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SOLVING THE COHOMOLOGICAL EQUATION FOR LOCALLY

HAMILTONIAN FLOWS, PART II - GLOBAL OBSTRUCTIONS

KRZYSZTOF FRĄCZEK AND MINSUNG KIM

Abstract. Continuing the research initiated in [12], we study the existence of
solutions and their regularity for the cohomological equations Xu = f for locally
Hamiltonian flows (determined by the vector field X) on a compact surface M of
genus g ≥ 1. We move beyond the case studied so far by Forni in [6, 8], when the
flow is minimal over the entire surface and the function f satisfies some Sobolev
regularity conditions. We deal with the flow restricted to any its minimal com-
ponent and any smooth function f whenever the flow satisfies the Full Filtration
Diophantine Condition (FFDC) (this is a full measure condition).

The main goal of this article is to quantify optimal regularity of solutions.
For this purpose we construct a family of invariant distributions Ft̄, t̄ ∈ T F

∗

that play the roles of the Forni’s invariant distributions introduced in [6, 8] by
using the language of translation surfaces. The distributions Ft̄ are global in
nature (as emphasized in the title of the article), unlike the distributions dkσ,j ,
(σ, k, j) ∈ T D and Ck

σ,l, (σ, k, l) ∈ T C introduced in [12], which are defined
locally. All three families are used to determine the optimal regularity of the
solutions for the cohomological equation, see Theorem 1.1 and 1.2. As a by-
product, we also obtained, interesting in itself, a spectral result (Theorem 1.3) for
the Kontsevich-Zorich cocycle acting on functional spaces arising naturally at the
transition to the first-return map.

1. Introduction

Let M be a smooth compact connected orientable surface of genus g ≥ 1. Our
primary focus is on smooth flows ψR = (ψt)t∈R on M preserving a smooth positive
measure µ, i.e. such that for any (orientable) local coordinates (x, y) we have dµ =
V (x, y)dx∧dy with V positive and smooth. Denote by X :M → TM the associated
vector field. Then for (orientable) local coordinates (x, y) such that dµ = V (x, y)dx∧
dy, the flow ψR is (locally) a solution to the Hamiltonian equation

dx

dt
=

∂H
∂y

(x, y)

V (x, y)
,

dy

dt
= −

∂H
∂x

(x, y)

V (x, y)

for a smooth real-valued locally defined function H . The flows ψR are usually called
locally Hamiltonian flows or multivalued Hamiltonian flows. For general introduction
to locally Hamiltonian flows on surfaces, we refer readers to [14, 11, 22, 24].

The main goal of the article is to fully understand the problem of existence of
the solution u : M → R and its regularity for the cohomological equation Xu = f ,
if f : M → R is any smooth observable (recall that Xu(x) = d

dt
u(ψtx)|t=0). We

always assume that all fixed points of ψR are isolated. Then the set of fixed points
Fix(ψR) is finite. As ψR is area-preserving, every fixed point is either a center or
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a saddle. In what follows, we deal only with perfect (harmonic) saddles defined as
follows: a fixed point σ ∈ Fix(ψR) is a perfect saddle of multiplicity mσ ≥ 2 if there
exists a chart (x, y) in a neighborhood Uσ of σ such that dµ = V (x, y)dx ∧ dy and
H(x, y) = ℑ(x + iy)mσ . We call (x, y) a singular chart. We denote by Sd(ψR) the
set of perfect saddles of ψR.

We call a saddle connection an orbit of ψR running from a saddle to a saddle. A
saddle loop is a saddle connection joining the same saddle. We deal only with flows
such that all their saddle connections are loops. If every fixed point is isolated then
M splits into a finite number of components (ψR-invariant surfaces with boundary)
so that every component is either a minimal component (every orbit, except of fixed
points and saddle loops, is dense in the component) or is a periodic component (filled
by periodic orbits, fixed points and saddle loops).

The problem of existence and regularity of solutions for the cohomological equa-
tion Xu = f was essentially solved in two seminal articles [6, 8] by Forni when
the flow ψR is minimal over the whole surface M (has no saddle connection) and
the function f belongs to a certain weighted Sobolev space Hs

W (M), s ≥ 1. Let us
mention that being an element of a weighted Sobolev space enforces significant con-
straints on the behavior of the function f around saddles, even for smooth functions,
as described in [8]. In [6, 8], for a.e. locally Hamiltonian flows, Forni proved the ex-
istence of fundamental invariant distributions on Hs

W (M) which are responsible for
the degree of smoothness of the solution of Xu = f for f ∈ Hs

W (M). If all Forni’s
distributions at f ∈ Hs

W (M) are zero then there exists a solution u ∈ Hs′

ω (M) for
some 0 < s′ < s.

The problem of solving cohomological equations for other classes of smooth dy-
namical systems of parabolic nature and the regularity of solutions using invariant
distributions were studied also in [1, 2, 4, 5, 9, 15, 16, 23, 27].

1.1. Invariant distributions and the main results when saddle loops exist.

The main goal of this article is to go beyond the case of a minimal flow on the whole
surface M and beyond the case of the function f belonging to weighted Sobolev
spaces. We deal with locally Hamiltonian flows restricted to any minimal component
M ′ ⊂ M and f :M → R is any smooth function. The main novelty of the proposed
approach is that it is used to study the regularity of the solution u when the flow
has saddle loops, which has not been systematically studied before. The study of
locally Hamiltonian flows in such a context gives rise to new invariant distributions,
which, unlike Forni’s distributions, are local in nature. Two families of such local
functionals Ckσ,l and dkσ,j were introduced by the authors in [12]. As it was shown in
[12] both families play an important role in understanding the regularity of solution
for cohomological equation if f is any smooth function.

Throughout the article we use the notation x ∨ y = max{x, y} and x ∧ y =
min{x, y} for any pair of real numbers x, y. Denote by T D the set of triples
(σ, k, j) ∈ (Sd(ψR)∩M

′)×Z≥0×Z≥0 such that 0 ≤ j ≤ k∧(mσ−2) and j 6= k−(mσ−
1)modmσ. For every (σ, k, j) ∈ T D we define the functional dkσ,j : C

k(M) → C as
follows:

(1.1) dkσ,j(f) =
∑

0≤n≤ k−j

mσ

(
k

j+nmσ

)( (mσ−1)−j

mσ
−1

n

)

( (k−j)−(mσ−1)
mσ
n

)
∂k(f · V )

∂zj+nmσ∂zk−j−nmσ
(0, 0).

The real number ô(dkσ,j) = ô(σ, k) = k − (mσ − 2) we call the hat-order of dkσ,j .
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For any σ ∈ Sd(ψR) ∩M ′ its neighbourhood Uσ splits into 2mσ angular sectors
bounded by separatrices. In singular coordinates z = (x, y) they are of the form

Uσ,l := {z ∈ Uσ : Arg z ∈ ( πl
mσ
, π(l+1)

mσ
)} for 0 ≤ l < 2mσ.

Denote by T C the set of triples (σ, k, l) ∈ (Sd(ψR) ∩M ′) × Z≥0 × Z≥0 such that
0 ≤ l < 2mσ and Uσ,l ⊂ M ′. For every (σ, k, l) ∈ T C we define the functional
Ckσ,l : C

k(M) → C as follows:

Ckσ,l(f) :=
∑

0≤i≤k
i 6=mσ−1modmσ

i 6=k−(mσ−1)modmσ

θl(2i−k)σ

(
k

i

)
B( (mσ−1)−i

mσ
, (mσ−1)−k+i

mσ
)
∂k(f · V )

∂zi∂zk−i
(0, 0),

where θσ is the principal 2mσ-th root of unity. The (beta-like) function B(x, y) is
defined for any pair x, y of real numbers such that x, y /∈ Z as follows:

B(x, y) =
πei

π
2
(y−x)

2x+y−2

Γ(x+ y − 1)

Γ(x)Γ(y)
,

where we adopt the convention Γ(0) = 1 and Γ(−n) = 1/(−1)nn!. For the real

number o(Ckσ,l) = o(σ, k) = k−(mσ−2)
mσ

, we call it the order of Ckσ,l.

In this paper, for a.e. locally Hamiltonian flow (satisfying the Full Filtration Dio-
phantine Condition (FFDC) defined in Section 3.2), we define the third family of
distributions Ft̄ which have global nature and are smooth version of Forni’s in-
variant distributions introduced in [6, 8]. We should emphasize that the definition
of Ft̄ (unlike Forni’s approach) does not use tools from translational surface the-
ory. Such techniques cannot be used due to the existence of saddle loops. Our
approach is based on the use of a (modified by us) correction operator invented by
Marmi-Moussa-Yoccoz in [18] (see also [19] and [20]) in its simplest version and later
extended in [13] and [11].

Let g ≥ 1 be the genus of M ′ and let γ be the number of saddles in M ′. Denote by
T F

∗ the set of triples of the form (k,+, i), (k, 0, s) or (k,−, j) for k ≥ 0, 1 ≤ i, j ≤ g
and 1 ≤ s < γ. Let T F be the subset of triples in T F

∗ after removing all triples
of the form (k,−, 1) for k ≥ 0. Denote by 0 < λg < . . . < λ2 < λ1 the positive
Lyapunov exponents associated to a flow satisfying FFDC (see again Section 3.2).
In Section 7.1, for every triple t̄ ∈ T F

∗ we define a corresponding functional Ft̄.
For the real number

o(Ft̄) = o(t̄) =





k − λi
λ1

if t̄ = (k,+, i)

k if t̄ = (k, 0, s)

k +
λj
λ1

if t̄ = (k,−, j),

we call the order of Ft̄.

Let m be the maximal multiplicity of saddles in Sd(ψR) ∩M
′. Following [12], for

every r > 0 let

kr =

{
⌈mr + (m− 1)⌉ if m = 2 and r ≤ 1

2
⌈mr + (m− 2)⌉ otherwise.

Recall that

max{k ≥ 0 : ∃σ∈Sd(ψR)∩M ′o(σ, k) < r}+ 1 = ⌈mr + (m− 2)⌉ ≤ kr

max{k ≥ 0 : ∃σ∈Sd(ψR)∩M ′ ô(σ, k) < r}+ 1 = ⌈r + (m− 2)⌉ ≤ kr.
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Then for every flow ψR restricted to its minimal component M ′ and satisfying FFDC
and for every t̄ ∈ T F

∗, the corresponding functional Ft̄ is defined on Ck
o(t̄)+1(M).

The following main two results show how the three families of invariant distributions
influence on the regularity of the solution for the cohomological equation Xu = f
with smooth u defined on the end compactification M ′

e of M ′ \Sd(ψR) considered in
[12].

Theorem 1.1. Let ψR be a locally Hamiltonian flow such that its restriction to
a minimal component M ′ satisfies FFDC. Let r ∈ R>0 \ ({o(σ, k) : k ≥ 0, σ ∈
Sd(ψR) ∩M

′} ∪ {o(t̄) : t̄ ∈ T F}). Suppose that f ∈ Ckr(M) and

• dkσ,j(f) = 0 for all (σ, k, j) ∈ T D with ô(dkσ,j) < r;

• Ckσ,l(f) = 0 for all (σ, k, l) ∈ T C with o(Ckσ,l) < r;
• Ft̄(f) = 0 for all t̄ ∈ T F with o(Ft̄) < r.

Then there exists u ∈ Cr(M ′
e) such that Xu = f on M ′

e. Moreover, there exists
Cr > 0 such that ‖u‖Cr(M ′

e) ≤ Cr‖f‖Ckr (M).

Theorem 1.2 (optimal regularity). Let ψR be a locally Hamiltonian flow such that
its restriction to a minimal component M ′ satisfies FFDC. For any r > 0 suppose
that f ∈ Ckr(M) and there exists u ∈ Cr(M ′

e) such that Xu = f on M ′
e. Then

• dkσ,j(f) = 0 for all (σ, k, j) ∈ T D with ô(dkσ,j) < r;

• Ckσ,l(f) = 0 for all (σ, k, l) ∈ T C with o(Ckσ,l) < r;
• Ft̄(f) = 0 for all t̄ ∈ T F with o(Ft̄) < r.

1.2. Cohomological equations over IETs and a spectral result. Let us con-
sider the restriction of a locally Hamiltonian flow ψR on M to its minimal component
M ′ ⊂ M and let I ⊂M ′ be a transversal smooth curve. We always assume that each
end of I is the first meeting point of a separatrix (that is not a saddle connection)
emanating by a saddle (incoming or outgoing) with the curve I. By minimality, I
is a global transversal and the first return map T : I → I is an interval exchange
transformation (IET) in so called standard coordinates on I. Denote by Iα, α ∈ A
the intervals exchanged by T and by τ : I → R>0∪{+∞} the first return time map
to the curve I, called also the roof function. The roof function τ : I → R>0∪{+∞}
is smooth on the interior of each exchanged interval and has singularities at dis-
continuities of T . For any continuous observable f : M → C we deal with the
corresponding map ϕf : I → C ∪ {∞} given by

ϕf (x) =

∫ τ(x)

0

f(ψtx)dt.

If u is a solution of the cohomological equation Xu = f then

(1.2) v(Tx)− v(x) = ϕf(x) on I,

where v is the restriction of u to the curve I. Therefore the existence and a regularity
of the solution to the cohomological equation (1.2) is an obvious necessary condition
for the existence and the same regularity of the solution to Xu = f . As shown in
[12] (Theorem 1.2), this is also a sufficient condition under additional assumptions
related to the vanishing of certain distributions Ckσ,l and dkσ,j on f . Moreover, the
regularity of the solution u depends on the regularity of the solution v and the
vanishing of all the mentioned distributions up to some level of their order or hat-
order. For this reason, in the present paper, we primarily focus on the cohomological
equation v ◦ T − v = ϕf . The regularity of ϕf was completely understood in [12].
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It was shown there that ϕf ∈ Cn+PaG(⊔α∈AIα), i.e. is piecewise Cn+1 and its n-th
derivative has polynomial (of degree at most 0 < a < 1) or logarithmic (if a = 0)
singularities at discontinuities of the IET T . The degree of smoothness n depends
on the maximal order of vanishing for the distributions Ckσ,l, see Theorem 1.1 in [12].

For any k ∈ N ∪ {∞} denote by Φk(⊔α∈AIα) the space of functions ϕf for
f ∈ Ck(M). The main tool used to solve the chomological equation (1.2) is a
spectral analysis of the functional version (on Φk(⊔α∈AIα)) of the Kontsevich-Zorich
cocycle S(j) (see Section 4.2 for the definition). Some kind of spectral analysis
(for positive Lyapunov exponents) of the cocycle S(j) was used in [13] and [11] to
fully understand the deviation for ergodic integrals of smooth observables for a.a.
locally Hamiltonian flows. Our techniques are motivated by correction operators
invented by Marmi-Moussa-Yoccoz in [18] (see also [19] and [20]) in its simplest
version (without singularities) and later extended in [13] and [11].

To represent formally the main spectral result, let us consider an equivalence re-
lation ∼ on the set of triples T C , introduced in [12]. Two triples (σ, k, l), (σ, k, l′) ∈
T C are equivalent with respect to the equivalence relation ∼ if the angular sectors
Uσ,l and Uσ,l′ are connected through a chain of saddle loops emanating from the
saddle σ. For every equivalence class [(σ, k, l)] ∈ T C / ∼ let

C[(σ,k,l)](f) :=
∑

(σ,k,l′)∼(σ,k,l)

Ckσ,l(f).

For any k ≥ 0 let Γk(⊔α∈AIα) be the space of functions which are polynomials of
degree at most k on any interval Iα, α ∈ A. This space plays an important role in
solving cohomological equations in [10]. We will define two families of functions {ht̄ :
t̄ ∈ T F

∗} and {ξ[(σ,k,l)] : [(σ, k, l)] ∈ T C / ∼}, which are the keys for understanding
the spectral properties of the Kontsevich-Zorich cocycle S(j). First, they meet the
following properties:

ht̄ ∈ Γk(⊔α∈AIα) if t̄ = (k, · , · );

lim
j→∞

1

j
log ‖S(j)ht̄‖sup = lim

j→∞

1

j
log ‖S(j)ht̄‖L1 = −λ1o(t̄);(1.3)

ξ[(σ,k,l)] ∈ Cn+PaG(⊔α∈AIα) with n = ⌈o(σ, k)⌉, a = o(σ, k)− n;

lim
j→∞

1

j
log ‖S(j)ξ[(σ,k,l)]‖L1 = −λ1o(σ, k);(1.4)

lim
j→∞

1

j
log ‖S(j)ξ[(σ,k,l)]‖sup = −λ1o(σ, k) if o(σ, k) > 0.(1.5)

Then the main spectral result is as follows.

Theorem 1.3 (spectral theorem). Let ψR be a locally Hamiltonian flow such that
its restriction to a minimal component M ′ satisfies FFDC. For every r > −m−2

m
and

f ∈ Ckr(M) we have

ϕf =
∑

t̄∈T F
∗

o(t̄)<r

Ft̄(f)ht̄ +
∑

[(σ,k,l)]∈T C /∼
o(σ,k)<r

C[(σ,k,l)](f)ξ[(σ,k,l)] + rr(f)
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so that

lim sup
j→∞

1

j
log ‖S(j)rr(f)‖sup ≤ −λ1r if r > 0 and

lim sup
j→∞

1

j
log ‖S(j)rr(f)‖L1 ≤ −λ1r if r ≤ 0.

(1.6)

This theorem can be seen as a counterpart to spectral results from [3] in general
(non-pseudo-Anosov) setting. However, the most important advantage of Theo-
rem 1.3 is that it (more precisely its preceding version, Theorem 5.6) is used to
solve (in Section 6.2) the regularity of solutions to the cohomological equation
v ◦ T − v = ϕf (see Theorem 6.8). In Section 6, we modify techniques developed by
Marmi-Yoccoz in [20] to study the regularity of solutions in Hölder scale.

1.3. A new family of invariant distributions via extended correction op-

erators. In [12], the authors defined two families of invariant distributions Ckσ,l and

dkσ,j inspired by local analysis of higher order derivatives ϕf around ends of intervals
exchanged by T . In the current paper, we introduce a new family ft̄, t̄ ∈ T F

∗ of
invariant distributions over IETs and transport them to the level of the surface M
by composing with the operator f 7→ ϕf . The resulting distributions Ft̄, t̄ ∈ T F

∗

generalize (emulate) the notion of Forni’s invariant distributions (associated with
Lyapunov exponents of Kontsevitch-Zorich cocycle), but the method of construc-
tion is completely different from the original.

The invariant distributions ft̄ over IETs are defined on the space of Cn+PaG-
function (if o(t̄) < n−a). In [11], the authors constructed invariant distributions, for
n = 0, using correction through piecewise constant functions. They constructed so-
called correction operators hj, 1 ≤ j ≤ g but the construction was limited to the un-
stable subspace (corresponding to positive Lyapunov exponents) of the Kontsevich-
Zorich cocycle. The original idea of correcting smooth functions was introduced by
Marmi-Moussa-Yoccoz in [18] and then developed in [13] and [11].

In this paper there are three types of new functionals that arise from other parts of
the Oseledets splitting (+/− /0 denoting unstable/stable/central resp.) associated
to Lyapunov exponents (see Section 5.3). Their construction is based on the use of
new correction operators h−j,i, h

∗
j , h0 and their higher-order derivatives. The new

correction operators allow us to correct ϕf by piecewise constant functions, not only
related to unstable vectors as before, but also by central and stable vectors. The
construction of these three new types of correction operators is the most important
technical novelty of the article, which allows defining the counterparts of Forni’s
invariant distribution for flows with saddle loops. Together with the previously
defined local invariant distributions Ckσ,l and dkσ,j they give a complete and optimal
knowledge of the regularity of solutions in Hölder scale. This optimality of regularity
seems to be the most important overall novelty of the article.

1.4. Structure of the paper. In § 2, we recall some basic notions related to IETs,
Rauzy-Veech induction and accelerations of the Kontsevich-Zorich cocycle. In § 3,
we review Oseledets filtration of accelerated KZ-cocycles and formulate the corre-
sponding Full Filtration Diophantine Condition (FFDC). We set up a new infinite
series that are necessary for constructing extended correction operators in the next
section. In § 4, extended correction operators h−j,i, h

∗
j , h0 are constructed and their

basic properties are proven. In § 5, we compute Lyapunov exponents of renormal-
ization cocycle S(j) for piecewise polynomial function hi,l, cs,l, h−j,l. These three



SOLVING COHOMOLOGICAL EQUATION - PART II. GLOBAL OBSTRUCTIONS 7

classes of functions are then used to construct the functionals ft̄. The culmination
of this section is the proof of the spectral result (Theorem 5.6) which is the main
component of the proof of the Theorem 1.3. Cohomological equations for IET and
the regularity of their solutions are studied in § 6. Finally, in § 7, we conclude the
regularity of solutions to cohomological equations for locally Hamiltonian flows. The
main results are obtained from main theorems in [12] and results of § 6.

2. Interval exchange transformations (IET)

Let A be a d-element alphabet and let π = (π0, π1) be a pair of bijections πε :
A → {1, . . . , d} for ε = 0, 1. For every λ = (λα)α∈A ∈ RA

>0 let |λ| :=
∑

α∈A λα,
I := [0, |λ|) and for every α ∈ A,

Iα := [lα, rα), where lα =
∑

π0(β)<π0(α)

λβ, rα =
∑

π0(β)≤π0(α)

λβ.

Denote by S0
A the subset of irreducible pairs, i.e. π1 ◦ π

−1
0 {1, . . . , k} 6= {1, . . . , k} for

1 ≤ k < d. We will always assume that π ∈ S0
A. An interval exchange transformation

T = T(π,λ) : I → I is a piecewise translation determined by the data (π, λ), so that
T(π,λ) translates the interval Iα for each α ∈ A so that T (x) = x + wα for x ∈ Iα,
where w = Ωπλ and Ωπ is the matrix [Ωαβ]α,β∈A given by

Ωαβ =





+1 if π1(α) > π1(β) and π0(α) < π0(β),
−1 if π1(α) < π1(β) and π0(α) > π0(β),
0 in all other cases.

An IET T(π,λ) satisfies the Keane condition (see [17]) if Tm(π,λ)lα 6= lβ for all m ≥ 1

and for all α, β ∈ A with π0(β) 6= 1.

2.1. Rauzy-Veech induction. Rauzy-Veech induction [21] and its accelerations
are standard renormalization procedures for IETs. For general background, we refer
the readers to the lecture notes by Yoccoz [28, 29] or Viana [26].

Let T = T(π,λ) be an interval exchange transformation satisfying Keane’s condi-

tion. Let Ĩ :=
[
0,max(lπ−1

0 (d), lπ−1
1 (d))

)
and denote by R(T ) = T̃ : Ĩ → Ĩ the first

return map of T to the interval Ĩ. Let

ǫ = ǫ(π, λ) =

{
0 if λπ−1

0 (d) > λπ−1
1 (d),

1 if λπ−1
0 (d) < λπ−1

1 (d)

and

A(T ) = A(π, λ) = Id+ Eπ−1
ǫ (d) π−1

1−ǫ(d)
∈ SLA(Z),

where Id is the identity matrix and (Eij)kl = δikδjl, using the Kronecker delta

notation. Then, by Rauzy (see [21]), T̃ is also an IET on d-intervals satisfying

Keane’s condition and T̃ = T(π̃,λ̃) for some π̃ = (π̃0, π̃1) ∈ S0
A and λ̃ = A−1(π, λ)λ.

Moreover, the renormalized version of the matrix Ωπ̃ is of the form

Ωπ̃ = At(π, λ) · Ωπ · A(π, λ).

Thus taking H(π) = Ωπ(R
A), we have H(π̃) = At(π, λ)H(π).
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2.2. Kontsevich-Zorich cocycle and its accelerations. Let T = T(π,λ) be an
IET satisfying Keane’s condition. For every n ≥ 1,

A(n)(T ) = A(T ) · A(R(T )) · . . . · A(Rn−1(T )) ∈ SLA(Z).

This defines a multiplicative cocycle A over the transformation R and it is called the
Kontsevich-Zorich cocycle. Let (nk)k≥0 be an increasing sequence of integers with
n0 = 0 called an accelerating sequence. For every k ≥ 0, let T (k) := Rnk(T ) : I(k) →
I(k). Then T (k) : I(k) → I(k) is the first return map of T : I → I to the interval
I(k) ⊂ I. The sequence of IETs (T (k))k≥0 gives an acceleration of the Rauzy-Veech
renomalization procedure associated with the accelerating sequence (nk)k≥0.

Let (π(k), λ(k)) be the pair defining T (k) and let I
(k)
α , α ∈ A be intervals exchanged

by T (k). Then λ(k) = (λ
(k)
α )α∈A, where λ

(k)
α = |I

(k)
α | for α ∈ A.

For every k ≥ 0 let Z(k + 1) := A(nk+1−nk)(Rnk(T ))t. We then have

λ(k) = Z(k + 1)tλ(k+1), k ≥ 0.

By following notations from [18], for each 0 ≤ k < l let

Q(k, l) = Z(l) · Z(l − 1) · . . . · Z(k + 2) · Z(k + 1) = A(nl−nk)(Rnk(T ))t.

Then, Q(k, l) ∈ SLA(Z) and λ(k) = Q(k, l)tλ(l). We write Q(k) = Q(0, k).

2.3. Rokhlin towers related to accelerations. Note that Qαβ(k) is the time

spent by any point of I
(k)
α in Iβ until it returns to I(k). Then Qα(k) =

∑
β∈AQαβ(k)

is the first return time of points of I
(k)
α to I(k). Then the IET T : I → I splits into

a set of d Rokhlin tower of the form

{
T i(I(k)α ), 0 ≤ i < Qα(k)

}
, α ∈ A

so that Qα(k) floors of the α-th tower are pairwise disjoint intervals.

3. Diophantine conditions for IETs

In this section we introduce a new Diophantine condition for IETs which is a
full measure condition on the set of IETs. The Diophantine condition is a modified
version of the previously introduced one in [11] (see also [14]), so called Filtration
Diophantine condition (FDC). It is improved by extending the Oseledets filtration
to stable and central subspaces. Based on this condition, we show that certain series
involving matrices of the accelerated cocycle grows in a controlled way.

3.1. Oseledets filtration. Fix π ∈ S0
A. Suppose that there exist λ1 > . . . > λg >

λg+1 = 0 such that for a.e. IET (π, λ) there exists a filtration of linear subspaces
(Oseledets filtration)

{0} = E0(π, λ) ⊂ E−1(π, λ) ⊂ . . . ⊂ E−g(π, λ) ⊂ Ecs(π, λ)

= Eg+1(π, λ) ⊂ Eg(π, λ) ⊂ . . . ⊂ E1(π, λ) = Γ := RA
(3.1)
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such that for every 1 ≤ i ≤ g we have

lim
n→+∞

log ‖Q(n)h‖

n
= λ−i := −λi for all h ∈ E−i(π, λ) \ E−i+1(π, λ)

lim
n→+∞

log ‖Q(n)h‖

n
= 0 for all h ∈ Ecs(π, λ) \ E−g(π, λ)

lim
n→+∞

log ‖Q(n)h‖

n
= λi for all h ∈ Ei(π, λ) \ Ei+1(π, λ)

dimE−i(π, λ)− dimE−i+1(π, λ) = dimEi(π, λ)− dimEi+1(π, λ) = 1.

(3.2)

Suppose that there exists a filtration of linear subspaces which is complementary to
the Oseledets filtration (3.1):

{0} = U1 ⊂ U2 ⊂ . . . ⊂ Ug ⊂ Ug+1 ⊂ U−g ⊂ . . . ⊂ U−1 ⊂ U0 = Γ

such that Ug+1 ⊂ H(π) and Ej(π, λ)⊕ Uj = Γ for − g ≤ j ≤ g + 1.
(3.3)

As E−g ⊕Ug+1 = H(π), Uj+1 = Uj ⊕ (Uj+1 ∩Ej) and dim(Uj+1 ∩Ej) = 1, for every
j ∈ ±{1, . . . , g} there exists hj ∈ Uj+1 ∩ Ej such that

hj ∈ H(π), Uj+1 = Uj ⊕ Rhj and lim
n→+∞

log ‖Q(n)hj‖

n
= λj.

Let c1, . . . , cγ−1 be a basis of U−g ∩ Eg+1. Then for every 2 ≤ j ≤ g + 1 the
linear subspace Uj ⊂ Γ is generated by h1, . . . , hj−1 and for every 0 ≤ j ≤ g the
linear subspace U−j ⊂ Γ is generated by h1, . . . , hg, c1, . . . , cγ−1 and h−g, . . . , h−j−1.
Moreover,

(3.4) if 0 6= h ∈ Uj then lim
n→+∞

log ‖Q(n)h‖

n
≥ λj−1,

where λ−g−1 = −λg+1 = 0.

For every k ≥ 0 and −g ≤ j ≤ g + 1 let E
(k)
j := Q(k)Ej and U

(k)
j := Q(k)Uj .

3.2. Rokhlin Tower Condition and Filtration Diophantine Condition. The
following Rokhlin Towers Condition (RTC) was introduced in [14].

Definition 1 (RTC). An IET T(π,λ) together with an acceleration satisfies RTC if
there exists a constant 0 < δ < 1 such that

for any k ≥ 1 there exists number 0 < pk ≤ min
α∈A

Qα(k) such that

{T iI(k) : 0 ≤ i < pk} is a Rokhlin of intervals with measure ≥ δ|I|.
(RT)

For any sequence (rn)n≥0 of real numbers and for all 0 ≤ k ≤ l, we will use the
notation r(k, l) :=

∑
k≤j<l rj .

Definition 2 (FFDC). An IET T : I → I satisfying Keane’s condition and Oseledets
generic (i.e. there is a filtration of linear subspaces (3.1) satisfying (3.2)), satisfies
the Full Filtration Diophantine Condition (FFDC) if for every τ > 0 there exist
constants C, κ ≥ 1, an accelerating sequence (nk)k≥0, a sequence of natural numbers
(rn)n≥0 with r0 = 0 and a complementary filtration (Uj)−g≤j≤g+1 (satisfying (3.3))
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such that (RT) holds and

lim
n→+∞

r(0, n)

n
∈ (1, 1 + τ)(3.5)

∥∥∥Q|
E

(k)
j

(k, l)
∥∥∥ ≤ Ce(λj+τ)r(k,l) for all 0 ≤ k < l and 1 ≤ j ≤ g + 1(3.6)

∥∥∥Q|
E

(k)
−j

(k, l)
∥∥∥ ≤ Ce(−λj+τ)r(k,l) for all 0 ≤ k < l and 1 ≤ j ≤ g(3.7)

∥∥∥Q|U (k)
j

(k, l)−1
∥∥∥ ≤ Ce(−λj−1+τ)r(k,l) for all 0 ≤ k < l and 2 ≤ j ≤ g + 1(3.8)

∥∥∥Q|U (k)
−j

(k, l)−1
∥∥∥ ≤ Ce(λj+1+τ)r(k,l) for all 0 ≤ k < l and 0 ≤ j ≤ g(3.9)

‖Z(k + 1)‖ ≤ Ceτk for all k ≥ 0(3.10)

C−1eλ1k ≤ ‖Q(k)‖ ≤ Ceλ1(1+τ)k for all k ≥ 0(3.11)

max
α∈A

|I(k)|

|I
(k)
α |

≤ κ for all k ≥ 0(3.12)

∣∣ sin∠
(
E

(k)
j , U

(k)
j

)∣∣ ≥ c ‖Q(k)‖−τ for all k ≥ 0 and − g ≤ j ≤ g + 1.(3.13)

Definition 3. A locally Hamiltonian flow ψR on M with isolated fixed points and
restricted to its minimal componentM ′ ⊂M satisfies the Full Filtration Diophantine
Condition (FFDC) if there exists a transversal I ⊂M ′ such that the corresponding
IET T : I → I satisfies the FFDC.

Theorem 3.1. Almost every IET satisfies FFDC.

Proof. Most of the proof of Theorem follows similarly from the proof of Theorem
3.2 in [11]. In addition to the proof of FDC condition in [11], it suffices to slightly
modify the construction of the full measure set Ξ (coming from [11]) to show that
every (π, λ) ∈ Ξ satisfies (3.7), (3.9) and (3.13) not only on the non-negative part of

the filtration (as shown in [11]) but also on its negative part, i.e. on the E
(k)
−j and U

(k)
−j

for 1 ≤ j ≤ g. Since this modification is straightforward, we omit the details. �

Remark 3.2. In view of Theorem 3.1, almost every (with respect to the Katok
fundamental class) locally Hamiltonian flow ψR on M with isolated fixed points and
restricted to its minimal component M ′ ⊂ M satisfies the FFDC.

Remark 3.3. As 1 = |I| ≤ |I(n)|‖Q(n)‖ ≤ |I|/κ = κ−1, by (3.11), we have

(3.14) |I(n)|−1 ≤ ‖Q(n)‖ ≤ Ce(λ1+τ)n and |I(n)| ≤ κ−1‖Q(n)‖−1 ≤ κ−1Ce−λ1n.

As limn→+∞ n/r(0, n) > 1/(1 + τ) > 1− τ , there exists c > 0 such that

(3.15) (1− τ)r(0, n)− c ≤ n ≤ r(0, n) for all n ≥ 0.

Remark 3.4. Let us consider the map ξ̄ : I → R given by ξ̄(x) = x and the corre-
sponding coboundary ξ̄ ◦ T − ξ̄. Then ξ̄ ◦ T − ξ̄ ∈ Γ and for every k ≥ 0,

Q(k)(ξ̄ ◦ T − ξ̄)α = ξ̄(TQα(k)x)− ξ̄(x) = TQα(k)x− x for any x ∈ I(k)α .

Therefore ‖Q(k)(ξ̄ ◦ T − ξ̄)‖ ≤ |I(k)| ≤ κ−1Ce−λ1k. By (3.2), ξ̄ ◦ T − ξ̄ ∈ E−1(π, λ).
Since the space E−1(π, λ) is one-dimensional, we have h−1 = c(ξ̄ ◦ T − ξ̄) for some
c 6= 0.
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For any k ≥ 0 and −g ≤ j ≤ g+1 denote by P
E

(k)
j

: RA → E
(k)
j and P

U
(k)
j

: RA →

U
(k)
j the corresponding projections, i.e. P

E
(k)
j

+P
U

(k)
j

= IdRA. In view of (3.13), using

the arguments of the proof of Lemma 3.5 in [11], for any τ > 0 there exists C > 0
such that for all k ≥ 0 and −g ≤ j ≤ g + 1,

‖P
E

(k)
j

‖ ≤ C ‖Q(k)‖τ , ‖P
U

(k)
j

‖ ≤ C ‖Q(k)‖τ .(3.16)

Moreover, by definition, for any pair 0 ≤ k < l and any −g ≤ j ≤ g + 1 we have

Q(k, l) ◦ P
E

(k)
j

= P
E

(l)
j

◦Q(k, l) and Q(k, l) ◦ P
U

(k)
j

= P
U

(l)
j

◦Q(k, l).

3.3. Diophantine series. For every a ≥ 0 and s ≥ 1, let 〈s〉a = sa if a > 0 and
〈s〉a = 1 + log s if a = 0.

Definition 4. For every IET T : I → I satisfying Keane’s condition, any 0 ≤ a < 1,
any 2 ≤ i ≤ g + 1, any τ > 0 and any accelerating sequence we define sequences
(Ka,i,τ

k (T ))k≥0, (C
a,i,τ
k (T ))k≥0 so that

Ka,i,τ
k (T ) :=

∑

l≥k

‖Q|
U

(k)
i

(k, l + 1)−1‖‖Z(l + 1)‖〈‖Q(l)‖〉a‖Q(l + 1)‖τ ,

Ca,i,τ
k (T ) :=

∑

0≤l<k

‖Q|
E

(l+1)
i

(l + 1, k)‖‖Z(l + 1)‖〈‖Q(l)‖〉a‖Q(l + 1)‖τ .

Proposition 3.5. [11, Proposition 3.6] Let T : I → I be an IET satisfying FFDC
and let 0 ≤ a < 1. Suppose that 2 ≤ i ≤ g+1 is chosen such that aλ1 < λi−1. Then
for every 0 < τ < λi−1−λ1a

3(1+λ1)
the sequences (Ka,i,τ

k )k≥0, (C
a,i,τ
k )k≥0 are well defined and

Ka,i,τ
k (T ) ≤ Cτe

(λ1a+5τ(1+λ1))r(0,k),

Ca,i,τ
k (T ) ≤ Cτe

(max{λi,λ1a}+3τ(1+λ1))r(0,k).
(3.17)

The series was originally designed to construct some correction operators (see [11,
§6]) on C0+Pa. We now present a new type of series for the similar purpose on Cn+Pa.

Definition 5. For every IET T : I → I satisfying Keane’s condition, any 2 ≤ j ≤
g + 1, any non-negative sequence s̄ = (sk)k≥0, any τ > 0 and any accelerating

sequence, we define sequences (V j,τ
k (T, s̄))k≥0, (W

j,τ
k (T, s̄))k≥0 so that

V j,τ
k (T, s̄) :=

∑

l≥k

‖Q|
U

(k)
−j

(k, l + 1)−1‖‖Q(l + 1)‖τ‖Z(l + 1)‖sl,

W j,τ
k (T, s̄) :=

∑

0≤l<k

‖Q|
E

(l+1)
−j

(l + 1, k)‖‖Q(l + 1)‖τ‖Z(l + 1)‖sl.

Proposition 3.6. Let T : I → I be an IET satisfying FFDC. Fix 0 ≤ j ≤ g,
λj+1 < ρ and 0 < τ <

ρ−λj+1

λ1+3
. Then there exists Cτ > 0 such that for any non-

negative sequence s̄ = (sk)k≥0 with sk ≤ De−ρr(0,k+1) for all k ≥ 0 we have

V j,τ
k (T, s̄) ≤ CτDe

(−ρ+(λ1+2)τ)r(0,k),(3.18)

W j,τ
k (T, s̄) ≤ CτDe

(max{−ρ,−λj}+(λ1+3)τ)r(0,k).(3.19)
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Proof. By Definition 2,

V j,τ
k ≤

∑

l≥k

C3De(λj+1+τ)r(k,l+1)e(λ1+τ)τ(l+1)eτ(l+1)e−ρr(0,l+1)

≤
∑

l≥k

C3De(λj+1+τ)r(k,l+1)e(−ρ+τ(λ1+2))r(0,l+1)

= De(−ρ+τ(λ1+2))r(0,k)
∑

l≥k

C3e(−ρ+λj+1+τ(λ1+3))r(k,l+1)

≤ De(−ρ+τ(λ1+2))r(0,k)
∑

l≥k

C3e(−ρ+λj+1+τ(λ1+3))(l+1−k)

= De(−ρ+τ(λ1+2))r(0,k)
∑

l≥1

C3e(−ρ+λj+1+τ(λ1+3))l.

As −ρ + λj+1 + τ(λ1 + 3) < 0, the above series is convergent, so we get (3.18).
Moreover, again by Definition 2,

W j,τ
k ≤

∑

0≤l<k

C3De(−λj+τ)r(l+1,k)e(λ1+τ)τ(l+1)eτ(l+1)e−ρr(0,l+1)

≤
∑

1≤l≤k

C3De(−λj+τ)r(l,k)e(−ρ+τ(λ1+2))r(0,l) ≤ C3Dke(max{−λj ,−ρ}+τ(λ1+2))r(0,k)

≤ C3DC ′e(max{−λj ,−ρ}+τ(λ1+3))r(0,k),

which gives (3.19). �

4. Extended correction operators

In this section we define three types of new correction operators h∗j , h−j,i and h0
for 2 ≤ i ≤ g + 1 and 0 ≤ j ≤ g. These operators are motivated by the correction
operator hi previously defined on C0+Pa , the space of functions with polynomial
singularities. In [11, §6], the maps from C0+Pa were corrected by piecewise constant
functions coming from the unstable subspace. Our new operators are constructed to
correct piecewise smooth functions whose higher order derivatives have polynomial
singularities (elements of Cn+PaG) by piecewise polynomial functions.

4.1. Cn+PaG space. Fix 0 ≤ a < 1 and an integer n ≥ 0. Following [12, §2],
Cn+Pa(⊔α∈AIα) is the space of Cn+1-functions on

⋃
α∈A Int Iα such that

pa(D
nϕ) := max

α∈A
sup

x∈(lα,rα)

max{|Dn+1ϕ(x)(x− lα)
1+a|, |Dn+1ϕ(x)(rα − x)1+a|}

is finite and

Ca,+
α,n (ϕ) = (−1)nC+

α (D
nϕ) := (−1)n+1 lim

xցlα
Dn+1ϕ(x)(x− lα)

1+a,

Ca,−
α,n (ϕ) = C−

α (D
nϕ) := lim

xրrα
Dn+1ϕ(x)(rα − x)1+a

exist. The space Cn+Pa(⊔α∈AIα) is a Banach space equipped with the norm

‖ϕ‖Cn+Pa :=
n∑

k=0

‖Dkϕ‖L1(I) + pa(D
nϕ).
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We denote by Cn+PaG(⊔α∈AIα) ⊂ Cn+Pa(⊔α∈AIα) the space of functions with geo-
metric type, i.e. such that

Ca,−

π−1
0 (d),n

· Ca,−

π−1
1 (d),n

= 0 and Ca,+

π−1
0 (1),n

· Ca,+

π−1
1 (1),n

= 0.

4.2. Special Birkhoff sums. Assume that an IET T : I → I satisfies Keane’s
condition. For any 0 ≤ k < l and any measurable map ϕ : I(k) → R over the IET
T (k) : I(k) → I(k), denote by S(k, l)ϕ : I(l) → R the renormalized map over T (l)

given by

S(k, l)ϕ(x) =
∑

0≤i<Qβ(k,l)

ϕ((T (k))ix) for x ∈ I
(l)
β .

Sums of this form are called special Birkhoff sums. In convention, we write S(k)ϕ
for S(0, k)ϕ and S(k, k)ϕ = ϕ. If ϕ is integrable then

(4.1) ‖S(k, l)ϕ‖L1(I(l)) ≤ ‖ϕ‖L1(I(k)) and

∫

I(l)
S(k, l)ϕ(x) dx =

∫

I(k)
ϕ(x) dx.

If additionally ϕ ∈ BV(⊔α∈AI
(k)
α ) (is of bounded variation), then

(4.2) VarS(k, l)ϕ ≤ Varϕ and ‖S(k, l)ϕ‖sup ≤ ‖Q(k, l)‖‖ϕ‖sup,

where Varϕ is the sum of variations of ϕ restricted to Int Iα for α ∈ A.

Denote by Γ(k) the set of functions on I(k) which are constant on all I
(k)
α , α ∈ A.

Clearly, S(k, l)Γ(k) = Γ(l) and S(k, l) is the linear automorphism of RA whose matrix
in the canonical basis is Q(k, l).

Remark 4.1. In view of §5 in [11], S(k, l) : Cn+PaG(⊔α∈AI
(k)
α ) → Cn+PaG(⊔α∈AI

(l)
α ).

Moreover, for every IET T satisfying FFDC, there exists C ≥ 1 such that for all

0 ≤ k ≤ l and for every function ϕ ∈ C0+PaG(⊔α∈AI
(k)
α )

pa(S(k, l)ϕ) ≤ Cpa(ϕ) if 0 < a < 1,

pa(S(k, l)ϕ) ≤ C(1 + log ‖Q(k, l)‖)pa(ϕ) if a = 0.
(4.3)

4.3. Correction operator on C0+PaG. For any integrable map f : I → R and any
subinterval J ⊂ I, let m(f, J) stand for the mean value of f on J , that is

m(f, J) =
1

|J |

∫

J

f(x) dx.

For the IET T (k) let M(k) : L1(I(k)) → Γ(k) be the corresponding mean value
projection operator given by

M(k)(f) =
∑

α∈A

m(f, I(k)α )χ
I
(k)
α
.

This operator projects any map onto a piecewise constant function, whose values

are equal to the mean value of f on the exchanged intervals I
(k)
α , α ∈ A.

Theorem 4.2. [11, Theorem 6.1] Assume that T satisfies FFDC. For any 0 ≤
a < 1, take 2 ≤ j ≤ g + 1 so that λ1a < λj−1. There exists a bounded linear
operator hj : C

0+PaG(⊔α∈AIα) → Uj such that for any τ > 0 there exists a constant
C = Cτ ≥ 1 such that for every ϕ ∈ C0+PaG(⊔α∈AIα) with hj(ϕ) = 0 we have

(4.4) ‖M(k)(S(k)ϕ)‖ ≤ C

(
(
Ka,j,τ
k + Ca,j,τ

k

)
pa(ϕ) + ‖QEj

(k)‖
‖ϕ‖L1(I(0))

|I(0)|

)
.
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The operator hj : C
0+PaG(⊔α∈AIα) → Uj ⊂ H(π) called the correction operator is

given by

hj(ϕ) = lim
k→∞

Q(0, k)−1 ◦ P
U

(k)
j

◦M(k) ◦ S(k)(ϕ)(4.5)

=
∑

l≥0

Q(0, l)−1 ◦ P
U

(l)
j

◦
(
M(l) ◦ S(l)− Z(l) ◦M(l−1) ◦ S(l − 1)

)
(ϕ)

where M(−1) = 0.

Remark 4.3. Note that for all 2 ≤ j′ ≤ j ≤ g + 1 we have P
U

(0)

j′
◦ P

U
(0)
j

= P
U

(0)

j′
.

It follows that P
U

(0)

j′
◦ hj = hj′, hence hj(ϕ) = 0 implies hj′(ϕ) = 0. Moreover, by

definition, hj(h) = 0 for every h ∈ Ej and hj(h) = h for every h ∈ Uj , in particular
hj ◦ hj = hj.

4.4. First step: correction operator h∗j on BV. As a first step, we construct an
initial extended correction operator h∗j on the space of bounded variation functions
taking value in the space U−j from the complimentary filtration.

By definition, for every ϕ ∈ BV(⊔α∈AI
(k)
α ) we have

(4.6)
∥∥M(k)(ϕ)

∥∥ ≤ ‖ϕ‖sup and
∥∥ϕ−M(k)(ϕ)

∥∥
sup

≤ Varϕ.

Let P
(k)
0 : L1(⊔α∈AI

(k)
α ) → L1(⊔α∈AI

(k)
α ) be a linear operator given by

P
(k)
0 (ϕ) = ϕ−M(k)(ϕ).

If ϕ ∈ BV (⊔α∈AIα), then

(4.7) ‖P
(k)
0 (S(k)ϕ)‖sup ≤ Var(S(k)ϕ).

By §6.1 in [11], for every 0 ≤ a < 1 and ϕ ∈ C0+Pa(⊔α∈AI
(k)
α ),

∥∥M(k)(ϕ)
∥∥
L1(I(k))

≤ 2 ‖ϕ‖L1(I(k))(4.8)

∥∥ϕ−M(k)(ϕ)
∥∥
L1(I(k))

≤
22+ad

1− a
pa(ϕ)|I

(k)|1−a.(4.9)

Therefore for ϕ ∈ C0+Pa(⊔α∈AIα) we obtain

(4.10)
‖S(k)ϕ‖L1(I(k))

|I(k)|
≤
∥∥M(k)(S(k)ϕ)

∥∥+ pa(S(k)ϕ)
22+a

(1− a)|I(k)|a
.

As

(4.11)
|I(k)| ‖h‖

κ
≤ min

β∈A
|I

(k)
β | ‖h‖ ≤ ‖h‖L1(I(k)) ≤ |I(k)| ‖h‖ for every h ∈ Γ(k),

by (4.8), for every ϕ ∈ C0+Pa(⊔α∈AIα),

(4.12) ‖M(k)(ϕ)‖ ≤
2κ

|I(k)|
‖ϕ‖L1(I(k)) .

Lemma 4.4. Let 0 ≤ j ≤ g and ϕ ∈ BV (⊔α∈AIα) be such that

(4.13)
∑

l≥1

‖Q|
U

(0)
−j

(l)−1‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ) < +∞.

Then the limit

(4.14) h∗j(ϕ) = lim
l→∞

Q(0, l)−1 ◦ P
U

(l)
−j

◦M(l) ◦ S(l)(ϕ) ∈ U−j
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exists and there exists a universal constant C > 0 such that

‖h∗j(ϕ)‖ ≤ C
(
‖ϕ‖sup +

∑

l≥1

‖Q|
U

(0)
−j

(l)−1‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ)
)
.(4.15)

Moreover, for every k ≥ 1 we have
∥∥M(k)(S(k)(ϕ− h∗j(ϕ)))

∥∥

≤ C
(∑

l>k

‖Q|
U

(k)
−j

(k, l)−1‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ)

+
∑

1≤l≤k

‖Q|
E

(l)
−j

(l, k)‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ) + ‖Q
E

(0)
−j

(k)‖ ‖ϕ‖sup

)
.

(4.16)

Proof. Let vk := M(k) ◦ S(k)(ϕ). Direct calculation shows that
(
S(k, k + 1) ◦ P

(k)
0 ◦ S(k)(ϕ)− P

(k+1)
0 ◦ S(k, k + 1) ◦ S(k)(ϕ)

)

= −S(k, k + 1) ◦M(k) ◦ S(k)(ϕ) +M(k+1) ◦ S(k + 1)(ϕ)

= −Z(k + 1)vk + vk+1.

(4.17)

Then, by (4.7) and (4.2),

‖S(k, k + 1) ◦ P
(k)
0 ◦ S(k)(ϕ)‖sup ≤ ‖Z(k + 1)‖‖P

(k)
0 ◦ S(k)(ϕ)‖sup

≤ ‖Z(k + 1)‖Var(S(k)ϕ)

and

‖P
(k+1)
0 ◦ S(k + 1)(ϕ)‖sup ≤ Var(S(k + 1)ϕ) ≤ Var(S(k)ϕ).

This gives

(4.18) ‖Z(k + 1)vk − vk+1‖ ≤ 2‖Z(k + 1)‖Var(S(k)ϕ).

For any sequence (xk)k≥0 in RA, let ∆xk+1 = xk+1 − Z(k + 1)xk for k ≥ 0 and
∆x0 = x0. Then, by telescoping,

xk =

k∑

j=0

Q(j, k)∆xj .(4.19)

By (4.6) and (4.18),

(4.20) ‖∆v0‖ ≤ ‖ϕ‖sup and ‖∆vk+1‖ ≤ 2‖Z(k + 1)‖Var(S(k)ϕ).

For every k ≥ 0 let ek = P
E

(k)
−j

vk ∈ E
(k)
−j and uk = P

U
(k)
−j

vk ∈ U
(k)
−j . Then vk = uk+ ek.

Since Z(k + 1)(E
(k)
−j ) = E

(k+1)
−j and Z(k + 1)(U

(k)
−j ) = U

(k+1)
−j we have

∆uk+1 = uk+1 − Z(k + 1)uk = P
U

(k+1)
−j

∆vk+1,(4.21)

∆ek+1 = ek+1 − Z(k + 1)ek = P
E

(k+1)
−j

∆vk+1,

∆u0 = u0 = P
U

(0)
−j

∆v0, ∆e0 = e0 = P
E

(0)
−j

∆v0.

In view of (3.16) and (4.20), we have

‖∆u0‖ ≤ C ‖∆v0‖ ≤ C ‖ϕ‖sup , ‖∆e0‖ ≤ C ‖∆v0‖ ≤ C ‖ϕ‖sup(4.22)
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and for every k ≥ 1 we have

‖∆uk‖ ≤ 2C‖Q(k)‖τ‖Z(k)‖Var(S(k − 1)ϕ),

‖∆ek‖ ≤ 2C‖Q(k)‖τ‖Z(k)‖Var(S(k − 1)ϕ).
(4.23)

Let us consider the infinite series v :=
∑

l≥0Q(l)
−1∆ul. Since

∑

l≥0

‖Q|
U

(0)
−j

(l)−1‖‖∆ul‖

≤ C
(
‖ϕ‖sup + 2

∑

l≥1

‖Q|
U

(0)
−j

(l)−1‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ)
)(4.24)

is finite, v ∈ U−j is well defined. In view of (4.17) and (4.21),

Q(l)−1∆ul = Q(l)−1 ◦ P
U

(l)
−j

(M(l) ◦ S(l)(ϕ)− S(l − 1, l) ◦M(l−1) ◦ S(l − 1)(ϕ))

= Q(l)−1 ◦ P
U

(l)
−j

◦M(l) ◦ S(l)(ϕ)−Q(l − 1)−1 ◦ P
U

(l−1)
−j

◦M(l−1) ◦ S(l − 1)(ϕ).

It follows that h∗j(ϕ) is well defined and h∗j(ϕ) = v, so by (4.24), we obtain (4.15).
By the definition of v, (4.19) and (4.23), for every k ≥ 0 we have

‖Q(k)v − uk‖ =
∥∥∥
∑

l>k

Q|
U

(k)
−j

(k, l)−1∆ul

∥∥∥ ≤
∑

l>k

‖Q|
U

(k)
−j

(k, l)−1‖‖∆ul‖

≤ 2C
∑

l>k

‖Q|
U

(k)
−j

(k, l)−1‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ).
(4.25)

To obtain the bound of norm of ek ∈ E
(k)
−j , we apply (4.19), (4.23) and (4.22),

‖ek‖ ≤
∑

0≤l≤k

‖Q(l, k)∆el‖ ≤
∑

0≤l≤k

‖Q|
E

(l)
−j

(l, k)‖‖∆el‖

≤ C
(
‖Q|

E
(0)
−j

(k)‖‖ϕ‖sup + 2
∑

1≤l≤k

‖Q|
E

(l)
−j

(l, k)‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ)
)
.

Combining with (4.25), we conclude

‖Q(k)v − vk‖ ≤ 2C
(∑

l>k

‖Q|
U

(k)
−j

(k, l)−1‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ)

+
∑

1≤l≤k

‖Q|
E

(l)
−j

(l, k)‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ) + ‖Q
E

(0)
−j

(k)‖ ‖ϕ‖sup

)
.

Since M(k)(S(k)(h∗j(ϕ))) = Q(k)v, this gives (4.16). �

Remark 4.5. Suppose that 0 ≤ j ≤ j′ ≤ g. Then the operator h∗j′ is well defined and
P
U

(0)

−j′
◦h∗j = h∗j′. Hence h∗j (ϕ) = 0 implies h∗j′(ϕ) = 0. In view of (4.5) and (4.14), the

same arguments show that for every 2 ≤ l ≤ g + 1 we have P
U

(0)
l

◦ h∗j = hl. Hence

h∗j(ϕ) = 0 implies hl(ϕ) = 0. Moreover, by definition, h∗j(h) = 0 for every h ∈ E−j

and h∗j (h) = h for every h ∈ U−j .

4.5. Second step: correction operator h−j,i. Now we introduce second type
correction operators h−j,i : C

1+PaG(⊔α∈AIα) → U−j for 2 ≤ i ≤ g+1 and 1 ≤ j ≤ g.
They extend previous (standard) correction operators hi to the complement of the
stable part of the Oseledets filtration. For this purpose, we use a certain modification
of the operator h∗j , which we link with the derivative of hi.
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For all 0 ≤ a < 1 and 2 ≤ i ≤ g + 1 let

C1+PaG
i (⊔α∈AIα) = {ϕ ∈ C1+PaG(⊔α∈AIα) : hi(Dϕ) = 0}.

Let us consider the sequence s̄ = (sk)k≥0 given by sk := |I(k)|(Ka,i,τ
k + Ca,i,τ

k ).

Theorem 4.6. Assume that T satisfies FFDC. Let 0 ≤ a < 1, 2 ≤ i ≤ g + 1 and
1 ≤ j ≤ g so that aλ1 < λi−1 and max{aλ1, λi} < λ1 − λj+1. Then the linear
operator h∗j : C1+PaG

i (⊔α∈AIα) → U−j is well defined and bounded. Moreover, for

any 0 < τ <
max{aλ1,λi}−λ1+λj+1

9(1+λ1)
there exists a constant C = Cτ ≥ 1 such that for

any ϕ ∈ C1+PaG
i (⊔α∈AIα) with h∗j(ϕ) = 0 we have

Var(S(k)ϕ) ≤ Csk ‖Dϕ‖C0+Pa(4.26)

‖M(k)(S(k)ϕ)‖ ≤ C
((
W j,τ
k (s̄) + V j,τ

k (s̄)
)
‖Dϕ‖C0+Pa + ‖Q

E
(0)
−j

(k)‖ ‖ϕ‖sup
)

(4.27)

with

sk = O(e(max{λi,λ1a}−λ1+6τ(1+λ1))r(0,k+1))

V j,τ
k (T, s̄) = O(e(max{λi,λ1a}−λ1+8τ(1+λ1))r(0,k))

W j,τ
k (T, s̄) = O(e(max{λi−λ1,λ1a−λ1,−λj}+9τ(1+λ1))r(0,k)).

Proof. As ϕ ∈ C1+PaG
i (⊔α∈AIα), we have Dϕ ∈ C0+PaG(⊔α∈AIα) and hi(Dϕ) = 0.

By (4.10), (4.3), (3.14) and Theorem 4.2,

Var(S(k)ϕ) = ‖S(k)(Dϕ)‖L1(I(k))

≤ |I(k)|
(∥∥M(k)(S(k)Dϕ)

∥∥+ pa(S(k)Dϕ)
2a+2

(1− a)||I(k)|a

)

≤ Ca|I
(k)|

(
(
Ka,i,τ
k + Ca,i,τ

k

)
pa(Dϕ) + ‖QEi

(k)‖
‖Dϕ‖L1(I(0))

|I(0)|

)

≤ Ca|I
(k)|
(
Ka,i,τ
k + Ca,i,τ

k

)
‖Dϕ‖C0+Pa ≤ Cτsk ‖Dϕ‖C0+Pa ,

which gives (4.26). It follows that

‖Q|
U

(k)
−j

(k, l)−1‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ)

= O
(
‖Q|

U
(k)
−j

(k, l)−1‖‖Q(l)‖τ‖Z(l)‖sl−1 ‖Dϕ‖C0+Pa

)
,

‖Q|
E

(l)
−j

(l, k)‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ)

= O
(
‖Q|

E
(l)
−j

(l, k)‖‖Q(l)‖τ‖Z(l)‖sl−1 ‖Dϕ‖C0+Pa

)
.

In view of (3.17), (3.14) and (3.15), we have

sk = O(e−λ1ke(max{λi,λ1a}+5τ(1+λ1))r(0,k))

= O(e−λ1(1−τ)r(0,k+1)e(max{λi,λ1a}+5τ(1+λ1))r(0,k))

= O(e(max{λi,λ1a}−λ1+6τ(1+λ1))r(0,k+1)).

As max{λi, λ1a}+ λj+1 − λ1 + 6τ(1 + λ1) + τ(3 + λ1) < 0, by Proposition 3.6,

V j,τ
k (T, s̄) = O(e(max{λi,λ1a}−λ1+8τ(1+λ1))r(0,k))

W j,τ
k (T, s̄) = O(e(max{λi−λ1,λ1a−λ1,−λj}+9τ(1+λ1))r(0,k)).
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As V j,τ
0 (T, s̄) is finite, the series (4.13) is convergent. By Lemma 4.4 (see (4.15)),

the operator h∗j : C
1+PaG
i (⊔α∈AIα) → U−j is well defined and bounded. Moreover, in

view of (4.16), this also gives (4.27). �

For every ϕ ∈ L1(I) denote by ϕ̃ ∈ AC(I) its primitive integral ϕ̃(x) =
∫ x
0
ϕ(y)dy.

Corollary 4.7. Assume that T satisfies FFDC. Let 0 ≤ a < 1, 2 ≤ i ≤ g + 1 and
1 ≤ j ≤ g so that aλ1 < λi−1 and max{aλ1, λi} < λ1−λj+1. There exists a bounded
operator h−j,i : C

1+PaG(⊔α∈AIα) → U−j such that for every ϕ ∈ C1+PaG(⊔α∈AIα)
with h−j,i(ϕ) = 0 and hi(Dϕ) = 0 we have

(4.28) ‖S(k)ϕ‖sup ≤ O(e(max{λi−λ1,λ1a−λ1,−λj}+τ)r(0,k))‖ϕ‖C1+Pa for every τ > 0.

Proof. Let Ki : C
1+PaG(⊔α∈AIα) → C1+PaG

i (⊔α∈AIα) be the bounded operator de-

fined by Ki(ϕ) = ϕ − h̃i(Dϕ). Since hi(DKi(ϕ)) = hi(Dϕ) − hi(hi(Dϕ)) = 0,
we really have Ki(ϕ) ∈ C1+PaG

i (⊔α∈AIα). We can use Theorem 4.6 to define
h−j,i : C

1+PaG(⊔α∈AIα) → U−j as h−j,i := h∗j ◦Ki.

Suppose that ϕ ∈ C1+PaG(⊔α∈AIα) is such that h−j,i(ϕ) = 0 and hi(Dϕ) = 0.

Then h∗j(Ki(ϕ)) = h−j,i(ϕ) = 0 and ϕ = Ki(ϕ) + h̃i(Dϕ) = Ki(ϕ), so h∗j (ϕ) = 0. In
view of (4.7) and Theorem 4.6,

‖S(k)(ϕ)‖sup ≤ ‖M(k)(S(k)ϕ)‖+Var(S(k)ϕ) = O(e(max{λi−λ1,λ1a−λ1,−λj}+τ)r(0,k)).

�

Remark 4.8. Suppose that 1 ≤ j ≤ j′ ≤ g and 2 ≤ i′ ≤ i ≤ g+1. Then the operator
h−j′,i′ is well defined. By Remarks 4.3 and 4.5, h−j,i(ϕ) = 0 and hi(Dϕ) = 0 imply
h−j′,i′(ϕ) = 0, hi′(Dϕ) = 0 and hl(ϕ) = 0 for every 2 ≤ l ≤ g + 1. Moreover, by
the same remarks, we also have h−j,i(h) = 0 for every h ∈ E−j and h−j,i(h) = h for
every h ∈ U−j , in particular h−j,i ◦ h−j,i = h−j,i.

4.6. Third step: correction operator h0. The last correction operator h0 :
C2+PaG(⊔α∈AIα) → U0 = Γ plays the same roles as h−j,i but for the parameter
j = 0. As in the construction of h−j,i, we also use the operator h∗j (for j = 0), but
we need to link it with the derivative of h−g,2 and the second derivative of h2.

Theorem 4.9. Assume that T satisfies FFDC. Let 0 ≤ a < 1. There exists a
bounded operator h0 : C

2+PaG(⊔α∈AIα) → U0 such that if ϕ ∈ C2+PaG(⊔α∈AIα) with

h0(ϕ) = 0, h−g,2(Dϕ) = 0, h2(D
2ϕ) = 0 and

‖S(k)Dϕ‖sup = O(e−ρr(0,k))c(Dϕ) for some ρ > 0,

then for every 0 < τ < min{λ1 − λ2, λ1(1− a), λg, ρ}/3(1 + max{λ1, ρ}), we have

(4.29) ‖S(k)ϕ‖sup = O(e(−ρ−λ1+2τ(λ1+ρ+1))r(0,k))c(Dϕ).

Proof. Let us consider

C2+PaG
−g,2 (⊔α∈AIα) = {ϕ ∈ C2+PaG(⊔α∈AIα) : h−g,2(Dϕ) = 0, h2(D

2ϕ) = 0}.

By Corollary 4.7, for every ϕ ∈ C2+PaG
−g,2 (⊔α∈AIα) we have

‖S(k)(Dϕ)‖sup = O(e(max{λ2−λ1,λ1a−λ1,−λg}+τ)r(0,k))‖Dϕ‖C1+Pa

= O(e−ρ0r(0,k))‖Dϕ‖C1+Pa
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with ρ0 := min{λ1 − λ2, λ1(1− a), λg} − τ > 0. As

Var(S(k)ϕ) = ‖S(k)Dϕ‖L1(I(k)) ≤ |I(k)|‖S(k)Dϕ‖sup,

it follows that for l > k we have

‖Q|
U

(k)
0
(k, l)−1‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ)

≤ ‖Q(k, l)−1‖‖Q(l)‖τ‖Z(l)‖|I(l−1)|‖S(l− 1)Dϕ‖sup

= O(e(λ1+τ)r(k,l)eτ(λ1+τ)leτle−λ1(l−1)e−ρ0r(0,l−1))‖Dϕ‖C1+Pa .

By (3.15), it follows that

‖Q|
U

(k)
0
(k, l)−1‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ)

= O(e(λ1+τ)r(k,l)eτ(λ1+2)r(0,l)e−(1−τ)λ1r(0,l)e−(1−τ)ρ0r(0,l))‖Dϕ‖C1+Pa

= O(e(−λ1−ρ0+τ(3λ1+2))r(0,k)e(−ρ0+τ(3λ1+3))r(k,l))‖Dϕ‖C1+Pa .

(4.30)

The same arguments show that if additionally ‖S(k)Dϕ‖sup = O(e−ρr(0,k))c(Dϕ)
then

‖Q|
U

(k)
0
(k, l)−1‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ)

= O(e(−λ1−ρ+τ(2λ1+ρ+2))r(0,k)e(−ρ+τ(2λ1+ρ+3))r(k,l))c(Dϕ).
(4.31)

As −ρ0 + 3τ(λ1 + 1) < 0, by (4.30), the series (4.13) is convergent for j = 0. By
Lemma 4.4, the operator h∗0 : C2+PaG

−g,2 (⊔α∈AIα) → U0 = Γ is well defined and if
h∗0(ϕ) = 0 then

∥∥M(k)(S(k)ϕ)
∥∥ ≤ C

∑

l>k

‖Q|
U

(k)
0
(k, l)−1‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ).

Therefore

‖S(k)ϕ‖sup ≤
∥∥M(k)(S(k)ϕ)

∥∥+Var(S(k)ϕ)

≤ 2C
∑

l>k

‖Q|
U

(k)
0
(k, l)−1‖‖Q(l)‖τ‖Z(l)‖Var(S(l − 1)ϕ).(4.32)

Let K : C2+PaG(⊔α∈AIα) → C2+PaG
−g,2 (⊔α∈AIα) be the bounded operator defined by

K(ϕ) := ϕ−
˜̃

h2(D2ϕ)− ˜h−g,2(Dϕ) +
˜

h−g,2( ˜h2(D2ϕ)).

Then

DK(ϕ) = Dϕ− ˜h2(D2ϕ)− h−g,2(Dϕ− ˜h2(D2ϕ)), D2K(ϕ) = D2ϕ− h2(D
2ϕ).

Since h2(D
2K(ϕ)) = h2(D

2ϕ)− h2(h2(D
2ϕ)) = 0 and

h−g,2(DK(ϕ)) = h−g,2(Dϕ− ˜h2(D2ϕ))− h−g,2(h−g,2(Dϕ− ˜h2(D2ϕ))) = 0,

we really have K(ϕ) ∈ C2+PaG
−g,2 (⊔α∈AIα). Finally we define h0 : C

2+PaG(⊔α∈AIα) →
U0 as h0 = h∗0 ◦K.

Suppose that ϕ ∈ C2+PaG(⊔α∈AIα) is such that h0(ϕ) = 0, h−g,2(Dϕ) = 0,
h2(D

2ϕ) = 0 and ‖S(k)Dϕ‖sup = O(e−ρr(0,k))c(Dϕ). Then h∗0(K(ϕ)) = h0(ϕ) = 0
with K(ϕ) = ϕ, so h∗0(ϕ) = 0. In view of (4.32) and (4.31), this gives

‖S(k)(ϕ)‖sup ≤ e(−λ1−ρ+τ(2λ1+ρ+2))r(0,k)O
(∑

l>k

e(−ρ+τ(2λ1+ρ+3))r(k,l)
)
c(Dϕ).
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As ∑

l>k

e(−ρ+τ(2λ1+ρ+3))r(k,l) ≤
∑

l≥1

e(−ρ+τ(2λ1+ρ+3))l < +∞,

this gives (4.29). �

Remark 4.10. Using Remark 4.5 and 4.8, we obtain that h0(ϕ) = 0, h−g,2(Dϕ) = 0
and h2(D

2ϕ) = 0 imply h−j,i(ϕ) = 0 for any pair i, j and hl(ϕ) = 0 for any 2 ≤
l ≤ g + 1. By Remark 4.5, we also have h0(h) = h for every h ∈ Γ, in particular
h0 ◦ h0 = h0.

Finally, we prove a fast decay of special Birkhoff sums for ϕ ∈ Cn+PaG(⊔α∈AIα)
under some vanishing conditions for derivatives of previously defined correction op-
erators. This result is a key step in the construction of invariant distributions ft̄ and
the proof of the spectral theorem.

Theorem 4.11. Assume that T satisfies FFDC. Let 0 ≤ a < 1, 2 ≤ i ≤ g + 1 and
1 ≤ j ≤ g with aλ1 < λi−1 and max{aλ1, λi} < λ1 − λj+1. Let n ≥ 1. Suppose that
ϕ ∈ Cn+PaG(⊔α∈AIα) is such that h−j,i(D

n−1ϕ) = 0, hi(D
nϕ) = 0 and h0(D

lϕ) = 0
for all 0 ≤ l < n− 1. Then for every small enough τ > 0, we have

(4.33) ‖S(k)ϕ‖sup ≤ O(e(−nλ1+max{λi,λ1a,λ1−λj}+τ)r(0,k))‖ϕ‖Cn+Pa .

Proof. First we show that h−g,2(D
l+1ϕ) = 0, h2(D

l+2ϕ) = 0 for all 0 ≤ l < n − 1.
As h−j,i(D

n−1ϕ) = 0 and hi(D
nϕ) = 0, by Remark 4.8 applied to Dn−1ϕ, we have

h−g,2(D
n−1ϕ) = 0, h2(D

nϕ) = 0 and h2(D
n−1ϕ) = 0. This gives our claim for

l = n − 2. As h0(D
n−2ϕ) = 0, by Remark 4.10 applied to Dn−2ϕ, we obtain

h−g,2(D
n−2ϕ) = 0. Together with h2(D

n−1ϕ) = 0 this gives our claim for l = n− 3.
Repeating the same arguments for lower-order derivatives and using induction, we
get our claim for every 0 ≤ l < n− 1.

The proof of (4.33) is also done by induction on n. The base case n = 1 follows
directly from Corollary 4.7. Assume that the induction hypothesis (4.33) holds for a
particular n ≥ 1. Suppose that ϕ ∈ Cn+1+PaG(⊔α∈AIα) is such that h−j,i(D

nϕ) = 0,
hi(D

n+1ϕ) = 0 and h0(D
lϕ) = 0 for all 0 ≤ l < n. By the induction hypothesis,

applied to Dϕ, for every small enough τ > 0, we have

‖S(k)Dϕ‖sup ≤ O(e(−nλ1+max{λi,λ1a,λ1−λj}+τ)r(0,k))‖Dϕ‖Cn+Pa .

By assumption and the first part of the proof, h0(ϕ) = 0, h−g,2(Dϕ) = 0, h2(D
2ϕ) =

0. In view of Theorem 4.9 applied to ρ = nλ1 −max{λi, λ1a, λ1 − λj} − τ , we get

‖S(k)ϕ‖sup ≤ O(e(−(n+1)λ1+max{λi,λ1a,λ1−λj}+2(n+1)(λ1+1)τ)r(0,k))‖ϕ‖Cn+1+Pa .

�

5. Spectrum of the functional KZ-cocycles

Special Birkhoff sums cocycle S(k) is an infinite dimensional extension of the KZ-
cocycle. In this section we compute Lyapunov exponents of the cocycle S(k) on
Cn+Pa. We construct a finite set of piecewise polynomial functions that form the
basis for the spectral Theorem 5.6. These piecewise polynomials are obtained by
applying correction operators constructed in the previous section and their Lyapunov
exponents correspond to Lyapunov exponents of standard KZ-cocycle.
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5.1. Lyapunov exponents for piecewise polynomials. For every l ≥ 0 denote
by Rl[x] the linear space of polynomials of degree not greater than l. Since every
linear operator defined on a finite dimensional linear space is bounded, for every l ≥ 0
there exists a constant cl > 0 such that for every f ∈ Rl[x] we have cl‖D

lf‖C0([0,1]) ≤
‖f‖L1([0,1]). Therefore, for every interval I = [a, b] ⊂ R we obtain

‖f‖L1(I)

|I|
= ‖f(a+ |I|( · ))‖L1([0,1]) ≥ cl‖

dl

dxl
f(a+ |I|x)‖C0([0,1]) = cl|I|

l‖Dlf‖C0(I).

For every l ≥ 0 denote by Γl(⊔α∈AIα) the space of maps f : I → R such that for
every α ∈ A the restriction of f to Iα belongs to Rl[x]. Then Γ0 = Γ and for every
f ∈ Γl(⊔α∈AIα) we have Dlf ∈ Γ and

(5.1)
1

|I|
‖f‖L1(I) ≥ cl

(
min
α∈A

|Iα|
)l
‖Dlf‖.

Let h1, . . . , hg, c1, . . . , cγ−1, h−g, . . . , h−1 be a basis of Γ described in Section 3.1.
Then

(5.2) lim
k→∞

log ‖Q(k)hi‖

k
= λi for 1 ≤ |i| ≤ g, lim

k→∞

log ‖Q(k)cs‖

k
= 0 for 1 ≤ s < γ.

For every 2 ≤ i ≤ g + 1 choose 1 ≤ ji ≤ g such that λ1 − λji ≤ λi < λ1 − λji+1 and
for every 1 ≤ j ≤ g choose 2 ≤ ij ≤ g + 1 such that λij ≤ λ1 − λj < λij−1.

Definition 6. For every l ≥ 0 let hi,l for 1 ≤ i ≤ g, cs,l for 1 ≤ s < γ, and h−j,l for
1 ≤ j ≤ g be elements of Γl(⊔α∈AIα) defined inductively as follows:

hi,0 = hi, hi,1 = h̃i − h−ji,i(h̃i), hi,l+1 = h̃i,l − h0(h̃i,l) for l ≥ 1 if 2 ≤ i ≤ g,

h1,0 = h1, h1,1 = h̃1 − hg+1(h̃1), h1,2 = h̃1,1 − h−1,g+1(h̃1,1),

h1,l+1 = h̃1,l − h0(h̃1,l) for l ≥ 2,

cs,0 = cs, cs,1 = c̃s − h−1,g+1(c̃s), cs,l+1 = c̃s,l − h0(c̃s,1) for l ≥ 1,

h−j,0 = h−j, h−j,l+1 = h̃−j,l − h0(h̃−j,l) for l ≥ 0.

Since h0 ◦ h0 = h0, hg+1 ◦ hg+1 = hg+1 and h−1,g+1 ◦ h−1,g+1 = h−1,g+1, we obtain

Dnhi,l = hi,l−n, D
ncs,l = cs,l−n, D

nh−j,l = h−j,l−n if 0 ≤ n ≤ l,(5.3)

h−ji,i(hi,1) = 0, h0(hi,l) = 0 for l ≥ 2 if 2 ≤ i ≤ g,(5.4)

hg+1(h1,1) = 0, h−1,g+1(h1,2) = 0, h0(h1,l) = 0 for l ≥ 3,(5.5)

h−1,g+1(cs,1) = 0, h0(cs,l) = 0 for l ≥ 2,(5.6)

h0(h−j,l) = 0 for l ≥ 1.(5.7)

In view of (5.3), hi,l for 1 ≤ |i| ≤ g, 0 ≤ l ≤ n together with cs,l for 1 ≤ s < γ,
0 ≤ l ≤ n is a basis of the space Γn(⊔α∈AIα). Hence every h ∈ Γn(⊔α∈AIα) has a
unique decomposition

h =
∑

0≤l≤n

( ∑

1≤|i|≤g

d(h, hi,l)hi,l +
∑

1≤s<γ

d(h, cs,l)cs,l

)
.

Lyapunov exponents of S(k) for hi,l, cs,l are computed by adapting inductive
definitions and using Theorem 4.11. Their lower bounds are obtained by FFDC
properties of T .
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Proposition 5.1. Assume that T satisfies FFDC. Then for every l ≥ 0,

lim
k→∞

log ‖S(k)hi,l‖sup
k

= lim
k→∞

log(‖S(k)hi,l‖L1(I(k)) /|I
(k)|)

k
= λi − lλ1

lim
k→∞

log ‖S(k)cs,l‖sup
k

= lim
k→∞

log(‖S(k)cs,l‖L1(I(k)) /|I
(k)|)

k
= −lλ1

(5.8)

for i ∈ ±{1, . . . , g} and for 1 ≤ s < γ. Moreover, for every h ∈ Γn(⊔α∈AIα),

lim
k→∞

log ‖S(k)h‖sup
k

= max
(
{λi − lλ1 : 0 ≤ l ≤ n, 1 ≤ |i| ≤ g, d(h, hi,l) 6= 0}

∪ {−lλ1 : 0 ≤ l ≤ n, 1 ≤ s < γ, d(h, cs,l) 6= 0}
)
.

(5.9)

Proof. If l = 0 then (5.8) follows directly from (5.2).

Suppose that ϕ = h−j,l for some l ≥ 1. Then ϕ ∈ C l+1+PaG(⊔α∈AIα) with a = 0,
h−j,ij(D

lϕ) = 0, hij(D
l+1ϕ) = 0 and h0(D

pϕ) = 0 for all 0 ≤ p < l. Indeed,

as Dlϕ = h−j ∈ E−j , by Remark 4.8, we have h−j(D
lϕ) = h−j(h−j) = 0 and

Dl+1ϕ = Dh−j = 0. In view of Theorem 4.11, this gives

lim sup
k→∞

log ‖S(k)ϕ‖sup
k

≤ −(l + 1)λ1 +max{λij , λ1a, λ1 − λj} = −lλ1 − λj.

Suppose that ϕ = hi,l for some 2 ≤ i ≤ g and l ≥ 1. Then ϕ ∈ C l+PaG(⊔α∈AIα)
with a = 0, h−ji,i(D

l−1ϕ) = 0, hi(D
lϕ) = 0 and h0(D

pϕ) = 0 for all 0 ≤ p < l − 1.
Indeed, as Dlϕ = hi ∈ Ei, by Remark 4.3, we have hi(D

lϕ) = 0. Moreover, by
definition, h−ji,i(D

l−1hi,l) = 0. In view of Theorem 4.11, this gives

lim sup
k→∞

log ‖S(k)ϕ‖sup
k

≤ −lλ1 +max{λi, λ1a, λ1 − λji} = −lλ1 + λi.

Suppose that ϕ = h1,1. Then ϕ ∈ C0+PaG(⊔α∈AIα) with a = 0 and hg+1(ϕ) =
hg+1(h1,1) = 0. In view of Theorem 4.2 and Proposition 3.5, for every τ > 0 small
enough, ‖M(k)(S(k)ϕ)‖ = O(eτk). As ϕ = h1,1 is of bounded variation, we also have
Var(S(k)ϕ) ≤ Var(ϕ). Since ‖S(k)ϕ‖sup ≤ ‖M(k)(S(k)ϕ)‖+Var(S(k)ϕ), this gives

lim sup
k→∞

log ‖S(k)ϕ‖sup
k

≤ 0 = −λ1 + λ1.

Suppose that ϕ = h1,l for some l ≥ 2. Then ϕ ∈ C l−1+PaG(⊔α∈AIα) with a = 0,
h−1,g+1(D

l−2ϕ) = 0, hg+1(D
l−1ϕ) = 0 and h0(D

pϕ) = 0 for all 0 ≤ p < l − 2. In
view of Theorem 4.11, this gives

lim sup
k→∞

log ‖S(k)ϕ‖sup
k

≤ −(l − 1)λ1 +max{λg+1, λ1a, λ1 − λ1} = −lλ1 + λ1.

Suppose that ϕ = cs,l for some l ≥ 1. Then ϕ ∈ C l+PaG(⊔α∈AIα) with a = 0,
h−1,g+1(D

l−1ϕ) = 0, hg+1(D
lϕ) = 0 and h0(D

pϕ) = 0 for all 0 ≤ p < l−1. Indeed, as
Dlϕ = cs ∈ Eg+1, by Remark 4.3, we have hg+1(D

lϕ) = 0. In view of Theorem 4.11,
this gives

lim sup
k→∞

log ‖S(k)ϕ‖sup
k

≤ −lλ1 +max{λg+1, λ1a, λ1 − λ1} = −lλ1.
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In summary, for every ϕ ∈ Γl(⊔α∈AIα) of the form hi,l, cs,l or h−j,l we have Dlϕ ∈ Γ
and

(5.10) lim sup
k→∞

log‖S(k)ϕ‖sup
k

≤−lλ1 + λ(Dlϕ) for λ(Dlϕ)= lim
k→∞

log
∥∥Q(k)Dlϕ

∥∥
k

.

It follows that (5.10) holds also for any ϕ ∈ Γl(⊔α∈AIα). On the other hand, if
additionally Dlϕ 6= 0 then, by (5.1), (3.12) and (3.14),

1

|I(k)|
‖S(k)ϕ‖L1(I(k)) ≥ clκ

l|I(k)|l
∥∥S(k)Dlϕ

∥∥ ≥ clκ
lC−le−(λ1+τ)lk

∥∥Q(k)Dlϕ
∥∥ .

It follows that

lim inf
k→∞

log(‖S(k)ϕ‖L1(I(k)) /|I
(k)|)

k
≥ −lλ1 + λ(Dlϕ),

so

lim
k→∞

log ‖S(k)ϕ‖sup
k

= lim
k→∞

log(‖S(k)ϕ‖L1(I(k)) /|I
(k)|)

k
= −lλ1 + λ(Dlϕ).

This completes the proof. �

5.2. New functionals arising from correcting operators. In this section, we
develop the idea of constructing invariant distributions by decomposing correction
operators with respect to the base elements, introduced in [14] and [11, §9.1]. The
original idea is to decompose the operator hi : C

0+PaG(⊔α∈AIα) → Ui relative to its
base elements h1, . . . , hi−1 of Ui. We extend this idea by taking the decomposition
of correction operators h−j,i and h0. Using an inductive procedure, we get a new
family of functionals defined on Cn+Pa, which in Section 5.3 are adjusted to define
invariant distributions ft̄.

For every 0 ≤ a < 1 let 2 ≤ ia ≤ g + 1 and 1 ≤ ja ≤ g such that λia ≤ λ1a <
λia−1 and λ1 − λja ≤ λ1a < λ1 − λja+1. Let us consider the bounded operators
d+i,0 : C

0+PaG(⊔α∈AIα) → R for 1 ≤ i < ia such that for every ϕ ∈ C0+PaG(⊔α∈AIα),

(5.11) hia(ϕ) =
∑

1≤i<ia

d+i,0(ϕ)hi.

Since hia : C0+PaG(⊔α∈AIα) → Uia is bounded and h1, . . . , hia−1 is a basis of Uia ,
they are well defined and bounded.

Next let us consider the bounded operators d+i,1 : C1+PaG(⊔α∈AIα) → R for 1 ≤

i ≤ g, d0s,1 : C1+PaG(⊔α∈AIα) → R for 1 ≤ s < γ, d−−j,1 : C1+PaG(⊔α∈AIα) → R for

ja < j ≤ g, such that for every ϕ ∈ C1+PaG(⊔α∈AIα),

h−ja,ia

(
ϕ−

∑

1≤i<ia

d+i,0(Dϕ)hi,1

)

=
∑

1≤i≤g

d+i,1(ϕ)hi +
∑

1≤s<γ

d0s,1(ϕ)cs +
∑

ja<j≤g

d−−j,1(ϕ)h−j .
(5.12)

Since h−ja,ia : C1+PaG(⊔α∈AIα) → U−ja is bounded and h1, . . . , hg, c1, . . . cs, h−g, . . . ,
h−ja+1 is a basis of U−ja, they are well defined and bounded.

Next let us consider the bounded operators d+i,2 : C2+PaG(⊔α∈AIα) → R for 1 ≤

i ≤ g, d0s,2 : C2+PaG(⊔α∈AIα) → R for 1 ≤ s < γ, d−−j,2 : C2+PaG(⊔α∈AIα) → R for
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1 ≤ j ≤ g, such that for every ϕ ∈ C2+PaG(⊔α∈AIα),

h0

(
ϕ−

∑

1≤i<ia

d+i,0(D
2ϕ)hi,2 −

∑

1≤i≤g

d+i,1(Dϕ)hi,1 −
∑

1≤s<γ

d0s,1(Dϕ)cs,1

)

=
∑

1≤i≤g

d+i,2(ϕ)hi +
∑

1≤s<γ

d0s,2(ϕ)cs +
∑

1≤j≤g

d−−j,2(ϕ)h−j .
(5.13)

For any l ≥ 3 let us consider the bounded operators d+i,l : C
l+PaG(⊔α∈AIα) → R

for 1 ≤ i ≤ g, d0s,l : C
l+PaG(⊔α∈AIα) → R for 1 ≤ s < γ, d−−j,l : C

l+PaG(⊔α∈AIα) → R

for 1 ≤ j ≤ g such that for every ϕ ∈ C l+PaG(⊔α∈AIα),

h0

(
ϕ−

∑

1≤i≤g

d+i,l−2(D
2ϕ)hi,2 −

∑

1≤i≤g

d+i,l−1(Dϕ)hi,1 −
∑

1≤s<γ

d0s,l−1(Dϕ)cs,1

)

=
∑

1≤i≤g

d+i,l(ϕ)hi +
∑

1≤s<γ

d0s,l(ϕ)cs +
∑

1≤j≤g

d−−j,l(ϕ)h−j.
(5.14)

The following lemma is necessery for proving lower bounds for the growth of the
cocycle S(k) in the sense of L1-norm.

Lemma 5.2. Assume that T satisfies FFDC. Let 0 ≤ a < 1 and n ≥ 0. Then for
every ϕ ∈ Cn+PaG(⊔α∈AIα) with

∑
α∈A(|C

a,+
α,n (ϕ)|+ |Ca,−

α,n (ϕ)|) > 0, we have

(5.15) lim inf
k→∞

log(‖S(k)(ϕ)‖L1(I(k)) /|I
(k)|)

k
≥ (a− n)λ1.

Proof. By the proof of Theorem 1.1 (see Part V) in [11], if C±
α (D

nϕ) 6= 0 then there

exists ε > 0 and a sequence of intervals Ĵ (k) ⊂ I
(k)
α , k ≥ 1 such that

(5.16) |Ĵ (k)| ≥
ε|I

(k)
α |

4
and |(S(k)Dnϕ)(x)| ≥

|C±
α |

|I
(k)
α |a

for all x ∈ Ĵ (k) and k ≥ 1.

An elementary argument shows that if f : I → R is a C1 function such that
|Df(x)| ≥ a > 0 for all x ∈ I, then there exists a subinterval J ⊂ I such that
|J | ≥ |I|/4 and |f(x)| ≥ a|I|/4 (see [11, Lemma 4.7]). It follows that for every
n ≥ 1 if f : I → R is a Cn function such that |Dnf(x)| ≥ a > 0 for all x ∈ I, then
there exists a subinterval J ⊂ I such that |J | ≥ |I|/4n and |f(x)| ≥ a|I|n/4n(n+1)/2.

In view of (5.16), it follows that there exists a sequence of intervals J (k) ⊂ Ĵ (k) ⊂

I
(k)
α , k ≥ 1 such that

|J (k)| ≥
ε|I

(k)
α |

4n+1
and |(S(k)ϕ)(x)| ≥ εn

|C±
α |

|I
(k)
α |a

|I
(k)
α |n

4n(n+3)/2
for all x ∈ J (k) and k ≥ 1.

Therefore,

1

|I(k)|
‖S(k)(ϕ)‖L1(I(k)) ≥ εn+1 1

|I(k)|

|C±
α |

|I
(k)
α |a

|I
(k)
α |n+1

4(n+1)2
.

By (3.12) and (3.14),

|I
(k)
α |n+1−a

|I(k)|
≥ κn+1−a|I(k)|n−a ≥ κn+1−aCa−ne−(λ1+τ)(n−a)k.

This gives (5.15). �
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In the following theorem, we prove the first version of the spectral result for the
cocycle S(k) on Cn+PaG. Any map ϕ ∈ Cn+PaG(⊔α∈AIα) is decomposed with respect
to the base elements hi,l, cs,l, h−j,l with weights determined by the derivatives of the
functionals defined at the beginning of the subsection. The main tool of the proof
is again Theorem 4.11.

Theorem 5.3. Assume that T satisfies FFDC. For any 0 ≤ a < 1 and n ≥ 1 there
exists a bounded operator ra,n : Cn+PaG(⊔α∈AIα) → Cn+PaG(⊔α∈AIα) such that for
every ϕ ∈ Cn+PaG(⊔α∈AIα),

ϕ = ra,n(ϕ) +
∑

1≤i<ia

d+i,0(D
nϕ)hi,n

+
∑

1≤i≤g

d+i,1(D
n−1ϕ)hi,n−1 +

∑

1≤s<γ

d0s,1(D
n−1ϕ)cs,n−1 +

∑

ja<j≤g

d−−j,1(D
n−1ϕ)h−j,n−1

+
∑

2≤l≤n

( ∑

1≤i≤g

d+i,l(D
n−lϕ)hi,n−l +

∑

1≤s<γ

d0s,l(D
n−lϕ)cs,n−l +

∑

1≤j≤g

d−−j,l(D
n−lϕ)h−j,n−l

)

and for any τ > 0,

(5.17) ‖S(k)ra,n(ϕ)‖sup ≤ O(eλ1(a−n+τ)k)‖ra,n(ϕ)‖Cn+Pa .

If additionally
∑

α∈A(|C
a,+
α,n (ϕ)|+ |Ca,−

α,n (ϕ)|) > 0 then

(5.18) lim
k→∞

log ‖S(k)ra,n(ϕ)‖sup
k

= lim
k→∞

log
‖S(k)ra,n(ϕ)‖

L1(I(k))

|I(k)|

k
= (a− n)λ1.

Proof. In view of (5.3), for every 0 ≤ m ≤ n− 1,

Dmra,n(ϕ) = Dmϕ−
∑

1≤i<ia

d+i,0(D
nϕ)hi,n−m

−
∑

1≤i≤g

d+i,1(D
n−1ϕ)hi,n−1−m −

∑

1≤s<γ

d0s,1(D
n−1ϕ)cs,n−1−m −

∑

ja<j≤g

d−−j,1(D
n−1ϕ)h−j,n−1−m

−
∑

2≤l≤n−m

( ∑

1≤i≤g

d+i,l(D
n−lϕ)hi,n−l−m−

∑

1≤s<γ

d0s,l(D
n−lϕ)cs,n−l−m−

∑

1≤j≤g

d−−j,l(D
n−lϕ)h−j,n−l−m

)
.

Suppose that 0 ≤ m ≤ n − 3. Since h0(hi,l) = 0 for l ≥ 3 (see (5.5)), h0(cs,l) = 0
for l ≥ 2 (see (5.6)), h0(h−j,l) = 0 for l ≥ 1 (see (5.7)) and h0(h) = h for h ∈ Γ (see
Remark 4.10), it follows that

h0(D
mra,n(ϕ)) = h0

(
Dmϕ−

∑

1≤i≤g

d+i,n−m−2(D
m+2ϕ)hi,2

−
∑

1≤i≤g

d+i,n−m−1(D
m+1ϕ)hi,1 −

∑

1≤s<γ

d0s,n−m−1(D
m+1ϕ)cs,1

)

−
∑

1≤i≤g

d+i,n−m(D
mϕ)hi −

∑

1≤s<γ

d0s,n−m(D
mϕ)cs −

∑

1≤j≤g

d−−j,n−m(D
mϕ)h−j .
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In view of (5.14), this gives h0(D
mra,n(ϕ)) = 0. The same arguments show that

h0(D
n−2ra,n(ϕ)) = h0

(
Dn−2ϕ−

∑

1≤i<ia

d+i,0(D
nϕ)hi,2

−
∑

1≤i≤g

d+i,1(D
n−1ϕ)hi,1 −

∑

1≤s<γ

d0s,1(D
n−1ϕ)cs,1

)

−
∑

1≤i≤g

d+i,2(D
n−2ϕ)hi −

∑

1≤s<γ

d0s,2(D
n−2ϕ)cs −

∑

1≤j≤g

d−−j,2(D
n−2ϕ)h−j.

In view of (5.13), this gives h0(D
n−2ra,n(ϕ)) = 0.

Next we pass to the n− 1-th derivative,

Dn−1ra,n(ϕ) = Dn−1ϕ−
∑

1≤i<ia

d+i,0(D
nϕ)hi,1

−
∑

1≤i≤g

d+i,1(D
n−1ϕ)hi −

∑

1≤s<γ

d0s,1(D
n−1ϕ)cs −

∑

ja<j≤g

d−−j,1(D
n−1ϕ)h−j.

In view of (5.12), this gives h−ja,ia(D
n−1ra,n(ϕ)) = 0.

Finally we pass to the n-th derivative,

Dnra,n(ϕ) = Dnϕ−
∑

1≤i<ia

d+i,0(D
nϕ)hi.

In view of (5.11), this gives hia(D
nra,n(ϕ)) = 0.

Since max{λia, aλ1, λ1 − λja} = aλ1, by Theorem 4.11, for any τ > 0,

‖S(k)ra,n(ϕ)‖sup = O(eλ1(a−n+τ)k)‖ra,n(ϕ)‖Cn+Pa .

The final lower bound in (5.18) follows directly from Lemma 5.2. �

Remark 5.4. Theorem 5.3 remains true also in the case when n = 0, except that in
formulas (5.17) and (5.18) we must replace the sup norm by the L1 norm. Here,
ra,0 : C

0+PaG(⊔α∈AIα) → C0+PaG(⊔α∈AIα) is given by

ra,0(ϕ) = ϕ−
∑

1≤i<ia

d+i,0(ϕ)hi,

so hia(ra,0(ϕ)) = 0 for every ϕ ∈ C0+PaG(⊔α∈AIα). By Theorem 4.2 and Proposi-
tion 3.5, for any τ > 0,

‖M(k)(S(k)(ra,0(ϕ)))‖ = O(e(aλ1+τ)k)‖ra,0(ϕ)‖C0+Pa .

In view of (4.10) and (4.3), it follows that

‖S(k)(ra,0(ϕ))‖L1(I(k))/|I
(k)| = O(e(aλ1+τ)k)‖ra,0(ϕ)‖C0+Pa .

The lower bound follows again directly from Lemma 5.2.

5.3. Invariant distributions on Cn+PaG(⊔α∈AIα). For every 0 ≤ a < 1 and n ≥ 0
denote by T ∗

a,n (Ta,n resp.) the subset of triples t̄ ∈ T F
∗ (T F resp.) of the form

(l,+, i), (l, 0, s) or (l,−, j) such that 0 ≤ l ≤ n with the additional restriction that

• if l = n then we deal only with (n,+, i) for 1 ≤ i < ia;
• if l = n− 1 then we deal only with (n− 1,+, i) for all 1 ≤ i ≤ g, (n− 1, 0, s)

for all 1 ≤ s < γ and (n− 1,−, j) for ja < j ≤ g.

Recall that T F is the subset of triples in T F
∗ after removing all triples of the

form (l,−, 1).
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Remark 5.5. By definition,

t̄ ∈ T
∗
a,n ⇐⇒ o(t̄) ≤ (n−

λia−1

λ1
) ∨ (n− 1 +

λja+1

λ1
).

As λia ≤ λ1a < λia−1 and λja+1 < λ1(1− a) ≤ λja, it follows that

(5.19) t̄ ∈ T
∗
a,n ⇐⇒ o(t̄) < n− a.

Definition 7. For every t̄ ∈ T ∗
a,n let ft̄ : C

n+PaG(⊔α∈AIα) → C and ht̄ ∈ Γn(⊔α∈AIα)
be defined as follows:

• ft̄ = d+i,n−l ◦D
l and ht̄ := hi,l if t̄ = (l,+, i);

• ft̄ = d0s,n−l ◦D
l and ht̄ := cs,l if t̄ = (l, 0, s);

• ft̄ = d−−j,n−l ◦D
l and ht̄ := h−j,l if t̄ = (l,−, j).

Theorem 5.6. Assume that T satisfies FFDC. Then given 0 ≤ a < 1 and n ≥ 0,
every ϕ ∈ Cn+PaG(⊔α∈AIα) is decomposed as follows:

(5.20) ϕ =
∑

t̄∈T ∗
a,n

ft̄(ϕ)ht̄ + ra,n(ϕ),

so that for any τ > 0 and for all 0 ≤ l < n,

‖S(k)(Dlra,n(ϕ))‖sup = O(e(−λ1(n−l−a)+τ)k)‖Dlra,n(ϕ)‖Cn−l+Pa ,(5.21)

‖S(k)(Dnra,n(ϕ))‖L1(I(k))/|I
(k)| = O(e(λ1a+τ)k)‖Dnra,n(ϕ)‖C0+Pa and(5.22)

lim
k→∞

1

k
log
∥∥∥S(k)

∑

t̄∈T ∗
a,n

at̄ht̄

∥∥∥
sup

= −λ1 min{o(t̄) : t̄ ∈ T
∗
a,n, at̄ 6= 0}.(5.23)

If additionally
∑

α∈A(|C
a,+
α,n (ϕ)|+ |Ca,−

α,n (ϕ)|) > 0 then

lim
k→∞

1

k
log ‖S(k)(Dlra,n(ϕ))‖sup = −λ1(n− l − a) for 0 ≤ l < n and(5.24)

lim
k→∞

1

k
log
(
‖S(k)(Dlra,n(ϕ))‖L1(I(k))/|I

(k)|
)
= −λ1(n− l − a) for 0 ≤ l ≤ n.(5.25)

Moreover, for each t̄ ∈ Ta,n the functional ft̄ : C
n+PaG(⊔α∈AIα) → C is invariant,

i.e. for every ϕ ∈ Cn+PaG(⊔α∈AIα) such that ϕ = v ◦ T − v for some v ∈ Cr(I) with
o(t̄) < r ≤ n−a, we have ft̄(ϕ) = 0. Also, the functionals Ca,±

α,n : Cn+PaG(⊔α∈AIα) →
C are invariant, i.e. if ϕ = v ◦ T − v for some v ∈ Cr(I) with n − a < r, then
Ca,±
α,n (ϕ) = 0 for every α ∈ A.

Proof. All claims of the theorem, in addition to invariance, are derived directly from
Proposition 5.1, Theorem 5.3 and Remark 5.4, so we focus only on invariance.

Suppose that ϕ = v ◦ T − v for some v ∈ Cr(I) with r ≤ n − a. Let r = m + b
with an integer 0 ≤ m < n and 0 < b ≤ 1. By (5.20), for every 0 ≤ j ≤ n,

(5.26) Dj(ϕ− ra,n(ϕ)) =
∑

t̄∈T ∗
a,n

ft̄(ϕ)D
jht̄.

Then for every 0 ≤ j ≤ m we have Djv ∈ Cm−j+b(I) and for every x ∈ I
(k)
α ,

|S(k)Djϕ(x)| = |Djv(TQα(k)(x))−Djv(x)| ≤

{
‖Djv‖C1|I(k)| if 0 ≤ j < m
‖Dmv‖Cb|I(k)|b if j = m.
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This also gives
∣∣∣
∫

I
(k)
α

S(k)Dm+1ϕ(x) dx
∣∣∣ = |S(k)Dmϕ(r(k)α )− S(k)Dmϕ(l(k)α )| ≤ 2‖v‖Cm+b|I(k)|b.

As |I(k)| = O(e−λ1k), |I
(k)
α |−1 = O(|I(k)|−1) and |I(k)|−1 = O(e(λ1+τ)k) for every

τ > 0, we obtain

lim sup
k→∞

1

k
log ‖S(k)Djϕ‖sup ≤ −λ1 if j < m;

lim sup
k→∞

1

k
log ‖S(k)Dmϕ‖sup ≤ −bλ1;

lim sup
k→∞

1

k
log ‖M(k)(S(k)Dm+1ϕ)‖ ≤ (1− b)λ1.

As m < n, in view of (5.21) and (5.22), it follows that

lim sup
k→∞

1

k
log ‖S(k)(Dj(ϕ− ra,n(ϕ)))‖sup ≤ −λ1 if 0 ≤ j < m;(5.27)

lim sup
k→∞

1

k
log ‖S(k)(Dm(ϕ− ra,n(ϕ)))‖sup ≤ −bλ1;(5.28)

lim sup
k→∞

1

k
log ‖M(k)(S(k)(Dm+1(ϕ− ra,n(ϕ))))‖ ≤ (1− b)λ1.(5.29)

In view of (5.26), ϕ̃ = Dm+1(ϕ − ra,n(ϕ)) ∈ Γn−m−1(⊔α∈AIα). Therefore, by (4.6)
and (4.2),

‖S(k)ϕ̃‖sup ≤ ‖M(k)(S(k)ϕ̃)‖+Var(S(k)ϕ̃) ≤ ‖M(k)(S(k)ϕ̃)‖+Var ϕ̃.

In view of (5.29), this gives

(5.30) lim sup
k→∞

1

k
log ‖S(k)(Dm+1(ϕ− ra,n(ϕ)))‖sup ≤ (1− b)λ1.

On the other hand, by (5.26) and (5.9),

lim
k→∞

1

k
log ‖S(k)(Dj(ϕ− ra,n(ϕ)))‖sup = lim

k→∞

1

k
log ‖S(k)

∑

t̄∈T ∗
a,n

ft̄(ϕ)D
jht̄‖sup

= λ1max
{
−o(t̄) + j : t̄ ∈ T

∗
a,n, ft̄(ϕ) 6= 0, Djht̄ 6= 0

}
.

In view of (5.27), (5.28), (5.30), this yields

min
{
o(t̄) : t̄ ∈ T

∗
a,n, ft̄(ϕ) 6= 0, Dlht̄ 6= 0

}
≥ l + 1 if 0 ≤ l < m,(5.31)

min
{
o(t̄) : t̄ ∈ T

∗
a,n, ft̄(ϕ) 6= 0, Dmht̄ 6= 0

}
≥ m+ b,(5.32)

min
{
o(t̄) : t̄ ∈ T

∗
a,n, ft̄(ϕ) 6= 0, Dm+1ht̄ 6= 0

}
≥ m+ b.(5.33)

Let t̄ ∈ Ta,n be any triple such that o(t̄) < r = m+ b. By definition, ft̄, ht̄ and o(t̄)
are of the form:

ft̄ = d+i,n−l ◦D
l, ht̄ = hi,l and o(t̄) = l −

λi
λ1

or

ft̄ = d0s,n−l ◦D
l, ht̄ = cs,l and o(t̄) = l or

ft̄ = d−−j,n−l ◦D
l, ht̄ = h−j,l and o(t̄) = l +

λj
λ1

with j 6= 1
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for 0 ≤ l ≤ m+ 1. If 0 ≤ l < m, then Dlht̄ 6= 0 and o(t̄) ≤ l+ λ2/λ1 < l+ 1. Then,
by (5.31), ft̄(ϕ) = 0. If l = m or m+ 1, then Dlht̄ 6= 0 and o(t̄) < m+ b. Then, by
(5.32) and (5.33), ft̄(ϕ) = 0 as well. This completes the proof of invariance for the
functionals ft̄, t̄ ∈ Ta,n.

Suppose that ϕ = v ◦ T − v for some v ∈ Cr(I) with r > n− a.
Assume that 0 < a < 1. Then Dn−1ϕ = Dn−1v ◦ T − Dn−1v with Dn−1v ∈

C1−a+τ (I), where 0 < τ < (r−n+a)∧a. Therefore, Dn−1ϕ is (1−a+τ)-Hölder on any
interval Iα, α ∈ A. Suppose, contrary to our claim, that C+

α (D
nϕ) = Ca,+

α,n (ϕ) 6= 0.
Then there exists ε > 0 such that

0 < c := |C+
α (D

nϕ)|/2 ≤ |Dn+1ϕ(x)||x− lα|
1+a for x ∈ (lα, lα + ε].

Hence, for every x ∈ (lα, lα + ε],

∣∣∣ c

a(x− lα)a
−

c

aεa

∣∣∣ =
∫ lα+ε

x

c

(s− lα)1+a
ds ≤

∣∣∣
∫ lα+ε

x

Dn+1ϕ(s)ds
∣∣∣

≤ |Dnϕ(x)−Dnϕ(lα + ε)|.

It follows that there exists 0 < δ < ε such that
c

2a(x− lα)a
≤ |Dnϕ(x)| for x ∈ (lα, lα + δ].

Hence, for every x, y ∈ (lα, lα + δ],

c

2a(1− a)
|(y − lα)

1−a − (x− lα)
1−a| =

∫ y

x

c

2a(s− lα)a
ds ≤

∣∣∣
∫ y

x

Dnϕ(s)ds
∣∣∣

≤ |Dn−1ϕ(x)−Dn−1ϕ(y)| ≤ ‖Dn−1ϕ‖C1−a+τ |(y − lα)− (x− lα)|
1−a+τ .

It follows that c ≤ 2a(1 − a)‖Dn−1ϕ‖C1−a+τsτ for every s ∈ (0, δ], contrary to
|C+

α (D
nϕ)| = 2c > 0. This gives Ca,+

α,n (ϕ) = C+
α (D

nϕ) = 0 and the same arguments
also show that Ca,−

α,n (ϕ) = C−
α (D

nϕ) = 0.
If a = 0 then the proof runs in the same way. In this case Dnϕ = Dnv ◦ T −Dnv

with Dnv ∈ Cτ (I), where 0 < τ < (r − n) ∧ 1. Therefore, Dnϕ is τ -Hölder on any
Iα, α ∈ A. Suppose that Ca,+

α,n (ϕ) 6= 0. As in the previous case, there exists ε > 0
such that

0 < c := |C+
α (D

nϕ)|/2 ≤ |Dn+1ϕ(x)||x− lα| for x ∈ (lα, lα + ε].

Hence, for every x, y ∈ (lα, lα + ε],

c| log(y − lα)− log(x− lα)| =

∫ y

x

c

s− lα
ds ≤

∣∣∣
∫ y

x

Dn+1ϕ(s)ds
∣∣∣

≤ |Dnϕ(x)−Dnϕ(y)| ≤ ‖Dnϕ‖Cτ |(y − lα)− (x− lα)|
τ .

It follows that c log 2 ≤ ‖Dnϕ‖Cτ sτ for every s ∈ (0, ε/2], contrary to |C+
α (D

nϕ)| =
2c > 0. This completes the proof. �

Lemma 5.7. The decomposition (5.20) is unique, i.e. if

ϕ =
∑

t̄∈T ∗
a,n

at̄ht̄ + ϕ̃ with lim sup
k→∞

1

k
log ‖S(k)ϕ̃‖sup ≤ −λ1(n− a),

then at̄ = ft̄(ϕ) for every t̄ ∈ T ∗
a,n. In particular, ft̄(ra,n(ϕ)) = 0 for every t̄ ∈ T ∗

a,n.
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Proof. By assumption, ϕ̃− ra,n(ϕ) =
∑

t̄∈T ∗
a,n
(ft̄(ϕ)− at̄)ht̄ and

lim sup
k→∞

1

k
log ‖S(k)(ϕ̃− ra,n(ϕ))‖sup ≤ −λ1(n− a).

On the other hand, by (5.23),

lim
k→∞

1

k
log
∥∥∥S(k)

∑

t̄∈T ∗
a,n

(ft̄(ϕ)− at̄)ht̄

∥∥∥
sup

= −λ1min{o(t̄) : t̄ ∈ T
∗
a,n, ft̄(ϕ) 6= at̄}.

In view of (5.19), both give at̄ = ft̄(ϕ) for every t̄ ∈ T ∗
a,n. �

Remark 5.8. Let us consider two pairs (n1, a1), (n2, a2) such that n1 − a1 < n2 − a2.
Then Cn2+Pa2 (⊔α∈AIα) ⊂ Cn1+Pa1 (⊔α∈AIα) and T ∗

a1,n1
⊂ T ∗

a2,n2
. Suppose that t̄1 ∈

T ∗
a1,n1

, t̄2 ∈ T ∗
a2,n2

are such that t̄1 = t̄2. By Lemma 5.7, ft̄1 : C
n1+Pa1 (⊔α∈AIα) → C

is an extension of ft̄2 : C
n2+Pa2 (⊔α∈AIα) → C.

6. Solving cohomological equations on IET

Given ϕ ∈ Cn+PaG(⊔α∈AIα), we provide a smooth solution v (whose some deriva-
tive is Hölder) of the cohomological equation v ◦ T − v = ϕ for the IET T provided
that the sequence S(k)ϕ decays fast enough. Combining this with the spectral result
(Theorem 5.6), we get a regularity of the solutions depending on the vanishing of
the invariant distributions ft̄. Main estimates for regularity are carried out by de-
compositions of orbits and space decompositions invented by Marmi-Moussa-Yoccoz
[18, §2.2.3] and [20, §3.7-8].

Time decomposition.

• Let T an IET satisfying Keane’s condition, x ∈ I and N ≥ 1. Let y be the
point of the orbit (T jx)0≤j<N which is closest to 0.

• We split the orbit into positive/negative parts (T jy)0≤j<N+ and (T jy)N−≤j<0,
where N = N+ −N−.

• Let k ≥ 0 be the largest number such that at least one element of (T jy)0<j<N+

belongs to I(k).

• Let y, T (k)y, . . . , (T (k))
q(k)

y be all points of (T jy)0≤j<N+ that belong to I(k)

for some q(k) > 0. Let y(k) := y.
• We define y(l), q(l) inductively backward for 0 ≤ l < k. Let y(k − 1) =
(T (k))q(k)(y) and let y(l) = TN(l)(y) be the last point of the orbit (T jy)0≤j<N

which belongs to I(l+1). Let y(l), T (l)(y(l)), . . . , (T (l))
q(l)

(y(l)) := y(l − 1) be
all points of (T jy)N(l)≤j<N+ that belong to I(l) for some q(l) ≥ 0.

Then,

(6.1)
∑

0≤j<N+

ϕ(T iy) =
k∑

l=0

∑

0≤j<q(l)

S(l)ϕ((T (l))j(y(l))) with q(l) ≤ ‖Z(l + 1)‖.

The negative part of the orbit is divided in a similar way.

Space decomposition. Recall the partition into Rokhlin towers in § 2.3

I =
⋃

α∈A

Qα(k)−1⋃

i=0

T i(I(k)α ).
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• For any pair x− < x+ of points in I, let k ≥ 0 be the smallest integer such
that (x−, x+) contains at least of one interval of the k-th partition.

• Let J (k)(1), . . . , J (k)(q(k)) be all intervals of the k-th partition contained in
(x−, x+). Then 0 < q(k) ≤ ‖Z(k)‖.

• For every l ≥ k, let x+(l) < x+ be the largest end point of an interval of the
l-th partition. Then x+(l) ≥ x+(l − 1) for any l > k.

• For any l > k the interval (x+(l−1), x+(l)) is the union of intervals J
(l)
+ (1), . . . ,

J
(l)
+ (q+(l)) of the l-th partition for some 0 ≤ q+(l) ≤ ‖Z(l)‖.

• The point x−(l), 0 ≤ q−(l) ≤ ‖Z(l)‖ and intervals J
(l)
− (1), . . . , J

(l)
− (q−(l)) of

the l-th partition are defined in the similar way.

This yields the following decomposition of (x−, x+):

(6.2) (x−, x+) =
⋃

1≤q≤q(k)

J (k)(q) ∪
⋃

l>k

⋃

ǫ=±

⋃

1≤q≤qǫ(l)

J (l)
ǫ (q).

6.1. Hölder solutions. In this section solutions of the cohomological equation v ◦
T − v = ϕ are obtained by applying standard Gottschalk-Hedlund arguments for
ϕ ∈ C1+PaG. A Hölder regularity of solutions follows from exponential decay of
S(k)ϕ and some bounds on the growth of S(k)Dϕ.

Lemma 6.1. Suppose that 0 ≤ a < 1 and ϕ ∈ C1+PaG(⊔α∈AIα) is such that for any
τ > 0 we have ‖S(k)ϕ‖sup = O(e(−λ1(1−a)+τ)k)c1(ϕ). Then there exists a continuous
solution v ∈ C0(I) of the cohomological equation ϕ = v ◦ T − v such that v(0) = 0
and

(6.3) sup{|v(x)− v(y)| : x, y ∈ I} ≤ 2

∞∑

l=0

‖Z(l + 1)‖ ‖S(l)ϕ‖sup .

Proof. In view of (6.1) for any n ∈ N,

∥∥ϕ(n)
∥∥
sup

≤ 2

∞∑

l=0

‖Z(l + 1)‖ ‖S(l)ϕ‖sup .

As ‖Z(l + 1)‖ = O(eτl) and ‖S(l)ϕ‖sup = O(e(−λ1(1−a)+τ)l)c1(ϕ), the series on the
right side of the inequality converges and the n-th Birkhoff sums of ϕ are uniformly
bounded. By classical Gottschalk-Hedlund type arguments (see [19, Theorem 3.4]),
the cohomological equation has a continuous solution v. Moreover, for any x ∈ I
and n ≥ 1,

|v(T nx)− v(x)| = |ϕ(n)(x)| ≤ 2

∞∑

l=0

‖Z(l + 1)‖ ‖S(l)ϕ‖sup .

As the orbit {T nx}n≥0 is dense and v is continuous, this gives (6.3).
Since the function v is unique up to an additive constant, it can be always chosen

so that v(0) = 0. In what follows, we will always deal with solutions satisfying
v(0) = 0. �

For any interval J ⊂ I, let osc(v, J) := sup{|v(x)− v(y)| : x, y ∈ J}.

Corollary 6.2. Let ϕ ∈ C1+PaG(⊔α∈AIα) be such that for any τ > 0 we have
‖S(k)ϕ‖sup = O(e(−λ1(1−a)+τ)k)c1(ϕ). Then for every τ > 0,

(6.4) osc(v, I(k)) = O(e(−λ1(1−a)+τ)k)c1(ϕ).
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Proof. As ϕ = v ◦T −v, for every k ≥ 0 we have S(k)ϕ = v ◦T (k)−v on I(k). Then,
by (6.3) applied to T (k) : I(k) → I(k), we have

osc(v, I(k)) = sup{|v(x)− v(y)| : x, y ∈ I(k)} ≤ 2
∞∑

l≥k

‖Z(l + 1)‖ ‖S(l)ϕ‖sup .

As ‖Z(l + 1)‖ = O(eτl) and ‖S(l)ϕ‖sup = O(e(−λ1(1−a)+τ)l)c1(ϕ), this gives (6.4). �

The following elementary calculations will be used in estimating osc(v, T i(I
(k)
α ))

for 1 ≤ i < Qα(k) in Lemma 6.4.

Lemma 6.3. Let ϕ ∈ C0+PaG(⊔α∈AIα). Then for every α ∈ A and any Borel set
J ⊂ Iα,

(6.5)

∫

J

|ϕ(x)|dx ≤





‖ϕ‖
L1(I)|J |

|I|
+ 2a+3pa(ϕ)|J |1−a

a(1−a)
if 0 < a < 1,

‖ϕ‖
L1(I)|J |

|I|
+ 4pa(ϕ)|J |(1 + log |I|

|J |
) if a = 0.

Proof. By Remark 2.1 in [12], for any x ∈ Int Iα,

|ϕ(x)| ≤
‖ϕ‖L1

|I|
+ pa(ϕ)

( 1

amin{x− lα, rα − x}a
+

2a+2

a(1− a)|Iα|a

)
if 0 < a < 1,

|ϕ(x)| ≤
‖ϕ‖L1

|I|
+ pa(ϕ)

(
log

|Iα|

2min{x− lα, rα − x}
+ 2
)

if a = 0.

It follows that if 0 < a < 1 then
∫

J

|ϕ(x)|dx ≤
‖ϕ‖L1(I) |J |

|I|
+

2a+2pa(ϕ)|J |

a(1− a)|I|a
+

2pa(ϕ)

a

∫ |J |

0

x−adx

and if a = 0 then
∫

J

|ϕ(x)|dx ≤
‖ϕ‖L1(I) |J |

|I|
+ 2pa(ϕ)|J | − 2pa(ϕ)

∫ |J |

0

log(x/|I|)dx.

This gives (6.5). �

Lemma 6.4. Suppose that ϕ ∈ C1+PaG(⊔α∈AIα) is such that for any τ > 0 we

have ‖S(k)ϕ‖sup = O(e(−λ1(1−a)+τ)k)c1(ϕ) and
‖S(k)Dϕ‖

L1(I(k))

|I(k)|
= O(e(λ1a+τ)k)c0(Dϕ).

Then for any k ≥ 0, α ∈ A and 0 ≤ N < Qα(k),

(6.6) osc(v, TN(I(k)α )) = osc(v, I(k)α ) +O(e(−λ1(1−a)+τ)k)(c0(Dϕ) + pa(Dϕ)).

Proof. Since ϕ = v ◦ T − v, by telescoping, for any x1, x2 ∈ I
(k)
α

v(TNx2)− v(TNx1)− (v(x2)− v(x1)) = ϕ(N)(x2)−ϕ(N)(x1) =

∫ x2

x1

N−1∑

i=0

Dϕ(T ix) dx.

Hence

(6.7) osc(v, TN(I(k)α )) ≤ osc(v, I(k)α ) +

∫

I
(k)
α

∣∣∣
N−1∑

i=0

Dϕ(T ix)
∣∣∣ dx.

In view of (6.1), for every x ∈ I
(k)
α we have

(6.8)
N−1∑

i=0

Dϕ(T ix) =
k∑

l=0

∑

0≤i<q(l)

S(l)Dϕ((T (l))ix(l))
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with 0 ≤ q(l) ≤ ‖Z(l + 1)‖ and I
(k)
α ∋ x 7→ x(l) ∈ Jl ⊂ I(l) is a translation and Jl is

the image of I
(k)
α by this translation. It follows that

(6.9)

∫

I
(k)
α

∣∣∣
N−1∑

i=0

Dϕ(T ix)
∣∣∣ dx ≤

k∑

l=0

∑

0≤i<q(l)

∫

(T (l))iJl

|S(l)Dϕ(x)|dx.

Assume that 0 < a < 1. As |(T (l))iJl| = |Jl| = |I
(k)
α |, in view of (6.5),

∫

(T (l))iJl

|S(l)Dϕ(x)|dx ≤
‖S(l)Dϕ‖L1(I(l)) |I

(k)
α |

|I(l)|
+

2a+3pa(S(l)Dϕ)|I
(k)
α |1−a

a(1− a)
.

By (4.3), there exists C > 0 such that

pa(S(l)Dϕ) ≤ Cpa(Dϕ) if 0 < a < 1,

pa(S(l)Dϕ) ≤ C(1 + log ‖Q(l)‖)pa(Dϕ) if a = 0.
(6.10)

As
‖S(l)Dϕ‖

L1(I(l))

|I(l)|
= O(e(λ1a+τ)l)c0(Dϕ) and |I(k)| = O(e−λ1k), it follows that

(6.11)

∫

(T (l))iJl

|S(l)Dϕ(x)|dx = O(e(−λ1(1−a)+τ)k)(c0 + pa)(Dϕ).

If a = 0 then, by (6.5),
∫

(T (l))iJl

|S(l)Dϕ(x)|dx ≤
‖S(l)Dϕ‖

L1(I(l))
|I

(k)
α |

|I(l)|
+ 4pa(S(l)Dϕ)|I

(k)
α |(1 + log |I(l)|

|I
(k)
α |

).

In view of (3.14), log |I(l)|/|I
(k)
α | ≤ log |I|/|I

(k)
α | = logO(e(λ1+τ)k) = O(eτk) and

log ‖Q(l)‖ = O(eτk) for l ≤ k, and by (6.10) we also get (6.11) when a = 0. By
(6.9), this gives

∫

I
(k)
α

∣∣∣
N−1∑

i=0

Dϕ(T ix)
∣∣∣ dx = k‖Z(k + 1)‖O(e(−λ1(1−a)+τ)k)(c0 + pa)(Dϕ)

= O(e(−λ1(1−a)+3τ)k)(c0 + pa)(Dϕ).

In view of (6.7), this gives (6.6). �

By combining previous lemmas, under a decaying condition on S(k)ϕ and some
bound on the growth of S(k)Dϕ, a Hölder solution of the cohomological equation
is obtained.

Theorem 6.5. Suppose that ϕ ∈ C1+PaG(⊔α∈AIα) is such that for any τ > 0 we

have ‖S(k)ϕ‖sup = O(e(−λ1(1−a)+τ)k)c1(ϕ) and
‖S(k)Dϕ‖

L1(I(k))

|I(k)|
= O(e(λ1a+τ)k)c0(Dϕ).

There exists a continuous solution v : I → R of the cohmological equation ϕ =
v ◦ T − v such that v(0) = 0 and for any 0 < τ < 1 − a we have v ∈ C(1−a)−τ (I).
Moreover, there exists Cτ > 0 such that ‖v‖C(1−a)−τ ≤ Cτ (c1(ϕ)+ c0(Dϕ)+pa(Dϕ)).

Proof. For any pair x < y of points in I we use the space decomposition of the
interval (x, y) introduced in the beginning of the section. Then

|v(y)− v(x)| ≤

q(k)∑

q=1

osc(v, J (k)(q)) +
∑

l>k

∑

ǫ=±

qǫ(l)∑

q=1

osc(v, J (l)
ǫ (q))
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with q(k) ≤ ‖Z(k)‖ and q±(l) ≤ ‖Z(l)‖. As each J (k)(q) is of the form T nI
(k)
α for

some 0 ≤ n < Qα(k) and each J
(l)
± (q) is of the form T nI

(l)
α for some 0 ≤ n < Qα(l),

in view of Corollary 6.2 and Lemma 6.4, for any τ > 0,

osc(v, J (k)(q)) ≤ O(e(−λ1(1−a)+τ)k)(c1(ϕ) + c0(Dϕ) + pa(Dϕ)),

osc(v, J
(l)
± (q)) ≤ O(e(−λ1(1−a)+τ)l)(c1(ϕ) + c0(Dϕ) + pa(Dϕ)).

It follows that

|v(y)− v(x)| ≤ O
(∑

l≥k

‖Z(l)‖ e(−λ1(1−a)+τ)l
)
(c1(ϕ) + c0(Dϕ) + pa(Dϕ)).

As ‖Z(l)‖ = O(eτl), we obtain

|v(y)− v(x)| ≤ O(e(−λ1(1−a)+2τ)k)(c1(ϕ) + c0(Dϕ) + pa(Dϕ)).

By the choice of k, |y − x| ≥ minα∈A |I
(k)
α | ≥ cτe

−(λ1+τ)k for some cτ > 0. It follows
that

|v(y)− v(x)| ≤ O(1)(c1(ϕ) + c0(Dϕ) + pa(Dϕ))|y − x|
λ1(1−a)−2τ

λ1+τ .

As v(0) = 0, this completes the proof. �

6.2. Higher regularity. Higher regularity of solutions is obtained by applying The-
orem 6.5 as the initial step of induction.

Theorem 6.6. Let n ≥ 1 and 0 ≤ a < 1. Assume that T satisfies the FFDC. Let
ϕ ∈ Cn+PaG(⊔α∈AIα) be a map such that for any τ > 0 we have

(6.12) ‖S(k)Dlϕ‖sup = O(e(−λ1(n−l−a)+τ)k)‖Dlϕ‖Cn−l+Pa for 0 ≤ l < n

and

(6.13)
1

|I(k)|
‖S(k)Dnϕ‖L1(I(k)) = O(e(λ1a+τ)k)‖Dnϕ‖C0+Pa .

Then there exists a Cn−1-solution v : I → R of the cohomological equation ϕ =
v ◦ T − v such that v(0) = 0 and for any 0 < τ < 1 − a we have v ∈ Cn−a−τ (I).
Moreover, there exists Cτ,n > 0 such that ‖v‖Cn−a−τ ≤ Cτ,n‖ϕ‖Cn+Pa .

Proof. The proof is by induction on n. For n = 1, our claim follows from Theorem 6.5
applied to c1(ϕ) = ‖ϕ‖C1+Pa and c0(Dϕ) = ‖Dϕ‖C0+Pa .

Suppose that for some n ≥ 1 if ϕ ∈ Cn+PaG(⊔α∈AIα) satisfies (6.12) and (6.13)
then there exists a Cn−1-solution v of the cohomological equation such that for any
τ > 0 we have v ∈ Cn−a−τ (I) and ‖v‖Cn−a−τ ≤ Cτ,n‖ϕ‖Cn+Pa .

Let ϕ ∈ Cn+1+PaG(⊔α∈AIα) be such that

‖S(k)Dlϕ‖sup = O(e(−λ1(n+1−l−a)+τ)k)‖Dlϕ‖Cn+1−l+Pa for 0 ≤ l ≤ n and

1

|I(k)|
‖S(k)Dn+1ϕ‖L1(I(k)) = O(e(λ1a+τ)k)‖Dn+1ϕ‖C0+Pa .

It follows that Dϕ ∈ Cn+PaG(⊔α∈AIα) satisfies (6.12) and (6.13). By induction
hypothesis, there exists v0 ∈ Cn−1(I) such that Dϕ = v0 ◦ T − v0, v0(0) = 0
and for any τ > 0 we have v0 ∈ Cn−a−τ (I) with ‖v0‖Cn−a−τ ≤ Cτ,n‖Dϕ‖Cn+Pa .
By integrating, there exists χ ∈ Γ that satisfies ϕ = ṽ0 ◦ T − ṽ0 + χ (recall that
ṽ0(x) =

∫ x
0
v0(s)ds). Note that for any k ≥ 1,

S(k)ϕ = S(k)(ṽ0 ◦ T − ṽ0) +Q(k)χ.
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By assumption,

‖S(k)ϕ‖sup = O(e(−λ1(n+1−a)+τ)k)‖ϕ‖Cn+1+Pa

≤ O(e−λ1ke(−λ1(1−a)+τ)k)‖ϕ‖Cn+1+Pa = O(e−λ1k)‖ϕ‖Cn+1+Pa .
(6.14)

On the other hand, for any x ∈ I
(k)
α ,

(6.15) |S(k)(ṽ0 ◦ T − ṽ0)(x)| = |ṽ0(T
Qα(k)x)− ṽ0(x)| ≤ ‖v0‖sup|x− TQα(k)x|.

It follows that

‖S(k)(ṽ0 ◦ T − ṽ0)‖sup ≤ ‖v0‖sup|I
(k)| = O(e−λ1k)‖Dϕ‖Cn+Pa .

Therefore, ‖Q(k)χ‖ = O(e−λ1k)‖ϕ‖Cn+1+Pa . In view of (3.2), χ ∈ E−1(π, λ). As
E−1(π, λ) is one-dimensional, by Remark 3.4, χ = c(ξ̄− ξ̄ ◦T ) for some c = c(ϕ) ∈ R

(recall that ξ̄(x) = x). Note that |c(ϕ)| ≤ ‖v0‖sup. Indeed, by (6.15),

‖S(k)(ṽ0 ◦ T − ṽ0)‖sup ≤ ‖v0‖sup
∥∥S(k)(ξ̄ − ξ̄ ◦ T )

∥∥
sup

.

As 1
k
log
∥∥S(k)(ξ̄ − ξ̄ ◦ T )

∥∥
sup

→ −λ1, in view of (6.14), we obtain ‖S(k)ϕ‖sup =

o(
∥∥S(k)(ξ̄ − ξ̄ ◦ T )

∥∥
sup

). It follows that

|c(ϕ)|
∥∥S(k)(ξ̄ − ξ̄ ◦ T )

∥∥
sup

= ‖S(k)χ‖sup ≤ ‖S(k)ϕ‖sup + ‖S(k)(ṽ0 ◦ T − ṽ0)‖sup

≤ (‖v0‖sup + o(1))
∥∥S(k)(ξ̄ − ξ̄ ◦ T )

∥∥
sup

.

Hence |c(ϕ)| ≤ ‖v0‖sup.
Let v : I → R, v = ṽ0 − c(ϕ)ξ̄. Then ϕ = v ◦ T − v and v ∈ Cn+1−a−τ (I) with

‖Dv‖Cn−a−τ = ‖v0‖Cn−a−τ + |c(ϕ)| ≤ ‖v0‖Cn−a−τ + ‖v0‖sup ≤ 2Cτ,n‖Dϕ‖Cn+Pa .

As v(0) = 0, this gives

‖v‖Cn+1−a−τ = ‖v‖sup + ‖Dv‖Cn−a−τ ≤ |I|‖Dv‖sup + ‖Dv‖Cn−a−τ

≤ (|I|+ 1)‖Dv‖Cn−a−τ ≤ 2(|I|+ 1)Cτ,n‖Dϕ‖Cn+Pa .

This completes the proof. �

Corollary 6.7. For every n ≥ 0 there exists a polynomial vn ∈ Rn+1[x] such that
h−1,n = vn ◦ T − vn and vn(0) = 0.

For every t̄ ∈ T F if o(t̄) > r > 0, then there exists vt̄ ∈ Cr(I) such that ht̄(0) = 0
and ht̄ = vt̄ ◦ T − vt̄.

Proof. In view of (5.3) and (5.8), for every 0 ≤ l ≤ n we have Dlh−1,n = h−1,n−l,
and

lim
k→∞

1

k
log ‖S(k)Dlh−1,n‖sup = −λ1(n− l + 1) and Dn+1h−1,n = 0.

Therefore h−1,n ∈ Cn+1+PaG(⊔α∈AIα) satisfies (6.12) and (6.13) for a = 0. Then, by
Theorem 6.6, there exists vn ∈ Cn(I) such that h−1,n = vn ◦ T − vn and vn(0) = 0.
As h−1 = Dnh−1,n = Dnvn ◦ T −Dnvn, by Remark 3.4 and the ergodicity of T , we
have Dnvn(x) = ξ̄(x) + c = x+ c. It follows that vn ∈ Rn+1[x].

Suppose that t̄ ∈ T F and o(t̄) > r > 0. Let n := ⌈o(t̄)⌉ − 1, a := o(t̄) − n and
choose τ > 0 so that r < n− a − τ < n − a = o(t̄). In view of (5.3) and (5.8), for
every 0 ≤ l ≤ n,

lim
k→∞

1

k
log ‖S(k)Dlht̄‖sup = −λ1(o(t̄)− l) = −λ1(n− l − a).



36 K. FRĄCZEK AND M. KIM

As ht̄ ∈ Cn+PaG(⊔α∈AIα), by Theorem 6.6, there exists vt̄ ∈ Cn−a−τ (I) such that
ht̄(0) = 0 and ht̄ = vt̄ ◦ T − vt̄. As r < n− a− τ , this gives our claim. �

We finish the section by summarizing the complete conditions for having smooth
solutions of the cohomological equations for a.e IETs.

Theorem 6.8. Let n ≥ 1, 0 ≤ a < 1 and 0 < r < n − a such that r /∈ {o(t̄) : t̄ ∈
Ta,n}. Assume that T satisfies the FFDC. Let ϕ ∈ Cn+PaG(⊔α∈AIα) be a map such
that ft̄(ϕ) = 0 for all t̄ ∈ Ta,n with o(t̄) < r. Then there exists a solution v ∈ Cr(I)
of the cohomological equation ϕ = v ◦ T − v such that v(0) = 0. The operator

(6.16)
⋂

t̄∈Ta,n, o(t̄)<r

ker(ft̄) ∋ ϕ 7→ v ∈ Cr(I)

is linear and bounded.
Moreover, there exist bounded operators Γn : Cn+Pa(⊔α∈AIα) → Γn(⊔α∈AIα) and

Vn : Cn+PaG(⊔α∈AIα) → Cn−1(I) such that

ϕ = Vn(ϕ) ◦ T − Vn(ϕ) + Γn(ϕ).

More precisely, for every 0 < τ < 1 − a the operator Vn takes value in Cn−a−τ (I)
and Vn : Cn+PaG(⊔α∈AIα) → Cn−a−τ (I) is also bounded.

Proof. Assume that ft̄(ϕ) = 0 for every t̄ ∈ Ta,n with o(t̄) < r. Then

ϕ = ra,n(ϕ) +
∑

t̄∈Ta,n, o(t̄)>r

ft̄(ϕ)ht̄ +
∑

t̄∈T ∗
a,n\Ta,n

ft̄(ϕ)ht̄.

Choose τ > 0 such that r < n− a− τ . In view of Theorem 5.6 and 6.6, there exists
v̄ ∈ Cn−a−τ (I) such that ra,n(ϕ) = v̄ ◦T − v̄ and v̄(0) = 0. There exists also Cτ,n > 0
such that ‖v̄‖Cn−a−τ ≤ Cτ,n‖ra,n(ϕ)‖Cn+Pa . By Corollary 6.7, for every t̄ ∈ T ∗

a,n \Ta,n

there exists a polynomial vt̄ such that ht̄ = vt̄ ◦ T − vt̄ and vt̄(0) = 0. Moreover, if
t̄ ∈ Ta,n and o(t̄) > r > 0 then, again by Corollary 6.7, there exists vt̄ ∈ Cr(I) such
that ht̄ = vt̄ ◦ T − vt̄ and vt̄(0) = 0. It follows that

ϕ = v̄ ◦ T − v̄ +
∑

t̄∈Ta,n, o(t̄)>r

ft̄(ϕ)(vt̄ ◦ T − vt̄) +
∑

t̄∈T ∗
a,n\Ta,n

ft̄(ϕ)(vt̄ ◦ T − vt̄)

and

v = v̄ +
∑

t̄∈Ta,n, o(t̄)>r

ft̄(ϕ)vt̄ +
∑

t̄∈T ∗
a,n\Ta,n

ft̄(ϕ)vt̄ ∈ Cr(I)

satisfies ϕ = v ◦ T − v and v(0) = 0. Moreover,

‖v‖Cr ≤ Cτ,n‖ra,n(ϕ)‖Cn+Pa +
∑

t̄∈T ∗
a,n

|ft̄(ϕ)|‖vt̄‖Cr

≤ Cτ,n‖ϕ‖Cn+Pa +
∑

t̄∈T ∗
a,n

(Cτ,n‖ht̄‖Cn+Pa + ‖vt̄‖Cr)|ft̄(ϕ)|.

As all functionals ft̄ : Cn+Pa(⊔α∈AIα) → C are bounded, the operator (6.16) is
bounded as well.

The second part of the theorem follows directly from Theorem 5.6 and 6.6 with
Γn(ϕ) =

∑
t̄∈T ∗

a,n
ft̄(ϕ)ht̄ and Vn(ϕ) being the solution of the cohomological equation

ra,n(ϕ) = Vn(ϕ) ◦ T − Vn(ϕ). �
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Remark 6.9. In view of the second part of Theorem 5.6, the regularity of the solution
v for the equation ϕ = v ◦ T − v with ϕ ∈ Cn+Pa(⊔α∈AIα) proved in Theorem 6.8
is optimal. Indeed, let r0 = o(t̄0) > 0 for some t̄0 ∈ Ta,n. Let ϕ ∈ Cn+Pa(⊔α∈AIα)
such that ft̄0(ϕ) 6= 0 and ft̄(ϕ) = 0 for all t̄ ∈ Ta,n with o(t̄) < r0. By Theorem 6.8,
the solution v of the cohomological equation belongs to Cr(I) for any r < r0. On
the other hand, by Theorem 5.6, v /∈ Cr(I) for any r > r0. Hence, the exponent
r0 = o(t̄0) is a threshold for the regularity of the solution.

Similarly, if r0 = n− a, Ca,±
α,n (ϕ) 6= 0 for some α ∈ A and ft̄(ϕ) = 0 for all t̄ ∈ Ta,n

with o(t̄) < r0 (in fact, by (5.19), for any t̄ ∈ Ta,n) then v ∈ Cr(I) for every r < r0
and v /∈ Cr(I) for every r > r0.

7. Proofs of the main theorems

In this last section, we construct generalized Forni’s invariant distributions Ft̄ on
function spaces on a compact surface M . Roughly speaking, Ft̄ is achieved by com-
posing the operator f 7→ ϕf with the functional ft̄. Since the invariant distributions
ft̄ are on Cn+Pa , we need to perform in Section 7.1 an additional correction of ϕf so
that the resulting function belongs to Cn+Pa.

Finally, in Section 7.2, we apply the tools developed in [12] to make a transition
from cohomological equations over IETs to equations for locally Hamiltonian flows
on any minimal component M ′ ⊂M . Then by combining them with the cohomolog-
ical results over IETs in Section 6, optimal regularity of solutions to cohomological
equations Xu = f is obtained. The regularity is determined by the order (or the
hat-order) of three different types of invariant distributions Ckσ,l, d

k
σ,j and Ft̄.

7.1. Counterparts of Forni’s invariant distributions. Let M be a compact
connected orientable C∞-surface. Let ψR be a locally Hamiltonian C∞-flow on M
with isolated fixed points and such that all its saddles are perfect and all saddle
connections are loops. Let M ′ ⊂ M be a minimal component of the flow and let
I ⊂ M ′ be a transversal curve. The corresponding IET T : I → I exchanges the
intervals {Iα : α ∈ A}. Let τ : I → R>0 be the first return time map. Let us
consider the operator f 7→ ϕf defined for every integrable map f : M → R as
follows:

ϕf(x) =

∫ τ(x)

0

f(ψtx)dt for every x ∈ I.

If f is a smooth function on M then ϕf is also smooth on every Int Iα, α ∈ A. The
function ϕf may be discontinuous at the ends of the intervals or may have singu-
larities. A detailed description of the behavior around the ends of the exchanged
intervals is described in details in [12].

Suppose that the equation ϕf = v ◦ T − v has a smooth solution v : I → R.
This is a necessary condition for the existence of a smooth solution to the equation
Xu = f . In a sense, this is also a sufficient condition for the existence of a smooth
solution to the equation Xu = f . We can define uv,f :M

′ \ (Sd(ψR)∪ SL(ψR)) → R

as follows: if ψtx ∈ I for some t ∈ R then

uv,f (x) := v(ψtx)−

∫ t

0

f(ψsx) ds.

The map uv,f is a smooth solution of Xu = f , but only on M ′ \ (Sd(ψR) ∪ SL(ψR))
that is an open subset of M ′. Usually uv,f cannot be smoothly extended to M ′ or
even to the end compactification M ′

e defined in [12]. As proven in [12, Theorem 1.2],
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the vanishing of some invariant distributions dkσ,j(f) and Ckσ,l(f) is the necessary and
sufficient condition for the existence of a smooth solution (an extension of uv,f) to
Xu = f on M ′

e.

After [12], for any [(σ, k, l)] ∈ T C / ∼ we define a map ξ̂[(σ,k,l)] : I → R. For any
closed interval J ⊂ Iα denote by Jτ ⊂ M the closure of the set of orbit segments
starting from Int J and running until the first return to I. For any [(σ, k, l)] ∈
T C / ∼ there exists α ∈ A and an interval J of the form [lα, lα + ε] or [rα − ε, rα]
such that lα or rα is the first backward meeting point of a separatrix incoming to
σ ∈ Sd(ψR) and Jτ contains all angular sectors Uσ,l′ for which (σ, k, l′) ∼ (σ, k, l).

Let ξ̂[(σ,k,l)] : I → R be a map such that

• ξ̂[(σ,k,l)] is zero on any interval Iβ with β 6= α;
• if J = [lα, lα + ε] then for any s ∈ Iα,

ξ̂[(σ,k,l)](s) =
(s− lα)

k−(mσ−2)
mσ

m2
σk!

if k 6= mσ − 2 modmσ

ξ̂[(σ,k,l)](s) = −
(s− lα)

k−(mσ−2)
mσ log(s− lα)

m2
σk!

if k = mσ − 2 modmσ;

• if J = [rα − ε, rα] then for any s ∈ Iα,

ξ̂[(σ,k,l)](s) =
(rα − s)

k−(mσ−2)
mσ

m2
σk!

if k 6= mσ − 2 modmσ

ξ̂[(σ,k,l)](s) = −
(rα − s)

k−(mσ−2)
mσ log(rα − s)

m2
σk!

if k = mσ − 2 modmσ.

As k−(mσ−2)
mσ

= o(σ, k), we have ξ̂[(σ,k,l)] ∈ Cnσ,k+Paσ,k
G(⊔α∈AIα) with nσ,k := ⌈o(σ, k)⌉

and aσ,k := n − o(σ, k), and exactly one of C+
α (D

nσ,k ξ̂[(σ,k,l)]), C
−
α (D

nσ,k ξ̂[(σ,k,l)]) is
non-zero.

Let us consider ξ[(σ,k,l)] ∈ Cnσ,k+Paσ,k
G(⊔α∈AIα) given by

ξ[(σ,k,l)] := raσ,k,nσ,k
(ξ̂[(σ,k,l)]) = ξ̂[(σ,k,l)] −

∑

t̄∈T ∗
aσ,k,nσ,k

ft̄(ξ̂[(σ,k,l)])ht̄

= ξ̂[(σ,k,l)] −
∑

t̄∈T F
∗,o(t̄)<o(σ,k)

ft̄(ξ̂[(σ,k,l)])ht̄.

In view of Lemma 5.7,

(7.1) ft̄(ξ[(σ,k,l)]) = 0 if o(t̄) < o(σ, k).

Since C±
α (D

nσ,kξ[(σ,k,l)]) = C±
α (D

nσ,k ξ̂[(σ,k,l)]) 6= 0, by Theorem 5.6,

lim
j→∞

1

j
log
(
‖S(j)(ξ[(σ,k,l)])‖L1(I(j))/|I

(j)|
)
= −λ1(nσ,k − aσ,k) = −λ1o(σ, k)

lim
j→∞

1

j
log ‖S(j)(ξ[(σ,k,l)])‖sup = −λ1o(σ, k) if o(σ, k) > 0.

(7.2)
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Lemma 7.1. For any r ≥ −m−2
m

let n = ⌈r⌉ and a = n − r. Then for any

f ∈ Ckr(M) we have

sr(f) = ϕf −
∑

[(σ,k,l)]∈T C /∼
o(σ,k)<r

C[(σ,k,l)](f)ξ[(σ,k,l)] ∈ Cn+Pa(⊔α∈AIα)(7.3)

and the operator sr : C
kr(M) → Cn+Pa(⊔α∈AIα) is bounded.

Proof. By Theorem 5.6 in [12],

ŝr(f) := ϕf −
∑

[(σ,k,l)]∈T C /∼
o(σ,k)<r

C[(σ,k,l)](f)ξ̂[(σ,k,l)] ∈ Cn+Pa(⊔α∈AIα)

and the operator ŝr : C
kr(M) → Cn+Pa(⊔α∈AIα) is bounded. Moreover.

sr(f) = ŝr(f) +
∑

[(σ,k,l)]∈T C /∼
o(σ,k)<r

C[(σ,k,l)](f)
(
ξ̂[(σ,k,l)] − ξ[(σ,k,l)]

)
.

Since ξ̂[(σ,k,l)] − ξ[(σ,k,l)] is a polynomial over any exchanged interval, this gives our
claim. �

Definition 8. Let any r ≥ −m−2
m

. For any t̄ ∈ T F
∗ with o(t̄) < r denote by Ft̄ :

Ckr(M) → C the operator given by Ft̄ := ft̄ ◦ sr. As sr : C
kr(M) → Cn+Pa(⊔α∈AIα)

with n = ⌈r⌉, a = ⌈r⌉ − r and t̄ ∈ T ∗
a,n by (5.19), the operator is well-defined and

bounded.

Remark 7.2. Note that the definition of Ft̄ does not depend on the choice of r.
Indeed, suppose that o(t̄) < r1 < r2. Then for every f ∈ Ckr2 (M),

sr1(f)− sr2(f) =
∑

[(σ,k,l)]∈T C /∼
r1≤o(σ,k)<r2

C[(σ,k,l)](f)ξ[(σ,k,l)].

In view of (7.1), it follows that ft̄(sr1(f)) = ft̄(sr2(f)), which yields our claim.

Remark 7.3. For any t̄ ∈ T F
∗ take o(t̄) < r < o(t̄)+ 1

m
. By definition, kr ≤ ko(t̄)+1.

It follows that the functional Ft̄ is defined on Ck
o(t̄)+1(M). If o(t̄) /∈ Z/m then the

domain of Ft̄ is enlarged to Ck
o(t̄)(M).

7.2. Proofs of the main results.

Proof of Theorem 1.1. Choose r0 ∈ R>0 which is the smallest element of {o(σ, k) :
k ≥ 0, σ ∈ Sd(ψR)∩M

′}∪{o(t̄) : t̄ ∈ T F} larger than r. By assumption, T satisfies
the FFDC, f ∈ Ckr(M) = Ckr0 (M) and

• dkσ,j(f) = 0 for all (σ, k, j) ∈ T D with ô(dkσ,j) < r0;

• Ckσ,l(f) = 0 for all (σ, k, l) ∈ T C with o(Ckσ,l) < r0;
• Ft̄(f) = 0 for all t̄ ∈ T F with o(Ft̄) < r0.

By Theorem 1.1 in [12], ϕf ∈ Cn+Pa(⊔α∈AIα) with n = ⌈r0⌉ and a = ⌈r0⌉ − r0.
Moreover, there exists Cr > 0 such that ‖ϕf‖Cn+Pa(⊔α∈AIα) ≤ Cr‖f‖Ckr (M) for all

f ∈ Ckr(M) ∩ ker(Ckσ,l) for (σ, k, l) ∈ T C with o(Ckσ,l) < r.
By assumption, in view of (7.3), ϕf = sr0(f). It follows that ft̄(ϕf) = ft̄(sr0(f)) =

Ft̄(f) = 0 for all t̄ ∈ T F with o(t̄) < r. As r < r0 = n− a, in view of Theorem 6.8,
there exists a solution v ∈ Cr(I) of the cohomological equation ϕ = v◦T−v such that
v(0) = 0. Moreover, there exists C ′

r > 0 such that ‖v‖Cr(I) ≤ C ′
r‖ϕf‖Cn+Pa(⊔α∈AIα).
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By Theorem 1.2 in [12], there exists uv,f ∈ Cr(M ′
e) satisfying Xuv,f = f on M ′

e.
Moreover, there exists a constant C ′′

r > 0 such that ‖uv,f‖Cr(M ′
e) ≤ C ′′

r (‖v‖Cr(I) +
‖f‖Ckr (M)). It follows that

‖uv,f‖Cr(M ′
e) ≤ C ′′

r (1 + CrC
′
r)‖f‖Ckr (M),

which completes the proof. �

Proof of Theorem 1.2. If f ∈ Ckr(M) and there exists u ∈ Cr(M ′
e) such that Xu =

f on M ′
e, then by Theorem 1.3 in [12], dkσ,j(f) = 0 for all (σ, k, j) ∈ T D with

ô(dkσ,j) < r and Ckσ,l(f) = 0 for all (σ, k, l) ∈ T C with o(Ckσ,l) < r. In view of

Theorem 1.1 in [12], ϕf ∈ Cn+Pa(⊔α∈AIα) with n = ⌈r⌉ and a = ⌈r⌉ − r. By (7.3),
it follows that ϕf = sr(f). Hence Ft̄(f) = ft̄(sr(f)) = ft̄(ϕf) for all t̄ ∈ T F with
o(t̄) < r.

On the other hand ϕf = v ◦ T − v, where v ∈ Cr(I) is the restriction of u to I.
By Theorem 5.6, this gives ft̄(ϕf) = 0 for all t̄ ∈ T F with o(t̄) < r. Therefore,
Ft̄(f) = 0 for all t̄ ∈ T F with o(t̄) < r. �

Proof of Theorem 1.3. In view of Lemma 7.1 and Theorem 5.6, for any f ∈ Ckr(M),

ϕf = sr(f) +
∑

[(σ,k,l)]∈T C /∼
o(σ,k)<r

C[(σ,k,l)](f)ξ[(σ,k,l)]

=
∑

t̄∈T F
∗

o(t̄)<r

ft̄(sr(f))ht̄ + ra,n(sr(f)) +
∑

[(σ,k,l)]∈T C /∼
o(σ,k)<r

C[(σ,k,l)](f)ξ[(σ,k,l)]

=
∑

t̄∈T F
∗

o(t̄)<r

Ft̄(f)ht̄ +
∑

[(σ,k,l)]∈T C /∼
o(σ,k)<r

C[(σ,k,l)](f)ξ[(σ,k,l)] + rr(f)

with rr := ra,n ◦ sr, where n = ⌈r⌉ and a = ⌈r⌉ − r. Note that (1.3), (1.4) and
(1.5) follow directly from (5.8) and (7.2). Moreover, (1.6) follows from (5.21) and
(5.22). �

Acknowledgements

The authors would like to thank Giovanni Forni for his help in completing the list
of references. The authors acknowledge the Center of Excellence “Dynamics, math-
ematical analysis and artificial intelligence” at the Nicolaus Copernicus University
in Toruń and Centro di Ricerca Matematica Ennio De Giorgi - Scuola Normale Su-
periore, Pisa for hospitality during their visits. Research was partially supported by
the Narodowe Centrum Nauki Grant 2022/45/B/ST1/00179.

References

[1] A. Avila, B. Fayad, A. Kocsard, On manifolds supporting distributionally uniquely ergodic
diffeomorphisms, J. Differential Geom. 99 (2015), 191-213.

[2] A. Avila, A. Kocsard, Cohomological equations and invariant distributions for minimal circle
diffeomorphisms, Duke Math. J. 158 (2011), 501-536.

[3] F. Faure, S. Gouëzel, and E. Lanneau, Ruelle spectrum of linear pseudo-Anosov maps, J. Éc.
polytech. Math. 6 (2019), 811-877.

[4] L. Flaminio, G. Forni, Invariant distributions and time averages for horocycle flows, Duke
Math. J. 119 (2003), 465-526.

[5] L. Flaminio, G. Forni, On the cohomological equation for nilflows, J. Mod. Dyn. 1 (2007),
37-60.



SOLVING COHOMOLOGICAL EQUATION - PART II. GLOBAL OBSTRUCTIONS 41

[6] G. Forni, Solutions of the cohomological equation for area-preserving flows on compact surfaces
of higher genus, Ann. of Math. (2) 146 (1997), 295-344.

[7] , Deviation of ergodic averages for area-preserving flows on surfaces of higher genus,
Ann. of Math. (2) 155 (2002), 1-103.

[8] , Sobolev regularity of solutions of the cohomological equation, Ergodic Theory Dynam.
Systems 41 (2021), 685-789.

[9] , Twisted cohomological equations for translation flows, Ergodic Theory Dynam. Sys-
tems 42 (2022), 881-916.

[10] G. Forni, S. Marmi, C. Matheus Cohomological equation and local conjugacy class of Diophan-
tine interval exchange maps, to appear in Proceedings of the American Mathematical Society,
DOI:https://doi.org/10.1090/proc/14538.

[11] K. Frączek, M. Kim, New phenomena in deviation of Birkhoff integrals for locally Hamiltonian
flows, preprint https://arxiv.org/abs/2112.13030.

[12] , Solving the cohomological equation for locally hamiltonian flows, part I - local ob-
structions, preprint https://arxiv.org/abs/2305.16884.

[13] K. Frączek, C. Ulcigrai, Ergodic properties of infinite extensions of area-preserving flows,
Math. Ann. 354 (2012), 1289-1367.

[14] , On the asymptotic growth of Birkhoff integrals for locally Hamiltonian flows and
ergodicity of their extensions, preprint https://arxiv.org/abs/2112.05939.

[15] P. Giulietti, C. Liverani, Parabolic dynamics and anisotropic Banach spaces, J. Eur. Math.
Soc. (JEMS) 21 (2019), 2793-2858.

[16] A. Katok, Combinatorial constructions in ergodic theory and dynamics. University Lecture
Series, 30. American Mathematical Society, Providence, RI, 2003. iv+121 pp.

[17] M. Keane, Interval exchange transformations, Math. Z. 141 (1975), 25-31.
[18] S. Marmi, P. Moussa, J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange

maps, J. Amer. Math. Soc. 18 (2005), 823-872.
[19] , Linearization of generalized interval exchange maps, Ann. of Math. (2) 176 (2012),

1583-1646.
[20] S. Marmi, J.-C. Yoccoz, Hölder regularity of the solutions of the cohomological equation for

Roth type interval exchange maps, Comm. Math. Phys. 344 (2016), 117-139.
[21] G. Rauzy, Échanges d’intervalles et transformations induites, Acta Arith. 34 (1979), 315-328.
[22] D. Ravotti, Quantitative mixing for locally Hamiltonian flows with saddle loops on compact

surfaces, Ann. Henri Poincaré 18 (2017), 3815-3861.
[23] J. Tanis, The cohomological equation and invariant distributions for horocycle maps, Ergodic

Theory Dynam. Systems 34 (2014), 299-340.
[24] C. Ulcigrai, Dynamics and ’arithmetics’ of higher genus surface flows, ICM Proceedings 2022.
[25] W.A. Veech, Gauss measures for transformations on the space of interval exchange maps,

Ann. of Math. (2) 115 (1982), 201-242.
[26] M. Viana, Dynamics of Interval Exchange Transformations and Teichmüller Flows, lecture

notes available from http://w3.impa.br/~viana/out/ietf.pdf

[27] Z.J. Wang, Cohomological equation and cocycle rigidity of parabolic actions in some higher-
rank Lie groups, Geom. Funct. Anal. 25 (2015), 1956-2020.

[28] J.-Ch. Yoccoz, Continued fraction algorithms for interval exchange maps: an introduction,
Frontiers in number theory, physics, and geometry. I, 401-435, Springer, Berlin, 2006.

[29] , Interval exchange maps and translation surfaces, Homogeneous flows, moduli spaces
and arithmetic, 1-69, Clay Math. Proc., 10, Amer. Math. Soc., Providence, RI, 2010.

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
ul. Chopina 12/18, 87-100 Toruń, Poland

Email address : fraczek@mat.umk.pl

Centro di Ricerca Matematica Ennio De Giorgi, Scuola Normale Superiore, Pi-
azza dei Cavalieri 3, 56126 Pisa, Italy

Email address : minsung.kim@sns.it

DOI: https://doi.org/10.1090/proc/14538
https://arxiv.org/abs/2112.13030
https://arxiv.org/abs/2305.16884
https://arxiv.org/abs/2112.05939
http://w3.impa.br/~viana/out/ietf.pdf

	1. Introduction
	1.1. Invariant distributions and the main results when saddle loops exist
	1.2. Cohomological equations over IETs and a spectral result
	1.3. A new family of invariant distributions via extended correction operators
	1.4. Structure of the paper

	2. Interval exchange transformations (IET)
	2.1. Rauzy-Veech induction
	2.2. Kontsevich-Zorich cocycle and its accelerations
	2.3. Rokhlin towers related to accelerations

	3. Diophantine conditions for IETs
	3.1. Oseledets filtration
	3.2. Rokhlin Tower Condition and Filtration Diophantine Condition
	3.3. Diophantine series

	4. Extended correction operators
	4.1. Cn+PaG space
	4.2. Special Birkhoff sums
	4.3. Correction operator on C0+PaG
	4.4. First step: correction operator h*j on BV
	4.5. Second step: correction operator h-j,i
	4.6. Third step: correction operator h0

	5. Spectrum of the functional KZ-cocycles
	5.1. Lyapunov exponents for piecewise polynomials
	5.2. New functionals arising from correcting operators
	5.3. Invariant distributions on Cn+PaG(A I)

	6. Solving cohomological equations on IET
	6.1. Hölder solutions
	6.2. Higher regularity

	7. Proofs of the main theorems
	7.1. Counterparts of Forni's invariant distributions
	7.2. Proofs of the main results

	Acknowledgements
	References

