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Abstract
We introduce a new equivalence relation between unitary operators

on separable Hilbert spaces and discuss a possibility to have in each
equivalence class a measure�preserving transformation.

Introduction

Let U be a unitary operator on a separable Hilbert space H. For any x ∈ H
we de�ne the cyclic space generated by x as Z(x) = span{Unx : n ∈ Z}.
By the spectral measure µx of x we mean a Borel measure on the circle
determined by the equalities

µ̂x(n) =

∫
T

zndµx(z) = (Unx, x)

for every n ∈ Z.

Theorem 0.1 (spectral theorem). (see [9]) There exists in H a sequence
x1, x2, ... such that

H =
⊕∞

n=1 Z(xn) and µx1 � µx2 � ... . (1)

Moreover, for any sequence y1, y2, ... in H satisfying (1) we have µx1 ≡
µy1 , µx2 ≡ µy2 , ... .
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One of the most important problems (still open) in ergodic theory is
a classi�cation of ergodic dynamical systems with respect to the spectral
equivalence, i.e. given a sequence

µ1 � µ2 � ... (2)

of positive �nite measures on the circle we ask if there exists an ergodic
dynamical system T : (X,B, %) → (X ,B, %) such that a spectral sequence (1)
for U = UT (UT : L2(X, %) → L2(X, %), UTf = f ◦ T ) coincides with (2).

The spectral type of µx1 (the equivalence class of measures) is called the
maximal spectral type of U . By the multiplicity function MU of U we mean
the function MU : T→N∪{+∞} given by:

MU(z) =
∞∑

n=1

χAn(z)

where A1 = T and An = An(U) = {z ∈ T : dµxn

dµx1
(z) > 0} (it is well-de�ned

up to a µx1 −−nullset). Then we have

T = A1 ⊃ A2 ⊃ A3 ⊃ ....

The set

E(U) = {n ∈ N ∪ {+∞} : µx1{z ∈ T : MU(z) = n} > 0}

is called the set of essential values of the multiplicity function MU .
For the background on spectral theory we refer to [3].

In the last few years, problems concerning spectral multiplicity have be-
come of a renewed interest (see [1], [2], [4], [6], [7], [8], [10], [11]). In [5], M.
Lema«czyk and J. Kwiatkowski (jr.) show that for an arbitrary set A ⊆ N+

containing 1, an ergodic automorphism T whose set of essential values of
the multiplicity function is equal to A is constructed. The aim of this pa-
per is a new viewpoint on spectral classi�cation stated to me by Professor
Lema«czyk.

Every measure µ can be uniquely decomposed into a sum µ = µc + µd

where µc is continuous and µd is discret. For a spectral sequence µx1 �
µx2 � ... we have µc

x1
� µc

x2
� .... By the c-multiplicity function M c

U we
mean the function M c

U : T→N∪{+∞} given by

M c
U(z) =

∞∑
n=1

χCn(z)
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where C1 = T and Cn = {z ∈ T :
dµc

xn

dµc
x1

(z) > 0}. The set

Ec(U) = {n ∈ N ∪ {+∞} : µx1{z ∈ T : M c
U(z) = n} > 0}

is called the set of essential values of c-multiplicity function M c
U .

Let D(U) : N ∪ {+∞} → N ∪ {+∞} be a function given by D(U)(n) =
card Dn where

Dn =

{
{z ∈ An \ An+1 : µx1({z}) > 0} for n = 1, 2, ...
{z ∈

⋂∞
n=1An : µx1({z}) > 0} for n = +∞.

In Section 1 we de�ne a cyclic space (s.c.) isomorphism of unitary operators
on separable Hilbert space and we try to �nd a complete set of invariants
for a c.s. isomorphism. Using results from Section 1 and those from [5], we
show that in the c.s. equivalence class of an operator U : H → H whose
maximal spectral type is continuous and 1 ∈ Ec(U) we can �nd a weakly
mixing automorphism.
The author would like to thank Professor Lema«czyk for some valuable dis-
cussions.

1 Cyclic space isomorphism and its invariants

Lemma 1.1. Let U1 : H1 → H1 and U2 : H2 → H2 be unitary operators.
Then, for every unitary operator V : H1 → H2 the following conditions are
equivalent.

(i) For every x ∈ H1, Z(V x) = V Z(x).

(ii) If H is a U1-invariant closed subspace of H1, then V H is U2-invariant
and if H is a U2-invariant closed subspace of H2, then V −1H is U1-
invariant.

Proof. (i) ⇒ (ii). Suppose that H is a U1-invariant closed subspace of H1

and y ∈ V H. There exists x ∈ H such that y = V x. Since Z(y) = V Z(x),

U−1
2 y, U2y ∈ Z(y) = V Z(x) ⊂ V H

and �nally that V H is U2-invariant. Similarly, we can get the remaining part
of (ii).
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(ii) ⇒ (i). Let x ∈ H1. Since Z(x) is U1-invariant, V Z(x) is U2-invariant.
Since V x ∈ V Z(x), Z(V x) ⊂ V Z(x). Similarly, if y = V x then Z(x) =
Z(V −1y) ⊂ V −1Z(y) = V −1Z(V x). This gives V Z(x) ⊂ Z(V x) and �nally
Z(V x) = V Z(x).�

De�nition 1.1. We call a unitary operator V : H1 → H2 is a cyclic space
isomorphism of U1 and U2 if it satis�es (i) from Lemma 1.1 or equivalently
(ii).

Lemma 1.2. Let µ and ν be positive �nite Borel measures on the circle.
Assume U1 : L2(T, µ) → L2(T, µ), U2 : L2(T, ν) → L2(T, ν) are unitary
operators given by

U1f(z) = U2f(z) = zf(z).

If V : L2(T, µ) → L2(T, ν) is a c.s. isomorphism of U1 and U2 then there ex-
ists a nonsingular invertible map S : (T,B, ν) → (T,B, µ) and h ∈ L2(T, ν)
such that

V f = h · f ◦ S

for every f ∈ L2(T, µ).

Proof. For a set A ∈ B put H = χAL
2(T, µ). Then H is a U1-invariant

subspace of L2(T, µ). By Wiener Lemma (e.g. [9] Appendix) there exists
a Borel set Φ(A) such that V H = χΦ(A)L

2(T, ν). From V ({0}) = {0} and
V −1({0}) = {0} we obtain that µ(A) = 0 i� ν(Φ(A)) = 0. If A∩B = ∅ then
χAL

2(T, µ)⊥χBL
2(T, µ) hence

χΦ(A)L
2(T, ν)⊥χΦ(B)L

2(T, ν)

and �nally Φ(A) ∩ Φ(B) = ∅. If A =
⋃∞

n=1An with {An} pair wise disjoint
then

χΦ(A)L
2(T, ν) = V (χ⋃∞

n=1 AnL
2(T, µ)) = V (

∞⊕
n=1

χAnL
2(T, µ)) =

=
∞⊕

n=1

V (χAnL
2(T, µ)) =

∞⊕
n=1

χΦ(An)L
2(T, ν) = χ⋃∞

n=1 Φ(An)L
2(T, ν)

hence Φ(A) =
⋃∞

n=1 Φ(An) and by a standard argument the equality holds
if {An} are not pair wise disjoint. Since V (L2(T, µ)) = L2(T, ν) we have
Φ(T) = T. Hence T = Φ(A) ∪ Φ(Ac) and therefore Φ(A)c = Φ(Ac).
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Consequently Φ : (B, µ) → (B, ν) is a σ-Boolean isomorphism. Therefore
there exists a nonsingular invertible map S : (T,B, ν) → (T,B, µ) such that
Φ(A) = S−1(A) for every A ∈ B.
Set h = V (1). For A ∈ B we have 1 = χA +χAc , hence h = V (χA) +V (χAc).
But the functions V (χA) and V (χAc) have disjoint supports, so V (χA) must
be equal to h on its support and the same remark can be applied to V (χAc)
hence

V (χA) = h · χΦ(A) = h · χA ◦ S.

Since this is true for any characteristic function, it is also true for linear
combinations of such functions and �nally for all f ∈ L2(T, µ).
Since V is unitary, for every A ∈ B

µ(SA) =

∫
T
| χAS

−1 |2 dµ =|| χAS
−1 ||2L2(µ)=

=|| V (χAS
−1) ||2L2(ν)=|| h · χA ||2L2(ν)=

∫
A

| h |2 dν.

Hence | h |2= dµ◦S
dν

. �

Lemma 1.3. Assume that U1 : H1 → H1 and U2 : H2 → H2 are unitary
operators and V : H1 → H2 a c.s. isomorphism of U1 and U2. Let

H1 =
⊕∞

n=1 Z(xn) and µx1 � µx2 � ...

be a spectral decomposition of U1.Then we have

H2 =
⊕∞

n=1 Z(V xn) and µV x1 � µV x2 � ... .

Moreover, µxn ≡ µxn+1 i� µV xn ≡ µV xn+1 and hence E(U1) = E(U2)

Proof. Since V is a unitary operator,

H2 = V (H1) = V (
∞⊕

n=1

Z(xn)) =
∞⊕

n=1

V Z(xn) =
∞⊕

n=1

Z(V xn).

We �rst show that Z(V x1) is a maximal cyclic space. Suppose there exists
y ∈ H2 such that Z(V x1)  Z(y). Then we have Z(x1)  Z(V −1y). This
contradicts the fact that Z(x1) is maximal. This gives us that µV x1 is the
maximal spectral type of U2.
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Similarly, since V |Z(x1)⊥ is a c.s. isomorphism, µV x2 is the maximal spectral
type of U2 |Z(V x2)⊥ . In this way we conclude that µV xn is the maximal spectral
type of U2 restricted to Z(V xn)⊕Z(V xn+1)⊕ ... for every n ≥ 1 and �nally
that µV x1 � µV x2 � ... .
If µxn � µxn+1 but they are not equivalent then we can write

Z(xn)⊕ Z(xn+1) = Z(x′n)⊕ Z(x′′n)⊕ Z(xn+1)

where µx′′n⊥µxn+1 and µx′n � µxn+1 (in fact these latter measures are equiva-
lent). Now

V (Z(xn)⊕ Z(xn+1)) = Z(V x′n)⊕ Z(V x′′n)⊕ Z(V xn+1)

but Z(x′′n)⊕ Z(xn+1) is a cyclic space, hence so must be

V (Z(x′′n)⊕ Z(xn+1)) = Z(V x′′n)⊕ Z(V xn+1).

This shows that the spectral measures µV x′′n and µV xn+1 are orthogonal so
µV xn � µV xn+1 and they are not equivalent. �

Remark. It follows from this lemma that E(U) is an invariant of a c.s.
isomorphism. Notice that if x is an eigenvector of U1, the Z(x) is a one�
dimensional space. Therefore its image via a c.s. isomorphism V must be
also one�dimensional, hence V x is also eigenvector (though corresponding to
possibly di�erent eigenvalue). This gives rise to a second invariant of a c.s.
isomorphism. The theorem below explains how a combination of these two
invariants gives rise to a complete set of invariants for a c.s. isomorphism.

Theorem 1.4. Let Ui : Hi → Hi be a unitary operator on a separable Hilbert
space, i = 1, 2. Then the following conditions are equivalent.

(i) U1 and U2 are cyclic space equivalent.

(ii) There are spectral sequences µ1 � µ2 � ... of U1 and ν1 � ν2 �
... of U2 and measure space isomorphism S : (T, ν1) → (T, µ1) such
that

νn = µn ◦ S for all n ≥ 1.

(iii) Ec(U1) = Ec(U2) and D(U1) = D(U2).
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Proof. (i) ⇒ (ii). Suppose V : H1 → H2 is a c.s. isomorphism of
U1 and U2. Fix a spectral decomposition H1 =

⊕∞
n=1 Z(xn) of U1 and put

µn := µxn for each n ≥ 1. By Lemma 1.3 we have a spectral decomposition
H2 =

⊕∞
n=1 Z(V xn) of U2 and νn := µV xn for each n ≥ 1. There exists a

unitary isomorphism V1 :
⊕∞

n=1 L
2(T, µn) → H1 of operators U and U1 and a

unitary isomorphism V2 : H2 →
⊕∞

n=1 L
2(T, νn) of operators U2 and U such

that V1(L
2(T, µn)) = Z(xn) and V2Z(xn) = L2(T, νn)) for n ≥ 1, where

U(
∞∑

n=1

fn(zn)) =
∞∑

n=1

znfn(zn).

Hence the operator V ′ = V2V V1 is a c.s. isomorphism of the operator U on⊕∞
n=1 L

2(T, µn) and U on
⊕∞

n=1 L
2(T, νn) and V ′(L2(T, µn)) = L2(T, νn)

(so V ′ restricted establishes a c.s. isomorphism) for n ≥ 1.
By Lemma 1.2 there exist nonsingular invertible maps Sn : (T,B, ν\) →
(T,B, µ\) and hn ∈ L2(T, νn) such that V ′ |

L2(T,µn)
f = hn · f ◦ Sn for every

n ≥ 1. Hence we have

V ′(
∞∑

n=1

fn(zn)) =
∞∑

n=1

hn(zn) · fn(Snzn)

for
∑∞

n=1 fn ∈
⊕∞

n=1 L
2(T, µn).

For every n 6= m, consider

H = {f(zn) + f(zm) : f ∈ L2(T, µ1)}.

This is a closed U -invariant subspace of
⊕∞

k=1 L
2(T, µk). Without loss of

generality, we can assume that µn = µ1 |An (i.e. that dµn

dµ1
= χAn). Then

V ′H = {hn(zn)f(Snzn) + hm(zm)f(Smzm) : f ∈ L2(T, µ1)}.

Since V ′H is U -invariant, for every f ∈ L2(T, µ1) there exists g ∈ L2(T, µ1)
such that

znhn(zn)f(Snzn) + zmhm(zm)f(Smzm) = hn(zn)g(Snzn) + hm(zm)g(Smzm).

By the orthogonality of the natural embedding of L2(T, µn) and L2(T, µm)
in the space under consideration

zhn(z)f(Snz) = hn(z)g(Snz), z ∈ T µn − a.e.
zhm(z)f(Smz) = hm(z)g(Smz), z ∈ T µm − a.e.
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hence S−1
n (z)f(z) = g(z) and S−1

m (z)f(z) = g(z) a.e., because hn 6= 0 µn-a.e.
and hm 6= 0 µm-a.e. by Lemma 1.2. If f = 1 then S−1

n (z) = g(z) = S−1
m (z)

hence S = Sn = Sm for every n 6= m and we get νn ≡ µn ◦ S so by replacing
νn by µn ◦ S the result follows.
(ii) ⇒ (i). Suppose there are spectral sequence µ1 � µ2 � ... of U1 and
ν1 � ν2 � ... of U2 and an isomorphism S : (T, ν1) → (T, µ1) such that
νn = µn ◦ S for all n ≥ 1. We will consider the unitary operator V ′ :⊕∞

n=1 L
2(T, µn) →

⊕∞
n=1 L

2(T, νn) given by

V ′(
∞∑

n=1

fn(zn)) =
∞∑

n=1

fn(Szn).

We �rst prove that V ′ is a cyclic space isomorphism of U on
⊕∞

n=1 L
2(T, µn)

and U on
⊕∞

n=1 L
2(T, νn). Let H be a closed U -invariant subspace of⊕∞

n=1 L
2(T, µn). We show that V ′H is U -invariant. We have that H is

ψ(U)-invariant for every ψ ∈ L∞(T, µ1). Hence if
∑∞

n=1 fn(zn) ∈ H then∑∞
n=1 ψ(zn)fn(zn) ∈ H.

Let
∑∞

n=1 gn(zn) ∈ V ′H. There exists
∑∞

n=1 fn(zn) ∈ H such that gn = fn◦S.
From | S−1(z) |= 1, it follows that

∞∑
n=1

S−1(zn)fn(zn) ∈ H

and hence

U(
∞∑

n=1

gn(zn)) =
∞∑

n=1

znfn(Szn) ∈ V ′H.

In the same manner we can see that if H is a U -invariant subspace of⊕∞
n=1 L

2(T, νn) then V ′−1H is U -invariant. Consequently the operator V =
V −1

2 V ′V −1
1 is a c.s. isomorphism of U1 and U2.

(ii) ⇒ (iii). If there are spectral sequence µ1 � µ2 � ... of U1 and
ν1 � ν2 � ... of U2 and an isomorphism S : (T, ν1) → (T, µ1) such that
νn = µn ◦ S for all n ≥ 1 then

An(U2) = S−1An(U1), Cn(U2) = S−1Cn(U1), ν
d
1 = µd

1 ◦ S.

Hence
Cn(U2) \ Cn+1(U2) = S−1(Cn(U1) \ Cn+1(U1)),

νd
1 |An(U2)\An+1(U2)= µd

1 |An(U1)\An+1(U1) ◦S
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for n ≥ 1 and
∞⋂

n=1

Cn(U2) = S−1(
∞⋂

n=1

Cn(U1)),

νd
1 |⋂∞

n=1 An(U2)= µd
1 |⋂∞

n=1 An(U1) ◦S
and �nally Ec(U1) = Ec(U2) and D(U1) = D(U2).
(iii) ⇒ (ii). Let µ and ν be the maximal spectral type of U1 and U2. If
Ec(U1) = Ec(U2) and D(U1) = D(U2) then

ν(Cn(U2) \ Cn+1(U2)) > 0 i� µ(Cn(U1) \ Cn+1(U1)) > 0

for n ≥ 1 and

ν(
⋂∞

n=1Cn(U2)) > 0 i� µ(
⋂∞

n=1Cn(U1)) > 0

and card Dn(U1) = card Dn(U2) for n ∈N∪{+∞}.
Since An \ An+1 = (Cn \ Cn+1) ∪ Dn and

⋂∞
n=1An =

⋂∞
n=1Cn ∪ D∞, there

exist nonsingular invertible maps Sn : (An(U2) \ An+1(U2), ν) → (An(U1) \
An+1(U1), µ) for n ≥ 1 and S∞ : (

⋂∞
n=1An(U2), ν) → (

⋂∞
n=1An(U1), µ). We

de�ne a nonsingular invertible map S : (T, ν) → (T, µ) by

S(x) =

{
Sn(x) for x ∈ An(U2) \ An+1(U2)
S∞(x) for x ∈

⋂∞
n=1An(U2).

Then we have
ν |An(U2)≡ µ |An(U1) ◦S.

Let µn := µ |An(U1) and νn := µ |An(U1) ◦S then µ1 � µ2 � ... and ν1 �
ν2 � ... is a spectral sequence of U1 and U2 and νn = µn ◦ S for all n ≥ 1. �

2 Cyclic space isomorphism of unitary oper-

ators in the case where an operator corre-

sponds to an ergodic dynamical system

Given a dynamical system T : (X,B, %) → (X ,B, %), set Sp(T ) = {λ ∈C:
∃f∈L2(X,%)fT = λf}.

Corollary 2.1. Let (X1,B∞, %∞, T∞) and (X2,B∈, %∈, T∈) be invertible, er-
godic dynamical systems. Then UT1 and UT2 are cyclic space equivalent if and
only if Ec(UT1) = Ec(UT2) and card Sp(T1) = card Sp(T2).

9



Proof. By the ergodicity, for an arbitrary spectral sequence µ
(i)
1 ≥ µ

(i)
2 ≥

... corresponding to UTi
, i = 1, 2 only the maximal spectral type µ

(i)
1 need

not be a continuous measure. �

Without ergodicity the above corollary is not valid as the following example
shows.

Example. Let Tx = x+α be an irrational rotation. Then T and T ×T are
not s.c. equivalent (because D(T )(1) = ∞ and D(T × T )(1) = 0), though
card Sp(T ) = card Sp(T × T ).

Corollary 2.2. Let T1 and T2 be weakly mixing. Then UT1 and UT2 are cyclic
space equivalent if and only if Ec(UT1) = Ec(UT2).

In [5] M. Lema«czyk and J. Kwiatkowski (jr.) proved that

Proposition 1. Given a set A ⊆ N+, 1 ∈ A, there exists an ergodic T such
that E(UT ) = A. Moreover, T can be constructed to be weakly mixing.

From the proof of Proposition 1 in [5] it follows that for a set A ⊆ N+,
1 ∈ A, there exists a weakly mixing T such that Ec(UT ) = A. Since all their
examples have singular spectra, by taking a direct product of an example T
realizing A ⊂ N+ with a τ having countable Lebesgue spectrum we reach

E(T × τ) = A ∪ {+∞}.

Hence

Corollary 2.3. LetM∞,C = {U : has continuous spectrum and ∞ ∈ Ec(U)}.
PartitionM∞,C into the equivalence classes with respect to cyclic space equiv-
alence relation. Then in every equivalence class there exists a unitary oper-
ator UT : L2

0(X, %) → L2
0(X, %), where T is weakly mixing and L2

0(X, %) =
{f ∈ L2(X, %) :

∫
fd% = 0}.
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