Cyclic space isomorphism of unitary operators

KRZYSZTOF FRĄCZEK

August 16, 2005

Abstract

We introduce a new equivalence relation between unitary operators on separable Hilbert spaces and discuss a possibility to have in each equivalence class a measure-preserving transformation.

Introduction

Let U be a unitary operator on a separable Hilbert space H. For any $x \in H$ we define the cyclic space generated by x as $Z(x)=\operatorname{span}\left\{U^{n} x: n \in \mathbf{Z}\right\}$. By the spectral measure μ_{x} of x we mean a Borel measure on the circle determined by the equalities

$$
\hat{\mu}_{x}(n)=\int_{T} z^{n} d \mu_{x}(z)=\left(U^{n} x, x\right)
$$

for every $n \in \mathbf{Z}$.
Theorem 0.1 (spectral theorem). (see [9]) There exists in H a sequence x_{1}, x_{2}, \ldots such that

$$
\begin{equation*}
H=\bigoplus_{n=1}^{\infty} Z\left(x_{n}\right) \quad \text { and } \quad \mu_{x_{1}} \gg \mu_{x_{2}} \gg \ldots \tag{1}
\end{equation*}
$$

Moreover, for any sequence y_{1}, y_{2}, \ldots in H satisfying (1) we have $\mu_{x_{1}} \equiv$ $\mu_{y_{1}}, \mu_{x_{2}} \equiv \mu_{y_{2}}, \ldots$.

[^0]Research partly supported by KBN grant 2 P301 03107 (1994)

One of the most important problems (still open) in ergodic theory is a classification of ergodic dynamical systems with respect to the spectral equivalence, i.e. given a sequence

$$
\begin{equation*}
\mu_{1} \gg \mu_{2} \gg \ldots \tag{2}
\end{equation*}
$$

of positive finite measures on the circle we ask if there exists an ergodic dynamical system $T:(X, \mathcal{B}, \varrho) \rightarrow(\mathcal{X}, \mathcal{B}, \varrho)$ such that a spectral sequence (1) for $U=U_{T}\left(U_{T}: L^{2}(X, \varrho) \rightarrow L^{2}(X, \varrho), U_{T} f=f \circ T\right)$ coincides with (2).

The spectral type of $\mu_{x_{1}}$ (the equivalence class of measures) is called the maximal spectral type of U. By the multiplicity function M_{U} of U we mean the function $M_{U}: \mathbf{T} \rightarrow \mathbf{N} \cup\{+\infty\}$ given by:

$$
M_{U}(z)=\sum_{n=1}^{\infty} \chi_{A_{n}}(z)
$$

where $A_{1}=\mathbf{T}$ and $A_{n}=A_{n}(U)=\left\{z \in \mathbf{T}: \frac{d \mu_{x_{n}}}{d \mu_{x_{1}}}(z)>0\right\}$ (it is well-defined up to a $\mu_{x_{1}}-$ nullset). Then we have

$$
\mathbf{T}=A_{1} \supset A_{2} \supset A_{3} \supset \ldots
$$

The set

$$
E(U)=\left\{n \in \mathbf{N} \cup\{+\infty\}: \mu_{x_{1}}\left\{z \in \mathbf{T}: M_{U}(z)=n\right\}>0\right\}
$$

is called the set of essential values of the multiplicity function M_{U}. For the background on spectral theory we refer to [3].

In the last few years, problems concerning spectral multiplicity have become of a renewed interest (see [1], [2], [4], [6], [7], [8], [10], [11]). In [5], M. Lemańczyk and J. Kwiatkowski (jr.) show that for an arbitrary set $A \subseteq \mathbf{N}^{+}$ containing 1, an ergodic automorphism T whose set of essential values of the multiplicity function is equal to A is constructed. The aim of this paper is a new viewpoint on spectral classification stated to me by Professor Lemańczyk.

Every measure μ can be uniquely decomposed into a sum $\mu=\mu^{c}+\mu^{d}$ where μ^{c} is continuous and μ^{d} is discret. For a spectral sequence $\mu_{x_{1}} \gg$ $\mu_{x_{2}} \gg \ldots$ we have $\mu_{x_{1}}^{c} \gg \mu_{x_{2}}^{c} \gg \ldots$. By the c-multiplicity function M_{U}^{c} we mean the function $M_{U}^{c}: \mathbf{T} \rightarrow \mathbf{N} \cup\{+\infty\}$ given by

$$
M_{U}^{c}(z)=\sum_{n=1}^{\infty} \chi_{C_{n}}(z)
$$

where $C_{1}=\mathbf{T}$ and $C_{n}=\left\{z \in \mathbf{T}: \frac{d \mu_{x_{n}}^{c}}{d \mu_{x_{1}}}(z)>0\right\}$. The set

$$
E^{c}(U)=\left\{n \in \mathbf{N} \cup\{+\infty\}: \mu_{x_{1}}\left\{z \in \mathbf{T}: M_{U}^{c}(z)=n\right\}>0\right\}
$$

is called the set of essential values of c-multiplicity function M_{U}^{c}.
Let $D(U): \mathbf{N} \cup\{+\infty\} \rightarrow \mathbf{N} \cup\{+\infty\}$ be a function given by $D(U)(n)=$ card D_{n} where

$$
D_{n}=\left\{\begin{array}{cc}
\left\{z \in A_{n} \backslash A_{n+1}: \mu_{x_{1}}(\{z\})>0\right\} & \text { for } \quad n=1,2, \ldots \\
\left\{z \in \bigcap_{n=1}^{\infty} A_{n}: \mu_{x_{1}}(\{z\})>0\right\} & \text { for } \quad n=+\infty .
\end{array}\right.
$$

In Section 1 we define a cyclic space (s.c.) isomorphism of unitary operators on separable Hilbert space and we try to find a complete set of invariants for a c.s. isomorphism. Using results from Section 1 and those from [5], we show that in the c.s. equivalence class of an operator $U: H \rightarrow H$ whose maximal spectral type is continuous and $1 \in E^{c}(U)$ we can find a weakly mixing automorphism.
The author would like to thank Professor Lemańczyk for some valuable discussions.

1 Cyclic space isomorphism and its invariants

Lemma 1.1. Let $U_{1}: H_{1} \rightarrow H_{1}$ and $U_{2}: H_{2} \rightarrow H_{2}$ be unitary operators. Then, for every unitary operator $V: H_{1} \rightarrow H_{2}$ the following conditions are equivalent.
(i) For every $x \in H_{1}, Z(V x)=V Z(x)$.
(ii) If H is a U_{1}-invariant closed subspace of H_{1}, then $V H$ is U_{2}-invariant and if H is a U_{2}-invariant closed subspace of H_{2}, then $V^{-1} H$ is U_{1} invariant.

Proof. $(i) \Rightarrow(i i)$. Suppose that H is a U_{1}-invariant closed subspace of H_{1} and $y \in V H$. There exists $x \in H$ such that $y=V x$. Since $Z(y)=V Z(x)$,

$$
U_{2}^{-1} y, U_{2} y \in Z(y)=V Z(x) \subset V H
$$

and finally that $V H$ is U_{2}-invariant. Similarly, we can get the remaining part of (ii).
(ii) $\Rightarrow(i)$. Let $x \in H_{1}$. Since $Z(x)$ is U_{1}-invariant, $V Z(x)$ is U_{2}-invariant. Since $V x \in V Z(x), Z(V x) \subset V Z(x)$. Similarly, if $y=V x$ then $Z(x)=$ $Z\left(V^{-1} y\right) \subset V^{-1} Z(y)=V^{-1} Z(V x)$. This gives $V Z(x) \subset Z(V x)$ and finally $Z(V x)=V Z(x)$.

Definition 1.1. We call a unitary operator $V: H_{1} \rightarrow H_{2}$ is a cyclic space isomorphism of U_{1} and U_{2} if it satisfies (i) from Lemma 1.1 or equivalently (ii).

Lemma 1.2. Let μ and ν be positive finite Borel measures on the circle. Assume $U_{1}: L^{2}(\mathbf{T}, \mu) \rightarrow L^{2}(\mathbf{T}, \mu), U_{2}: L^{2}(\mathbf{T}, \nu) \rightarrow L^{2}(\mathbf{T}, \nu)$ are unitary operators given by

$$
U_{1} f(z)=U_{2} f(z)=z f(z) .
$$

If $V: L^{2}(\mathbf{T}, \mu) \rightarrow L^{2}(\mathbf{T}, \nu)$ is a c.s. isomorphism of U_{1} and U_{2} then there exists a nonsingular invertible map $S:(\mathbf{T}, \mathcal{B}, \nu) \rightarrow(\mathbf{T}, \mathcal{B}, \mu)$ and $h \in L^{2}(\mathbf{T}, \nu)$ such that

$$
V f=h \cdot f \circ S
$$

for every $f \in L^{2}(\mathbf{T}, \mu)$.
Proof. For a set $A \in \mathcal{B}$ put $H=\chi_{A} L^{2}(\mathbf{T}, \mu)$. Then H is a U_{1}-invariant subspace of $L^{2}(\mathbf{T}, \mu)$. By Wiener Lemma (e.g. [9] Appendix) there exists a Borel set $\Phi(A)$ such that $V H=\chi_{\Phi(A)} L^{2}(\mathbf{T}, \nu)$. From $V(\{0\})=\{0\}$ and $V^{-1}(\{0\})=\{0\}$ we obtain that $\mu(A)=0$ iff $\nu(\Phi(A))=0$. If $A \cap B=\emptyset$ then $\chi_{A} L^{2}(\mathbf{T}, \mu) \perp \chi_{B} L^{2}(\mathbf{T}, \mu)$ hence

$$
\chi_{\Phi(A)} L^{2}(\mathbf{T}, \nu) \perp \chi_{\Phi(B)} L^{2}(\mathbf{T}, \nu)
$$

and finally $\Phi(A) \cap \Phi(B)=\emptyset$. If $A=\bigcup_{n=1}^{\infty} A_{n}$ with $\left\{A_{n}\right\}$ pair wise disjoint then

$$
\begin{aligned}
& \chi_{\Phi(A)} L^{2}(\mathbf{T}, \nu)=V\left(\chi_{\cup_{n=1}^{\infty} A_{n}} L^{2}(\mathbf{T}, \mu)\right)=V\left(\bigoplus_{n=1}^{\infty} \chi_{A_{n}} L^{2}(\mathbf{T}, \mu)\right)= \\
= & \bigoplus_{n=1}^{\infty} V\left(\chi_{A_{n}} L^{2}(\mathbf{T}, \mu)\right)=\bigoplus_{n=1}^{\infty} \chi_{\Phi\left(A_{n}\right)} L^{2}(\mathbf{T}, \nu)=\chi_{\cup_{n=1}^{\infty} \Phi\left(A_{n}\right)} L^{2}(\mathbf{T}, \nu)
\end{aligned}
$$

hence $\Phi(A)=\bigcup_{n=1}^{\infty} \Phi\left(A_{n}\right)$ and by a standard argument the equality holds if $\left\{A_{n}\right\}$ are not pair wise disjoint. Since $V\left(L^{2}(\mathbf{T}, \mu)\right)=L^{2}(\mathbf{T}, \nu)$ we have $\Phi(\mathbf{T})=\mathbf{T}$. Hence $\mathbf{T}=\Phi(A) \cup \Phi\left(A^{c}\right)$ and therefore $\Phi(A)^{c}=\Phi\left(A^{c}\right)$.

Consequently $\Phi:(\mathcal{B}, \mu) \rightarrow(\mathcal{B}, \nu)$ is a σ-Boolean isomorphism. Therefore there exists a nonsingular invertible map $S:(\mathbf{T}, \mathcal{B}, \nu) \rightarrow(\mathbf{T}, \mathcal{B}, \mu)$ such that $\Phi(A)=S^{-1}(A)$ for every $A \in \mathcal{B}$.
Set $h=V(1)$. For $A \in \mathcal{B}$ we have $1=\chi_{A}+\chi_{A^{c}}$, hence $h=V\left(\chi_{A}\right)+V\left(\chi_{A^{c}}\right)$. But the functions $V\left(\chi_{A}\right)$ and $V\left(\chi_{A^{c}}\right)$ have disjoint supports, so $V\left(\chi_{A}\right)$ must be equal to h on its support and the same remark can be applied to $V\left(\chi_{A^{c}}\right)$ hence

$$
V\left(\chi_{A}\right)=h \cdot \chi_{\Phi(A)}=h \cdot \chi_{A} \circ S .
$$

Since this is true for any characteristic function, it is also true for linear combinations of such functions and finally for all $f \in L^{2}(\mathbf{T}, \mu)$.
Since V is unitary, for every $A \in \mathcal{B}$

$$
\begin{gathered}
\mu(S A)=\int_{\mathbf{T}}\left|\chi_{A} S^{-1}\right|^{2} d \mu=\left\|\chi_{A} S^{-1}\right\|_{L^{2}(\mu)}^{2}= \\
=\left\|V\left(\chi_{A} S^{-1}\right)\right\|_{L^{2}(\nu)}^{2}=\left\|h \cdot \chi_{A}\right\|_{L^{2}(\nu)}^{2}=\int_{A}|h|^{2} d \nu .
\end{gathered}
$$

Hence $|h|^{2}=\frac{d \mu \circ S}{d \nu}$.
Lemma 1.3. Assume that $U_{1}: H_{1} \rightarrow H_{1}$ and $U_{2}: H_{2} \rightarrow H_{2}$ are unitary operators and $V: H_{1} \rightarrow H_{2}$ a c.s. isomorphism of U_{1} and U_{2}. Let

$$
H_{1}=\bigoplus_{n=1}^{\infty} Z\left(x_{n}\right) \quad \text { and } \quad \mu_{x_{1}} \gg \mu_{x_{2}} \gg \ldots
$$

be a spectral decomposition of U_{1}. Then we have

$$
H_{2}=\bigoplus_{n=1}^{\infty} Z\left(V x_{n}\right) \quad \text { and } \quad \mu_{V x_{1}} \gg \mu_{V x_{2}} \gg \ldots
$$

Moreover, $\mu_{x_{n}} \equiv \mu_{x_{n+1}}$ iff $\mu_{V x_{n}} \equiv \mu_{V x_{n+1}}$ and hence $E\left(U_{1}\right)=E\left(U_{2}\right)$
Proof. Since V is a unitary operator,

$$
H_{2}=V\left(H_{1}\right)=V\left(\bigoplus_{n=1}^{\infty} Z\left(x_{n}\right)\right)=\bigoplus_{n=1}^{\infty} V Z\left(x_{n}\right)=\bigoplus_{n=1}^{\infty} Z\left(V x_{n}\right) .
$$

We first show that $Z\left(V x_{1}\right)$ is a maximal cyclic space. Suppose there exists $y \in H_{2}$ such that $Z\left(V x_{1}\right) \varsubsetneqq Z(y)$. Then we have $Z\left(x_{1}\right) \varsubsetneqq Z\left(V^{-1} y\right)$. This contradicts the fact that $Z\left(x_{1}\right)$ is maximal. This gives us that $\mu_{V x_{1}}$ is the maximal spectral type of U_{2}.

Similarly, since $\left.V\right|_{Z\left(x_{1}\right)^{\perp}}$ is a c.s. isomorphism, $\mu_{V x_{2}}$ is the maximal spectral type of $\left.U_{2}\right|_{Z\left(V x_{2}\right)^{\perp}}$. In this way we conclude that $\mu_{V x_{n}}$ is the maximal spectral type of U_{2} restricted to $Z\left(V x_{n}\right) \oplus Z\left(V x_{n+1}\right) \oplus \ldots$ for every $n \geq 1$ and finally that $\mu_{V x_{1}} \gg \mu_{V x_{2}} \gg \ldots$.
If $\mu_{x_{n}} \gg \mu_{x_{n+1}}$ but they are not equivalent then we can write

$$
Z\left(x_{n}\right) \oplus Z\left(x_{n+1}\right)=Z\left(x_{n}^{\prime}\right) \oplus Z\left(x_{n}^{\prime \prime}\right) \oplus Z\left(x_{n+1}\right)
$$

where $\mu_{x_{n}^{\prime \prime}} \perp \mu_{x_{n+1}}$ and $\mu_{x_{n}^{\prime}} \ll \mu_{x_{n+1}}$ (in fact these latter measures are equivalent). Now

$$
V\left(Z\left(x_{n}\right) \oplus Z\left(x_{n+1}\right)\right)=Z\left(V x_{n}^{\prime}\right) \oplus Z\left(V x_{n}^{\prime \prime}\right) \oplus Z\left(V x_{n+1}\right)
$$

but $Z\left(x_{n}^{\prime \prime}\right) \oplus Z\left(x_{n+1}\right)$ is a cyclic space, hence so must be

$$
V\left(Z\left(x_{n}^{\prime \prime}\right) \oplus Z\left(x_{n+1}\right)\right)=Z\left(V x_{n}^{\prime \prime}\right) \oplus Z\left(V x_{n+1}\right)
$$

This shows that the spectral measures $\mu_{V x_{n}^{\prime \prime}}$ and $\mu_{V x_{n+1}}$ are orthogonal so $\mu_{V x_{n}} \gg \mu_{V x_{n+1}}$ and they are not equivalent.
Remark. It follows from this lemma that $E(U)$ is an invariant of a c.s. isomorphism. Notice that if x is an eigenvector of U_{1}, the $Z(x)$ is a onedimensional space. Therefore its image via a c.s. isomorphism V must be also one-dimensional, hence $V x$ is also eigenvector (though corresponding to possibly different eigenvalue). This gives rise to a second invariant of a c.s. isomorphism. The theorem below explains how a combination of these two invariants gives rise to a complete set of invariants for a c.s. isomorphism.

Theorem 1.4. Let $U_{i}: H_{i} \rightarrow H_{i}$ be a unitary operator on a separable Hilbert space, $i=1,2$. Then the following conditions are equivalent.
(i) U_{1} and U_{2} are cyclic space equivalent.
(ii) There are spectral sequences $\mu_{1} \gg \mu_{2} \gg \ldots$ of U_{1} and $\nu_{1} \gg \nu_{2} \gg$ \ldots of U_{2} and measure space isomorphism $S:\left(\mathbf{T}, \nu_{1}\right) \rightarrow\left(\mathbf{T}, \mu_{1}\right)$ such that

$$
\nu_{n}=\mu_{n} \circ S \text { for all } n \geq 1
$$

(iii) $E^{c}\left(U_{1}\right)=E^{c}\left(U_{2}\right)$ and $D\left(U_{1}\right)=D\left(U_{2}\right)$.

Proof. $(i) \Rightarrow(i i)$. Suppose $V: H_{1} \rightarrow H_{2}$ is a c.s. isomorphism of U_{1} and U_{2}. Fix a spectral decomposition $H_{1}=\bigoplus_{n=1}^{\infty} Z\left(x_{n}\right)$ of U_{1} and put $\mu_{n}:=\mu_{x_{n}}$ for each $n \geq 1$. By Lemma 1.3 we have a spectral decomposition $H_{2}=\bigoplus_{n=1}^{\infty} Z\left(V x_{n}\right)$ of U_{2} and $\nu_{n}:=\mu_{V x_{n}}$ for each $n \geq 1$. There exists a unitary isomorphism $V_{1}: \bigoplus_{n=1}^{\infty} L^{2}\left(\mathbf{T}, \mu_{n}\right) \rightarrow H_{1}$ of operators U and U_{1} and a unitary isomorphism $V_{2}: H_{2} \rightarrow \bigoplus_{n=1}^{\infty} L^{2}\left(\mathbf{T}, \nu_{n}\right)$ of operators U_{2} and U such that $V_{1}\left(L^{2}\left(\mathbf{T}, \mu_{n}\right)\right)=Z\left(x_{n}\right)$ and $\left.V_{2} Z\left(x_{n}\right)=L^{2}\left(\mathbf{T}, \nu_{n}\right)\right)$ for $n \geq 1$, where

$$
U\left(\sum_{n=1}^{\infty} f_{n}\left(z_{n}\right)\right)=\sum_{n=1}^{\infty} z_{n} f_{n}\left(z_{n}\right) .
$$

Hence the operator $V^{\prime}=V_{2} V V_{1}$ is a c.s. isomorphism of the operator U on $\bigoplus_{n=1}^{\infty} L^{2}\left(\mathbf{T}, \mu_{n}\right)$ and U on $\bigoplus_{n=1}^{\infty} L^{2}\left(\mathbf{T}, \nu_{n}\right)$ and $V^{\prime}\left(L^{2}\left(\mathbf{T}, \mu_{n}\right)\right)=L^{2}\left(\mathbf{T}, \nu_{n}\right)$ (so V^{\prime} restricted establishes a c.s. isomorphism) for $n \geq 1$.
By Lemma 1.2 there exist nonsingular invertible maps $S_{n}:(\mathbf{T}, \mathcal{B}, \nu) \rightarrow$ $\left(\mathbf{T}, \mathcal{B}, \mu_{\backslash}\right)$ and $h_{n} \in L^{2}\left(\mathbf{T}, \nu_{n}\right)$ such that $\left.V^{\prime}\right|_{L^{2}\left(\mathbf{T}, \mu_{n}\right)} f=h_{n} \cdot f \circ S_{n}$ for every $n \geq 1$. Hence we have

$$
V^{\prime}\left(\sum_{n=1}^{\infty} f_{n}\left(z_{n}\right)\right)=\sum_{n=1}^{\infty} h_{n}\left(z_{n}\right) \cdot f_{n}\left(S_{n} z_{n}\right)
$$

for $\sum_{n=1}^{\infty} f_{n} \in \bigoplus_{n=1}^{\infty} L^{2}\left(\mathbf{T}, \mu_{n}\right)$.
For every $n \neq m$, consider

$$
H=\left\{f\left(z_{n}\right)+f\left(z_{m}\right): f \in L^{2}\left(\mathbf{T}, \mu_{1}\right)\right\} .
$$

This is a closed U-invariant subspace of $\bigoplus_{k=1}^{\infty} L^{2}\left(\mathbf{T}, \mu_{k}\right)$. Without loss of generality, we can assume that $\mu_{n}=\left.\mu_{1}\right|_{A_{n}}$ (i.e. that $\frac{d \mu_{n}}{d \mu_{1}}=\chi_{A_{n}}$). Then

$$
V^{\prime} H=\left\{h_{n}\left(z_{n}\right) f\left(S_{n} z_{n}\right)+h_{m}\left(z_{m}\right) f\left(S_{m} z_{m}\right): f \in L^{2}\left(\mathbf{T}, \mu_{1}\right)\right\} .
$$

Since $V^{\prime} H$ is U-invariant, for every $f \in L^{2}\left(\mathbf{T}, \mu_{1}\right)$ there exists $g \in L^{2}\left(\mathbf{T}, \mu_{1}\right)$ such that

$$
z_{n} h_{n}\left(z_{n}\right) f\left(S_{n} z_{n}\right)+z_{m} h_{m}\left(z_{m}\right) f\left(S_{m} z_{m}\right)=h_{n}\left(z_{n}\right) g\left(S_{n} z_{n}\right)+h_{m}\left(z_{m}\right) g\left(S_{m} z_{m}\right)
$$

By the orthogonality of the natural embedding of $L^{2}\left(\mathbf{T}, \mu_{n}\right)$ and $L^{2}\left(\mathbf{T}, \mu_{m}\right)$ in the space under consideration

$$
\begin{aligned}
z h_{n}(z) f\left(S_{n} z\right) & =h_{n}(z) g\left(S_{n} z\right), & z \in \mathbf{T} & \mu_{n} \text { - a.e. } \\
z h_{m}(z) f\left(S_{m} z\right) & =h_{m}(z) g\left(S_{m} z\right), & z \in \mathbf{T} & \mu_{m} \text {-a.e. }
\end{aligned}
$$

hence $S_{n}^{-1}(z) f(z)=g(z)$ and $S_{m}^{-1}(z) f(z)=g(z)$ a.e., because $h_{n} \neq 0 \mu_{n}$-a.e. and $h_{m} \neq 0 \mu_{m}$-a.e. by Lemma 1.2. If $f=1$ then $S_{n}^{-1}(z)=g(z)=S_{m}^{-1}(z)$ hence $S=S_{n}=S_{m}$ for every $n \neq m$ and we get $\nu_{n} \equiv \mu_{n} \circ S$ so by replacing ν_{n} by $\mu_{n} \circ S$ the result follows.
$(i i) \Rightarrow(i)$. Suppose there are spectral sequence $\mu_{1} \gg \mu_{2} \gg \ldots$ of U_{1} and $\nu_{1} \gg \nu_{2} \gg \ldots$ of U_{2} and an isomorphism $S:\left(\mathbf{T}, \nu_{1}\right) \rightarrow\left(\mathbf{T}, \mu_{1}\right)$ such that $\nu_{n}=\mu_{n} \circ S$ for all $n \geq 1$. We will consider the unitary operator $V^{\prime}:$ $\bigoplus_{n=1}^{\infty} L^{2}\left(\mathbf{T}, \mu_{n}\right) \rightarrow \bigoplus_{n=1}^{\infty} L^{2}\left(\mathbf{T}, \nu_{n}\right)$ given by

$$
V^{\prime}\left(\sum_{n=1}^{\infty} f_{n}\left(z_{n}\right)\right)=\sum_{n=1}^{\infty} f_{n}\left(S z_{n}\right) .
$$

We first prove that V^{\prime} is a cyclic space isomorphism of U on $\bigoplus_{n=1}^{\infty} L^{2}\left(\mathbf{T}, \mu_{n}\right)$ and U on $\bigoplus_{n=1}^{\infty} L^{2}\left(\mathbf{T}, \nu_{n}\right)$. Let H be a closed U-invariant subspace of $\bigoplus_{n=1}^{\infty} L^{2}\left(\mathbf{T}, \mu_{n}\right)$. We show that $V^{\prime} H$ is U-invariant. We have that H is $\psi(U)$-invariant for every $\psi \in L^{\infty}\left(\mathbf{T}, \mu_{1}\right)$. Hence if $\sum_{n=1}^{\infty} f_{n}\left(z_{n}\right) \in H$ then $\sum_{n=1}^{\infty} \psi\left(z_{n}\right) f_{n}\left(z_{n}\right) \in H$.
Let $\sum_{n=1}^{\infty} g_{n}\left(z_{n}\right) \in V^{\prime} H$. There exists $\sum_{n=1}^{\infty} f_{n}\left(z_{n}\right) \in H$ such that $g_{n}=f_{n} \circ S$. From $\left|S^{-1}(z)\right|=1$, it follows that

$$
\sum_{n=1}^{\infty} S^{-1}\left(z_{n}\right) f_{n}\left(z_{n}\right) \in H
$$

and hence

$$
U\left(\sum_{n=1}^{\infty} g_{n}\left(z_{n}\right)\right)=\sum_{n=1}^{\infty} z_{n} f_{n}\left(S z_{n}\right) \in V^{\prime} H
$$

In the same manner we can see that if H is a U-invariant subspace of $\bigoplus_{n=1}^{\infty} L^{2}\left(\mathbf{T}, \nu_{n}\right)$ then $V^{\prime-1} H$ is U-invariant. Consequently the operator $V=$ $V_{2}^{-1} V^{\prime} V_{1}^{-1}$ is a c.s. isomorphism of U_{1} and U_{2}.
(ii) \Rightarrow (iii). If there are spectral sequence $\mu_{1} \gg \mu_{2} \gg \ldots$ of U_{1} and $\nu_{1} \gg \nu_{2} \gg \ldots$ of U_{2} and an isomorphism $S:\left(\mathbf{T}, \nu_{1}\right) \rightarrow\left(\mathbf{T}, \mu_{1}\right)$ such that $\nu_{n}=\mu_{n} \circ S$ for all $n \geq 1$ then

$$
A_{n}\left(U_{2}\right)=S^{-1} A_{n}\left(U_{1}\right), C_{n}\left(U_{2}\right)=S^{-1} C_{n}\left(U_{1}\right), \nu_{1}^{d}=\mu_{1}^{d} \circ S
$$

Hence

$$
\begin{gathered}
C_{n}\left(U_{2}\right) \backslash C_{n+1}\left(U_{2}\right)=S^{-1}\left(C_{n}\left(U_{1}\right) \backslash C_{n+1}\left(U_{1}\right)\right), \\
\left.\quad \nu_{1}^{d}\right|_{A_{n}\left(U_{2}\right) \backslash A_{n+1}\left(U_{2}\right)}=\left.\mu_{1}^{d}\right|_{A_{n}\left(U_{1}\right) \backslash A_{n+1}\left(U_{1}\right)} \circ S
\end{gathered}
$$

for $n \geq 1$ and

$$
\begin{gathered}
\bigcap_{n=1}^{\infty} C_{n}\left(U_{2}\right)=S^{-1}\left(\bigcap_{n=1}^{\infty} C_{n}\left(U_{1}\right)\right), \\
\left.\nu_{1}^{d}\right|_{\cap_{n=1}^{\infty} A_{n}\left(U_{2}\right)}=\left.\mu_{1}^{d}\right|_{\cap_{n=1}^{\infty} A_{n}\left(U_{1}\right)} \circ S
\end{gathered}
$$

and finally $E^{c}\left(U_{1}\right)=E^{c}\left(U_{2}\right)$ and $D\left(U_{1}\right)=D\left(U_{2}\right)$.
(iii) \Rightarrow (ii). Let μ and ν be the maximal spectral type of U_{1} and U_{2}. If $E^{c}\left(U_{1}\right)=E^{c}\left(U_{2}\right)$ and $D\left(U_{1}\right)=D\left(U_{2}\right)$ then

$$
\nu\left(C_{n}\left(U_{2}\right) \backslash C_{n+1}\left(U_{2}\right)\right)>0 \quad \text { iff } \quad \mu\left(C_{n}\left(U_{1}\right) \backslash C_{n+1}\left(U_{1}\right)\right)>0
$$

for $n \geq 1$ and

$$
\nu\left(\bigcap_{n=1}^{\infty} C_{n}\left(U_{2}\right)\right)>0 \quad \text { iff } \quad \mu\left(\bigcap_{n=1}^{\infty} C_{n}\left(U_{1}\right)\right)>0
$$

and card $D_{n}\left(U_{1}\right)=\operatorname{card} D_{n}\left(U_{2}\right)$ for $n \in \mathbf{N} \cup\{+\infty\}$.
Since $A_{n} \backslash A_{n+1}=\left(C_{n} \backslash C_{n+1}\right) \cup D_{n}$ and $\bigcap_{n=1}^{\infty} A_{n}=\bigcap_{n=1}^{\infty} C_{n} \cup D_{\infty}$, there exist nonsingular invertible maps $S_{n}:\left(A_{n}\left(U_{2}\right) \backslash A_{n+1}\left(U_{2}\right), \nu\right) \rightarrow\left(A_{n}\left(U_{1}\right) \backslash\right.$ $\left.A_{n+1}\left(U_{1}\right), \mu\right)$ for $n \geq 1$ and $S_{\infty}:\left(\bigcap_{n=1}^{\infty} A_{n}\left(U_{2}\right), \nu\right) \rightarrow\left(\bigcap_{n=1}^{\infty} A_{n}\left(U_{1}\right), \mu\right)$. We define a nonsingular invertible map $S:(\mathbf{T}, \nu) \rightarrow(\mathbf{T}, \mu)$ by

$$
S(x)=\left\{\begin{array}{ccc}
S_{n}(x) & \text { for } & x \in A_{n}\left(U_{2}\right) \backslash A_{n+1}\left(U_{2}\right) \\
S_{\infty}(x) & \text { for } & x \in \bigcap_{n=1}^{\infty} A_{n}\left(U_{2}\right) .
\end{array}\right.
$$

Then we have

$$
\left.\left.\nu\right|_{A_{n}\left(U_{2}\right)} \equiv \mu\right|_{A_{n}\left(U_{1}\right)} \circ S .
$$

Let $\mu_{n}:=\left.\mu\right|_{A_{n}\left(U_{1}\right)}$ and $\nu_{n}:=\left.\mu\right|_{A_{n}\left(U_{1}\right)} \circ S$ then $\mu_{1} \gg \mu_{2} \gg \ldots$ and $\nu_{1} \gg$ $\nu_{2} \gg \ldots$ is a spectral sequence of U_{1} and U_{2} and $\nu_{n}=\mu_{n} \circ S$ for all $n \geq 1$.

2 Cyclic space isomorphism of unitary operators in the case where an operator corresponds to an ergodic dynamical system

Given a dynamical system $T:(X, \mathcal{B}, \varrho) \rightarrow(\mathcal{X}, \mathcal{B}, \varrho)$, set $\operatorname{Sp}(T)=\{\lambda \in \mathbf{C}$: $\left.\exists_{f \in L^{2}(X, \varrho)} f T=\lambda f\right\}$.
Corollary 2.1. Let $\left(X_{1}, \mathcal{B}_{\infty}, \varrho_{\infty}, \mathcal{T}_{\infty}\right)$ and $\left(X_{2}, \mathcal{B}_{\epsilon}, \varrho_{\epsilon}, \mathcal{T}_{\epsilon}\right)$ be invertible, ergodic dynamical systems. Then $U_{T_{1}}$ and $U_{T_{2}}$ are cyclic space equivalent if and only if $E^{c}\left(U_{T_{1}}\right)=E^{c}\left(U_{T_{2}}\right)$ and card $S p\left(T_{1}\right)=\operatorname{card} S p\left(T_{2}\right)$.

Proof. By the ergodicity, for an arbitrary spectral sequence $\mu_{1}^{(i)} \geq \mu_{2}^{(i)} \geq$... corresponding to $U_{T_{i}}, i=1,2$ only the maximal spectral type $\mu_{1}^{(i)}$ need not be a continuous measure.

Without ergodicity the above corollary is not valid as the following example shows.

Example. Let $T x=x+\alpha$ be an irrational rotation. Then T and $T \times T$ are not s.c. equivalent (because $D(T)(1)=\infty$ and $D(T \times T)(1)=0$), though $\operatorname{card} S p(T)=\operatorname{card} S p(T \times T)$.

Corollary 2.2. Let T_{1} and T_{2} be weakly mixing. Then $U_{T_{1}}$ and $U_{T_{2}}$ are cyclic space equivalent if and only if $E^{c}\left(U_{T_{1}}\right)=E^{c}\left(U_{T_{2}}\right)$.

In [5] M. Lemańczyk and J. Kwiatkowski (jr.) proved that
Proposition 1. Given a set $A \subseteq \mathbf{N}^{+}, 1 \in A$, there exists an ergodic T such that $E\left(U_{T}\right)=A$. Moreover, T can be constructed to be weakly mixing.

From the proof of Proposition 1 in [5] it follows that for a set $A \subseteq \mathbf{N}^{+}$, $1 \in A$, there exists a weakly mixing T such that $E^{c}\left(U_{T}\right)=A$. Since all their examples have singular spectra, by taking a direct product of an example T realizing $A \subset \mathbf{N}^{+}$with a τ having countable Lebesgue spectrum we reach

$$
E(T \times \tau)=A \cup\{+\infty\}
$$

Hence
Corollary 2.3. Let $\mathcal{M}_{\infty, \mathcal{C}}=\left\{\mathcal{U}\right.$: has continuous spectrum and $\left.\infty \in \mathcal{E}^{\dagger}(\mathcal{U})\right\}$. Partition $\mathcal{M}_{\infty, c}$ into the equivalence classes with respect to cyclic space equivalence relation. Then in every equivalence class there exists a unitary operator $U_{T}: L_{0}^{2}(X, \varrho) \rightarrow L_{0}^{2}(X, \varrho)$, where T is weakly mixing and $L_{0}^{2}(X, \varrho)=$ $\left\{f \in L^{2}(X, \varrho): \int f d \varrho=0\right\}$.

References

[1] O.N. Ageev, Dynamical systems with an even multiplicity Lebesgue component in the spectrum, Math. USSR Sb. 64(2), (1989), 305-317.
[2] F. Blanchard, M. Lemańczyk, Measure preserving diffeomorphisms with an arbitrary spectral multiplicity, Topological Methods in Nonlinear Analysis, 1 (1993), 275-294.
[3] N. Dunford, T. Schwartz, Linear Operators, Wiley-Interscience, 1971.
[4] G.R. Goodson, J. Kwiatkowski, M. Lemańczyk, P. Liardet On the multiplicity function of ergodic group extensions of rotations, Studia Math. 102(2) (1992), 157-174.
[5] J. Kwiatkowski (jr.), M. Lemańczyk, On the multiplicity function of ergodic group extensions.II, Studia Math. 116(3) (1995), 207-215.
[6] M. Lemańczyk, Toeplitz Z_{2}-extensions, Ann. H. Poincaré 24 (1988), 1-43.
[7] J. Mathew, M.G. Nadkarni, Measure-preserving transformation whose spectrum has Lebesgue component of multiplicity two, Bull. London Math. Soc. 16 (1984), 402-406.
[8] M. Quéffelec, Substitution Dynamical Systems - Spectral Analysis, Lect. Notes in Math. 1294, Springer-Verlag, Berlin, 1988.
[9] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press., Cambridge, 1981.
[10] E.A. Robinson, Ergodic measure-preserving transformations with arbitrary finite spectral multiplicity, Invent. Math. 72 (1983), 299-314.
[11] E.A. Robinson, Transformations with highly non-homogeneous spectrum of finite multiplicity, Isr. J. Math. 56 (1986), 75-88.

Department of Mathematics and Computer Science
Nicholas Copernicus University ul. Chopina 12/18, 87-100 Toruń
Poland
E-mail: fraczek@mat.uni.torun.pl

[^0]: 1991 Mathematics Subject Classification: Primary 28D05, Secondary 47B15.

