathbb{R}$. Usually, one only considers spectral measures of $f \in L^2_0(X, \mathcal{B}, \mu)$, that is, of elements with zero mean (the spectral measure of the constant function c is equal to $|c|^2 \delta_0$). Then σ_f is a finite positive Borel measure on \mathbb{R} . Among spectral measures there are maximal ones with respect to the absolute continuity relation. Each such maximal

 $^{{}^{4}}A \subset \mathbb{R}$ is called Helson if for some $\delta > 0$ and each complex Borel measure κ concentrated on A the $\sup_{t \in \mathbb{R}} \left| \int_{\mathbb{R}} e^{2\pi i t x} d\kappa(x) \right|$ is bounded away from the δ -fraction of the total variation of κ .

⁵Measurability means that for each $f \in L^2(X, \mathcal{B}, \mu)$ the map $t \mapsto f \circ T_t$ is continuous.

measure is called a maximal spectral type measure and, by some abuse of notation, it will be denoted by $\sigma_{\mathcal{T}}$. We refer the reader to [11] and [14] for some basics about spectral theory of unitary representations of locally compact Abelian groups in the dynamical context.

Assume that \mathcal{T} is ergodic and let $\mathcal{S} = (S_t)_{t \in \mathbb{R}}$ be another ergodic flow (acting on (Y, \mathcal{C}, ν)). Any probability measure ρ on $(X \times Y, \mathcal{B} \otimes \mathcal{C})$ which is $(T_t \times S_t)_{t \in \mathbb{R}}$ invariant and has marginals μ and ν respectively, is called a *joining* of \mathcal{T} and \mathcal{S} . If, additionally, the flow $((T_t \times S_t)_{t \in \mathbb{R}}, \rho)$ is ergodic then ρ is called an *ergodic joining*⁶. The ergodic joinings are extremal points in the simplex of all joinings. If the set of joinings is reduced to contain only the product measure then one speaks about *disjointness* of \mathcal{T} and \mathcal{S} [7] and we will write $\mathcal{T} \perp \mathcal{S}$. Similar notions appear when one considers automorphisms. Note that whenever for some $t \neq 0, T_t \perp S_t$ then $\mathcal{T} \perp \mathcal{S}$. Note also that whenever

(2.1) \mathcal{T} is weakly mixing then $\mathcal{T} \perp \mathcal{S}$ if and only if $T_1 \perp S_1$.

Indeed, if $T_1 \not\perp S_1$ then there exists an ergodic joining ρ between them different than the product measure. Then, $\rho \circ (T_r \times S_r)$ for $0 \leq r < 1$ has the same properties. By disjointness of \mathcal{T} and \mathcal{S} , $\int_0^1 \rho \circ (T_r \times S_r) dr = \mu \otimes \nu$. But T_1 is weakly mixing, so $\mu \otimes \nu$ is an ergodic joining of T_1 and S_1 , and therefore $\rho \circ (T_r \times S_r) = \mu \otimes \nu$. We refer the reader to [9] for the theory of joinings in ergodic theory.

A flow \mathcal{T} is called Gaussian if there is a \mathcal{T} -invariant subspace $\mathcal{H} \subset L_0^2(X, \mathcal{B}, \mu)$ of the zero mean real-valued functions such that all non-zero variables from \mathcal{H} are Gaussian and the smallest σ -algebra making all these variables measurable equals \mathcal{B} . A Gaussian flow is ergodic if and only if the maximal spectral type on \mathcal{H} is continuous (and then \mathcal{T} is weakly mixing). Since Gaussian variables are real, it is not hard to see that their spectral measures are symmetric, that is, for $f \in \mathcal{H}, \sigma_f$ is invariant under the map $R_{-1}: x \mapsto -x$.

A standard way to obtain a (weakly mixing) Gaussian flow is to start with a finite positive continuous Borel measure σ on \mathbb{R}_+ . Consider the symmetrization $\tilde{\sigma} = \sigma + (R_{-1})_* \sigma^7$. We let $\mathcal{V} = (V_t)_{t \in \mathbb{R}}$ denote the one-parameter group of unitary operators on $L^2(\mathbb{R}, \tilde{\sigma})$ defined by $V_t(f)(x) = e^{2\pi i t x} f(x)$. Then the correspondence

$$(2.2) f(x) \mapsto f(-x)$$

yields the unitary conjugation of \mathcal{V} and its inverse. Let (X, \mathcal{B}, μ) be a Gaussian probability space, that is, a standard probability space together with an infinite dimensional, closed, real and \mathcal{B} -generating subspace $\mathcal{H} \subset L^2(X, \mathcal{B}, \mu)$ whose all non-zero variables are Gaussian. We then consider $\mathcal{H} + i\mathcal{H}$, so called *complex* Gaussian space, and define an isomorphic copy of \mathcal{V} on it. It is then standard to show (see e.g. [17], Section 2) that \mathcal{V} has a unique extension to a (measurable) flow $\mathcal{T}^{\sigma} = (T_t^{\sigma})$ of (X, \mathcal{B}, μ) for which $U_{T_t^{\sigma}}|_{\mathcal{H}+i\mathcal{H}} = V_t$, $t \in \mathbb{R}$. By the same token, the correspondence (2.2) extends to an isomorphism of (X, \mathcal{B}, μ) which conjugates the Gaussian flow and its inverse $(T_{-t}^{\sigma})_{t \in \mathbb{R}}$.

A Gaussian flow \mathcal{T}^{σ} is called Gaussian-Kronecker (FS resp.) if σ is a continuous Kronecker (FS resp.) measure. Following [17], a Gaussian flow \mathcal{T}^{σ} (with the

⁶If $\mathcal{T} = \mathcal{S}$ then we speak about *self-joinings*.

⁷In general, when f is a measurable map from (X, \mathcal{B}) to (Y, \mathcal{C}) and κ is a probability measure on X then $f_*(\kappa)$ is the measure on Y defined by $f_*(\kappa)(C) = \kappa(f^{-1}(C))$.

Gaussian space \mathcal{H}) is called GAG if for each its ergodic self-joining η the space

$$\{f(x) + g(y) : f, g \in \mathcal{H}\}\$$

consists solely of Gaussian variables (the flow $(T_t^{\sigma} \times T_t^{\sigma})_{t \in \mathbb{R}}$ is then a Gaussian flow as well). We have [17]

FIGURE 2. Different subclasses of GAG flows

For all these classes of flows we have that if \mathcal{T}^{σ} is in the class, so is \mathcal{T}^{σ_s} for $s \neq 0$. In general, Gaussian flows given by equivalent measures are isomorphic. It follows from [17] that any isomorphism between a GAG flow \mathcal{T}^{σ} and another Gaussian flow \mathcal{T}^{ν} is entirely determined by a unitary isomorphism of restrictions of the unitary actions $(T_t^{\sigma})_{t\in\mathbb{R}}$ and $(T_t^{\nu})_{t\in\mathbb{R}}$ to their Gaussian subspaces. That is, in the GAG situation, \mathcal{T}^{σ} are \mathcal{T}^{ν} are isomorphic if and only if $\sigma \equiv \nu$. If we apply that to σ and σ_s for $s \in \mathbb{R}_+$ we will immediately get (1.1) to hold (in the GAG case).

We will now prove the following.

Proposition 2.1. Assume that \mathcal{T}^{σ} is GAG. Fix $s \neq 0$. Then the sets of selfjoinings of \mathcal{T}^{σ} and of self-joinings of T_s^{σ} are the same. (Hence ergodic self-joinings are also the same.) In particular, the factors and the centralizer of the flow and of the time s-automorphism are the same.

Proof. This follows from the proof of Theorem 6.1 in [10] which asserts that such an equality of the sets of self-joinings takes place whenever each ergodic self-joining of the flow is an ergodic self-joining for the time-s automorphism. In the GAG case, by definition, such ergodic joinings for the flow \mathcal{T}^{σ} are Gaussian joinings, so they are automatically ergodic for the T_s^{σ} [17].

Corollary 2.2. Assume that \mathcal{T}^{σ} is GAG. Then T_s^{σ} is a GAG automorphism for each $s \neq 0$.

We will also make use of the following results.

Theorem 2.3 ([17]). Assume that \mathcal{T}^{σ} is GAG and let \mathcal{T}^{η} be an arbitrary Gaussian flow. Then $\mathcal{T}^{\sigma} \perp \mathcal{T}^{\eta}$ if and only if $\tilde{\sigma} \perp \tilde{\eta} * \delta_r$ for each $r \in \mathbb{R}$.

Proposition 2.4 ([15]). If σ_1 and σ_2 are measures with the FS property and $\mathcal{T}^{\sigma_1} \perp \mathcal{T}^{\sigma_2}$ then $\sigma = \frac{1}{2}(\sigma_1 + \sigma_2)$ is also an FS measure.

3. AUXILIARY LEMMAS

Given a compact subset $X \subset \mathbb{R}$ denote by $\mathcal{P}(X)$ the set of all Borel probability measures concentrated on X endowed with the usual weak topology which is compact and metrizable: if $\{f_n : n \geq 1\}$ is a dense set in C(X) then

(3.1)
$$d(\sigma,\eta) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\left|\int f_n \, d\sigma - \int f_n \, d\eta\right|}{1 + \left|\int f_n \, d\sigma - \int f_n \, d\eta\right|}$$

defines a metric compatible with the weak topology. Denote $\mathcal{U}(X) = \{f \in C(X) : |f| = 1\}$ which is a closed subset of C(X) in the uniform topology, in particular $\mathcal{U}(X)$ is a Polish space.

Lemma 3.1. Assume that X = [a, b]. Let $\{h_0, h_1, \ldots, h_m\} \subset \mathbb{R}^*$ be a \mathbb{Q} -independent set. Then for each $f \in \mathcal{U}\left(\bigcup_{j=0}^m h_j X\right)$ and $\varepsilon > 0$

(3.2)
$$A_{f,\varepsilon}(h_1,\ldots,h_m) := \left\{ \sigma \in \mathcal{P}\left([a,b]\right) : \left(\exists t \in \mathbb{R}\right) \|f - \xi_t\|_{L^2\left(\mathbb{R},\frac{1}{m+1}\sum_{j=0}^m \sigma_{h_j}\right)} < \varepsilon \right\}$$

is open and dense in $\mathcal{P}([a,b])$.

Proof. The set $A_{f,\varepsilon}(h_1,\ldots,h_m)$ is clearly open, so we need to show its denseness in $\mathcal{P}(X)$. Since discrete measures with a finite number of atoms form a dense subset of $\mathcal{P}(X)$ we take $\nu = \sum_{s=1}^{N} a_s \delta_{y_s}$ with $y_s \in [a,b], a_s > 0, s = 1,\ldots,N$ and $\sum_{s=1}^{N} a_s = 1$ and fix $\delta > 0$. All we need to show is to find a subset $\{x_1,\ldots,x_N\} \subset [a,b]$ such that $|x_s - y_s| < \delta$ for $s = 1,\ldots,N$ and such that the set

$$L := \bigcup_{j=0}^{m} \{h_j x_1, \dots, h_j x_N\} \quad \text{is } \mathbb{Q}\text{-independent.}$$

Indeed, in this case by Kronecker's theorem, the set L is a finite Kronecker set, so the measure $\frac{1}{m+1} \sum_{j=0}^{m} \left(\sum_{s=1}^{N} a_s \delta_{x_s} \right)_{h_j}$ is Kronecker, whence belongs to $A_{f,\varepsilon}(h_1,\ldots,h_m)$ and it δ -approximates ν . To show that x_1,\ldots,x_N can be selected so that L is \mathbb{Q} -independent, consider the algebraic varieties of the form

$$\left\{ (z_1, \dots, z_N) \in X^{\times N} : \sum_{j=0}^m \sum_{s=1}^N k_{js} h_j z_s = 0 \right\}$$

for some non-zero integer matrix (k_{js}) . Since

$$\sum_{j=0}^{m} \sum_{s=1}^{N} k_{js} h_j z_s = \sum_{s=1}^{N} \left(\sum_{j=0}^{m} k_{js} h_j \right) z_s$$

and $\sum_{j=0}^{m} k_{js} h_j \neq 0$ whenever $(k_{0s}, \ldots, k_{ms}) \neq (0, \ldots, 0)$ (and there are such vectors since the matrix (k_{js}) is not zero), each such variety has N-dimensional Lebesgue measure zero. Since there are only countably many such varieties involved, we may discard the union S of them from $[a, b]^{\times N}$. Now, each choice of (x_1, \ldots, x_N) from $(y_1 - \delta, y_1 + \delta) \times \ldots \times (y_N - \delta, y_N + \delta) \setminus S$ satisfies our requirements.

Lemma 3.2. Given $H \subset \mathbb{R}^*_+$ a countable subset which is a \mathbb{Q} -independent set, the set of continuous (Kronecker) measures $\sigma \in \mathcal{P}([a, b])$ for which the measure

(3.3)
$$\sum_{h \in H} a_h \sigma_h \quad is \ a \ Kronecker \ measure \ (on \ \mathbb{R})$$

for each choice of $a_h \ge 0$, $\sum_{h \in H} a_h = 1$, is a G_{δ} and dense subset of $\mathcal{P}([a, b])$.

Proof. Denote by $\mathcal{P}_c([a, b])$ the set of continuous measures which is a G_{δ} and dense subset of $\mathcal{P}([a, b])$. Let $H = \{h_0, h_1, h_2, \ldots\}$. For every $m \ge 0$ fix a countable dense family $\left\{g_i^{(m)}: i \ge 1\right\} \subset \mathcal{U}(\bigcup_{i=0}^m h_i[a, b])$. Then, by Lemma 3.1, the set

$$\mathcal{P}_c([a,b]) \cap \bigcap_{m=1}^{\infty} \bigcap_{i=1}^{\infty} \bigcap_{p=1}^{\infty} A_{g_i^{(m)},\frac{1}{p}}(h_1,\ldots,h_m)$$

is G_{δ} and dense in $\mathcal{P}([a, b])$ and it remains to show that this is precisely the set of measures satisfying (3.3). Indeed, given $m \geq 1$, the set

$$\mathcal{K}_m(H) := \mathcal{P}_c([a,b]) \cap \bigcap_{i=1}^{\infty} \bigcap_{p=1}^{\infty} A_{g_i^{(m)},\frac{1}{p}}(h_1,\ldots,h_m)$$

is precisely the set of continuous Kronecker measures $\sigma \in \mathcal{P}([a, b])$ such that the measure $\frac{1}{m+1} \sum_{i=0}^{m} \sigma_{h_i}$ is a Kronecker measure (on the real line). Moreover, each measure absolutely continuous with respect to a Kronecker measure is also a Kronecker measure [15]. Therefore the set $\mathcal{K}_m(H)$ is equal to the set of all Kronecker measures $\sigma \in \mathcal{P}([a, b])$ such that $\sum_{i=0}^{m} b_i \sigma_{h_i}$ is Kronecker for arbitrary choice of $b_i \geq 0$, $\sum_{i=0}^{m} b_i = 1$. Finally, for each $m \geq 1$,

$$\frac{1}{\sum_{i=0}^{m} a_{h_i}} \sum_{i=0}^{m} a_{h_i} \sigma_{h_i} \ll \frac{1}{m+1} \sum_{i=0}^{m} \sigma_{h_i},$$

so if for each $m \ge 1$ the measure $\frac{1}{m+1} \sum_{i=0}^{m} \sigma_{h_i}$ is Kronecker, so is $\sum_{h \in H} a_h \sigma_h$. \Box

Remark 3.3. The idea of the above proofs is taken from a letter that has been sent to us by T.W. Körner. In this letter, T.W. Körner shows that given a transcendental number $h \in \mathbb{R}$, for a "typical" (in the Hausdorff metric) closed subset $K \subset [a, b]$ the set $K \cup hK$ is Kronecker and uncountable. The proofs are the same since finite sets are dense in the Hausdorff metric and if h is transcendental then given distinct $y_1, \ldots, y_N \in [a, b]$ and $\delta > 0$ we can find $q_i \in \mathbb{Q}$ so that for $x_i := h^{2i}q_i$ we have $|x_i - y_i| < \delta$ for $i = 1, \ldots, N$ and clearly the set $\{x_1, \ldots, x_N, hx_1, \ldots, hx_N\}$ is \mathbb{Q} independent. It only remains to notice that uncountable closed subsets are typical in the Hausdorff metric.

Note also that using the proofs of Lemmas 3.1 and 3.2, given $H \subset \mathbb{R}^*_+$ a countable multiplicative subgroup which is additively \mathbb{Q} -independent, we obtain that a typical (with respect to the Hausdorff distance) closed subset $K \subset [a, b]$ has the property that for each finite subset $C \subset H$ the set $\bigcup_{h \in C} hK$ is Kronecker, so the set $\bigcup_{h \in H} hK$ is a \mathbb{Q} -independent F_{σ} -set.

We will also need the following "compact Q-independent set" version of Lemma 3.2.

Lemma 3.4. Assume that $K \subset \mathbb{R}$ is a compact uncountable set. Assume that $H \subset \mathbb{R}^*_+$ is a countable set which is additively \mathbb{Q} -independent. Assume moreover

that the set $\bigcup_{h \in H} hK$ is \mathbb{Q} -independent. Then the set of continuous (Kronecker) measures σ concentrated on K for which the measure

(3.4)
$$\sum_{h \in H} a_h \sigma_h \quad is \ a \ Kronecker \ measure$$

for each choice of $a_h \ge 0$, $\sum_{h \in H} a_h = 1$, is a G_{δ} and dense subset of $\mathcal{P}(K)$.

Proof. This follows from the proofs of Lemmas 3.1 and 3.2, where in addition the proof of Lemma 3.1 is simplified; indeed, for any choice of $\{y_1, \ldots, y_N\} \subset K$ the set $\bigcup_{j=0}^m \{h_j y_1, \ldots, h_j y_N\}$ is \mathbb{Q} -independent by assumption (so we may take $x_i = y_i$ for $i = 1, \ldots, N$).

Remark 3.5. For any non-trivial compact interval $[a,b] \subset \mathbb{R}$ denote by $\mathcal{P}_c^{[a,b]}(\mathbb{R})$ the set of measures $\nu \in \mathcal{P}_c(\mathbb{R})$ such that $\nu([a,b]) > 0$. Since the map $\mathcal{P}_c(\mathbb{R}) \ni \nu \mapsto \nu([a,b]) \in \mathbb{R}$ is continuous, the set $\mathcal{P}_c^{[a,b]}(\mathbb{R})$ is open and dense in $\mathcal{P}_c(\mathbb{R})$. Let us consider the map $\Delta = \Delta^{[a,b]} : \mathcal{P}_c^{[a,b]}(\mathbb{R}) \to \mathcal{P}_c([a,b])$ such that $\Delta(\nu)$ is the conditional probability measure $\nu(\cdot | [a,b])$. This map is continuous and the preimage of any dense subset of $\mathcal{P}_c([a,b])$ is dense in $\mathcal{P}_c^{[a,b]}(\mathbb{R})$. Indeed, let $A \subset \mathcal{P}_c([a,b])$ be dense and take any $\nu \in \mathcal{P}_c^{[a,b]}(\mathbb{R})$. Then there exists a sequence $(\tilde{\nu}_n)_{n\leq 1}$ in A such that $\tilde{\nu}_n \to \Delta(\nu)$ weakly. For every $n \geq 1$ define $\nu_n \in \mathcal{P}_c^{[a,b]}(\mathbb{R})$ so that the restriction of ν_n to [a,b] is $\nu([a,b])\tilde{\nu}_n$ and the measures ν_n and ν coincide on $\mathbb{R} \setminus [a,b]$. Then $\Delta(\nu_n) = \tilde{\nu}_n \in A$ and $\nu_n \to \nu$ weakly. Consequently, the preimage $\Delta^{-1}A$ of any G_{δ} dense subset $A \subset \mathcal{P}_c([a,b])$ is G_{δ} dense in $\mathcal{P}_c^{[a,b]}(\mathbb{R})$.

Before we prove a certain disjointness property of Kronecker measures, we will need the following general observation.

Lemma 3.6. Let (X, \mathcal{B}) be a standard Borel space and let $\varphi : X \to X$ be a measurable map. Let σ be a finite positive continuous Borel measure on X such that the map $\varphi : (X, \sigma) \to (X, \varphi_*\sigma)$ is almost everywhere invertible. Assume that $\sigma(\{x \in X : \varphi(x) = x\}) = 0$ and that the measures σ and $\varphi_*\sigma$ are not mutually singular. Then there exists a measurable set $A \in \mathcal{B}$ such that $\sigma(A) > 0$, $\sigma(A \cap \varphi^{-1}A) = 0$ and the measures σ and $\varphi_*\sigma$ are equivalent.

Proof. By assumption, there exists $Y \in \mathcal{B}$ such that $\sigma(Y) > 0$ and the measures σ and $\varphi_*\sigma$ restricted to Y are equivalent. It follows that if $A \in \mathcal{B}$, $A \subset Y$, $\sigma(A) > 0$, then the measures σ and $\varphi_*\sigma$ restricted to A are also equivalent.

Case 1. Suppose that there exists $B \in \mathcal{B}$ such that $B \subset Y$ and $\sigma(B \setminus \varphi(B)) > 0$. Set $A := B \setminus \varphi(B)$. Then $\sigma(A) > 0$ and $A \cap \varphi^{-1}A = (B \setminus \varphi(B)) \cap (\varphi^{-1}B \setminus B) = \emptyset$. Since $A \subset B \subset Y$, our claim follows.

Case 2. Suppose that for every $B \in \mathcal{B}$ with $B \subset Y$ we have $\sigma(B \setminus \varphi(B)) = 0$. As σ and $\varphi_*\sigma$ restricted to Y are equivalent, it follows that

(3.5)
$$0 = \varphi_* \sigma(B \setminus \varphi(B)) = \sigma(\varphi^{-1}B \setminus B) \quad \text{for every} \quad B \subset Y.$$

We now show that there exists $A \in \mathcal{B}$ such that $A \subset Y$, $\sigma(A) > 0$ and $\sigma(A \cap \varphi^{-1}A) = 0$, which gives our assertion. Suppose that, contrary to our claim, for every $A \in \mathcal{B}$ with $A \subset Y$ the condition $\sigma(A) > 0$ implies $\sigma(A \cap \varphi^{-1}A) > 0$. It follows that

(3.6)
$$\sigma(B \setminus \varphi^{-1}B) = 0$$
 for every measurable $B \in \mathcal{B}$ with $B \subset Y$.

Indeed, otherwise for some B as above, $A := B \setminus \varphi^{-1}(B) \subset Y$ would be of positive σ -measure and since

$$(B \setminus \varphi^{-1}B) \cap \varphi^{-1}(B \setminus \varphi^{-1}B) = (B \setminus \varphi^{-1}B) \cap (\varphi^{-1}B \setminus \varphi^{-2}B) = \emptyset,$$

and we would get $\sigma(A \cap \varphi^{-1}A) = 0$, a contradiction.

Now, (3.5) combined with (3.6) gives $\sigma(B \triangle \varphi^{-1}B) = 0$ for every $B \in \mathcal{B}$ with $B \subset Y$. It follows that $\varphi(x) = x$ for σ -a.e. $x \in Y$, contrary to assumption. \Box

For any real s let $\theta_s : \mathbb{R} \to \mathbb{R}$, $\theta_s(t) = t + s$. Recall that for every $n \in \mathbb{Z}$ and $z_1, z_2 \in \mathbf{S}^1$ we have

(3.7)
$$|z_1^n - z_2^n| \le |n| |z_1 - z_2|.$$

Lemma 3.7. Let σ be a continuous Kronecker measure on \mathbb{R} . Then for every $s \in \mathbb{Q}^* \setminus \{1\}$ and $r \in \mathbb{R}$ we have $\sigma \perp \sigma_s * \delta_r$.

Proof. Suppose that, contrary to our claim, there exists $s \in \mathbb{Q}^* \setminus \{1\}$ and $r \in \mathbb{R}$ such that $\sigma \not\perp \sigma_s * \delta_r$. Let $\varphi := \theta_r \circ R_s$. Then $\varphi : \mathbb{R} \to \mathbb{R}$ is an invertible map with one fixed point and $\sigma_s * \delta_r = \varphi_* \sigma$. By Lemma 3.6, there exists a Borel set $A_0 \subset \mathbb{R}$ such that $\sigma(A_0) > 0$, $\sigma(A_0 \cap \varphi^{-1}A_0) = 0$ and the measures σ , $\varphi_* \sigma$ restricted to A_0 are equivalent. Thus $\sigma(\varphi^{-1}A_0) > 0$. Let $A_1, A_2 \subset A_0$ be disjoint Borel subsets such that $\sigma(\varphi^{-1}A_1) > 0$ and $\sigma(\varphi^{-1}A_2) > 0$.

Let s = q/p with p and q relatively prime integer numbers. Choose $z_0 \in \mathbf{S}^1$ such that $z_0^q \neq 1$. Let us consider the measurable map $f : \mathbb{R} \to \mathbf{S}^1$ such that $f(x) = z_0$ if $x \in \varphi^{-1}A_2$ and f(x) = 1 otherwise. Since σ is a Kronecker measure, there exists a sequence $(t_n)_{n \in \mathbb{N}}$ of real numbers such that $\xi_{t_n} \to f$ in $L^2(\mathbb{R}, \sigma)$. Thus $\xi_{t_n} \circ \varphi^{-1} \to f \circ \varphi^{-1}$ in $L^2(\mathbb{R}, \varphi_* \sigma)$. Since

$$g_n^0(x) := \chi_{A_0}(x) |\exp(2\pi i t_n x) - 1| \le |\xi_{t_n}(x) - f(x)|$$

$$g_n^1(x) := \chi_{A_1}(x) |\exp(2\pi i t_n s^{-1}(x-r)) - 1| \le |\xi_{t_n}(\varphi^{-1}x) - f(\varphi^{-1}x)|$$

$$g_n^2(x) := \chi_{A_2}(x) |\exp(2\pi i t_n s^{-1}(x-r)) - z_0| \le |\xi_{t_n}(\varphi^{-1}x) - f(\varphi^{-1}x)|,$$

it follows that (g_n^0) tends to zero in measure σ and the sequences (g_n^1) , (g_n^2) tend to zero in measure $\varphi_*\sigma$. As $\sigma \equiv \varphi_*\sigma$ on A_0 and $A_1, A_2 \subset A_0$, the sequences (g_n^1) , (g_n^2) tend to zero in measure σ , as well. Fix

(3.8)
$$0 < \varepsilon < \frac{|z_0^q - 1|}{2(|p| + |q|)}.$$

Then there exist measurable sets $A'_k \subset A_k$, k = 0, 1, 2 and $n \in \mathbb{N}$ such that for k = 0, 1, 2

$$\sigma(A_k \setminus A'_k) < \frac{1}{4}\min(\sigma(A_1), \sigma(A_2)) \text{ and } g_n^k(x) < \varepsilon \text{ for all } x \in A'_k$$

Therefore for k = 1, 2 we have

$$\sigma(A_k \setminus A'_0) \le \sigma(A_0 \setminus A'_0) < \frac{1}{4}\sigma(A_k) \text{ and } \sigma(A_k \setminus A'_k) < \frac{1}{4}\sigma(A_k),$$

11

so $\sigma(A'_0 \cap A'_k) > \sigma(A_k)/2 > 0$. Choose two real numbers $x_1 \in A'_0 \cap A'_1$ and $x_2 \in A'_0 \cap A'_2$. Then

$$\begin{aligned} |\exp(2\pi i t_n x_1) - 1| &= g_n^0(x_1) < \varepsilon, \quad \left| \exp(2\pi i t_n \frac{p}{q}(x_1 - r)) - 1 \right| &= g_n^1(x_1) < \varepsilon, \\ |\exp(2\pi i t_n x_2) - 1| &= g_n^0(x_2) < \varepsilon, \quad \left| \exp(2\pi i t_n \frac{p}{q}(x_2 - r)) - z_0 \right| &= g_n^2(x_2) < \varepsilon. \end{aligned}$$

In view of (3.7),

$$\begin{aligned} |\exp(2\pi i t_n p \, x_1) - 1| &< |p|\varepsilon, \quad |\exp(2\pi i t_n p (x_1 - r)) - 1| < |q|\varepsilon, \\ |\exp(2\pi i t_n p \, x_2) - 1| &< |p|\varepsilon, \quad |\exp(2\pi i t_n p (x_2 - r)) - z_0^q| < |q|\varepsilon. \end{aligned}$$

Hence

$$|\exp(2\pi i t_n pr) - 1| < (|p| + |q|)\varepsilon, \quad |\exp(2\pi i t_n pr)z_0^q - 1| < (|p| + |q|)\varepsilon,$$

 \mathbf{SO}

$$|1 - z_0^q| < 2(|p| + |q|)\varepsilon,$$

contrary to (3.8).

Let us now consider the space $\mathcal{P}(\mathbb{R})$ of all Borel probability measures on \mathbb{R} endowed with the weak topology.

By $\operatorname{supp}(\sigma)$ we always mean the topological support of the measure σ . Let us recall that

(3.9)
if
$$\sigma \in \mathcal{P}(\mathbb{R})$$
 has $\operatorname{supp}(\sigma) = \mathbb{R}$
then the set $\{\nu \in \mathcal{P}(\mathbb{R}) \colon \nu \ll \sigma\}$ is dense in $\mathcal{P}(\mathbb{R})$.

Denote by $\mathcal{P}_c(\mathbb{R})$ the set of all continuous members of $\mathcal{P}(\mathbb{R})$ (this is a G_{δ} and dense subset of $\mathcal{P}(\mathbb{R})$).

The proof of the lemma below is a slight modification of the proof of Lemma 3.1 from [4].

Lemma 3.8. The set

$$\mathcal{S} = \{ \sigma \in \mathcal{P}_c(\mathbb{R}) \colon \sigma_s \perp \sigma * \delta_t \quad \text{for each } 1 \neq s \in \mathbb{R}^*, \ t \in \mathbb{R} \}$$

is G_{δ} and dense in $\mathcal{P}(\mathbb{R})$.

Proof. Denote by \mathcal{I} the family of open subset of \mathbb{R} which are finite unions of open intervals. Recall that for two measures $\sigma, \nu \in \mathcal{P}(\mathbb{R})$

(3.10)
$$\sigma \perp \nu \iff \forall_{n \in \mathbb{N}} \exists_{\mathcal{O} \in \mathcal{I}} \sigma(\mathcal{O}) < 1/n \text{ and } \nu(\mathcal{O}) > 1 - 1/n.$$

For any compact rectangle $I \times J \subset (\mathbb{R}^* \setminus \{1\}) \times \mathbb{R}$ denote by $\mathcal{V}(I \times J)$ the set of all finite covers of $I \times J$ by compact rectangles contained in $(\mathbb{R}^* \setminus \{1\}) \times \mathbb{R}$. Notice that for each open subset $\mathcal{O} \in \mathcal{I}$ the map

(3.11)
$$\mathcal{P}_{c}(\mathbb{R}) \times \mathbb{R}^{*} \times \mathbb{R} \ni (\sigma, s, r) \mapsto \sigma_{s} \ast \delta_{r}(\mathcal{O}) \in \mathbb{R}$$

is continuous. Therefore, given a compact rectangle $F \subset (\mathbb{R}^* \setminus \{1\}) \times \mathbb{R}$ and an open subset $\mathcal{O} \in \mathcal{I}$ the map

$$f_{F,\mathcal{O}} \colon \mathcal{P}_c(\mathbb{R}) \ni \sigma \mapsto \left(\sigma(\mathcal{O}), \max_{(s,r) \in F} \sigma_s * \delta_r(\mathcal{O})\right) \in \mathbb{R}^2$$

is continuous. Let

$$\widetilde{\mathcal{S}} = \bigcap_{I \not\supseteq 1} \bigcap_{J} \bigcap_{n \in \mathbb{N}} \bigcup_{\kappa \in \mathcal{V}(I \times J)} \bigcap_{F \in \kappa} \bigcup_{\mathcal{O} \in \mathcal{I}} f_{F, \mathcal{O}}^{-1} \left((1 - 1/n, \infty) \times (-\infty, 1/n) \right),$$

where I and J run over closed intervals with rational endpoints. Then \widetilde{S} is a G_{δ} set.

We claim that $\widetilde{\mathcal{S}} = \mathcal{S}$. Indeed, let $\sigma \in \mathcal{S}$. Let $I \not\supseteq 1$ and $J \subset \mathbb{R}$ be compact intervals and $n \in \mathbb{N}$. By assumption and (3.10), for every $(s_0, r_0) \in I \times J$ there exists an open set $\mathcal{O}_{s_0, r_0} \in \mathcal{I}$ such that

$$\sigma(\mathcal{O}_{s_0,r_0}) > 1 - 1/n \quad \text{ and } \quad \sigma_{s_0} * \delta_{r_0}(\mathcal{O}_{s_0,r_0}) < 1/n.$$

Since the map (3.11) is continuous, there exist open rectangles $U'_{s_0,r_0} \subset U_{s_0,r_0} \subset \mathbb{R}^2$ such that $(s_0, r_0) \in U'_{s_0,r_0}$ and a compact rectangle $F_{s_0,r_0} \subset (\mathbb{R}^* \setminus \{1\}) \times \mathbb{R}$ satisfying $U'_{s_0,r_0} \subset F_{s_0,r_0} \subset U_{s_0,r_0}$ such that

$$\sigma_s * \delta_r(\mathcal{O}_{s_0,r_0}) < 1/n$$
 for all $(s,r) \in U_{s_0,r_0}$

Since $I \times J$ is compact and $\{U'_{s,r} : (s,r) \in I \times J\}$ is its open cover, there exists a finite cover $\kappa := \{F_{s_1,r_1}, \ldots, F_{s_k,r_k}\}$ of $I \times J$. It follows that

$$f_{F_{s_j,r_j},\mathcal{O}_{s_j,r_j}}(\sigma) \in (1-1/n,\infty) \times (-\infty,1/n) \quad \text{for all} \quad j=1,\ldots,k$$

thus $\sigma \in \mathcal{S}$.

Suppose that $\sigma \in \widetilde{S}$ and fix $s_0 \in \mathbb{R}^* \setminus \{1\}$, $r_0 \in \mathbb{R}$ and $n \in \mathbb{N}$. Next choose $I \not\supseteq 1$ and $J \subset \mathbb{R}$ compact intervals such that $(s_0, r_0) \in I \times J$. By assumption, there exists a finite cover $\kappa \in \mathcal{V}(I \times J)$ such that for every $F \in \kappa$ there exists $\mathcal{O}_F \in \mathcal{I}$ with

$$\sigma(\mathcal{O}_F) > 1 - 1/n$$
 and $\sigma_s * \delta_r(\mathcal{O}_F) < 1/n$ for all $(s, r) \in F$.

Choosing $F \in \kappa$ for which $(s_0, r_0) \in F$ and applying (3.10) we have that σ and $\sigma_{s_0} * \delta_{r_0}$ are orthogonal, so $\sigma \in \mathcal{S}$.

It remains to show that S is dense. To this end we use the proof of Proposition 3.4 in [4]. Namely, in this proposition there is a construction of a weakly mixing flow \mathcal{T} such that for a certain sequence of real numbers $u_k \to \infty$ we have: for each $l \in \mathbb{N}$

(3.12)
$$T_{-du_k} \to 10^{-l} \text{ for } d = 1 - 10^{-l} \text{ and}$$

(3.13)
$$T_{-cu_k} \to 0$$
 uniformly in $c \in [1, 10^l]$

(the convergence takes place in the weak operator topology). It follows that

(3.14)
$$\sigma_{\mathcal{T}_d} \perp \sigma_{\mathcal{T}_c} * \delta_t$$

for all $t \in \mathbb{R}$; indeed, (3.12) and (3.13) mean respectively

$$\xi_{u_k} \to 10^{-l}$$
 weakly in $L^2(\mathbb{R}, \sigma_{\mathcal{T}_d})$,

and

 $\xi_{u_k} \to 0$ weakly in $L^2(\mathbb{R}, \sigma_{\mathcal{T}_c})$.

It is easy to see that the latter condition implies

 $\xi_{u_k} \to 0$ weakly in $L^2(\mathbb{R}, \sigma_{\mathcal{T}_c} * \delta_t)$

for each $t \in \mathbb{R}$, and the mutual singularity (3.14) follows.

12

13

Now, in view of (3.14), $\sigma_{\mathcal{T}} \perp \sigma_{\mathcal{T}_{c/d}} * \delta_{t/d}$, and since in (3.13) c can be replaced by -c, it follows that $\sigma_{\mathcal{T}} \in \mathcal{S}$. It is also clear that \mathcal{S} is closed under taking absolutely continuous measures. Since supp $\sigma_{\mathcal{T}} = \mathbb{R}^{8}$, the result follows from (3.9).

Recall also the following basic observation.

Lemma 3.9. Let $\overline{s} = (s_j)_{j\geq 1}$ be a sequence of positive numbers and let $\overline{g} = (g_j)_{j\geq 1}$ be a sequence of uniformly bounded continuous functions. Then the set

$$\mathcal{W}_{\overline{s},\overline{g}} = \left\{ \nu \in \mathcal{P}(\mathbb{R}) \colon (\exists t_n \to \infty) \, (\forall j \ge 1) \quad \xi_{s_j t_n} \to g_j \text{ weakly in } L^2(\mathbb{R},\nu) \right\}$$

is G_{δ} in $\mathcal{P}(\mathbb{R})$.

Proof. Let $(f_m)_{m>1}$ be a sequence of continuous functions on \mathbb{R} uniformly bounded by 1, which is linearly dense in $L^2(\mathbb{R}, \nu)$ for every $\nu \in \mathcal{P}(\mathbb{R})$. Set

$$\mathcal{R}(n,\varepsilon) = \left\{ \mu \in \mathcal{P}(\mathbb{R}) : \sum_{m,j \ge 1} \frac{1}{2^{m+j}} \left| \int_{\mathbb{R}} \left(e^{2\pi i s_j n x} - g_j(x) \right) f_m(x) \, d\mu(x) \right| < \varepsilon \right\}.$$

The set $\mathcal{R}(n,\varepsilon)$ is open. To complete the proof it suffices to notice that

$$\mathcal{W}_{\overline{s},\overline{g}} = \bigcap_{\mathbb{Q} \ni \varepsilon > 0} \bigcap_{m \ge 1} \bigcup_{n \ge m} \mathcal{R}(n,\varepsilon).$$

Lemma 3.10. Let $H \subset \mathbb{R}^*_+$ be a countable multiplicative subgroup. Then for a typical $\nu \in \mathcal{P}(\mathbb{R})$ the measure $\eta := \sum_{h \in H} a_h \nu_h$ (with $a_h > 0$ and $\sum_{h \in H} a_h = 1$) yields a Gaussian flow $\mathcal{T}^{\eta|_{\mathbb{R}_+}}$ with simple spectrum.

Proof. Set $G = -H \cup H$ and let $H = \{s_i : i \ge 0\}$ $(s_0 = 1)$. In [4], Danilenko and Ryzhikov constructed a rank-1 flow \mathcal{T} preserving a σ -finite measure μ (the flow acts on (X, \mathcal{B}, μ) such that if $\sigma = \sigma_{\mathcal{T}}$ denotes its maximal spectral type on $L^2(X, \mathcal{B}, \mu)$ then the Gaussian flow

(3.15)
$$\mathcal{T}^{(\sum_{i\geq 1}\frac{1}{2^i}\sigma_{s_i})|_{\mathbb{R}_+}}$$
 has simple spectrum.

To prove this, they used the following properties of \mathcal{T} :

- a) $T_{\sqrt{2}s} \in WCP(T_s)$ ⁹ for each $s \in H$, b) $\frac{1}{q}I + \frac{q-1}{q}T_s \in WCP(T_s)$ for each $s \in H$ and $q \in \mathbb{N}$,
- c) for each finite sequence $s_1 < s_2 < \cdots < s_k$ of elements of H and each $1 \leq l_0 \leq k$ there exists $t_j \to \infty$ such that
 - $\begin{array}{ccc} ({\rm i}) & T_{t_{j}s_{j}} \to \frac{1}{2k}I \mbox{ if } 1 \leq l \leq k, l \neq l_{0}, \\ ({\rm ii}) & T_{t_{j}s_{l_{0}}} \to \frac{1}{2k}T_{s_{l_{0}}}. \end{array}$

Notice that the conditions a), b) and c) can be expressed as follows in terms of weak convergence of continuous and bounded functions in $L^2(\mathbb{R}, \sigma)$:

a') for each $s \in H$ there exists a sequence $n_k \to \infty$ such that

$$\xi_{sn_k} \to \xi_{\sqrt{2s}},$$

⁸This fact is well known for Z-actions, e.g. [20], Chapter 3, and can be easily rewritten using special representation of flows. See also the proof of Theorem A in [22].

⁹An operator Q belongs to the weak closure of powers WCP(R) if for an increasing sequence (m_i) of integers, $R^{m_j} \to P$ in the weak operator topology.

b') for each $s \in H$ and $q \in \mathbb{N}$ there exists a sequence $n_k \to \infty$ such that

$$\xi_{sn_k} \to \frac{1}{q} + \frac{q-1}{q} \xi_s,$$

- c') for each finite sequence $s_1 < s_2 < \cdots < s_k$ of elements of H and each $1 \leq l_0 \leq k$ there exists $t_j \to \infty$ such that
 - $$\begin{split} &1 \leq l_0 \leq k \text{ there exists } t_j \to \infty \text{ such that} \\ &(\text{i}) \ \xi_{t_j s_j} \to \frac{1}{2k} \text{ if } 1 \leq l \leq k, l \neq l_0, \\ &(\text{ii}) \ \xi_{t_j s_{l_0}} \to \frac{1}{2k} \xi_{s_{l_0}}. \end{split}$$

The arguments used in the proof of Theorem 4.4 in [4] show that for each continuous probability measure σ on \mathbb{R} conditions a'), b') and c') imply the simplicity of spectrum of the flow $\mathcal{T}^{(\sum_{k\geq 1}\frac{1}{2^k}\sigma_{s_k})|_{\mathbb{R}_+}}$. Moreover, by Lemma 3.9, the set of measures $\nu \in \mathcal{P}(\mathbb{R})$ satisfying these conditions is G_{δ} . We will show now that it is also dense in $\mathcal{P}(\mathbb{R})$. Notice that conditions a'), b') and c') hold also in $L^2(\mathbb{R}, \nu)$ for any $\nu \ll \sigma$. Since $\sigma_{\mathcal{T}}$ is the maximal spectral type of a rank-1 infinite measure-preserving flow \mathcal{T} , the Gelfand spectrum of the corresponding Koopman representation is equal to \mathbb{R} . It follows that the topological support of $\sigma_{\mathcal{T}}$ is full and therefore the result follows from (3.9).

4. PROOFS OF THEOREMS

Proof of Theorem 1.3. (based on Lemmas 3.2 and 3.8.) Using these two lemmas, for a "typical" (continuous, Kronecker) measure $\sigma \in \mathcal{P}([a, b])$ we have (with $a_h > 0$, and $\sum_{h \in H} a_h = 1$) $U \mapsto U \in \mathcal{U}(\mathcal{T}^n)$

$$-H \cup H \subset I(T^{\prime}),$$

where $\eta := \sum_{h \in H} a_h \sigma_h$ is a Kronecker measure and moreover

(4.1)
$$\sigma_s \perp \sigma * \delta_t$$

for each non-zero real $s \neq 1$ and arbitrary $t \in \mathbb{R}$. All we need to show is that when $s \notin -H \cup H$ then $\eta_s \not\equiv \eta$. However if $s \notin H$ then even more is true: $\eta \perp \eta_s * \delta_t$ for arbitrary $t \in \mathbb{R}$ and $s \notin \{0, 1\}$. It follows that

$$\widetilde{\eta}_s \perp \widetilde{\eta} * \delta_t$$

for each $s \notin -H \cup H$ and $t \in \mathbb{R}$. In view of Theorem 2.3, it follows that \mathcal{T}^{η} is disjoint from \mathcal{T}^{η_s} (isomorphic to \mathcal{T}^{η}_s) for $s \notin -H \cup H$. In particular, $-H \cup H = I(\mathcal{T}^{\eta})$ and the result follows.

Proof of Theorem 1.3. (based on Lemma 3.4.) Given $H \subset \mathbb{R}^*_+$ a multiplicative subgroup which is an additively \mathbb{Q} -independent set, in [6], there is a construction of a perfect compact set K such that $\widehat{K} := \bigcup_{h \in H} hK$ is independent and for $\widetilde{K} :=$ $-\widehat{K} \cup \widehat{K}$ the following holds: $(r\widetilde{K}+t) \cap \widetilde{K}$ is countable whenever $|r| \notin H$ and $t \in \mathbb{R}$ is arbitrary. Using Lemma 3.4 find a (continuous, Kronecker) measure $\sigma \in \mathcal{P}(K)$ such that $\eta := \sum_{h \in H} a_h \sigma_h$ is a Kronecker measure. Then η is concentrated on \widehat{K} . All we need to show is that if $|r| \notin H$, then the symmetrization of η_r is not equivalent to the symmetrization of η . This is however clear, since the symmetrization of η_r is a continuous measure concentrated on $r\widetilde{K}$. As in the previous proof we deduce that for $s \notin -H \cup H$ we obtain disjointness of the corresponding flows.

Proof of Theorem 1.4. First notice that directly from Lemma 3.7, it follows that whenever σ is a Kronecker measure then for each $r_1, r_2 \in \mathbb{Q}^*$, $r_1 \neq r_2$, we have

$$\sigma_{r_1} \perp \sigma_{r_2} * \delta_t$$
 for each $t \in \mathbb{R}$.

15

It follows that $\widetilde{\sigma}_{r_1} \perp \widetilde{\sigma}_{r_2} * \delta_t$ for all $t \in \mathbb{R}$, so by Theorem 2.3, the Gaussian-Kronecker flows $\mathcal{T}^{\sigma_{r_1}}$ and $\mathcal{T}^{\sigma_{r_2}}$ are disjoint. In view of (2.1), it follows that $T_1^{\sigma_{r_1}} \perp T_1^{\sigma_{r_2}}$, thus $T_{r_1}^{\sigma} \perp T_{r_2}^{\sigma}$.

Now suppose that $T = T_{\sigma} : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ is a Gaussian-Kronecker automorphism, i.e. $\sigma = \sigma_0 + \overline{\sigma}_0$ for a continuous Kronecker measure $\sigma_0 \in \mathcal{P}(\mathbb{T})$.¹⁰ Denote by σ' the image of σ_0 via the map $\mathbb{T} \ni z \mapsto \operatorname{Arg}(z)/2\pi \in [0, 1)$. Then σ' is a continuous Kronecker measure on \mathbb{R} such that $(\xi_1)_* \widetilde{\sigma}' = \sigma$ and $\widetilde{\sigma}' * \delta_m \perp \widetilde{\sigma}'$ for all $m \in \mathbb{N}$. Denote by \mathcal{H} the Gaussian space of the flow $\mathcal{T}^{\sigma'}$. Then the Koopman operator of $T_1^{\sigma'}$ has simple spectrum on \mathcal{H} and its spectral type is $(\xi_1)_* \widetilde{\sigma}' = \sigma$, see Appendix in [16]. Since the spectral type of ζ_1 (with respect to $T_1^{\sigma'}$) is $(\xi_1)_* \widetilde{\sigma}' = \sigma$, it follows that $\zeta_1 \circ (T_1^{\sigma'})^n$, $n \in \mathbb{Z}$, span the space \mathcal{H} . Thus $T_1^{\sigma'}$ is isomorphic to T_{σ} . By the first assertion of the theorem, it follows that T_{σ}^n is disjoint from T_{σ}^m for any pair of distinct natural numbers.

In order to prove the second part of the theorem note that if s is irrational then the set $\{1, s\}$ is \mathbb{Q} -independent, so by Lemma 3.2 we can find a (continuous, Kronecker) measure $\sigma \in \mathcal{P}([a, b])$ such that $\eta := \frac{1}{2}(\sigma + \sigma_s)$ is a Kronecker measure. Since $\sigma_s \ll \eta$ and $\sigma_s \ll \eta_s$ the Gaussian-Kronecker flows \mathcal{T}^{η} and \mathcal{T}^{η_s} have a common non-trivial (Gaussian) factor. Its time one map is a common non-trivial factor of T_1^{η} and $T_1^{\eta_s}$ and it remains to notice that the Gaussian automorphism $T_1^{\eta_s}$ is isomorphic to T_s^{η} .

Proof of Theorem 1.5. Let $H = G \cap \mathbb{R}^*_+$ and let $(a_h)_{h \in H}$ be positive numbers such that $\sum_{h \in H} a_h = 1$. By Lemmas 3.8, 3.10 and Lemma 3.2 (applied to $H = \{1\}$) combined with Remark 3.5, there exists $\nu' \in \mathcal{P}_c(\mathbb{R})$ such that

- (i) $\nu'_s \perp \nu' * \delta_t$ for all $s \in \mathbb{R}^* \setminus \{1\}$ and $t \in \mathbb{R}$;
- (ii) the Gaussian flow $\mathcal{T}^{(\sum_{h \in H} a_h \nu'_s)|_{\mathbb{R}_+}}$ has simple spectrum
- (iii) $\nu := \Delta(\nu') \in \mathcal{P}_c([a, b])$ is a Kronecker measure

(in fact, for a "typical" $\nu' \in \mathcal{P}_c(\mathbb{R})$ the properties (i)-(iii) hold). Since the conditions (i) and (ii) hold also for any measure absolutely continuous with respect to ν , the Kronecker measure ν satisfies (i) and (ii) as well. Therefore, setting $\sigma := \sum_{h \in H} a_h \nu_s$, by (ii), the Gaussian flow \mathcal{T}^{σ} has simple spectrum. The same argument as in the proof of Theorem 1.3 shows that (i) together with (ii) imply $I(\mathcal{T}^{\sigma}) = -H \cup H$ and $\mathcal{T}^{\nu_s} \perp \mathcal{T}^{\nu_r}$ whenever $|r| \neq |s|$. Each Kronecker measure ν_h , $h \in H$ is an FS measure so, by Proposition 2.4, it follows that $\sigma = \sum_{h \in H} a_h \nu_s$ is an FS measure ¹¹, which completes the proof. \Box

Proof of Theorem 1.6. The first part follows from Lemma 3.8 along the same lines as the first proof of Theorem 1.3 (for $H = \{1\}$).

In view of Corollary 2 in [16], a typical flow \mathcal{T} has the SC property,¹² which is equivalent to the fact that $\mathcal{T}^{\sigma_{\mathcal{T}}}$ has simple spectrum. In particular, it implies that $\mathcal{T}^{\sigma_{\mathcal{T}}}$ is GAG.

In order to prove that $\sigma_{\mathcal{T}} \perp (\sigma_{\mathcal{T}})_s * \delta_r$, $s \in \mathbb{R}^* \setminus \{1\}$, $r \in \mathbb{R}$ for a typical flow \mathcal{T} we follow the proof of Theorem 3.2 from [4] (using Lemma 3.8 and the existence of a

¹⁰ \mathbb{T} stands for $\{z \in \mathbb{C} : |z| = 1\}$.

 $^{^{11}{\}rm We}$ use here the elementary fact that the L^2 -limit of a sequence of Gausian variables remains Gaussian.

¹²The SC property means that if we set $\sigma = \sigma_{\mathcal{T}}$ then for each $n \geq 2$ the conditional measures of the disintegration of $\sigma^{\otimes n}$ over σ^{*n} via the map $\mathbb{R}^n \ni (x_1, \ldots, x_n) \mapsto x_1 + \cdots + x_n \in \mathbb{R}$ are purely atomic with n! atoms.

flow satisfying (3.14)). Since $\mathcal{T}^{\sigma_{\mathcal{T}}}$ is GAG for a typical flow \mathcal{T} , by Proposition 2.3, it follows that $\mathcal{T}^{(\sigma_{\mathcal{T}})_s}$ and $\mathcal{T}^{(\sigma_{\mathcal{T}})_r}$ are disjoint wherever $|r| \neq |s|$.

Question. Is there a Kronecker measure $\sigma \in \mathcal{P}(\mathbb{R}_+)$ such that $I(\mathcal{T}^{\sigma})$ is uncountable?

This question is to be compared with Ryzhikov's question whether there is a weakly mixing, non-mixing flows with uncountable group of self-similarities, see [3], Problem (1).

References

- 1. J. Bourgain, P. Sarnak, T. Ziegler, *Disjointness of Möbius from horocycles flows*, arXiv 1110.0992.
- 2. I.P. Cornfeld, S.V. Fomin, Y.G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1982.
- A. Danilenko, Flows with uncountable but meager group of self-similarities, Contemporary Math. 567 (2012), 99-105.
- A. Danilenko, V.V. Ryzhikov, On self-similarities of ergodic flows, Proc. London Math. Soc. 104 (2012), 431-454.
- 5. C. Foiaș, S. Stratila, Ensembles de Kronecker dans la théorie ergodique, C.R. Acad. Sci. Paris, série A **267**, 166-168.
- K. Frączek, M. Lemańczyk, On the self-similarity problem for ergodic flows, Proc. London Math. Soc. 99 (2009), 658-696.
- H. Furstenberg, Disjointness in ergodic theory, minimal sets and diophantine approximation, Math. Syst. Th. 1 (1967), 1-49.
- 8. H. Furstenberg, *Recurrence in Ergodic Theory and Combinatorial Number Theory*, Princeton University Press, Princeton, New Jersey, 1981.
- 9. E. Glasner, *Ergodic Theory via Joinings*, Mathematical Surveys and Monographs **101**, AMS, Providence, RI, 2003.
- A. del Junco, D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynam. Systems 7 (1987), 531-557.
- 11. A. Katok, J.-P. Thouvenot, Spectral Properties and Combinatorial Constructions in Ergodic Theory, Handbook of dynamical systems. Vol. 1B, 649-743, Elsevier B. V., Amsterdam, 2006.
- T.-W. Körner, Some results on Kronecker, Dirichlet and Helson sets, Annales Inst. Fourier, 20 (1970), 219-324.
- J. Kułaga, On the self-similarity problem for smooth flows on orientable surfaces, Ergodic Theory Dynam. Systems (2011), published online, DOI: 10.1017/S0143385711000459.
- M. Lemańczyk, Spectral Theory of Dynamical Systems, Encyclopedia of Complexity and System Science, Springer-Verlag (2009), 8554-8575.
- M. Lemańczyk, F. Parreau, On the disjointness problem for Gaussian automorphisms, Proc. Amer. Math. Soc. 127 (1999), 2073-2081.
- 16. M. Lemańczyk, F. Parreau, Special flows over irrational rotations with the simple convolutions property, preprint available http://www-users.mat.umk.pl/~mlem/publications.php.
- M. Lemańczyk, F. Parreau, J.-P. Thouvenot, Gaussian automorphisms whose ergodic selfjoinings are Gaussian, Fund. Mah. 164 (2000), 253-293.
- 18. L.-A. Lindahl, F. Poulsen, *Thin Sets in Harmnonic Analysis*, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc. New York, 1971.
- 19. B. Marcus, The horocycle flow is mixing of all orders, Invent. Math. 46 (1978), 201-209.
- 20. M.G. Nadkarni, Spectral Theory of Dynamical Systems, Birkhäuser Advanced Texts 1998.
- F. Parreau, On the Foiaş and Stratila theorem, Proc. Conference on Erg odic Theory and Dynamical Systems, Toruń 2000, 106-108, available http://www-users.mat.umk.pl/~mlem.
- W.C. Ridge, Spectrum of a composition operator, Proc. Amer. Math. Soc. 37, (1973), 121-127.
- T. de la Rue, Joinings in ergodic theory, Encyclopedia of Complexity and System Science, Springer-Verlag (2009), 5037-5051.
- V.V. Ryzhikov, Intertwinings of tensor products, and the centralizer of dynamical systems, Sb. Math. 188 (1997), 67-94.
- 25. V.V. Ryzhikov, On disjointness of mixing rank one actions, arxiv:1109.0671.

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland E-mail address: fraczek@mat.umk.pl

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland $E\text{-}mail\ address:\ joanna.kulaga@gmail.com$

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina $12/18,\,87\text{-}100$ Toruń, Poland

E-mail address: mlem@mat.umk.pl