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Abstract

We introduce a new equivalence relation between unitary operators
on separable Hilbert spaces and discuss a possibility to have in each
equivalence class a measure—preserving transformation.

Introduction

Let U be a unitary operator on a separable Hilbert space H. For any x € H
we define the cyclic space generated by z as Z(x) = span{U"x : n € Z}.
By the spectral measure p, of x we mean a Borel measure on the circle
determined by the equalities

fiz(n) = /Tz”dum(z) = (U"z,x)

for every n € Z.

Theorem 0.1 (spectral theorem). (see [9]) There exists in H a sequence
1, To, ... such that

H = @20:1 Z(xn) and iy > ey, > ... . (1)
Moreover, for any sequence yi,ys,... in H satisfying (1) we have p,, =
Moy s Poas = Hyosy -ev -
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One of the most important problems (still open) in ergodic theory is
a classification of ergodic dynamical systems with respect to the spectral
equivalence, i.e. given a sequence

f1 > o > (2)

of positive finite measures on the circle we ask if there exists an ergodic
dynamical system T": (X, B, o) — (X, B, o) such that a spectral sequence (1)
for U= Ur (Ur : L*(X, 0) — L*(X, 0), Urf = f o T) coincides with (2).

The spectral type of p,, (the equivalence class of measures) is called the
mazximal spectral type of U. By the multiplicity function My of U we mean
the function My : T —NU{+o00} given by:

My(2) =) xa.(2)

where Ay = T and A, = A,(U) = {z € T : % (2) > 0} (it is well-defined

d#xl
up to a p,, — —nullset). Then we have

T:AlDAQDAga....
The set
E({U)={neNU{+00}: s, {z € T: My(z) =n} > 0}

is called the set of essential values of the multiplicity function M.
For the background on spectral theory we refer to [3].

In the last few years, problems concerning spectral multiplicity have be-
come of a renewed interest (see |11, [2], [4], [6], [7], 8], [10], [11]). In [5], M.
Lemanczyk and J. Kwiatkowski (jr.) show that for an arbitrary set A C N "
containing 1, an ergodic automorphism 7" whose set of essential values of
the multiplicity function is equal to A is constructed. The aim of this pa-
per is a new viewpoint on spectral classification stated to me by Professor
Lemarnczyk.

Every measure 4 can be uniquely decomposed into a sum p = p¢ + pu?
where p¢ is continuous and p¢ is discret. For a spectral sequence ., >>
Mgy > ... we have pg > pg > ... By the c-multiplicity function Mg we
mean the function M{ : T —NU{+oc} given by

Mi(z) =Y xea(2)
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where ¢y =T and C,, = {z € T : dit (z) > 0}. The set

E(U)={neNU{+o0}: py{z € T: Mj(z) =n} >0}

is called the set of essential values of c-multiplicity function M.
Let D(U) : N U {400} — N U {400} be a function given by D(U)(n) =
card D,, where

D — { {z€ A\ Any1 t pe,({2}) >0} for n=1,2,..
" {ze M, An: e, ({2}) >0} for n=+oo.

In Section 1 we define a cyclic space (s.c.) isomorphism of unitary operators
on separable Hilbert space and we try to find a complete set of invariants
for a c.s. isomorphism. Using results from Section 1 and those from [5], we
show that in the c.s. equivalence class of an operator U : H — H whose
maximal spectral type is continuous and 1 € E°(U) we can find a weakly
mixing automorphism.

The author would like to thank Professor Lemanczyk for some valuable dis-
cussions.

1 Cyclic space isomorphism and its invariants

Lemma 1.1. Let U, : H — Hy and Uy : Hy — Hy be unitary operators.
Then, for every unitary operator V : Hy — Hy the following conditions are
equivalent.

(i) For every x € Hy, Z(Vx) =V Z(x).

(i) If H is a Uy-invariant closed subspace of Hy, then V H is Uy-invariant
and if H is a Us-invariant closed subspace of Hy, then V1H is U;-
mnvariant.

Proof. (i) = (ii). Suppose that H is a Uj-invariant closed subspace of H;
and y € VH. There exists € H such that y = V. Since Z(y) = VZ(z),

Uz_ly, Uye Z(y) =VZ(x) CVH

and finally that V H is Us-invariant. Similarly, we can get the remaining part
of (ii).



(1) = (i). Let x € H;. Since Z(x) is Us-invariant, V' Z(x) is Up-invariant.
Since Vo € VZ(z), Z(Vz) C VZ(x). Similarly, if y = Va then Z(z) =
Z(V™ly) c V' Z(y) = V1Z(Vz). This gives VZ(z) C Z(Vz) and finally
Z(Vx)=VZ(z).N

Definition 1.1. We call a unitary operator V : H; — Hy is a cyclic space
isomorphism of Uy and U if it satisfies (i) from Lemma 1.1 or equivalently
(i4).
Lemma 1.2. Let p and v be positive finite Borel measures on the circle.
Assume Uy : L*(T,pu) — L*(T,p), Uy : L*(T,v) — L*(T,v) are unitary
operators given by

Urf(z) = Uzf(2) = 2£(2).
IfV: L*(T,u) — L*(T,v) is a c.s. isomorphism of Uy and Uy then there ex-
ists a nonsingular invertible map S : (T,B,v) — (T, B, u) and h € L*(T,v)
such that

Vf=h-foS

for every f € L*(T, p).

Proof. For a set A€ B put H= x4L*(T,p). Then H is a U;-invariant
subspace of L*(T, ). By Wiener Lemma (e.g. [9] Appendix) there exists
a Borel set ®(A) such that VH = x¢)L*(T,v). From V({0}) = {0} and

~1({0}) = {0} we obtain that u(A) = 0 iff v(®(A)) = 0. If AN B = ) then
XAL*(T, u) LxpL*(T, u) hence

Xo4)L* (T, v) LxasL*(T,v)

and finally ®(A) N®(B) = 0. If A =2, A, with {A,} pair wise disjoint
then

X@(A)LQ(Tv V) = V(XUOC Ap L2 @ XAnL2 7:u
=P Vxa, LT EBX«p )L*(T,v) = xuz, aa) L*(T,v)
n=1

hence ®(A) = U2, P(A,) and by a standard argument the equality holds

if {A,} are not pair wise disjoint. Since V(L?(T,u)) = L*(T,v) we have
®(T) =T. Hence T = (A) U P(A°) and therefore P(A)° = O(A°).
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Consequently @ : (B,u) — (B,v) is a o-Boolean isomorphism. Therefore
there exists a nonsingular invertible map S : (T, B,v) — (T, B, 1) such that
P(A) = S7(A) for every A € B.
Set h = V(1). For A € B we have 1 = x4+ xac, hence h = V(xa) + V(xac).
But the functions V(x4) and V(x4c) have disjoint supports, so V(x4) must
be equal to h on its support and the same remark can be applied to V(xac)
hence

Vi(xa) =h-xemy=h-xaoS.
Since this is true for any characteristic function, it is also true for linear
combinations of such functions and finally for all f € L*(T, p).
Since V' is unitary, for every A € B

u(SA) = /T a8 P dp =] xaS ™ (2=

IV OaS ™) [Bagy=ll b xa oy = / B
Hence | h |?= %5 1

dv

Lemma 1.3. Assume that Uy : Hy — Hy and Uy : Hy — Hy are unitary
operators and 'V : Hi — Hy a c.s. isomorphism of Uy and U,. Let

Hi =@, Z(x,) and iz, > fg, > ...
be a spectral decomposition of Uy. Then we have
Hy=@.",Z(Vx,) and pyy > pvg, > ... .
Moreover, iz, = iz, ., Uf Wz, = tva,., and hence E(Uy) = E(Us)

Proof. Since V is a unitary operator,
Hy =V(H) =V(EP Z(z)) = PV Z(xn) =P Z(Va).
n=1 n=1 n=1

We first show that Z(Vx;) is a maximal cyclic space. Suppose there exists
y € Hy such that Z(Vzy) ¢ Z(y). Then we have Z(z;) ¢ Z(V~'y). This
contradicts the fact that Z(z;) is maximal. This gives us that py,, is the
maximal spectral type of Us,.



Similarly, since V' |4(,,)+ is a c.s. isomorphism, gy, is the maximal spectral
type of Uy |z(v4,)+. In this way we conclude that iy, is the maximal spectral
type of Uy restricted to Z(Vz,) ® Z(Va,11) @ ... for every n > 1 and finally
that py., > pye, > ... .

If pig, > pig, ., but they are not equivalent then we can write

Z(2) ® Z(aas1) = Z(2) @ Z() © Z(was)

where fizn Ly, and pigr < pig, ., (in fact these latter measures are equiva-
lent). Now

V(Z(20) ® Z(@ns)) = Z2(Val) © Z(Val) & Z(Van)
but Z(x) @& Z(xn41) is a cyclic space, hence so must be
V(Z() ® Z(wns1) = Z(Val) & Z(Virner).

This shows that the spectral measures py,» and py,, , are orthogonal so
WV, > UVa,,, and they are not equivalent. W

Remark. It follows from this lemma that E(U) is an invariant of a c.s.
isomorphism. Notice that if x is an eigenvector of Uy, the Z(z) is a one-
dimensional space. Therefore its image via a c.s. isomorphism V must be
also one—dimensional, hence Vz is also eigenvector (though corresponding to
possibly different eigenvalue). This gives rise to a second invariant of a c.s.
isomorphism. The theorem below explains how a combination of these two
invariants gives rise to a complete set of invariants for a c.s. isomorphism.

Theorem 1.4. Let U; : H; — H; be a unitary operator on a separable Hilbert
space, 1 = 1,2. Then the following conditions are equivalent.

(i) Uy and Uy are cyclic space equivalent.

(ii) There are spectral sequences py > s > ... of Uy and vy > vy >
. of Uy and measure space isomorphism S : (T,11) — (T, ) such
that
Up = pipoS forall n>1.



Proof. (i) = (i7). Suppose V : Hi — H, is a c.s. isomorphism of
Uy and Us,. Fix a spectral decomposition H; = @, Z(z,) of U; and put
[ = lg, for each n > 1. By Lemma 1.3 we have a spectral decomposition
Hy =@, Z(Vx,) of Uy and v, := py,, for each n > 1. There exists a
unitary isomorphism Vi : @, | L*(T, pu,) — H; of operators U and U; and a
unitary isomorphism V; : Hy — €7, L*(T, v,,) of operators Uy and U such
that Vi (L*(T, u,)) = Z(z,) and Vo Z(x,) = L*(T,v,)) for n > 1, where

U falza)) =D 2nfalzn).

Hence the operator V' = VLV V] is a c.s. isomorphism of the operator U on
@7, LT, ) and U on @), L*(T,v,) and V'(L*(T,pu,)) = L*(T,vy)
(so V' restricted establishes a c.s. isomorphism) for n > 1.

By Lemma 1.2 there exist nonsingular invertible maps S, : (T,B,1n) —
(T, B, ) and h, € L*(T, v,) such that V' | ,p , ) f =l f oS, for every
n > 1. Hence we have

V/(Z fa(zn)) = Z hi(20) * fn(Snzn)

for 327° | fu € @52 LA(T, ).
For every n # m, consider

H = {f(2) + f(2) : f € L*(T, 1)}

This is a closed U-invariant subspace of @y, L*(T, ). Without loss of
generality, we can assume that p,, = uy |4, (i-e. that ‘fi“T’; = xa,)- Then

V'H = {hn(20) f(Snzn) + han(2m) f(Smzm) = f € L*(T, )}

Since V'H is U-invariant, for every f € L?(T, u;) there exists g € L*(T, u;)
such that

Znhn (20) [ (Snzn) + Zmhm (Zm) f(Smzm) = hn(20)9(Snzn) + B (2m) 9(Smzm)-

By the orthogonality of the natural embedding of L*(T, u,) and L*(T, )
in the space under consideration

2hn(2) [ (Snz) = hu(2)g(Snz),
2hm(2) f(Smz) = hm(2)g(Smz), z€T py —ace.
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hence S, 1(2)f(2) = g(z) and S,'(2)f(2) = g(z) a.e., because h,, # 0 p,-a.e.
and h,, # 0 py-a.e. by Lemma 1.2. If f = 1 then S;!(2) = g(z) = S.,}(?)
hence S = S, = 5,, for every n # m and we get v,, = u, 0 .S so by replacing
v, by p, o S the result follows.

(1) = (i). Suppose there are spectral sequence py > s > ... of Uy and
v1 > vy > ... of Uy and an isomorphism S : (T,v;) — (T, uy) such that
Vp = jip oS for all n > 1. We will consider the unitary operator V' :

@2, LT, un) — D22, L*(T, v,) given by
V,(Z fu(zn)) = Z fn(Szn).
n=1 n=1

We first prove that V' is a cyclic space isomorphism of U on @7 | L*(T, j1,,)
and U on @7, L*(T,v,). Let H be a closed U-invariant subspace of
@7, L*(T, u,). We show that V'H is U-invariant. We have that H is
Y (U)-invariant for every ¢ € L*°(T, p1). Hence if >, fu(z,) € H then
D1 Y(2n) ful2n) € H.

Let Y, gn(2n) € V'H. Thereexists Y~ | f,(z,) € H such that g,, = f,0S.
From | S71(2) |= 1, it follows that

> 87 z) fulz) € H

and hence . -
U gnl(z) =D znfu(S2) € VH.

n=1 n=1
In the same manner we can see that if H is a U-invariant subspace of
D>, L*(T,v,) then V"' H is U-invariant. Consequently the operator V =
Vo "WVt is a c.s. isomorphism of U; and U.
(11) = (4i). If there are spectral sequence p; > po > ... of U; and
V1 > vy > ... of Uy and an isomorphism S : (T,r;) — (T, u1) such that
Vp = ip 0 S for all n > 1 then

An(UQ) = SilAn(Ul), Cn(UQ) = Silcn(Ul), l/il = ,uil O S

Hence

Cr(U2) \ Cry1(Us) = S7HCH(U1) \ Cra (1)),

U | a0\ At 02)= BT | An @)\ Ay (01) ©S
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for n > 1 and

() CaU2) = 57H() CalWh)),

N An) = F1 e, ann) ©

and ﬁnally Ec(Ul) = EC(UQ) and D(Ul) = D(UQ)

(1i1) = (17). Let p and v be the maximal spectral type of U; and Us. If
E¢(Uy) = E°(Uy) and D(U;) = D(Us) then

V(Cr(U2) \ Cpy1(U2)) > 0 i p(Co(Un) \ Crga (Ur)) > 0

d
St

for n > 1 and
V((ozy Cn(U2)) >0 HfE pu(M),2, Cu(U1)) >0

and card D,,(Uy) = card D,,(Us) for n eNU{+o0}.

Since A, \ Apt1 = (Cp, \ Cry1) U D, and (02, Ay = (oo, Cn U Do, there
exist nonsingular invertible maps S, : (A, (Uz2) \ Ant1(U2),v) — (A, (Ur) \
A1 (Uh),p) for n > 1 and Sy = (oo An(Us),v) — (Moo, An(Ur), p). We
define a nonsingular invertible map S : (T,v) — (T, ) by

[ Su(z) for z € A,(Us) \ At (Uz)
S(z) = { Solw) for  w ey An(lh).

Then we have

v A7L(U2)E ILL An(Ul) OS'

Let pi, = p |a,@,) and vy, := g |a,@,) ©S then py > gy > .. and v >
vy > ... is a spectral sequence of U; and U, and v, = p,0S foralln > 1. R

2 Cyclic space isomorphism of unitary oper-
ators in the case where an operator corre-
sponds to an ergodic dynamical system

Given a dynamical system T : (X,B,0) — (X, B, 0), set Sp(T) = {\ €C:

Jrerzx. o fT = Af}.

Corollary 2.1. Let (X1, By, 0o, Too) and (Xo, Be, 0c,Tc) be invertible, er-
godic dynamical systems. Then Up, and U, are cyclic space equivalent if and

only if E¢(Ur,) = E°(Ur,) and card Sp(11) = card Sp(Ts).
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Proof. By the ergodicity, for an arbitrary spectral sequence ,ugi) > ,ugi) >
.. corresponding to Ur, ¢ = 1,2 only the maximal spectral type MY) need
not be a continuous measure. W

Without ergodicity the above corollary is not valid as the following example
shows.

Example. Let Tx = z+ « be an irrational rotation. Then T and T x T are
not s.c. equivalent (because D(T)(1) = oo and D(T x T')(1) = 0), though
card Sp(T) = card Sp(T x T).

Corollary 2.2. Let T} and T, be weakly mizing. Then Ur, and Ur, are cyclic
space equivalent if and only if E°(Ur,) = E°(Ur,).

In [5] M. Lemariczyk and J. Kwiatkowski (jr.) proved that

Proposition 1. Given a set A C N1, 1 € A, there exists an ergodic T such
that E(Ur) = A. Moreover, T can be constructed to be weakly mizing.

From the proof of Proposition 1 in [5] it follows that for a set A C N,
1 € A, there exists a weakly mixing 7" such that E¢(Ur) = A. Since all their
examples have singular spectra, by taking a direct product of an example T’
realizing A C N* with a 7 having countable Lebesgue spectrum we reach

E(T x1)=AU{+00}.
Hence

Corollary 2.3. Let M, ¢ = {U: has continuous spectrum and oo € £1(U)}.
Partition M ¢ into the equivalence classes with respect to cyclic space equiv-
alence relation. Then in every equivalence class there exists a unitary oper-
ator Up : L3(X,0) — Li(X,0), where T is weakly mizing and L3(X,0) =
{f e L*(X,0): [ fdo=0}.
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