Cyclic space isomorphism of unitary operators

KRZYSZTOF FRACZEK

August 16, 2005

Abstract
We introduce a new equivalence relation between unitary operators on separable Hilbert spaces and discuss a possibility to have in each equivalence class a measure-preserving transformation.

Introduction
Let \(U \) be a unitary operator on a separable Hilbert space \(H \). For any \(x \in H \) we define the cyclic space generated by \(x \) as \(Z(x) = \text{span}\{U^n x : n \in \mathbb{Z}\} \). By the spectral measure \(\mu_x \) of \(x \) we mean a Borel measure on the circle determined by the equalities

\[
\hat{\mu}_x(n) = \int_T z^n d\mu_x(z) = (U^n x, x)
\]

for every \(n \in \mathbb{Z} \).

Theorem 0.1 (spectral theorem). (see [9]) There exists in \(H \) a sequence \(x_1, x_2, \ldots \) such that

\[
H = \bigoplus_{n=1}^{\infty} Z(x_n) \quad \text{and} \quad \mu_{x_1} \gg \mu_{x_2} \gg \ldots .
\]

Moreover, for any sequence \(y_1, y_2, \ldots \) in \(H \) satisfying (1) we have \(\mu_{x_1} \equiv \mu_{y_1}, \mu_{x_2} \equiv \mu_{y_2}, \ldots \).

1991 Mathematics Subject Classification: Primary 28D05, Secondary 47B15.
Research partly supported by KBN grant 2 P301 031 07 (1994)
One of the most important problems (still open) in ergodic theory is a classification of ergodic dynamical systems with respect to the spectral equivalence, i.e. given a sequence
\[\mu_1 \gg \mu_2 \gg ... \]
(2)
of positive finite measures on the circle we ask if there exists an ergodic dynamical system \(T : (X, \mathcal{B}, \rho) \to (X, \mathcal{B}, \rho) \) such that a spectral sequence (1) for \(U = U_T (U_T : L^2(X, \rho) \to L^2(X, \rho), U_T f = f \circ T) \) coincides with (2).

The spectral type of \(\mu_{x_1} \) (the equivalence class of measures) is called the maximal spectral type of \(U \). By the multiplicity function \(M_U \) of \(U \) we mean the function \(M_U : \mathbb{T} \to \mathbb{N} \cup \{+\infty\} \) given by:
\[M_U(z) = \sum_{n=1}^{\infty} \chi A_n(z) \]
where \(A_1 = \mathbb{T} \) and \(A_n = A_n(U) = \{ z \in \mathbb{T} : \frac{d \mu_{x_n}}{d \mu_{x_1}}(z) > 0 \} \) (it is well-defined up to a \(\mu_{x_1} - \)nullset). Then we have
\[\mathbb{T} = A_1 \supset A_2 \supset A_3 \supset \]
The set
\[E(U) = \{ n \in \mathbb{N} \cup \{+\infty\} : \mu_{x_1} \{ z \in \mathbb{T} : M_U(z) = n \} > 0 \} \]
is called the set of essential values of the multiplicity function \(M_U \).
For the background on spectral theory we refer to [3].

In the last few years, problems concerning spectral multiplicity have become of a renewed interest (see [1], [2], [4], [6], [7], [8], [10], [11]). In [5], M. Lemańczyk and J. Kwiatkowski (jr.) show that for an arbitrary set \(A \subseteq \mathbb{N}^+ \) containing 1, an ergodic automorphism \(T \) whose set of essential values of the multiplicity function is equal to \(A \) is constructed. The aim of this paper is a new viewpoint on spectral classification stated to me by Professor Lemańczyk.

Every measure \(\mu \) can be uniquely decomposed into a sum \(\mu = \mu^c + \mu^d \) where \(\mu^c \) is continuous and \(\mu^d \) is discret. For a spectral sequence \(\mu_{x_1} \gg \mu_{x_2} \gg ... \) we have \(\mu^c_{x_1} \gg \mu^c_{x_2} \gg \) By the c-multiplicity function \(M^c_U \) we mean the function \(M^c_U : \mathbb{T} \to \mathbb{N} \cup \{+\infty\} \) given by
\[M^c_U(z) = \sum_{n=1}^{\infty} \chi c_n(z) \]
where $C_1 = \mathbf{T}$ and $C_n = \{z \in \mathbf{T} : \frac{d\mu_{x_1}}{dz_1}(z) > 0\}$. The set
\[
E^c(U) = \{n \in \mathbf{N} \cup \{+\infty\} : \mu_{x_1}\{z \in \mathbf{T} : M_U(z) = n\} > 0\}
\]
is called the set of essential values of c-multiplicity function M_U.

Let $D(U) : \mathbf{N} \cup \{+\infty\} \to \mathbf{N} \cup \{+\infty\}$ be a function given by $D(U)(n) = card D_n$ where
\[
D_n = \left\{ \begin{array}{ll}
\{z \in A_n \setminus A_{n+1} : \mu_{x_1}((z)) > 0\} & \text{for } n = 1, 2, \ldots \\
\{z \in \bigcap_{n=1}^{\infty} A_n : \mu_{x_1}((z)) > 0\} & \text{for } n = +\infty.
\end{array} \right.
\]

In Section 1 we define a cyclic space (s.c.) isomorphism of unitary operators on separable Hilbert space and we try to find a complete set of invariants for a c.s. isomorphism. Using results from Section 1 and those from [5], we show that in the c.s. equivalence class of an operator $U : H \to H$ whose maximal spectral type is continuous and $1 \in E^c(U)$ we can find a weakly mixing automorphism.

The author would like to thank Professor Lemańczyk for some valuable discussions.

1 Cyclic space isomorphism and its invariants

Lemma 1.1. Let $U_1 : H_1 \to H_1$ and $U_2 : H_2 \to H_2$ be unitary operators. Then, for every unitary operator $V : H_1 \to H_2$ the following conditions are equivalent.

(i) For every $x \in H_1$, $Z(Vx) = VZ(x)$.

(ii) If H is a U_1-invariant closed subspace of H_1, then VH is U_2-invariant and if H is a U_2-invariant closed subspace of H_2, then $V^{-1}H$ is U_1-invariant.

Proof. $(i) \Rightarrow (ii)$. Suppose that H is a U_1-invariant closed subspace of H_1 and $y \in VH$. There exists $x \in H$ such that $y = Vx$. Since $Z(y) = VZ(x)$,
\[
U_2^{-1}y, U_2y \in Z(y) = VZ(x) \subset VH
\]
and finally that VH is U_2-invariant. Similarly, we can get the remaining part of (ii).

3
(ii) ⇒ (i). Let $x \in H_1$. Since $Z(x)$ is U_1-invariant, $VZ(x)$ is U_2-invariant. Since $Vx \in VZ(x)$, $Z(Vx) \subset VZ(x)$. Similarly, if $y = Vx$ then $Z(x) = Z(V^{-1}y) \subset V^{-1}Z(y) = V^{-1}Z(Vx)$. This gives $VZ(x) \subset Z(Vx)$ and finally $Z(Vx) = VZ(x)$.

Definition 1.1. We call a unitary operator $V : H_1 \rightarrow H_2$ is a cyclic space isomorphism of U_1 and U_2 if it satisfies (i) from Lemma 1.1 or equivalently (ii).

Lemma 1.2. Let μ and ν be positive finite Borel measures on the circle. Assume $U_1 : L^2(T, \mu) \rightarrow L^2(T, \mu)$, $U_2 : L^2(T, \nu) \rightarrow L^2(T, \nu)$ are unitary operators given by

$$U_1 f(z) = U_2 f(z) = zf(z).$$

If $V : L^2(T, \mu) \rightarrow L^2(T, \nu)$ is a c.s. isomorphism of U_1 and U_2 then there exists a nonsingular invertible map $S : (T, B, \nu) \rightarrow (T, B, \mu)$ and $h \in L^2(T, \nu)$ such that

$$Vf = h \cdot f \circ S$$

for every $f \in L^2(T, \mu)$.

Proof. For a set $A \in B$ put $H = \chi_A L^2(T, \mu)$. Then H is a U_1-invariant subspace of $L^2(T, \mu)$. By Wiener Lemma (e.g. [9] Appendix) there exists a Borel set $\Phi(A)$ such that $VH = \chi_{\Phi(A)} L^2(T, \nu)$. From $V(\{0\}) = \{0\}$ and $V^{-1}(\{0\}) = \{0\}$ we obtain that $\mu(A) = 0$ iff $\nu(\Phi(A)) = 0$. If $A \cap B = \emptyset$ then $\chi_A L^2(T, \mu) \perp \chi_B L^2(T, \mu)$ hence

$$\chi_{\Phi(A)} L^2(T, \nu) \perp \chi_{\Phi(B)} L^2(T, \nu)$$

and finally $\Phi(A) \cap \Phi(B) = \emptyset$. If $A = \bigcup_{n=1}^{\infty} A_n$ with $\{A_n\}$ pair wise disjoint then

$$\chi_{\Phi(A)} L^2(T, \nu) = V(\chi_{\bigcup_{n=1}^{\infty} A_n} L^2(T, \mu)) = V(\bigoplus_{n=1}^{\infty} \chi_{A_n} L^2(T, \mu)) =$$

$$= \bigoplus_{n=1}^{\infty} V(\chi_{A_n} L^2(T, \mu)) = \bigoplus_{n=1}^{\infty} \chi_{\Phi(A_n)} L^2(T, \nu) = \chi_{\bigcup_{n=1}^{\infty} \Phi(A_n)} L^2(T, \nu)$$

hence $\Phi(A) = \bigcup_{n=1}^{\infty} \Phi(A_n)$ and by a standard argument the equality holds if $\{A_n\}$ are not pair wise disjoint. Since $V(L^2(T, \mu)) = L^2(T, \nu)$ we have $\Phi(T) = T$. Hence $T = \Phi(A) \cup \Phi(A^c)$ and therefore $\Phi(A)^c = \Phi(A^c)$.
Consequently \(\Phi : (B, \mu) \to (B, \nu) \) is a \(\sigma \)-Boolean isomorphism. Therefore there exists a nonsingular invertible map \(S : (T, B, \nu) \to (T, B, \mu) \) such that \(\Phi(A) = S^{-1}(A) \) for every \(A \in B \).

Set \(h = V(1) \). For \(A \in B \) we have \(1 = \chi_A + \chi_{A'} \), hence \(h = V(\chi_A) + V(\chi_{A'}) \).

But the functions \(V(\chi_A) \) and \(V(\chi_{A'}) \) have disjoint supports, so \(V(\chi_A) \) must be equal to \(h \) on its support and the same remark can be applied to \(V(\chi_{A'}) \) hence
\[
V(\chi_A) = h \cdot \chi_{\Phi(A)} = h \cdot \chi_A \circ S.
\]

Since this is true for any characteristic function, it is also true for linear combinations of such functions and finally for all \(f \in L^2(T, \mu) \).

Since \(V \) is unitary, for every \(A \in B \)
\[
\mu(SA) = \int_T |\chi_A S^{-1}|^2 d\mu = ||\chi_A S^{-1}||^2_{L^2(\mu)} =
\]
\[
= ||V(\chi_A S^{-1})||^2_{L^2(\nu)} = ||h \cdot \chi_A||^2_{L^2(\nu)} = \int_A |h|^2 d\nu.
\]
Hence \(|h|^2 = \frac{d\mu S}{d\nu} \).

Lemma 1.3. Assume that \(U_1 : H_1 \to H_1 \) and \(U_2 : H_2 \to H_2 \) are unitary operators and \(V : H_1 \to H_2 \) a c.s. isomorphism of \(U_1 \) and \(U_2 \). Let
\[
H_1 = \bigoplus_{n=1}^{\infty} Z(x_n) \quad \text{and} \quad \mu_{x_1} \gg \mu_{x_2} \gg ...
\]
be a spectral decomposition of \(U_1 \). Then we have
\[
H_2 = \bigoplus_{n=1}^{\infty} Z(V x_n) \quad \text{and} \quad \mu_{V x_1} \gg \mu_{V x_2} \gg ...
\]
Moreover, \(\mu_{x_n} \equiv \mu_{x_{n+1}} \) iff \(\mu_{V x_n} \equiv \mu_{V x_{n+1}} \) and hence \(E(U_1) = E(U_2) \).

Proof. Since \(V \) is a unitary operator,
\[
H_2 = V(H_1) = V \left(\bigoplus_{n=1}^{\infty} Z(x_n) \right) = \bigoplus_{n=1}^{\infty} V Z(x_n) = \bigoplus_{n=1}^{\infty} Z(V x_n).
\]
We first show that \(Z(V x_1) \) is a maximal cyclic space. Suppose there exists \(y \in H_2 \) such that \(Z(V x_1) \subseteq Z(y) \). Then we have \(Z(x_1) \subseteq Z(V^{-1} y) \). This contradicts the fact that \(Z(x_1) \) is maximal. This gives us that \(\mu_{V x_1} \) is the maximal spectral type of \(U_2 \).
Similarly, since $V |_{Z(x_1)}$ is a c.s. isomorphism, μ_{Vx_2} is the maximal spectral type of $U_2 |_{Z(Vx_2)}$. In this way we conclude that μ_{Vx_n} is the maximal spectral type of U_2 restricted to $Z(Vx_n) \oplus Z(Vx_{n+1}) \oplus ...$ for every $n \geq 1$ and finally that $\mu_{Vx_1} \gg \mu_{Vx_2} \gg ...$.

If $\mu_{x_n} \gg \mu_{x_{n+1}}$ but they are not equivalent then we can write

$$Z(x_n) \oplus Z(x_{n+1}) = Z(x'_n) \oplus Z(x''_n) \oplus Z(x_{n+1})$$

where $\mu_{x''_n} \perp \mu_{x_{n+1}}$ and $\mu_{x'_n} \ll \mu_{x_{n+1}}$ (in fact these latter measures are equivalent). Now

$$V(Z(x_n) \oplus Z(x_{n+1})) = Z(Vx'_n) \oplus Z(Vx''_n) \oplus Z(Vx_{n+1})$$

but $Z(x''_n) \oplus Z(x_{n+1})$ is a cyclic space, hence so must be

$$V(Z(x'_n) \oplus Z(x_{n+1})) = Z(Vx'_n) \oplus Z(Vx_{n+1}).$$

This shows that the spectral measures $\mu_{Vx'_n}$ and $\mu_{Vx_{n+1}}$ are orthogonal so $\mu_{Vx_n} \gg \mu_{Vx_{n+1}}$ and they are not equivalent. ☐

Remark. It follows from this lemma that $E(U)$ is an invariant of a c.s. isomorphism. Notice that if x is an eigenvector of U_1, the $Z(x)$ is a one-dimensional space. Therefore its image via a c.s. isomorphism V must be also one-dimensional, hence Vx is also eigenvector (though corresponding to possibly different eigenvalue). This gives rise to a second invariant of a c.s. isomorphism. The theorem below explains how a combination of these two invariants gives rise to a complete set of invariants for a c.s. isomorphism.

Theorem 1.4. Let $U_i : H_i \rightarrow H_i$ be a unitary operator on a separable Hilbert space, $i = 1, 2$. Then the following conditions are equivalent.

(i) U_1 and U_2 are cyclic space equivalent.

(ii) There are spectral sequences $\mu_1 \gg \mu_2 \gg ...$ of U_1 and $\nu_1 \gg \nu_2 \gg ...$ of U_2 and measure space isomorphism $S : (T, \nu_1) \rightarrow (T, \mu_1)$ such that

$$\nu_n = \mu_n \circ S \quad \text{for all} \quad n \geq 1.$$

(iii) $E^c(U_1) = E^c(U_2)$ and $D(U_1) = D(U_2)$.

6
Proof. \((i) \Rightarrow (ii)\). Suppose \(V : H_1 \to H_2\) is a c.s. isomorphism of \(U_1\) and \(U_2\). Fix a spectral decomposition \(H_1 = \bigoplus_{n=1}^{\infty} Z(x_n)\) of \(U_1\) and put \(\mu_n := \mu_{x_n}\) for each \(n \geq 1\). By Lemma 1.3 we have a spectral decomposition \(H_2 = \bigoplus_{n=1}^{\infty} Z(V x_n)\) of \(U_2\) and \(\nu_n := \mu_{V x_n}\) for each \(n \geq 1\). There exists a unitary isomorphism \(V_1 : \bigoplus_{n=1}^{\infty} L^2(T, \mu_n) \to H_1\) of operators \(U\) and \(U_1\) and a unitary isomorphism \(V_2 : H_2 \to \bigoplus_{n=1}^{\infty} L^2(T, \nu_n)\) of operators \(U_2\) and \(U\) such that \(V_1(L^2(T, \mu_n)) = Z(x_n)\) and \(V_2 Z(x_n) = L^2(T, \nu_n)\) for \(n \geq 1\), where

\[
U \left(\sum_{n=1}^{\infty} f_n(z_n) \right) = \sum_{n=1}^{\infty} z_n f_n(z_n).
\]

Hence the operator \(V' = V_2 V V_1\), is a c.s. isomorphism of the operator \(U\) on \(\bigoplus_{n=1}^{\infty} L^2(T, \mu_n)\) and \(U\) on \(\bigoplus_{n=1}^{\infty} L^2(T, \nu_n)\) and \(V'(L^2(T, \mu_n)) = L^2(T, \nu_n)\) (so \(V'\) restricted establishes a c.s. isomorphism) for \(n \geq 1\).

By Lemma 1.2 there exist nonsingular invertible maps \(S_n : (T, B, \nu) \to (T, B, \mu)\) and \(h_n \in L^2(T, \nu_n)\) such that \(V' |_{L^2(T, \mu_n)} f = h_n \cdot f \circ S_n\) for every \(n \geq 1\). Hence we have

\[
V' \left(\sum_{n=1}^{\infty} f_n(z_n) \right) = \sum_{n=1}^{\infty} h_n(z_n) \cdot f_n(S_n z_n)
\]

for \(\sum_{n=1}^{\infty} f_n \in \bigoplus_{n=1}^{\infty} L^2(T, \mu_n)\).

For every \(n \neq m\), consider

\[
H = \{ f(z_n) + f(z_m) : f \in L^2(T, \mu_1) \}.
\]

This is a closed \(U\)-invariant subspace of \(\bigoplus_{k=1}^{\infty} L^2(T, \mu_k)\). Without loss of generality, we can assume that \(\mu_n = \mu_1 \mid_{A_n}\) (i.e. that \(\frac{d\mu_n}{d\mu_1} = \chi_{A_n}\)). Then

\[
V' H = \{ h_n(z_n)f(S_n z_n) + h_m(z_m)f(S_m z_m) : f \in L^2(T, \mu_1) \}.
\]

Since \(V' H\) is \(U\)-invariant, for every \(f \in L^2(T, \mu_1)\) there exists \(g \in L^2(T, \mu_1)\) such that

\[
z_n h_n(z_n)f(S_n z_n) + z_m h_m(z_m)f(S_m z_m) = h_n(z_n)g(S_n z_n) + h_m(z_m)g(S_m z_m).
\]

By the orthogonality of the natural embedding of \(L^2(T, \mu_n)\) and \(L^2(T, \mu_m)\) in the space under consideration

\[
zh_n(z)f(S_n z) = h_n(z)g(S_n z), \quad z \in T, \quad \mu_n - \text{a.e.}
\]

\[
zh_m(z)f(S_m z) = h_m(z)g(S_m z), \quad z \in T, \quad \mu_m - \text{a.e.}
\]
hence $S_n^{-1}(z)f(z) = g(z)$ and $S_m^{-1}(z)f(z) = g(z)$ a.e., because $h_n \neq 0$ μ_n-a.e. and $h_m \neq 0 \mu_m$-a.e. by Lemma 1.2. If $f = 1$ then $S_n^{-1}(z) = g(z) = S_m^{-1}(z)$ hence $S = S_n = S_m$ for every $n \neq m$ and we get $\nu_n \equiv \mu_n \circ S$ so by replacing ν_n by $\mu_n \circ S$ the result follows.

(ii) \Rightarrow (i). Suppose there are spectral sequence $\mu_1 \gg \mu_2 \gg \ldots$ of U_1 and $\nu_1 \gg \nu_2 \gg \ldots$ of U_2 and an isomorphism $S : (T, \nu_1) \to (T, \mu_1)$ such that $\nu_n = \mu_n \circ S$ for all $n \geq 1$. We will consider the unitary operator $V' : \bigoplus_{n=1}^{\infty} L^2(T, \mu_n) \to \bigoplus_{n=1}^{\infty} L^2(T, \nu_n)$ given by

$$V'(\sum_{n=1}^{\infty} f_n(z_n)) = \sum_{n=1}^{\infty} f_n(Sz_n).$$

We first prove that V' is a cyclic space isomorphism of U on $\bigoplus_{n=1}^{\infty} L^2(T, \mu_n)$ and U on $\bigoplus_{n=1}^{\infty} L^2(T, \nu_n)$. Let H be a closed U-invariant subspace of $\bigoplus_{n=1}^{\infty} L^2(T, \mu_n)$. We show that $V'H$ is U-invariant. We have that H is $\psi(U)$-invariant for every $\psi \in L^\infty(T, \mu_1)$. Hence if $\sum_{n=1}^{\infty} f_n(z_n) \in H$ then $\sum_{n=1}^{\infty} \psi(z_n)f_n(z_n) \in H$.

Let $\sum_{n=1}^{\infty} g_n(z_n) \in V'H$. There exists $\sum_{n=1}^{\infty} f_n(z_n) \in H$ such that $g_n = f_n \circ S$. From $|S^{-1}(z)| = 1$, it follows that

$$\sum_{n=1}^{\infty} S^{-1}(z_n)f_n(z_n) \in H$$

and hence

$$U(\sum_{n=1}^{\infty} g_n(z_n)) = \sum_{n=1}^{\infty} z_nf_n(Sz_n) \in V'H.$$

In the same manner we can see that if H is a U-invariant subspace of $\bigoplus_{n=1}^{\infty} L^2(T, \nu_n)$ then $V'^{-1}H$ is U-invariant. Consequently the operator $V = V_2^{-1}V'V_1^{-1}$ is a c.s. isomorphism of U_1 and U_2.

(ii) \Rightarrow (iii). If there are spectral sequence $\mu_1 \gg \mu_2 \gg \ldots$ of U_1 and $\nu_1 \gg \nu_2 \gg \ldots$ of U_2 and an isomorphism $S : (T, \nu_1) \to (T, \mu_1)$ such that $\nu_n = \mu_n \circ S$ for all $n \geq 1$ then

$$A_n(U_2) = S^{-1}A_n(U_1), \ C_n(U_2) = S^{-1}C_n(U_1), \ \nu_1^d = \mu_1^d \circ S.$$

Hence

$$C_n(U_2) \setminus C_{n+1}(U_2) = S^{-1}(C_n(U_1) \setminus C_{n+1}(U_1)),$$

$$\nu_1^d |_{A_n(U_2) \setminus A_{n+1}(U_2)} = \mu_1^d |_{A_n(U_1) \setminus A_{n+1}(U_1)} \circ S.$$
for \(n \geq 1 \) and
\[
\bigcap_{n=1}^{\infty} C_n(U_2) = S^{-1}\big(\bigcap_{n=1}^{\infty} C_n(U_1) \big),
\]
\[
\nu^d(x | \bigcap_{n=1}^{\infty} A_n(U_2)) = \mu^d(x | \bigcap_{n=1}^{\infty} A_n(U_1) \circ S)
\]
and finally \(E^c(U_1) = E^c(U_2) \) and \(D(U_1) = D(U_2) \).

(iii) \(\Rightarrow \) (ii). Let \(\mu \) and \(\nu \) be the maximal spectral type of \(U_1 \) and \(U_2 \). If \(E^c(U_1) = E^c(U_2) \) and \(D(U_1) = D(U_2) \) then
\[
\nu(C_n(U_2) \setminus C_{n+1}(U_2)) > 0 \hspace{0.5cm} \text{iff} \hspace{0.5cm} \mu(C_n(U_1) \setminus C_{n+1}(U_1)) > 0
\]
for \(n \geq 1 \) and
\[
\nu(\bigcap_{n=1}^{\infty} C_n(U_2)) > 0 \hspace{0.5cm} \text{iff} \hspace{0.5cm} \mu(\bigcap_{n=1}^{\infty} C_n(U_1)) > 0
\]
and \(\text{card } D_n(U_1) = \text{card } D_n(U_2) \) for \(n \in \mathbb{N} \cup \{+\infty\} \).

Since \(A_n \setminus A_{n+1} = (C_n \setminus C_{n+1}) \setminus D_n \) and \(\bigcap_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} C_n \setminus D_\infty \), there exist nonsingular invertible maps \(S_n : (A_n(U_2) \setminus A_{n+1}(U_2), \nu) \to (A_n(U_1) \setminus A_{n+1}(U_1), \mu) \) for \(n \geq 1 \) and \(S_\infty : (\bigcap_{n=1}^{\infty} A_n(U_2), \nu) \to (\bigcap_{n=1}^{\infty} A_n(U_1), \mu) \). We define a nonsingular invertible map \(S : (T, \nu) \to (T, \mu) \) by
\[
S(x) = \begin{cases}
S_n(x) & \text{for } x \in A_n(U_2) \setminus A_{n+1}(U_2) \\
S_\infty(x) & \text{for } x \in \bigcap_{n=1}^{\infty} A_n(U_2).
\end{cases}
\]
Then we have
\[
\nu |_{A_n(U_2)} \equiv \mu |_{A_n(U_1) \circ S}.
\]

Let \(\mu_n := \mu |_{A_n(U_1)} \) and \(\nu_n := \mu |_{A_n(U_1) \circ S} \) then \(\mu_1 \gg \mu_2 \gg \ldots \) and \(\nu_1 \gg \nu_2 \gg \ldots \) is a spectral sequence of \(U_1 \) and \(U_2 \) and \(\nu_n = \mu_n \circ S \) for all \(n \geq 1 \).

2 Cyclic space isomorphism of unitary operators in the case where an operator corresponds to an ergodic dynamical system

Given a dynamical system \(T : (X, \mathcal{B}, \varrho) \to (X, \mathcal{B}, \varrho) \), set \(\text{Sp}(T) = \{ \lambda \in \mathbb{C} : \exists f \in L^2(X, \varrho) \text{ s.t. } T = \lambda f \} \).

Corollary 2.1. Let \((X_1, \mathcal{B}_1, \varrho_1, T_1) \) and \((X_2, \mathcal{B}_2, \varrho_2, T_2) \) be invertible, ergodic dynamical systems. Then \(U_{T_1} \) and \(U_{T_2} \) are cyclic space equivalent if and only if \(E^c(U_{T_1}) = E^c(U_{T_2}) \) and \(\text{card } \text{Sp}(T_1) = \text{card } \text{Sp}(T_2) \).
Proof. By the ergodicity, for an arbitrary spectral sequence $\mu_1^{(i)} \geq \mu_2^{(i)} \geq \ldots$ corresponding to U_{T_i}, $i = 1, 2$ only the maximal spectral type $\mu_1^{(i)}$ need not be a continuous measure. ■

Without ergodicity the above corollary is not valid as the following example shows.

Example. Let $Tx = x + \alpha$ be an irrational rotation. Then T and $T \times T$ are not s.c. equivalent (because $D(T)(1) = \infty$ and $D(T \times T)(1) = 0$), though $\text{card Sp}(T) = \text{card Sp}(T \times T)$.

Corollary 2.2. Let T_1 and T_2 be weakly mixing. Then U_{T_1} and U_{T_2} are cyclic space equivalent if and only if $E_c(U_{T_1}) = E_c(U_{T_2})$.

In [5] M. Lemańczyk and J. Kwiatkowski (jr.) proved that

Proposition 1. Given a set $A \subseteq \mathbb{N}^+$, $1 \in A$, there exists an ergodic T such that $E(U_T) = A$. Moreover, T can be constructed to be weakly mixing.

From the proof of Proposition 1 in [5] it follows that for a set $A \subseteq \mathbb{N}^+$, $1 \in A$, there exists a weakly mixing T such that $E_c(U_T) = A$. Since all their examples have singular spectra, by taking a direct product of an example T realizing $A \subset \mathbb{N}^+$ with a τ having countable Lebesgue spectrum we reach

$$E(T \times \tau) = A \cup \{+\infty\}.$$

Hence

Corollary 2.3. Let $\mathcal{M}_{\infty,c} = \{\mathcal{U}: \text{has continuous spectrum and } \infty \in E(\mathcal{U})\}$. Partition $\mathcal{M}_{\infty,c}$ into the equivalence classes with respect to cyclic space equivalence relation. Then in every equivalence class there exists a unitary operator $U_T : L^2_0(X, \varrho) \rightarrow L^2_0(X, \varrho)$, where T is weakly mixing and $L^2_0(X, \varrho) = \{f \in L^2(X, \varrho) : \int f d\varrho = 0\}$.

References

Department of Mathematics and Computer Science
Nicholas Copernicus University
ul. Chopina 12/18, 87-100 Toruń
Poland
E-mail: fraczek@mat.uni.torun.pl