arXiv:2305.16884v2 [math.DS] 6 Jun 2023

SOLVING THE COHOMOLOGICAL EQUATION FOR LOCALLY
HAMILTONIAN FLOWS, PART I - LOCAL OBSTRUCTIONS

KRZYSZTOF FRACZEK AND MINSUNG KIM

ABSTRACT. We study the cohomological equation Xu = f for smooth locally
Hamiltonian flows on compact surfaces. The main novelty of the proposed ap-
proach is that it is used to study the regularity of the solution v when the flow has
saddle loops, which has not been systematically studied before. Then we need to
limit the flow to its minimum components. We show the existence and (optimal)
regularity of solutions regarding the relations with the associated cohomological
equations for interval exchange transformations (IETs). Our main theorems state
that the regularity of solutions depends not only on the vanishing of the so-called
Forni’s distributions (cf. [2, B]), but also on the vanishing of families of new in-
variant distributions (local obstructions) reflecting the behavior of f around the
saddles. Our main results provide some key ingredient for the complete solution
to the regularity problem of solutions (in cohomological equations) for a.a. locally
Hamiltonian flows (with or without saddle loops) to be shown in [5].

The main contribution of this article is to define the aforementioned new families
of invariant distributions ng QI;J and analyze their effect on the regularity of
u and on the regularity of the associated cohomological equations for IETs. To
prove this new phenomenon, we further develop local analysis of f near degenerate
singularities inspired by tools from [4] and [7]. We develop new tools of handling
functions whose higher derivatives have polynomial singularities over IETs.

1. INTRODUCTION

Let M be a smooth compact connected orientable surface of genus g > 1. We deal
with smooth flows g = (1;);er on M (associated to a vector field X : M — T'M)
preserving a smooth positive measure p, i.e. such that for any (orientable) choice of
local coordinates (x,y) we have du = V(x,y)dz A dy with V positive and smooth.
These flows are called locally Hamiltonian flows. Indeed, for any (orientable) choice
of local coordinates (x,y) such that du = V(x,y)dz A dy, the flow ¢ is a local
solution to the Hamiltonian equation

dz %_I;(Iay) dy _%—f(az,y)
dt — V(z,y)' dt  V(z,y)

9l (%
for a smooth real-valued function H, or equivalently fl—”: = —QL%. For general

introduction to locally Hamiltonian flows, we refer readers to [7, 4, [10, 12].
For any smooth observable f : M — C we are interested in understanding the
smoothness of the solution v : M — C of the cohomological equation

(1.1) u(Pyr) — ulx) = /Otf(¢sm) ds for all z € M, t € R,
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or equivalently Xu = f, where Xu(z) = %u(wtxﬂt:o.

We always assume that all fixed points of the flow ¢r are isolated, so the set of
fixed points of g, denoted by Fix(¢g), is finite. For g > 2, Fix(¢g) is non-empty. As
YR is area-preserving, fixed points are either centers, simple saddles or multi-saddles
(saddles with 2k prongs with k& > 2). We will deal only with perfect saddles defined
as follows: a fixed point o € Fix(¢r) is a (perfect) saddle of multiplicity m = m, > 2
if there exists a chart (z,y) (called a singular chart) in a neighborhood U, of ¢ such
that du = V(x,y)dz A dy and H(z,y) = S(z + wy)™ ((0,0) are coordinates of o).
Then the corresponding local Hamiltonian equation in U, is of the form

dr _ %_I;(x’w _mR(z )" dy _%_f(xvy) o mS(@ )™t
dt  V(z,y)  Vi(zyy) = dt  V(zy V(z,y)

or equivalently % = % The set of perfect saddles of g we denote by Sd(ig).

We call a saddle connection an orbit of g running from a saddle to a saddle. A
saddle loop is a saddle connection joining the same saddle. We will deal only with
flows such that all their saddle connections are loops. The set consisting of all saddle
loops of the flow we denote by SL(¢g).

Recall that if every fixed point in Fix(¢r) is isolated, M splits into a finite number
of 1g-invariant surfaces (with boundary) so that every such surface is a minimal
component of Yr (every orbit, except of fixed points and saddle loops, is dense in
the component) or is a periodic component (filled by periodic orbits, fixed points
and saddle loops). The boundary of each component consists of saddle loops and
fixed points.

The problem of existence and regularity of solutions for the cohomological equa-
tion ([1.1)) was essentially solved in two seminal articles 2], [3] by Forni. Forni con-
sidered the case when the flow ¢r is minimal over the whole surface M and the
function f belongs to a certain weighted Sobolev space. More precisely, choose a
non-negative smooth function W : M — Rsq (with zeros at Sd(¢g)) and an Abelian
1-form w on M (with zeros at Sd(¢r)) such that X = W.S and S is the unite hor-
izontal vector field on the translation surface (M,w). In singular local coordinates
around any o € Sd(r) we have W(z,z) = |2|?me=Y /V(2,Z). Then for any s > 0,
f € Hy (M) it Wlf e HS (M), where H?(M) is the fractional weighted Sobolev
space associated to the Abelian form w and the related area form. For a formal
definition of H (M) and useful characterization of its smooth elements we refer the
reader to Section 2 in [3].

In [2, 3], for a.e. flow, Forni proved the existence of fundamental invariant dis-
tributions on Hf, (M) which are responsible for the degree of smoothness of the
solution of for f € Hj,(M). Roughly speaking, Forni’s distributions are re-
lated to the Lyapunov exponents of the Kontsevich-Zorich cocycle on the absolute
1-cohomological bundle. If all Forni’s distributions at f € Hjj, (M) are zero then
the solution v € H? (M) for some s’ < s with s’ not too far away from s. Forni’s
beautiful approach is based on a very deep analysis of the Kontsevich-Zorich cocy-
cle acting on various kinds of abstract objects related to translation surfaces. An
alternative approach to constructing invariant distributions was also presented by
Bufetov in [I]. A different approach, based on moving to a special representation
and studying renormalization behavior for piecewise smooth functions over inter-
val exchange translations, was initiated by Marmi-Moussa-Yoccoz in [§] and later
developed in [9, [7, [4].
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The main goal of this article (and the subsequent one [5]) is to go beyond the
case of a minimal flow on the whole surface M and beyond the case of functions
f belonging to a weighted Sobolev space. We deal with locally Hamiltonian flows
restricted to any minimal component and f : M — C is any smooth function. The
study of locally Hamiltonian flows in such a context gives a rise to new invariant
distributions, which, unlike Forni’s distributions, are local in nature. The first two
new families of such invariant distributions, defined in Section [I.4] read local be-
haviour of functions around saddle points. The last family, which is a counterpart
of Forni’s distributions, is defined in [5] using renomalization techniques inspired by
the approach developed in [, [9] [7], 4].

All three families of invariant distributions affect the degree of smoothness of the
solution of the cohomological equation. However, in the present article we focus
only on the first two families and the main results of the paper are contained in
Theorems [1.1} and [I.3] The methods for studying their effect on the degree of
smoothness are purely analytical, in contrast to the dynamical arguments left to [5],
where the last family play a central role.

1.1. Special representation and IETs. Locally Hamiltonian flows restricted to
their minimal components are represented as special flows over interval exchange
transformations. Let us consider a restriction of a locally Hamiltonian flow g on
M to its minimal component M’ C M. Let I C M’ be any transversal smooth curve

with its standard parametrization v : [0, [I]] — I, i.e. foﬂs)n = s for s € [0,|I]],
where 7 is the closed 1-form given by n = %—gdx + %—Zdy in local coordinates. By
minimality, [ is a global transversal and the first return map 7' : I — [ is an interval
exchange transformation (IET) in standard coordinates on I. We will denote by
I,, a € A the subintervals translated by 7. In order to minimize the number of
exchanged intervals, we will always assume that each end of I is the first meeting
point of a separatrix (that is not a saddle connection) emanating by a fixed point
(incoming or outgoing) with the set I.

Let 7 : I — Rog U {400} be the first return time map. Then each point in
M\ (Sd(¢r) U SL(%g)) is uniquely represented as ¢,z for some z € [ and 0 <t <
7(z). The function 7 : I — R.oU{+00} is smooth on the interior of any exchanged
interval and has singularities at discontinuities of T'. Each such discontinuity is the
first hitting point (forward or backward) of a separatrix emanated by a saddle with
the curve (interval) I. Moreover, degenerate saddles (m, > 2) of ¢g are responsible
for the appearance of singularities of polynomial type and simple saddles (m, = 2)
are responsible for the appearance of logarithmic type singularities.

1.2. Two crucial operators and two cohomological equations. For any smooth
observable f : M — C we deal with the corresponding map ¢ : I — CU{oo} given
by

7(x)
o5(z) = / F ()t

The function ¢ is smooth on the interior of any interval I, and can have polynomial
or logarithmic type singularities at discontinuities of 7" depending on the vanishing
of some invariant distributions on f defined in [4] and based on partial derivatives
of f at saddles in M’. One of the aim of this paper is a deeper understanding of
the operator f +— ¢ on the kernel of all invariant distributions coming from [4].
Then ¢; has no singularities, but its derivatives can have. In this paper we define
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an infinite sequence of new (a little bit more sophisticated) invariant distributions
(based on partial derivatives at saddles) which are responsible for understanding the
regularity of ¢y.

For solving the cohomological equation ((1.1) we also need to study another oper-
ator g — ug 5. Suppose that g : I — C is a smooth solution (at least continuous) of
the another cohomological equation

(1.2) 9(Tx) - g(a) = ps(x) on I.

This is an obvious necessary condition for the existence of a smooth solution of the
equation . Indeed, if u is smooth and satisfies , then the map g : I — C
defined as the restriction of u to I is smooth and satisfies . A natural problem
is: when is this also a sufficient condition?

Suppose that g : I — C is a smooth solution of . Then the corresponding
solution wu, s : M'\ (Sd(¢g) USL(¢r)) — C is defined as follows. If ¢4z € I for some
t € R then

g f(7) := g(Yrx) — /0 f(sx) ds.

By the proof of Lemma 6.3 in [6], the function w, s is well defined on M’ \ (Sd(yr)U
SL(¢r)). Moreover, if M is a C*-surface, ¢g is a C*-flow and f is a C'*°-observable,
then ug ¢ is as regular as g. Indeed, by the absence of saddle connections joining
different saddles, for every xy € M’ \ (Sd(¢r) U SL(¢r)) there exists ty € R such
that ¢y, € Int I. For simplicity, assume that ¢; < 0. Then choose ¢ > 0 such that
(V1,20 — €,Y1,mo + €] C Int I and let

(1.3) R(zo.to,e) == | wultbiao — &, tbyymo + €]

—e<t<—tg+e

If £ > 0 is small enough then v : [—&, —tg + €] X [Vy,x0 — &, Yy, 20 + €] = R(xg, to, €)
given by v(t,x) = yx is a C*°-diffeomorphism. Moreover,

ugrov(t,x) =g(zr) — /o fov(s—t z)ds = g(x) +/0 fouv(s,x)ds.

It follows that the regularity of w, s restricted to R(xg,%o,c) coincides with the
regularity of g on [y, x0 — &, 1,20 + €|. Since g € Int R(xg, to,e), we obtain our
claim.

However, the solution u, s of the cohomological equation is not fully satisfactory
because it is defined only on an open (dense) subset of the minimal component,
without fixed points and saddle loops. Our main goal is to find necessary and
sufficient conditions for the existence of a smooth solution (of the cohomological
equation) defined over all of M’. More precisely, instead of M’ we will study smooth
solutions defined on the end compactification M. of M’\ Sd(¢r). Roughly speaking,
if a saddle o emanates [ > 2 loops, then o is the I-fold end of the set M’ \ Sd(¢r).
For this reason, o splits in M/ into [ different end points oy, ..., 0y, see Figure . We
will look for smooth solutions u : M/ — C of (L.1)). If a smooth solution u : M, — C
exists then it is smooth in a neighborhood (in M!) of any version o; of the saddle
point o, but it does not even have to be continuous at o, whenever the limits of u at o
with respect to different neighborhood sectors (connected components) are different.
Of course, if each saddle emanates at most one saddle loop then M, coincides with
M’ and the problem of regularity of u : M — C and u : M’ — C are equivalent.
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FIGURE 1. The minimal component M’ before and after separation
procedure.

1.3. Grading of smoothness. Let M be a C"*°-manifold with a boundary. For
any n € Zso and 0 < a < 1 denote by C"*(M) the space of C™-functions on
M such that their n-th derivative is a-Holder. Let n : Rs>o — Rs( be given by
n(z) = —xlogzx for x € [0,e7] and n(x) = e~ ! for x > e™'. For any n € Z>g
denote by C"*"(M) the space of C"-functions on M such that their n-th derivative
is continuous so that a positive multiple of 7 is its modulus of continuity. For every
non-natural real 7 > 0 we will write C" for C'lmJ+{r},

Let R, := (Ro_1 \ Z) U (Z>_1 + {n}) and let v : R,, = R be given by v(r) = r if
r€ (Rs_y \N) and v(n +n) =n+ 1. Then 0 < v(r) < v(r) iff C" C C".

1.4. Invariant distributions. To solve our main problem, in the present paper
we introduce a family of invariant distributions f — 0% (f) for all ¢ € Sd(¢r),
k>0and 0 < j < kA (m, —2). Throughout the article we use the notation
xVy=max{z,y} and x A y = min{z,y} for any pair of real numbers x,y. Recall
that a linear bounded functional f — D(f) is an invariant distribution if ©(Xu) =0
for any u € C°(M). The distributions are defined locally around saddles and are
obstructions to the existence of smooth solutions to the cohomological equation. The
invariant distributions Dk are defined based on the higher-order partial derivatives
of the function f in saddles or they are linear combinations of partial derivatives (if
kE>m, — 2). We also introduce alternative versions of such invariant distributions,
ie frsck 1(f) for 0 <1 < 2m,, which have a more geometric interpretation, and
generate the same space of invariant distributions as 0% 04"

Suppose that o € Sd(¢gr) is a saddle of multiplicity m, > 2. Fix a singular
chart (z,y) in a neighborhood U, of ¢. Then the local Hamiltonian is of the form
H(z,y) = S(x + ty)™ and the ¢r-invariant area-measure is du = V(z,y)dz A dy,
where V' is positive and smooth. Then for every £k > 0 and 0 < j < kA (m, — 2)
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with j # k — (m, — 1) mod m, we define the functional d} ; : C*(M) — C as follows:

(1.4) o, (f) =

> G kv

((k—j)—(mo—l)) azj+nm682k—j—nma ( ) 0)

0<n< k=i n
<n<

Note that for £k < m, — 2 we have Dfﬁ,j(f) = (J> aajafz’y)] (0,0), so D’j,’]- are essentially
distributions defined already in [4] to study deviation spectrum of Birkhoff integrals
of f. Let us mention that non-vanishing any of these distributions is an obstacle to
the existence of any solution of the cohomological equation (even measurable). The
distributions Dk for £ > m, — 1 are responsible for determining regularity of the
solution if we already know that equation . ) has a smooth solution. To explain
this relation in better way, we need to introduce another family of distributions

¢h,: CH(M) — Cfor 0 <1 < 2m,,

(1_5) Q:(’;l(f) — Z 0(17(21‘71{) (kf>%((mg—l) i (mo—1) k-H)&k(f V) (O O)

0<i<k t " " 92! a_k l

i#me—1modme
i#k—(me—1) mod me

where 0, is the principal 2m,-th root of unity and the (beta-like) function B(x,y)
is defined for any pair x,y of real numbers such that z,y ¢ Z as follows
e 2 Dz 4y — 1)

20tv=2 - T(a)I(y)
where we adopt the convention I'(0) = 1 and I'(—n) = 1/(—1)"n!. The functionals
¢h, for 0 < I < 2m, are not linearly independent, in contrast to the family of

functionals 0f ;. Indeed, €%, = (—1)*¢% if I = [ + m, and

B(r,y) =

Z gl=2lgh = 0if j=m, —Lorj=k— (m, —1).
0<i<2me

The element of R, given by

k—(mo—2) lfk m02¢Z
e(df ) =e(€h) =e(0,k) = mo
( U,j) ( O',l) (U ) { k— 2(77:J 1)+77 lfk’ Mg —2) c 7.
is called the ezponent of % ; or €% ;. Then
k—(my, — 2)

Mg

0(2;,) = 0(€;,) = o(0, k) == v(e(0, k) =

is called the order of 0 ; or €% . Finally, let ¢(d} ;) = ¢(0, k) = k — (m, — 1) + 1
and 8(0% ) = 3(0. k) = 0(0L,)) = k — (m, —2).

For any saddle o € Sd(¢r) its (singular) neighbourhood U, splits into 2m, (an-
gular) sectors bounded by separatrices emanated from o. In singular coordinates

z = (z,y) they are of the form
Uy ={2€U,:Argz € (m”—i, ”S;—tl))} for 0 <1 < 2m,.

Each such sector is either included in a minimal component M’ of 1 or is disjoint
from M’. In the problem of studying the regularity of the solutions of the coho-
mological equation, only non-zero values of invariant distributions Qi,z( f) such that
Uyi N M’ # () turn out to be relevant.
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1.5. Main results. The first main theorem describes the smoothness of the function
¢r depending on the values of the functionals described in Section . To precisely
describe the regularity of (¢, in Section , for any n € Z>p and 0 < a < 1 we
introduce the space C"*F»(U,e4l,) (and its geometric version C"*Fa%) of functions
whose n-th derivative has polynomial singularities of order at most —a at the ends
of the intervals translated by the IET T. We should mention that for any n € N we
have C"tPa ¢ C(v=D+0-9) if ) < ¢ < 1 and C"*Po ¢ C(P=D+n,

Recall that we always assume that M is a compact connected orientable C°°-
surface and g is a locally Hamiltonian C*°-flow on M with isolated fixed points
and such that all its saddles are perfect and all saddle connections are loops. Let
M’ C M be a minimal component of the flow and let I C M’ be a transversal curve.
The corresponding IET T': I — I exchanges the intervals I, a € A.

For any r > —™=2 where m is the maximal multiplicity of saddles in Sd(zg) M,

m

let
b [mr+(m—1)] if —22<p< -3
T [mr+ (m—2)] if -2 <
Note that
(1.6) max{k > 0 : Joesd(m)nmr0(o, k) <r} 4+ 1= [mr+ (m —2)].

Denote by .7 2 the set of triples (0, k, ) € (Sd(¢Yr) N M) x Z>o X Z>( such that
0<j<kA(my,—2)and j # k— (m, — 1)modm, and by 7% the set of triples
(0,k,1) € (Sd(vYr) N M') X Z>o X Z>o such that 0 <1 < 2m, and U,,; N M’ # .

Theorem 1.1. Fizr > —WT_Q. Suppose that f € C*r (M) is such that @’;’l(f) =0 for
all (0,k,1) € TE such that o(€% ) < r. Then oy € C"F%(Ugealy) with n = [r]
and a = [r| —r. Moreover, the operator

Chr(M)n () ker(€h) > fr pp € C" PG (Uneall)
(o,k,)ETE
a(€§Y1)<r

18 bounded.

This result provides a descending filtration of the space ®* := {¢; : f € C*(M)},
k € NU{oo} that is the basis for proving a spectral theorem (in [5]) for the so-called
Kontsevich-Zorich cocycle on ®*. Using renormalization techniques, the aforemen-
tioned spectral result allows understanding the regularity of the solution of the
cohomological equation (|1.2)) (see also [5]) for a.e. IET T.

The second main theorem solves the problem regarding regularity of the solutions
of provided we know the degree of smoothness for the solution of . This
result is another ingredient in the proof of the final theorem on the regularity of the
solution of the cohomological equation presented in [5].

Theorem 1.2. Fiz r € R, so that v(r) > 0. Assume that f € C* (M) is such
that

e 08 .(f) =0 forall (0,k,j) € TP with8(0% ;) < v(r);

o CF\(f) =0 forall (0,k,1) € TC with o(CF,) < v(r).
Suppose that g € C"(I) is a solution of the cohomological equation oy = goT — g.
Then there exists ug ; € C"(M]) satisfying Xug ;= f on M.. Moreover, there exists
a constant C, > 0 such that

lhtg leraapy < Colllgller + 1l i ap):
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Theorem 1.3 (optimal regularity). Let r € R, withv(r) > 0 and let f € C*@ (M).
If there exists uw € C" (M) such that Xu = f on M, then

o 0 (f) =0 for all (0,k,5) € TP with 3(3 ) < v(r);
o C,(f) =0 for all (0,k,1) € TC with o(C) < v(r).

In summary, all three main results provide an analytical background necessary
to fully solve the regularity problem of solving the cohomological equation for lo-
cally Hamiltonian flows. The dynamical component, using mainly renormalization
techniques, the authors left to [5].

If the locally Hamiltonian flow has no saddle loops then for any k£ > 0 the func-
tionals Ckl and 0F o.; generate the same space of invariant distributions. In general,
the former space is a subspace of the latter. Since o(c, k) < ©0(o, k), the condi-
tions involving the functionals 9% ; can be removed. Then our main result has the
following form.

Corollary 1.4. Fiz r € R, so that v(r) > 0. Assume that f € C*® (M) and
g € C"(I) is a solution of the cohomological equation ¢ = go T — g. Then the
existence of u, r € C"(M) satisfying Xug s = f is equivalent to @’;l(f) =0 for all
o€ Sd(yYr), 0 <l <m, and k < myv(r)+ (m, — 2).

Let us mention that local C'*°-solutions of cohomological equations for flows with-
out saddle loops around saddles were studied by Roussarie in [IT]. We should em-
phasize that our results are new (even for flows without saddle loops) because they
involve solutions with finite differentiability, which causes significant technical com-
plications. In this case, Forni has suggested us an alternative strategy potentially
simplifying the complex techniques used in this article.

However, the main advantage and novelty of local tools introduced in this article
is the ability to study solutions in closed angular sectors (so-called semi-solutions),
which makes it possible to apply to flows that have saddle loops. These types of
problems has not been systematically studied before. Under an assumption that
some saddles have (many) loops, for every k large enough the functionals €* o1 gener-
ate less space than that generated by Dk Then some functionals Dk begin to have
an independent effect on the regularity of solutions, but their mﬂuence has less in-
tensity than the functionals Qﬁa ;» even though both types of functionals (for fixed k)
have the same order of regularlty This seems to be a completely new phenomenon,
not previously observed in the study of the regularity of solutions to cohomological
equations in parabolic dynamics.

1.6. Structure of the paper. The paper is organized as follows. In Section
we define one-parameter family of Banach spaces of functions whose (higher order)
derivatives have polynomial singularities at the ends of intervals exchanged by an
IET. We establish their basic properties necessary in next sections of the article. In
Section (3, for any continuous function f defined around a saddle, we define three
types of functions: ¢, #;; and Fy. The map ¢y, is a local version of the function
¢ defined in Section and is necessary to study the local behavior of ¢ near the
ends of intervals exchanged by an IET. The map F is (in a sense) a local solution to
the cohomological equation Xu = f in open angular sectors U,; around the saddle.
The map %, is a covering of F; and is a technical tool for showing basic properties
of the other two. In Section [3] we prove basic properties of #y;, which are used
to understand the behavior of Fy on open angular sectors U,;. In Section {4, using
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the tools introduced in Section [3, we determine precisely the form of ¢y and .7y,
on some angular sectors. Both of these results are then used to prove that F; has
a smooth extension to closed angular sectors U,; and to establish necessary and
sufficient conditions (expressed in the language of local invariant distributions) for
such an extension. Finally, in Section [5] we use the contents of all previous sections

to prove Theorem and [1.3]

2. FUNCTIONS WHOSE (HIGHER ORDER) DERIVATIVES HAVE POLYNOMIAL
SINGULARITIES

In this section we introduce one-parameter family of Banach spaces of functions
whose (higher order) derivatives have polynomial singularities at the ends of intervals
exchanged by an IET. The new spaces simply generalize Banach spaces P, studied
in [4].

2.1. Space C"*P», Fix(0 < a < landanIET T : I — [ satisfying so called Keane’s
condition. Denote by I, = [ls,7a), @ € A all subintervals exchanged by T'. The IET
is determined by a pair (m,\), where A = (Ay)aca € RZ, is the vector of lengths
of exchanged intervals, i.e. Ay, = 7o — lo, and m = (m, m1) is the pair of bijections
me: A—={1,...,d} for e = 0,1 (d = | A]| is the number of exchanged intervals) such
that mo(«) is the item of I, before the translation and 7 («) after the translation.

For every a € A, denote by m, the middle point of I, i.e. my = (I, +r4)/2. For
every p € C*(Ugeq Int I, C) let us consider

polp) =max{ sup [Dg(a)(e — 1)), sup |Dile)(ra — )},
acA z€(layma] TE€E[Ma,ra)

Definition 1. For every integer n > 0, we denote by C™""Fa(U,c4I,) the space of
functions ¢ € C™"™(Uyeq Int I,,, C) such that p,(D"p) < +oc and for every a € A
the limits

Caml(p) = (=1)"C3(D"p) = (=1)"*! lim D™ p(z)(x — 1),

Can(9) = Co (D"p) := lim D" op(a)(ra — )™
exist. We denote by C"*P=C(L,c4l,) C C"*F2(L,cal,) the subspace of functions
o € O™Pa(Uqeal,) of geometric type, i.e. such that

a,— X a,— — a,+ . a,+ —
Cwal(d),n«O) Cﬁl—l(d)’n(gp) 0 and Cﬂo—l(l)’n(gp) Cwl—lu),n(%p) 0.

For every 0 < a < 1 and every integer n > 0, by Lemma 4.3 in [], if p €
C™Pa(Uyealy) then Do € LY(I). Let us consider the norm on C™™F*(U,cal,)
given by

(2.1) lllonsra == 1D%¢ll1ary + Pa( D).
k=0
Recall that, by Lemma 4.2 in [4], for n = 0 the space C"*P+(U,ec4l,) equipped with
the norm || - ||gn+ra is Banach. This gives Banach’s condition also for all n > 1.
Moreover, C" P25 (Li,c41,) is a closed subspace of C"*P+(U,e4l,) for any n > 0.
Let n : Rsg — Rxg be given by n(z) = —zlogz for z € [0,e7!] and n(x) = e~
for z > e~!. Denote by C"(Uyeal,) the space of functions f : I — C such that
[f(x) — f(y)|
n(lz —yl)

1

|flon == meajcsup{ :x,yEInt[a,x#y} < 4o00.
«
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Then C"(Uaeals) equipped with the norm ||f|lcn = || fllzr + |flew is a Banach
space. For every 0 < a < 1 denote by C*(U,e4l,) the space of piecewise a-Holder
continuous functions, i.e. such that

|f(z) = f(y)]
[z =yl
equipped with the Banach norm || f||ce = || fllz: + | f]ce-
For every n > 0 we also deal with the Banach spaces C" ™ (Uyeals), C" *(Uneals)
equipped with the norms

| f|ca ::ma}sup{ :w,yEInt[a,x#y}<+oo,
ae

lellensr = D ID" el + D plen,  llellenra = IID*¢lls + D plce, resp.
k=0 k=0

For every non-natural real number r > 0 we will write C" for ClrJ+{r},
Remark 2.1. In view of Lemma 4.5 in [4], for every ¢ € C%*Pa(U,ecql,) and x €
Int 1,
1 go+2

; +

amin{z — l,, 7o —x}*  a(l —a)|l,]®
| Lo

2min{z — ly, e —

o)) < T+ pale)( )if0<a<

o) < 12 () (10g

It follows that if ¢ € C™*F= for some n > 1, then

m}+2> ifa=0.

22+a maXaeeA |Ia|172a
a(l —a)
p € COD with [[pllonmsren < (7 + 3)pllcnsr if a = 0.

n—1)+(1—a

Y e C( ) with H<,0||C(n—1)+(1—a) < Hg0||cn+Pa if0<a<1

Remark 2.2. For any 0 < a < 1 and any interval J C I, let
pa(p, J) = sup{(min{x — I, 74 — 2})' | (2)| : 2 € J}.

Moreover, for any n > 0 let

”SOHCn+Pa(J) = Z HDkSOHLl(J) +pa(D"p, J).
k=0

In view of Lemma 4.3 in [], if J = (la,la + €] or J = [ry — &,74) with ¢ < |1,]/2,
then for every 0 < b < 1 we have

Pa(¢', J)
(2.2 plo. ) < @l + P )
Let n,n’ > 0 and 0 < a,a’ < 1 such that n —a < n’ —d'. In view of (2.2)),
cn +P, C Cn—‘rPa and HQOHCn«rPa(J) S 1+w||w‘|Cnl+Pa’(J)'

If J C [lo+e1s— €] for some e > 0 then for any n > 0 and 0 < a < 1,
[llen+eacny < llollenti.-

3. LOCAL ANALYSIS AROUND SADDLES

In this section we present a local representation of the flow near singularity. This
analysis is the main ingredient for proving relations between the regularity of the
function f : M — C and higher derivatives of associated cocycle ¢ : I — C. Unlike
previous approach developed for polynomial singularities appeared in [4, §8|, our
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new methods generalizes the way of computing the C""*-norm of ¢, in an angular
sector.

Let m > 2 be the multiplicity of a saddle point. Let G : C — C be the principal
branch of the m-th root Go(re?) = r'/met/™ if t € [0,27) and let 6 and 6 be the
principal m-th and 2m-th root of unity respectively. Then G = G; : C — C given
by G; = 6'G, for 0 <[ < m is the [-th branch of the m-th root.

Let f : D — C be a bounded Borel map where D = D,, is the pre-image of
the square [—1,1] x [—1,1] by the map C 3 w +— w™ € C. We will usually treat
f as a function depending on a pair of complex variables (w,@). The purpose of
this and the next section is to understand the properties of two types of functions
or: [—1,00U(0,1] = C and Fy; : 1,12\ ([0,1] x {0}) > Cfor 0 <1 <m
associated with f, which are crucial in proving the main results of this article. They
are given by

(3.1) gof,l(s):/ %du, ?f,l(u,s):/:%dv.

Then ¢y,(s) = Fri(1,s) for s # 0. We will usually treat .%;,; as a function depend-
ing on a pair of complex variables (z, Z), where z = u + ¢s.

For any 0 < a < f < 1let D(a, ) :== {w € D\ {0} : Arg(w) € (27ma,27p)}.
We denote its closure by D(a, ). For any A C C denote by AY™ the pre-image
of A for the map w — w™. We will also need third type of associated function
Fy : D\ (0,1] x {0)" = €. As D\ ([0,1] x {0}/ = Upeyoy DL, 1), the map
Fy is defined by

Fr(w,w) :== Fpy(w™,w™) on D(L, HL).

Note that Fy.y is (in a sense) a local solution to the cohomological equation Xu = f
in any angular sector D(L, L), Indeed, since dw/dt = mi&™ ! /V, we have

Xu = m(@m_lg—z +wm_1£>/V.

By definition,
0Frvi(#,2) | 0Fpvalz2) _ 0Fpvalu,s) _ (f-V)(Gulw,s)) _ (f-V)(Gi(2))

0z 0z du (w24 82) Eaa
Then for any w € D(L, L),
—m—1 8<92f.v’l(wm,w ) m— 18/f Vl(w W )
m(w — 1w — 0
XFf.V(w,w) = ( O e )
V(w,w)
- m2|w|2(m_1)<837f,v’la(‘:mywm) 4 837f.v,la(;;m,wm)) B me(w w)
N V(w,w) B T
The map F is well defined and smooth on every open angular sector D(#, - ). One

of the most important technical challenges of this article is to answer the question
of when and how the map Fy extends smoothly into the closure D(L, H1).

Some key properties of the three functions are taken in Theorems[3.11] @ and[4.10]
Since their proofs are very technical, long and intertwined, we precede them with a
long list of auxiliary results, which should be regarded as intermediate steps in the
proof of the main theorems.
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3.1. Preliminary calculations. For every r > 0 let .%(r) be the circular sector
L (r) ={(u,s) # (0,0) : u < rls|}.
For any 0 < s <1 and any a € R let
£l 41 i a<0
(s)*=4¢ 1—1logs if a=0
1 if a>0.
Remark 3.1. Note that
b.

e for any 0 < s < 1 and any pair of real number a < b we have (s)* > (s);
e for any a > 1 we have s7%/a < (s)7% < s7%

e for any 0 < a <1 we have s7* < (s)7* < s7%/a;
e for any m > 1 and a € R we have (s™)* < m(s)

am

Lemma 3.2. For every a € R and r > 0 there exist Cy, Cyr > 0 such that

(3.2) /_1 mdv < Co (s for all s € [-1,1]\ {0}

and

(3.3) /“ ;dv < Oy (\/EEENVIZ2 for gl (u,s) € [—1,112 0.2 (r)
' (2 T YT 2 7 7 '

If f: [=1,1]*> — C is continuous at (0,0), f(0,0) =0 and a > 1/2 then
(3.4 |2 o = o)

1 ('U2 + 52)11
Proof. Case 1. Suppose that a > 1/2. If s # 0 then

/u ! dv = |s|'72 /u/ISI ! dt < |s|'™2 /+oo ! dt
(st S (D) T o (1)

which gives (3.2)).

If s =0 and v < 0 then

(3-5) / 9 2a dv = / v dy = (|u|1_2“ — 1) < |u|1—2a'
|

1 (v +s?) ul 2a — 1 2a — 1

Let us consider the function v : (—oo,+00) — Ry given by v(z) = [* m dt.
If s # 0 then [* (v + s?)"*dv < |s|"2v(u/|s]). As
/ 2 1)~@ 1
lim — V() = lim (" +1) = ,
v——oo L (32 4 1)1/270  am—oo (1 = 2a)2(2? + 1)~ 12 2a—1

XL

we have v(r)/(z?+1)Y/%7% — 1/(2a—1) as x — —oo. Therefore there exists C,, > 0
such that v(z) < C,,(£31)27 for & < r. It follows that for every (u,s) € ()
with s # 0,
! dv 1-2a 1-2a ( (u/s)®+1\1/2-a u+s2\1/2—a
/_1 T < sl (u/ls]) < Copls| ™ (*75) =Cor("5=) ")
which (together with (3.5))) gives (3.3).
Case 2. Suppose that a = 1/2. If s # 0 then
/“ U+ Vu? + s?

(02 + s2)"V2 dv = log < —2log f,

-1 —1++V1+s%2 3
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which gives (3.2)). If s =0 and u < 0 then

(3.6) / (v? + %) Y2dv = —log |ul.

-1

Moreover, for any (u, s) € . (r) with s # 0,

/u(v2+82)1/2dv = log 1+ V145 < 1Ogm
-1 —u+ VUt s? TV ul 48?2

which (together with (3.6))) gives (3.3).
Case 3. Suppose that a < 1/2. If 0 < a < 1/2 then

u 1 9
2 Zfad <2/ 72ad: )
/1(1) +5°)%dv < Ov V=T

If a <0 then

/ (v? + 8%)"*dv < 217,

-1

which gives and (| .

Last claim. Suppose that f : [-1,1]> — C is continuous at (0,0), f(0,0) =0
and a > 1/2. For any € > 0 choose 0 > 0 such that |f(v,s)| < e if |v],|s| <. It
follows that if |s| < ¢ then

0 1 up
el [ e | e

1
1 L) f s
—d 2 P dv
5/1<v2+s2>a M e

< eCafls) ™ + 2|l fllsup{lal) .

IN

This gives (3.4)). O
Remark 3.3. For z = u + vs, the followings hold:
0 a 0 0 o 0
(37) 5o ) ()
o 1[0 0 o 1[0 9,
(3:8) Fr <%_0_) %‘5(%“%)
For any ni,ns, a1, as € Z>o and any f € C"(D) (n = ny + ngy), we will deal with
some auxiliary functions F,, 1, .a1.a05 Gnynsaras © =1, 17\ ([0, 1] x {0}) given by
_ o f g a2
Foinssa1,as (Z7 Z) = Fn o100 (u 8) awnla—»@ (G(u S)) ’ G(uv S) G(u, S) )

u

Gnl,nz,a1,az(zvz> = Gy na,a1,02 (u,s) = / Fry no 01,02 (v, 8)dv.

-1

The functions Fy,, n,.01,a2 a0d Gry ng.a1,0, Will be called F-type and G-type functions.
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Lemma 3.4. For any f € C"*(D) we have
8Fn1,n2,a1,a2 o 1 ay

3.9 Pt my ey — L
( ) Oz m ni+1,n2,a1+m—1,a2 m n1,n2,a1+m,az:
(3 10) aFnl,nz,al,az _ 1 F . a2F
: = - ) + ) ) + -1 3 ) ) +
87: m ni,no ai,a2+m m ni,nz,ai,as+m;
oG, 1 1
1,12,01,02
(311) Oz = §Fn17n27a1702 + m (Gn1+1,n2:al+m*1»a2 - alGn1,n27a1+m,a2)
1
- Qm(Gn1,n2+17a1,a2+M—1 - a2Gn1,n27a1,a2+m)’
oG, 1 1
1,12,01,a2
(3'12) oz - éFm,nz,ahaz - m (Gn1+17n2,a1+m—17a2 - ale,nmal-&-m,az)
1
+ 2m(Gn1,n2+1,a1,a2+m—1 - a2Gn17n2,a1,02+m>‘

. _ el —1l-m Yel .
Proof. Since % = %Gl ", % =0, % = %G and % = 0, we obtain

aFnl n2,a1,a2 1 an1+n2+1 Val —a —m a2
5= BTG (G G) GG
a; Omtn2 _ o m——a2
B Elawmawmf@’ G)- GG
1 ay

= EFn1+1,n2,a1+mfl,a2
We also verify (3.10) in the same manner.
To obtain (3.11)), in view of (3.7) and (3.8), we get

G, mparay 1 (0 0
—~m,n2,41,82 _ — <— — L_> / Fnl,ng,al,a2(078) dU
-1

ni,ngz,a1+m,as

0z 2 \ Ou Js
1 Lo [
= §Fn1,n27a1,a2 - 5% /1 Fnl,n27a1,(l2 (U, 8) dv

1 1 /0 0
:_anala = 5 T A= Fnlnaa s dv.
9 nm2, ,2+2/1 (82’ 82’) M2, 1,2(U 8) v

Therefore, in view of (3.9) and (3.10)), this gives (3.11]). Likewise, we repeat the
same for (3.12]). O

The quantities

_n1+n2—i—a1—i—a2 d(G )_n1+n2+a1+a2
) ni,n2,a1,a2) —

d(Fnth,al,aQ) - m m

we call the degrees of the functions Fy,, 1, 41,0, a0d Gy 1g.a1,00- It view of (3.9)-(3.12)),
we have the following conclusion.

-1

l
Corollary 3.5. For any (Iy,13) € ZQZO the partial derivative % s a linear
combination of F-type and G-type functions of degree d(Gn, nya1.a2) + 1, where | =
li+13. Moreover, each component of the linear combination is of the form Fu nr ot ay

and Gy ) ot 0y Such that n < nj +nhH <n+1.

Lemma 3.6. Let n,€ Zso. Assume that f € C*"(D) and D’ f(0,0) = 0 for
0<j<k. Then

kvn

|Fn1,n2,a1,a2(zaz)| S ||f||Ckvn|Z|_d(Fn1’n2’al’a2)+ mo.
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Moreover, there exists C' = Cy, aym i > 0 such that
_ kvn
(3.13) |G mgsansan (2, 2)| < C fllomon (|Sz[) = Cmmaena) 5

for any z € [—1,11*\([~1,1] x{0}). For every r > 0 there exists Cr. = Cay aymkr > 0
such that

kvn

(3.14) |G naar,az (2, 2)] < Crll fllewon (2] /v/2) 7 M Cramaenea 5l

n[—1,1>N.L(r).
If additionally n < k and D*f(0,0) = 0 then

| ni,n2,a1, a2( )| = 0(|\SZ| d Fnl 2 a2 m) Zf < d(Fn17n27a17a2) and
Gz anaa (2, 2)] = 0((|Sz) =4 Crumaereatin) if £ < (G naan,a0)-
Proof. As DI f(0,0) =0 for 0 < j < k,

(3.15)

anf — kvn (kvn)—
O™ Oz (w,@)| < [[D"" fllcolw]
Hence
+ao+n kVn kVn
| o msar.an (2, 2)] < [ Fllewvn 2]~ 750 = || fllgwwn 2]~ Fmmzena) #5525,

If dp = d(Fn1,n2,a1,a2) = W then

u _ +k\/n

u d
CrrmnaranE D] < | 1 Fursnan (0 )|do = [[fllowve / (0 + )~ .
—1

-1

As dg = d(Gpyngar,as) = dr — 1, the inequalities (3.13]) and (3.14]) follow directly

from Lemma

Suppose that 0 < n < k, f € C*¥(D) and D’f(0,0) = 0 for 0 < j < k. Then

‘awfing@w (%@)} = 0(|w|k_"). Hence

a Qa: n k
Fusmasanias (2, 2)] = ol[2| 577 0) = o(|9z|~1+0) if — < dpe.
Moreover,
_ : ! £(v,s)
|Gt nnsan,02 (25 )| < / | Fus nzsan a0 (0 8)|dv = / dgt1- dv,
-1 -1 (2 4 g2) T
where lim, g 0,0 &(v,s) = 0. If dg > % then the second line of (3.15) follows
directly from ([3.4]). O

3.2. Higher derivatives of functions .# and F'. In this section, using the results
proved in Section [3.1] we study the behaviour around zero of the higher order partial
derivatives for the functions .# I and Fy. For any a € Z>¢ and any bounded Borel
map f : D — C let us consider .F = .7 = Fp; : [—1,1)*\ ([0,1] x {0}) — C given
by

¢ f(Gi(v, )

= dv.
1 (V24 8%)m
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Lemma 3.7. Assume that f € C*"(D) and D’ f(0,0) = 0 for 0 < j < k. Then
there exists C' = Cypnp > 0 such that for every (ni,ng) € ZQ>0 with ny + ngy = n we
have -

O"F(z,Z o

(3.16) ﬁ < O\ fllewvn (|S2)) =Gt =D=m) if Sz £ 0.
For every r > 0 there exists C, = Cypir > 0 such that

O"F(z,Z (n—1)— %
311 | ZZED < plown(lel VDI on ()
If additionally 0 < n < k and D*£(0,0) = 0 then

8”%’(,2,2) —(22 4 (n—1)—£) k
Proof. By definition, .# = Gogq4. In view of Corollary , the partial deriva-
tive % is a linear combination of F-type and G-type functions of the form

Fn/ b a’1 o, and G 1 nlyata, Such that their degree is 2a/m+n—1and 0 < n :=
n} +nf < n.

Suppose that n < k. Then (3.16) and (3.17) follow directly from Lemma[3.6] The
same arguments combined with (3.15) yield (3.18)).

Suppose that n > k. Then k < n’V k < n. Therefore, || f||gnvi < ||f|lon and for

'Vi

any 0 < s < 1 and d € R we have (s)~™" %" < (s)~% . In view of Lemma [3.6| this
gives (3.16]) and - O

By change of coordinates, we obtain the bound of higher derivatives of the map
F=F;:D\([0,1] x {0})"/™ — C given by Fy(w,©) = Fzi(w™, @™) on D(L, L),

Lemma 3.8. Assume that f € C*Y"(D) and D7 f(0,0) =0 for 0 < j < k. Then for

any r > 0 there exists C,.,, > 0 such that for every (ny,ng) € ZZZO with ny +ng =n,

O"F(w,w)

Owm g

forw e DN .L(r)V/m.

Proof. Recall that F(w,w) = # (w™,@w™). By Faa di Bruno’s formula,
OF(w,w) d"F(w™, ™)

(3.19) Crnll fllervn (1 + [log w]])|w] 2 Hr=mn0

Owmow™  dwmdw™
T mam o mmo
= o™ - —3\p; —m—j\4;
Z anz‘plaz‘(ﬂ y W ) H(w )] H(w )J7
7=1 7j=1
where the sum is over all ni-tuples p = (p1, ..., pn, ) and no-tuples ¢ = (q1, - - -, Gn, ) of

non-negative integers satisfying the constraints Z;‘;l Jjpj = n1, p; = 0for j > niAm
and » 72, jg; = na, ¢; = 0 for j > ny A'm, and we use the notation |p| = > 71, p;
and gl = 372, q;. Let

ni
P = {|p‘ : ijj = N1, Pj =0 fOI'j >n1/\m}
j=1

Q = {|Q| : quj = Ng, g, :OfOI"j >n2/\m}
=1
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Then
anF(w7w) a‘ﬁ|+|‘ﬂﬁ m —m m|p|—n1—m|g—n2
dwm " Z P g gz @ ) “
p,q
oPriz
/ m —m mp—ni-—mqg—n
= 2 (@) W,
Y2
o 0zP0z1
In view of Lemma [3.7/ and Remark for every w € DN . (r)¥™,
oPt1.
m m 2m (2a+(p+q—1)m—k)
T WD) < MO fllcn ol YD)t
Therefore, taking [ = p +¢q € P+ Q, for every w € DN .%(r)V/™,
8”F<w7w) 2m a m mi—n
(3.20) oo | = Y mG| fllgwn(lw/ *¥/2])~Cort=Dm=B iz,

leP+Q
Moreover, for l = p+q € P + () we have

niAm na/Am
== > =)oy + Y, (m -
j=1 i=1

If 2a + (I — 1)m — k > 0 then
(o) /2]y~ CH+DmB = — O [~ n=)
If 2a + (I — 1)m — k = 0 then
(Jw/ *R/2[)~Cer=Dm=Rmi=t = O((1 + | log |w]| ) w|~GeFr=m=H).
If 2a+ (I — 1)m — k < 0 then
(o) /Z) =D i — s — O(1),
In view of , this gives (3.19)). O

3.3. Preliminary results necessary to define invariant distributions. For
any pair of integers (a1, a2), let Faya0 = Fhyap : [-1. 12\ ([0,1] x {0}) — C and

Gupay = O 4, 0 [—1,1]2\ ([0,1] x {0}) = C be given by
Forax(:2) = Faras (1 5) = Gilu, ) Gulu, 5)
By a2(2,Z) = By 0, (u, 5) = 713a1,a2(2}78)d1}.
Then & , = 0@ )@l  for every 0 <1< m. As

Go(—u — 15) = 0yGo(u + ts) and Go(u — 1s) = 02Go(u + 1s) for s > 0,
it follows that

g2 @0 (1 |s]) if s e (0,1]
3.21 & = i oo ’
(3:21) (1) = { ol (1, ]s]) if s € [-1,0)

ai,as
and

p2laz—a1) g0 (u,|s]) if se€(0,1]
399 & (us) = 0 L ’
(3.22) APACE) { gD g0 TS i s € [-1,0).

al,a2
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For any set A C R? denote by C“(A) the space of complex-valued real-analytic
maps on A which have analytic extention to the closure A. If f,g: A — C are such
that f —g € C¥(A) then we write f = g+ C*¥(A). We denote by C;”™ the space of
functions f : [—1,1]*\ ([0, 1] x{0}) — C such that w + f(w™,@w™) has a real analytic

extension on D(L, L), For example, Fq, 0, € C;""" if a1, ay are non-positive.

Lemma 3.9. For any pair of integers (ay,as),

(3.23) a, &' (1,8) + ay®' (1,s) € C¥((0,1]) N C¥([~1,0)).

a1+m,a2 ai,a2+m

If a1, ay are additionally both non-positive then
(324) (11621+m’a2 + a2(’5217a2+m S C[w,m‘
Proof. Note that

Sm,aQ(z?E) - gahaz(_l + ng» —-1- L%Z) = Sahaz(u? S) - gahaz(_l? S)

“ o “ o 0
— /_1 %Sahaz(v,s) dv = /1 (@ + £> Sar.as (v, 8) dv

u a o
= — /1 (Egaﬁ-m,az(v, S) + Egal,ag—‘,-m(v, S)) dv

1 _ —
- _E(a1®a1+m,a2 (27 Z) + a2®al7“2+m<z’ Z>>

It follows that
a1®a1+m,a2(17 5) + a2®a1,a2+m(1, S)
.

=m(Gi(=1,5)"G)(=1,s) ~—G(1,8)MG,(1,s) ).

Since the maps [—1,1] 5 s — Gi(—1,s5) € C, [0,1] 2 s = Gi(1,s) € C and
[—1,0) 2 s — G(1,s) € C are analytic and the latter has an analytic extension to

[—1,0], this gives (3.23). Moreover, for any w € D(L, &),

184, 4m,as (Wmv wm) + a284; a5 +m (Wmv wm)

= m(Gi(—1 +1Sw™) G (— 1+ Swm) 7 — Giw™) " Gylwm) )

= m(Gy(—1 4 (Sw™) "G (=1 + Sw™) " —w T mme).

Since —aj, —as are non-negative integers, all functions on the RHS are analytic
which completes the proof. O

As a conclusion we obtain that for any integer k # m,
QS0,1@(17 8)7 ®k,0<17 8) € Cw((07 1]) N Cw([_la 0))

and for any integer k < m,

(3.25) BGo i, Bro € G
Moreover,
1 1 1/]s|
1 v+ LS 1
onltes) = [ oo = [ st [ s

= 1sgn(s)(arctan(1/|s]) — arctan(—1/|s|))

= 1(arccot(s) — arccot(—s)) + vsgn(s)m.



SOLVING COHOMOLOGICAL EQUATION - PART I. LOCAL OBSTRUCTIONS 19
Hence, & ,(1,s), B,,0(1,s) € C¥((0,1]) NC¥([—1,0)). Using (3.23)) again, we have
(326) st’_lm(l,S), QS_lm,k(l,s) c Cw(<0, 1]) N Cw([—l,O)) forall k € Z,1 € ZZO'

3.4. Invariant distributions 8;“ and their effect on the regularity of .7 and
F. Foreverym >2,0<[1<m,k>0and f € C*(D) we deal with three associated
functions %, ¢;; and Fy. Recall that Zp; : [—1,1]*\ ([0,1] x {0}) — C is given
by
_ “ f(Gy(v, s
Fia(er9) = Fpalws) = [ LA
—1 (V2482w

wrr 0 [—1,00 U (0,1] — C is given by ¢ri(s) = Fi(l,s) and Fy = D\ ([0,1] x
{oHY™ — C is given by Ff(w,w) = Fs,;(w™,w™) on D(

For every k > 0 and let us consider functionals 8;“ : CHD) - Cfor 0 < j <
kA (m —1) given by

(m—-1)—35
( . ) 7 (f) - Z ((kfj):n(mfl)) &uﬂ'*"m@wk’j*”m( ) )

0<n< k=i n
- - m

Comparing with (1.4]), functionals 8;“ will play a key role in understanding the
meaning of distribution df ;. If 0 < k < m — 2 then 95(f) = (’f)ak—f(o,o). If

7/ Ouwl Bk —I
k > m—1 then as we will see in the following lemma, only m — 2 functionals matter.
More precisely, 8]'?‘ is irrelevant if j =m — 1 or j = k — (m — 1) mod m. Note that if

k = m — 2modm then, in this exceptional case, we have m — 1 relevant functionals.

Recall that for any 0 < a < 8 < 1let D(a,8) := {w € D\ {0} : Arg(w) €
(27, 2m5)}. We denote its closure by D(«, ).

Lemma 3.10. Suppose that [ € Clw, @] is a polynomial of degree at most k such
that 9] (f) =0 for all0 < j <k and 0 <i < jA(m—2) withi # j—(m—1) modm.
Then

Fy € CY(D(L, %)) and ¢s, € C¥([—1,0)) N C¥((0,1]) for 0 <1 < m.

!
Moreover, for any n > 0 there exists a constant C;' > 0 such that
(3.28)  [Ftllcnp(L )y < Cllfllorpy and [[epillen-rouom < CEllfllesm)-
Proof. First note that (3.28)) follows directly from the first part of the lemma. Indeed,
[ FpeC?D(L, 2y and f — ¢z € C¥([—1,0))NC+((0, 1]) are linear operators
on a finite-dimensional space, so they are bounded. This gives (3.28]).

By assumption, f =, f; with

_ 1 j) o f o
W, W) = — . TO,OU)ZW] ‘.
f]( ) j' 0;] (Z awlaw] z( )

We will show that if &/ (f) = 0 for all 0 <4 < jA(m—2) with i # j— (m—1) modm,
then

Fy, € C¥(D(L, Hh) and ¢y, € C¥([—1,0)) N C¥((0,1]) for 0 <1 < m.

This gives our claim.
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Note that
1 AN
yf'l:*2(> 37 (0, 0B 1) —im-1) (i) = Zf
s | ia—j—i m—1)—i,(m— Jj—i i

s Owidwi— 0<Z<m

where

L j o f -
61'(27 Z) - : (Z + nm) awi—i—nmaw(j*i)*nm <O7 O)@(m—l)—i—nm,(m—l)—(j—i)—l—nm(27 Z)'
0<n<i=t
Forevery 1 <n < ' wehavea; = (m—1)—i—nm <0and ay = (m—1) — (j —

i)+ (n—1)m <O0. Inv1ew0f-

((m—=1) =i = nm)Bm_1)—i—(n—1)m,(m—1)—(j—i)+(n—1)m
+((m=1) = (G =)+ (n = D)m)S n-1)—i—nm,(m-1)—(-i)+nm € CT",

SO

() (m—1)—i—nm,(m—1)—(j—i)+nm

((m—l)—i . n)
- ((J'*i)*(mrfl) " 1))@<m—1)—z’—(n—l)m,<m—1>—(j—z’)+<n—1>m +G7,

It follows that for every 0 < n < %7

(329) 6(m—1)—i—nm,(m—1)—(j—z')—|—nm = Wﬁ(m 1)—i,(m—1)— Cwm

It follows that for every 0 <¢ < m — 1,
& = az‘j(f)ﬁ(m—l)—i,(m—l)—(j—i) + ™.

If i = m — 1 then, by (3.25), &(n_1)—i(m-1)-(—)) € C;7" s0 & € C7". If i =
j— (m—1)modm then (m — 1) — (j — ) + nm = 0 with n = [L] = jmiz(m=l),

Again by (3.25)), &(n_1)—imnm,(m—1)—(j—i)tam € C;7"". In view of (3.29)), it follows
that &(,_1)_i (m-1)—(j—) € C;”" and again & € C;”™. Hence

1 j w,m
(330) ﬂijl == Z ai](f)@(m,l),i7(m,1),(j,i) + Cl T

J: 0<i<jA(m—2)

i#j—(m—1) modm
As 0/(f;) =0fori#m—1andi+# j— (m—1) modm, this yields Z;,; € C;"
and Fy, € C ( (L, EY).
Using (3 instead of (3.24)), the same arguments show ¢y, = Fy (1,s) €

(-1, )) C=((0,1)). O

We finish this section by showing a smooth extension of F; on angular sectors.

Theorem 3.11. Let k > m — 1. Suppose that f € C*(D) and 6f(f) = 0 for all
0<j<kand0<i<jA(m—2) withi+# j— (m—1)modm. Then for every
r > 0 the map Fy on every angular sector of DN ()™ has a C*@k) _egtension
at (0,0) (recall thate(o, k) =k — (m — 1) +n). Moreover, there exists C, > 0 such

that || Ft || ez (prseryrrmy < Crll fllen -
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Proof. Let &/ be an angular sector of DN .7 (r)"/™. Let us decompose f = f; +¢;

with ‘ 5
fer(w,@) Z Z () w&iﬂ L (0,0) .

0<j<k o<1<3
Note that the operator C*(D) > f + fo, € C*(D) is bounded. By Lemma m
Fy_, is analytic and for every n > 0 there exists C}' > 0 such that || Fy_, ch(p%,z%)) <
Ce|l fllorpy for every 0 < I < m . On the other hand, D7(ey) = 0 for every 0 < j < k.
In view of Lemma , if (ny,ng) € Z2, is such that ny +ny =n =k — (m — 2) then
for every w € &,
oF,, (w,)
Ow™ O™

As |DFm=DF, (w, @) < Crallesllormy(l + [loglwl]), D¥-"=VF, on & has a
continuous extension on &7 = &/ U {(0,0)} with the modulus of continuity bounded
by a multiplicity of 1. Therefore, F¢, can be extended to a Ck=(m=D+1_function on

o and | Fe llci-nnin@) < Cllefllonp) < C'llfllexm) As Fy = Fy, + Fe,, this

— ef 9
gives our claim. U

S Cr,nHefHCk(D)(l + |]0g |w||)|w|(k—n—(m—2))/\0

4. LOCAL ANALYSIS OF ¢y

This section is devoted to computing a limiting behavior of higher derivatives of
¢y related to singularities on angular sectors of D. We introduce a family of func-
tionals 4" which are responsible for the asymptotic behaviour of ¢;; around zero.
The new result is inspired by the approach for multi-saddles (related to polynomial
singularities) in [4]. The main results of this section (Theorem |4.7)) plays a central
role in proving Theorem [I.1] in §5] as well as is applied to extend the regularity of
F} (obtained in Theorem [3.11]) to the closure of any sector D(L, L),

m

4.1. Preliminary properties of &,, 4,(1,s). Firstly we present limiting behaviour
of ;;L &4, 4y (1, s) around zero. We show that for large enough higher derivatives their

asymptotic is polynomial with a weight factor established by the Beta-like function
9. This is further used in evaluating asymtotics of D", in

Note that for any pair of integers aq, ao,

d 2ua
_®a1,a2(1a 3) = - 1®a1+m az(l 3) + Cw((o 1]) N Cw([_l’ O))
A ds m
(4.1) 2/,(1
2

=~ = Guaprm(1,8) + C*((0,1]) N C*([~1,0)).
Indeed,

d “d “ 0 0
£®al az(u S) - /1 %gal,az(u S)dv - /_1 L (az a-) 3a1 a2 (U S)dv

v aq a9
= /_1 L <_Esal+m,az <U7 5) + Egal,aﬁm(v’ 5)) dv

L
= E(_alﬁaﬁ-m,@ (u,s) + a26a1,a2+m(ua 3))

In view of (3.23)), this gives (4.1)). It follows that for every n > 1,

d" w

o Buna(1:5) = (20" (7 )Our s (1,5) + C(0. 1) N C*(-1,0)

(42) -
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and

d ay (o
(4.3) dsn G0, = L' Z ( > <TL _mj) ®a1+jm,a2+(n—j)m‘

0<j<n
Suppose that ay, ay are integers such that a; + as > m. Then for every s € (0, 1],

1
621(12( )—/ GQ(U-I—LS)_alGO(U-f-LS)ianU

1

a ao)—m 1/5 —a
— Go(z + 1) " Go(x + 1) “da.
—1/s
Therefore,
lim &0, L (Ls) = B2, %) = / Golz + 1) Golz +1) “da.
s—0+ m’ m R
Note that, by change of variables,
™ ebwt
a2y — |t
%(m7 m) /0v Sinfal,:a2+2t
and for 2 22 & 7.,
l et g re it M-
0 sin~TwErZp QWWTQ% L(a)r(e) -

For any pair z,y of real numbers such that x,y ¢ Z<o and z +y & Z<; let

15 (y—z) W) M +y—1
me'z me'z x+y
%(I7y) = T —2 = x —2 ( ) 7é 0
2702z +y — 1)B(x,y) 277 ['(z)l(y)
Note that
(4.4) B(x,y) = By, ) = e "V IB(z,y).

By (3.21)), for any pair of integers ay, as such that a; +ay > m and 2,22 & 7,

a1+“2 2l(az—a a1 a
(4.5) Jim s (L) = 61 )
) a1tag—m 2 21+1)(az—a a1 a
Tim [s]™ 0, (L) = 05770V (0, 2),

In view of (3.26)), if %2 € Z<y or %2 € Z<, then the limit is zero. For this reason, we
extend the definition of the function B by letting

(46) %(I,y) =0ifx € ZSO ory € ZSO‘

Lemma 4.1. Suppose that a = a1 + as > m. For every 0 < r < 1 there exist
pE, 0 € C¥([0,7]) such that if 0 <u <1 and 0 < |s| < ru then

a7y Conan V=0 (B I + 0% (sl) +u 0 (D) 5> 0
By a1 8) =05 (B2, 22575 o (I |>+u“ (5 s <o
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Proof. In view of (3.22)) and (4.4)), it suffices to show the first line of (4.7]) for [ = 0.

By change of variables used twice, for every s,u € (0, 1],

u/s

621 a2(u, s)=s" S / Go(z 4+ ¢) " Go(x + L)ianl'

—1/s

Cam +o0 —1/s s
= / / / GO (x+1) " "Go(x +1) “dx
a=m o ([ (*) ()
=5 TB(Y, @) 4w / 2 ldt et
s R ( | g | ),

m 0
where &4 : R — C, £.(t) = —Go(£1 4 1t) ™ Go(£1L + ¢t) ~ is an analytic map
with the radius of convergence at 0 equal to 1. Then for every 0 < r < 1 let
S soleE|r™ < 4o such that Y, ., it tends to &i(f) uniformly on [0,7]. As
T, -

P
t2 S Zcit" Z cEt U451 tends on [0, 7] uniformly to giig—ico-
n>1 n>1
It follows that
e e -, . [ s
§ T m —a " '
/0 2 Z Z n+.+—1
n>1 nz1 m

o s e
Since 7,5 ex [ < +00, the map s'~w [; (git(;?—io)dt € C¥([0,7]). Moreover,

() o (E:(t) — )
i tzfidt——jts /O—dt,

21 oo

s0 £4(s) = stm N fj(? dt € C¥([0,7]). As

B, (0, s) = s~ TB(, %2) 4= (s/u) + € (s) i 0 < sfu <

ai,as

this completes the proof of (4.7)). O
By definition, for every natural number n if z,y ¢ Z and @ +y ¢ Z<, then
(4.8) 20)"(V)B(z,y +n) = ("B, y) = (20" (7)) B(z + n, ).

We can extend again the domain of the function 8 by adding the pairs (z,y) such

that x,y ¢ Z and v+y € Z<;. For every such pair we let B(z,y) = “;ﬁ;y:;) FIS?;;%@I)),

O
") = T =

where we adopt the convention I'(0) := lim, o 2I'(z) = 1 and I'(—

1
D)

(4.9) (CH)B(z +n,y—n) = (1" (T2 B(z,y).

The extended I'-function satisfies I'(z + 1) = z['(z) for all x € R\ {0} and I'(1) =

I'(0) = 1. It follows that (4.8]) holds even when x +vy +n € Z<;.
Finally note that, if z +y = 1 then we also have

for any n € N. Then for any n € N we also have

2rerm(y—1/2)

(410) By = 57— )

— _2L€”Ty SlIl(?Ty) — 1 2L7l'y 1 —I'_ eLT((y J,‘)
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Lemma 4.2. Suppose that a; + ay = m. There exist p*, o= € C¥([0,1]) such that
for all0 <u <1 and 0 < |s| < u,

(4.11)

G "

—~

£

z
I

0y 2~ B (%, 2)log |s|+log utpt(|s])+ o (E)) if s > 0
621’(12(% 8)29(()2l+1)(a2—a1)(_%(a1 a2>10g| |+9a2 U og u+p- (l |)+Q (%l)) if s < 0.

Proof. In view of ([3.22)) and (4.4)), it suffices to show the first line of (4.11]) for [ = 0.
By change of variables, for every u, s € (0, 1],

dv

UV — LS

BN Go(z+1) @
u Go(v + 1s) 1 u/s ((Go(ac—ﬂ)) B 1>
= — | —1| ——dv= dx.
0 Go(v + ts) v — 1S 0 T—1

It follows that ¢ (u,s) = ¥(s/u), where

(W) 1 (Goium)“l —1
Py = L \Gamm) 71 G 1

x? 1/x— x tx— 1

Y(u,s) == /0“ Go(v + 15) " Go(v +15) dv — /Ou

Go(14wx)
Go(14wx)

Hence 1 € C*(R). Moreover,

u 1 u
/ dv = / LLssz = log Vu? + s — log s + varccot(s/u).
0 0

al ~
As the map x — ( ) —1is real analytic and vanishes at 0, ¢’ is also analytic.

v — LS v2+ 5
Hence

/ Go(v +18) " Go(v + 15) —dv = —log(s/u) + o™ (s/u),
0
where ot (z) = log v/1 + 22 + 1(z) + varccot(z) is analytic. In particular,

1

(4.12) / Go(v +18) " Go(v +¢s) dv=—logs+ o7 (s).
0

Since

0 Cas 1 .
/ Go(v 4 ts) " Go(v+1s) dv= / Go(—v +1s) " Go(—v +1s) dv
0

-1

and Go(—v + 1s) = 0yGo(v + 1s) if s,v € (0,1], we get

0 Can 1 .
/ Go(v +15) " Go(v + 15) —dv = i~ / Go(v +18)"?Go(v+1s)  dv.
0

-1

In view of (4.12)), this gives
60 (u,s) = —(1+ 605" logs + logu + 6>~ Vo*(s) + o (s/u).

Since, by (4.10), 1+ Héaral 14 em(m—m) = B(%, 22) which gives the first line

of (11). 0
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Lemma 4.3. Suppose that a = a1 +az <m and %, %22 ¢ 7. If © & 7 then for every
0 < r <1 there exist p=, 0t € C¥([0,7]) such that sz <u< "1 and 0 < |s| < ru
then

®! us:HZZ(az_al)‘Bal o2 e sN+um EY)ifs >0
1) Sl RO B 4 (0 ()

Bl (u,s) =057 D) (g (a1 a2y 6| 55 4 ([s]) 4u R o (B)) if s < 0.

If & € Z then there exist p*, 0= € C*([0,1]) and cy € C such that if 0 < u <1 and
0 < |s| <u then

Bl (11,5) = 05 (= B2, 2[5 logs]

ai,a2 m’

+esls T logu+ gt (Is]) + w7 0" (B)) if s > 0
(4.14)
B 0y (15) = O (- B (21 22)[5] 5 log s

a1,a2
+c_|s|"7 logu+ p~(|s]) + u%g_(%» if s <O0.

Proof. In view of (3.22) and (4.4]), it suffices to show the first line of (4.13]) and
(4.14)) for I = 0. Let n = [=2]. By (4.3), for every k > 0,

dk : —% —22
d_ a1 az — Z k' ( j >(k‘—j) Q§a1+1ma2+(k —jm

0<5<k

A direct computation shows that if a = a; + as < m and u € [0, 1] then

(umfa

It follows that if k < ™~¢ (i.e. k < n) then there exists ¢t 1, cro € C such that

m

&0 (u,0) =

ai,a2

+ 60527 ").
p—— o ")

dk m—a
(415) W@gl as (U, 0) = Ck,luTik —+ Ck.0-
If % ¢ Z then for any 0 < j <n we have a; + jm +ay + (n — j)m = a + nm > m.
Hence by Lemma [4.1] there exist pf, o € C*([0,r]) such that for all 0 < u <1
and 0 < s < ru,
d" .o +
0, 15) = 7 (5) "5 g ()

2 e (_'E) () B 43— s

0<j<n J

If & € Z then n = "-% and a; + jm + az + (n — j)m = a +nm = m. Hence, by
Lemmau thereemstpn,gneC”([O 1])suchthatfora110<u<1and0<s<u
dTL
40 _ ot +(s
60, al9) = 1 (5) + 01 (2)
n =1y (T ) (— B2 g )] log u).
w30 ey (T () (B8 - logs +logw

0<j<n J —J
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By (4.8)) (and its extension in the integer case),

Y n!(—1)"—f'(_.%> (n__%)%(% +J, 2 +n—j)

0<j<n J J
n\(L+n-—2 L4n—2
=(=1/2)" ! m P(U 22) — (_1)pl( ™ Mo a2y
i S () (T me = o (7w
0<j<n
Therefore, in the non-integer case, for all 0 <« <1 and 0 < s < ru,

dn m—a m—a
80, (u,5) = pl(s) +um Tor(2) + (=)l (CERT ) B (w az)g"

dsn ai,a2 n
In the integer case, for all 0 <« <1 and 0 < s < u,
d'f‘L

0, (5) = g (5) + 0 () — niB(2, ) log s + ¢, log .

Since

d* d* S g
&Y (u,8) = —62  (u,0) —i—/ &Y . (u,t)dt for all 0 < k < n,

dsk a2 dgk  aaz 0 dghk+1 T anaz
using the formulae for £26°  together with (4.15) and induction, we obtain (4.13)

and (4.14). d

Remark 4.4. To summarize, by Lemmas [.1], [£.2] and [£.3] for any pair of integer
numbers a;, ag such that & 92 ¢ 7, if =0 ¢ 7. (q = a; + az) or =2 € Z( then

m’m

Bl . (1,5) = 6p 2 g a2y 5| "5 4 0<((0,1])

Ol as(1o8) = 65" TV TIB ()| 4 C2([-1,0)).

ai,a2 m’ m

(4.16)

If mT;a € ZZO then

win  Cmell)= —05 T (%, 22)|s| " Log |s| + C((0, 1])
| 8, (1,5) = =g (a @) 5552 Jog |s] + C%([~1,0)).

ai,a2

Indeed, in the non-integer case, we obtain the analyticity of the remainder only on
intervals [—r, 0] and [0, ] for any 0 < r < 1. Nevertheless, for any choice of integer
a1, az, the function &) , (1,s) is analytic on [r,1] and [—1, —r] for any 0 < r < 1.
This gives our claim.

4.2. Evaluation of asymptotic factors for ¢;;. The behaviour of higher deriva-
tives of ¢y, at zero is evaluated by linear combinations of invariant distributions 0¥
For this reason, we define a list of new functionals 6} : C*(D) — C for k > 0 and
0 <1 < 2m given by

(gzk(f) _ Z QO(QJ )%(( WIL) J)( l)m(k J))a;;(f)‘
0<j<kA(m—2)
j#k—(m—1) mod m

Comparing with (1.5)), functionals 4} play a key role in understanding the meaning
of distribution €7 .

From now on, we adopt the convention (2) = lim,_,g ( ) Jx =

T (—1)"’1

n
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Theorem 4.5. For any k > 0 let n = f%] and b =n — w Suppose that

f e C™I)(D) is such that 87 (f) = 0 for all0 < j < k and 0 < i § JA(m—2) with
i#j—(m—1)modm. Then ¢;; € C">([—1,0) U (0,1]) and there exists C' > 0
such that [[pgillcnes (21,0)000,1) < Cllfllcrvensnpy. Moreover, for every 0 <1 <m,

. b1 ynt1 _ n+1(”+1)! b k
@18) T D () = (-1 (T Jek(s)
, N (m+1)!/ b
(@19) L D () = TR (T )6 ()

Remark 4.6. Before the proof, let us note that

_J k+1 ifk=0or (k=1 with m=2)
kv (n+1) _{ k otherwise.

Indeed, the inequality LQ) +1 < k is equivalent to 2 < k(m — 1). It follows that
1fk21Wlthm230rk22thenn<k,sok\/(n+ 1) = k.

Proof. Let us decompose f = foi + fi + ey with

f<k w, w Z Z (> &Lﬂ(‘?wﬂ z(O O)wle 1)

0<]<k 0<z<j

kf ke
’ — 1(0 O) 7— Z
9= 2 (i) mar

By Lemma [3.10]
(4.20) i1 € CY([—1,0)) N C¥((0,1]) for 0 < 1 < m,
(4.21) @5 tllontr-roueny < CRFH flloso)-

Since D7(fi +e5) = 0 for every 0 < j < k, in view of (3.16)), if (51, j2) € Z2, is such
that jl —|—j2 :j S n+1 then

‘ aj‘gfk‘f'@f,l(z’ E)

(m 2)k

O(ILfi + egllervnsn ) (|F2]) )

= O(HfHC’W(nJrl)(D) <|%2|>(”+1—j)—(b+1)) ‘

As £ — (L (3 — Q,))j, this gives

07919772

s 9: 0z
(4.22) D705 re,0(5)] = O(|| fllomvnnpy) 0 < j<n—1
(4.23) D" it i(5)] = O (1 f |l crvinsn oy (Is])~°)

(4.24) D™ 0, iep1(8)] = O(II fll crvinsnpy s+

By (#4.23),

1D"@fre;allr = O fllcrvinsn () -
In view of (4.21)), (4.22)) and (4.24)), this gives
||<Pf,l||c"+1’b < H<Pf<k,chn+Pb + H<Pfk+ef,ch"+Pb = O(Hf“ckv(nH)(D))-
Since D?(ey) = 0 for every 0 < j < k, we also have

(4.25) D" e, a(s)] = ofls| D).
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Indeed, if kV (n+ 1) = k+ 1, i.e. k = n then, again by (3.16),
[P Ze = 2)]| = O]y~ ) = O+,
IfkV(n+1)=k, ie n+1<k then, by (3.18),
| D7 ez )| = (|2~ Y) = (|92 04),

Both yield (4.25)).
Therefore, by (4.20) and (4.25),

(4.26) [s]"F D" o pa(s) = s D" g a(s) + of1).

By (3.30]) (see the proof of Lemma [3.10)),

1 w w
ﬁfk,l(las)zy E a]]?(f)QSl(m—l)—j,(m—l)—(k—j)(17S)+C ((0,1))NC*([-1,0)).
" 0<j<kA(m—2)
j#k—(m—1)modm

Ag e ltn Dot ne Do(kg)) - keme2) — gy hy ([@16), ([(@17) and the definition
of (),

y %Qk: 1 —
@.27) gpa(e) = B g cu((0.1), g (s) = Loty o0
if0<b<1and
()
() = =B g 5]+ c((0,1)
(4.28) !
)
pga(s) = ~ 2 o 1y 1 oo((-1.0)

if b =0. After n + 1 times differentiation, it follows that

D"“wk,xs):|s|-<b+1><—1>"+1w( ' )%’xf)ww((o,u)

k! n+1
D sale) = oM ) Gan (D + C(EL.0)
Finally, by (4.20)) and (4.26)), this yields (4.18]) and (4.19). O

Theorem 4.7. Let k> 0,0 <1 <m and e € {0,1}. Suppose that f € CHV) (D)
and €y, (f) =0 for all0 < j < k. Then ¢z € C*e((0, (=1)]) with

. n ey (n+1)! b
420l sPRDM () = (-0 PR e
se(,(-1y] -V

and

(4.30) there exists C' > 0 such that ||zl crien o, —1)e < Cllf lowvmsn -

In particular, if k > m—1 then @z, € C**((0,(=1)¢]) and there exists C > 0 such
that |l¢gillceen o1 < Cllfllerwvernp)-

On the other hand, if f € C*" (D) is such that s, € CT((0,(=1)]) for
some r € R, with 0 < v(r) < o(o, k) then ‘52‘72“(]“) =0 for all 7 > 0 such that
0(o,j) <v(r).
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Proof. We will focus only on the even case, when ¢ = 0. The proof in the odd
case proceeds in the same way. Let us decompose f = foi + fi + e, where fo; =

ZO§j<kz J; with

fi(w,) = > (j)ﬂ(o 0)w'e?

4! 0o oWt ow? "
By (.27), (4.28),
(5] iz (m 2) w ap s
prals) = T2 o 0,0 # =2 modm
(4.31) 7
_ Cy(f) iztm-2) " .
@ (s) = — s m  logs+C¥((0,1])) if j = m — 2 modm.

j!
Since the operator f — f; takes values in the finite-dimensional space of homogenous
polynomials of degree j, for every 0 < j < k there exists C; > 0 such that

ng f Jj— (m 2)
logats) = L2 im0 < Gl oy o
Gy(f) smm-n
l5,(5) + 2;+,3 log 3||C"+Pb (1) = Cj [ fllex (o)
If €5(f) =0 for all 0 < j < k then
(4.32) Pt € C((0,1]) and |los, dllensrniony < Y Cillfler)
0<5<k

Again, by Theorem 4.5 applied to fi + ey, we have ¢y, .., € C*P>((0,1]),

||90fk+ef l||c"+Pb( 0,1]) <C|fe + €f||ckv(n+1) < Cl||f||ckwn+1>(p)
and

s—0t +1

Since pr1 = Pr 1t Protept, I view of -, this yields (4.29) and As
n—b=o(o,k), by Remark. 2.1} this gives ¢;; € C*(@R)((0,1)).

Now suppose that f € C*(+1)(D) is such that ¢;; € C"((0,1]) for some r € R,
with 0 < v(r) < o(o,k). Choose m — 2 < jy < k such that o(o,jo — 1) < v(r) <
0(0,jo). By the first part of the theorem, ¢y 1 € C(@30)((0,1]). As ¢, €
C7((0,1]) and v(r) < o(a, jo), it follows that ¢;_, ; € C"((0,1]). In view of (4.31)),

Gf) imon Gf) ron .
Prii(s) = E 21—'3 w4 g 21_—|s m— (—logs) + C¥((0,1]).
0<55<jo 0<i<jo
j#m—2modm j=m—2modm

, N wapn(m+1DL7 b
lim "' D" g Lo i(s) = (—1)¢ ! i ) ( )Cf (f)-

Therefore,

m —_

ORI A R AR W eR (1)

1 1l
0<j<jo J: 0<j<jo J:
j;ém72m0dm j=m—2modm
with =02 < (g, jo — 1) < v(r) for 0 < j < jo. It follows that €5 (f) = 0 for
0<j< Jo U

By the proof of Theorem [£.7] we also have the following.
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Corollary 4.8. Letk > 0,0 <1 <m ande € {0,1}. Suppose that f € CFV"+1)(D).
Then

S Gl

i “ log|s|

pri(s) = —

0<5<k
j=m—2modm

N Z %21+e(f)|s|w + O™ ((0, (=1)).

|
0<j<k J:
j#m—2modm

(4.33)

4.3. Basic properties of /. Recall that 6* : C*(D) - C for k >0 and 0 <1 <
2m are given by

25—k m—1)—j (m—1)—(k—j
(glk(f) _ Z QO(QJ )SB(( WlL) J)( 1)m(k J))a]k(f)
0<j<kn(m—2)
j#k—(m—1) modm

The functionals 6, 0 <1 < 2m are not independent. By definition,
(4.34) C = (=16} for any 0 <1 < m.

Moreover, we can also get back the value of 0]’? from €. Indeed, for every 0 < j <
kA (m —2) with j # k — (m — 1) modm,

(m—1)—j (m—1) (k+l)+ (k— 2] (k—27) cpk
n(ogs g LS g L s g

0<i<2m O<l<m

Similarly, if kEA(m—2)<j<m—2orj=m—1orj=k—(m—1)modm, then

Z e[l)(k:f2j _2 Z 0 (k— 2] —0.

0<i<2m 0<li<m

Together with this gives all linear relations involving the functionals 6F.

Moreover, using , we obtain an elegant formula for 4 depending on the
partial derivatives of the function f. Indeed, if 0 < 7 <m—2,j # k—(m—1)modm
and 0 <n < £ then, by.

A . ((m_,i)_jfl)
%((m—ni)—yj (m—l)T;(k—J)) <(k—j)1l(m—1))

m
n

_(m—=1)—j—

j—nm
_ %((mfl)fjfnm +n (m=1)—(k—g)+nm n)(_l)n ( n )

m ’ m (m—1)—(k—j)+nm
( " )
_ o (m=D)—jonm (m—1)~(k—j)tnm
= B( — ) s ).
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By the definition of 9}, it follows that

Cr(f) = 3 (Qé(m—k)%( (m-1)=j (m-1)=(k=j))

m
0<j<kA(m—2)
j#k—(m—2) modm

3 () 707 ok f

((k*j):n(WL71)) aw]+nmawk—]—nm

(0,0))

0<n< ki n
i k PN PN oF
0<i<k ! wow

i#Fm—1modm
i#k—(m—1) modm

According to (4.6)),

i— k m—1)—i (m—1)—(k—t ak
43) )= Y a0 (1) mesim metnee Bl 00,

¥
T Owtdwk—

Remark 4.9. This formula generalizes the one for C(yp;,;),a € A in [4, Theorem
9.1] by replacing new functionals for higher order derivatives.

We now strengthen Theorem m by proving that F) is also smooth (with some

drop of regularity) on the closed sectors D(2 , l;;i)

Theorem 4.10. Fixk>m—1 and 0 <l <2m. Let m — 1 < k < k be the natural
number given by 8(o,k) = k — (m — 2) = [*="=2] = [o(0, k)] =: n. Suppose that

f € CWO+(D) s such that & (f) =0 forall0<j<kand0<i<jA(m-—2)
with i # j — (m — 1)modm and €/ (f) = 0 for all 0 < j < k. Then the map
F; i D(E, 5) — C has a C*@F _extension on D(5-, L) and there exists C > 0

2m’ 2m 2m’ 2m

such that ||Ff||Cc(ck DL, i) S C||f||ck\/(n+1)(D).

Proof. We focus only on the even sectors D(Q—, 2;—;1) The proof in the odd case
proceeds in the same way. By Theorem [3.11} for every 0 < & < 1/2 the map F) has
a C*("F)_extension on D(Z4e, 2EL) 1?(2lJrs 22 =22=5) and there exists C. > 0 so that

2m 7 2m 2m 7 2m

HFche(d k) (D(2te 241y < CngHCk . Moreover,

Friu, s) = /“ Mdv = ¢ru(s) —/ ((Gl&

1 (V24 s2) m + s )T_
_ _ [ LGz s)
= erls) -1 (v + 32)m£1 dv.

As Gi(—v,5) = 0,'Gy(v, —s) for s > 0, this gives
F1(2,7) = 071(S2) = Fpoprr (=2, —2) if 32 > 0.
It follows that

(4.36) Fr(w,w) = @i (Sw™) — Ff09 1 (Bow, 6, '@) on 'D( 5 2;;1).
Note that

& (foby) _ @iy 9f

Owidw? (0,0) = Owidw’~ g (0 0)
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By (3.27), it follows that dH(fobyt) =6y (zi_j)ﬁf( f). Therefore, by assumption,
d(fohy")=0forall0<j<kand0<i<jA(m—2) with ¢ # j — (m—1) modm.
Using Theorem |3.11| again, we obtain the map Ffoeo—l has a C®(“)_extension on
'D(gH—l, 2042— a) C D(Zl—i—a 2l+2 a) and H 0951”03(0@(5(%,%)) < OEHfon_lHCE(D)

2m 2m 2m
In particular,

2m’  2m

HFfOOO_ (‘90‘*]790 W)”c?(m@(ﬁ(%,%)) < CstHCE(D)'

F; g-1(6ow, 05 @) is of the class C*@%) on D(2L 2tloey apd
(4.37) fobo 170

By Theorem , ¢ has a C*(“F)_extension on [0, 1] with

losillcsom oy < Cllfllervinin -

2041

Therefore, w — ¢7;(Sw™) has a C*(®F_extension on D(2m7 =)

||90f7l(gwm)||ce<mk>(f(%,%)) < C"||f||c’cv(n+1>(73)-

As Fy is a C"@P-map on D(22, B with || Fy ceton i 1)) < Cel| fllonem)

2m 7 2m
o(o,k) < [o(o,k)] =0(0,k) and k < k, in view of (4.36) and (4.37)), this gives our
claim. g

We now show that Theorem is optimal.

Theorem 4.11. Fiz k > m —1 and 0 <1 < 2m. If f € C*V+1)(D) is such that
Fy € C"(D(55, L)) for some r € R, with 0 < v(r) < o(o,k) then €7 (f) = 0 for

all 7 > 0 such that o(o,j) < v(r) and &/ (f) = 0 for all j > 0 with (0, 7) < v(r)
and 0 <i < jA(m—2) withi# j— (m—1)modm.

Proof. We will focus only on the even sectors D( 5 2;;1) The proof in the odd case
proceeds in the same way.

By definition, ¢g,(s) = Fi(1,s) = Fr(Gi(1 +ts),Gi(1 +1s)) on (0,1]. As Fy €
C"(D (22751, Zé:rnl)) it follows that ¢, € C"((0,1]). In view of Theorem 4.7, €3(f) = 0
for all j > 0 such that o(o,j) < v(r).

The proof of the vanishing of 827 is much more involved. Choose m—1 < k <k < k
such that o(co,k — 1) < v(r) < o(0,k) and 0(0,k — 1) < v(r) < 0(0, k). By the first
part of the theorem, ngl(f) =0 for all 0 < j < k. Let us decompose f = f; + ey,
where fop = >, fj With

fj<w’w) = l Z (j)$(0 O)wlw] ‘

u
J* o<iz;

Then for every 0 < j < k we have D7ef(0,0) = 0 and Ch(ef) =0andfor k<j <k
we have €3)(ey) = €5(f) = 0. Since o(0, k) = [o(0, k)], in view of Theorem
this gives F,, € C*"F(D(Z Zt))  As F; € C"(D(Z, ZtL)) and v(r) < o(o, k),

2m’ 2m 2m’ 2m

this yields Fy_, = Fy — F,, € Cr(ﬁ(%v 25_;1))

For every 0 < a < 1let A, = {(u,s) : 0 <u <1,0 < s < au}. By Lemmas [4.1]
and (4.39), for every 0 < a < 1, there exist p; € C*¥([0,a]) and ¢; € C for
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0<j<kandpe C¥J0,a]) such that for any (u,s) € A,,

0’ £(0,0)
Fpoau, s) = Z Z < )&ulawf ,®(m 1)—i,(m—1)—(j—i)(u> s)

0<j<k 0<i<y

(m—2) j—(m—2)
= Z uE 0j(s/u) +logu Z cjsm ; + p(s).

0<j<k 0<j<k

2048

Let a € (0,1/4) so that tan(ra) = a. Fix any 0 < 8 < « and let wy = *™2m
Then for any t € (0, al,

Fpa(two)™ Twg) = Fy (™ COS(Wﬂ) t™ sin(7f3))
= 3" cos(rB) T gj(tan(mB)) "D 4 p(t™ sin(m))

0<j<k

—i—Zc]

0<j<k

m=2) Jog(t™ cos(m3)).

Since (0,a] 3 t — Fy_ 1((two)™, twy") € Cisof class C", [0,a] 3 t — p(t™ sin(7f)) €
C is analytic and v(r) > 0(o,k —1) = k—1—(m—2) > j — (m — 2) for
every 0 < j < k, it follows that ¢; = 0 for all 0 < j < k, so Fy_ i(u,s) =

j=(m=2)

D 0<j<k U 0j(s/u) + p(s).
For every 0 < j < klet T, : A, — C be a real analytic homogenous map of
degree H$2) given by T;(u,s) = = 0j(s/u). Then
Fpi(2,7) = ZT 2,Z) 4+ p(Sz) on A,
0<j<k
and
Fpoaw @) = > Ty( + p(Sw™) on D(ZL, &ra).
0<j<k
Since Fy_, € C"(D(£L, 2tL)) and p(Sw™) € C¥(D(£, &), we have
D LW w) € CT(D(3, %))
0<j<k

and Y;(w™,w™) is a homogenous map of degree j — (m —2) < v(r) for 0 < j < k.
Then standard arguments for smooth homogenous maps show that T; = 0 for
0<j<m-—2and Y;(w” &™) is a homogenous polynomial of degree j — (m — 2)
for m — 2 < j < k. Suppose that

T,(w™w") = Z a; W@ for iy — 2 < j < k.

0<i<j—(m—2)

Then
& £(0,0)
Z Z ( ) S Slm-v-itm-n—(-9 () = Fyi(u, 5)

0<j<k 0<7,<

— ZT u, s)+p(s Z Z a;:Gi(u, 8)'G(u, s)(jii)i(miz)ij(s).

0<j<k m—2<j<k 0<i<j—(m—2)
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Differentiating with respect u, we get

P £(0,0) ~i—(m—1)7-Gi—i)—(m—1)
> 5 2 () st e

0<]<k 0<1<3
m—2<j<k 0<i<j—(m—2)

_ Z < Z agz+1l+lGl ( 1)GZ(J )—( )

m—1<j<k 0<i<j—(m—1)
i i—(m—1)~(7—1)—(m—1
n Z Qi (] m2+1Gl( 1)GZ(J )—( )>'
m—1<i<j

It follows that D7 f(0,0) = 0 for 0 < j < m — 2 and for every m — 1 < j < k and

0<:<y,

1 (3\ &£(0,0) i+l (=i)+1

41 ( ) Owid Qi1+ Qi)
here we adhere to the convention that a,;; = 0if i <0 or i > j— (m —2). It follows
that forany m — 1 < j<kand 0 <i<m —2 with i # j — (m — 1) modm,

. (m— 1) i '
%(f) _ ( W ) 1( & f
]l o Z ( L G=d=(m=1 (m 1)) (mn + Z) awanriawjf(anri) (O’ 0)

(*, “+”>

— E n
_ (j—i);im—l) +(n—1))
n

j—1)—(m—1
+ aj}i—(m—l)—l—mn(% - (n - 1)))

(T )+ 1)

(“J‘,if(mflﬂm(ml)(% +n+1)

Qji—(m—1)+m(n+1)

G D,
m — )
(z (m 1)+1’L)
n j—1)—(m—1
= (0 s )
Asi— (m 0, we have a;;_(,—1) = 0. Hence 8](f) =0forevery 0 < j <k

A/\

1)
and0<z<]/\ —2)W1th27£j—( — 1) mod m. O

5. GLOBAL PROPERTIES

In this section, by combining previous results for local analysis near singularity, we
finally obtain solutions for cohomological equations with optimal loss of regularity.

5.1. Transition from local to global results. Let M be a compact connected
orientable C'*°-surface. Let 1)r be a locally Hamiltonian C'*°-flow on M with isolated
fixed points and such that all its saddles are perfect and all saddle connections are
loops. Let M’ C M be a minimal component of the flow and let I C M’ be
a transversal curve. The corresponding IET T : I — [ exchanges the intervals
{Io : @« € A}. There exists 0 < ¢ < 1 such that for every ¢ € Sd(¢r) we have
D, . C U,, where D, . is the pre-image of the square [—¢,¢] X [—¢,¢] via the map
z +— 2™ in local singular coordinates. Moreover, we can assume that every orbit
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starting from I meets at most one set D, . (maybe many times) before return to I.
For every 0 < I < 2m, let D, D (2m , é;l ) be the [-th closed angular sector of
Dse.

Remark 5.1. By Lemma 8.2 in [4], the enter and exit sets of Da,a(mLa lnf—l) are O'>°-
curves with standard parametrization

[—e,6] 2 s Gi(—e —15) € D, and [—¢,0) U (0,¢] 5 s — Gi(e — ts) € D, resp.
Every w € Dga(m , i;;l) lies on the positive semi-orbit of G;(—¢ —ts), s € [—¢, €] so
that t¢,)Gi(—e — 1s) = w for some &(w) > 0. By the proof of Lemma 8.2 in [4],
z = wm = u — s for some u € [—¢,¢] and for any f € C(M),

&i(w) L
/0 f(Gi(—e —1s))dt = o2 / (f (;)—(Fil() ! ))dv
(5.1) — 5_mi"2 /u/6 (f V)(Ew Gi(v— L(S/é‘)))
Mo J-1 (V2 4 (s/€)?) a

6_177;?;;2 _ c m;—taQ _l/mg
= Tj(f-‘/)osl/md,l(z/g) = TF(f.V)osl/ma (e w).
ag ag

In particular, if w = G;(e —us) for s € [—¢ 8]\{0} then 7;(s) := &(Gi(—e—us)) is the
transit time of G;(—e—ts) through the set DM( By —1s = Gi(e—15)™ = e—1s

and e
T1(8) gfm#;z
| sGe — )it = S F il (e~ 1))
(5.2) 0 _n:;:—z
= gm—;@(fv oel/ma z( s/€).

Remark 5.2. Recall that m > 2 is the maximal multiplicity of saddles in Sd(yr)NM'.

Then for any r > —"=2 we have [r] 4+ 1 < k,. Indeed, if —7=2 < < —7=3 then
m=2 < r. Hence r+1 < mr+ (m—1), which yields [r] +1 < (mr—i—(m 1)1 k..
If——<rw1thm>3or1<7’W1thm—2then—m—_? <r. Hence r+1 <

mr + (m — 2), which yields [r] +1 < [mr + (m — 2)] = k.. Suppose that m = 2
and £ = =3 <p < 1. Then [r] +1=2< [2r] = [mr + (m —2)] = k.

Remark 5.3. For any r > —%‘2 and o € Sd(v¥gr) N M’ let £ > 0 be such that
o(o,k —1) < r < o(o,k). It follows that n := [o(c,k)] = [r]. In view of (L.6),
k < [mr+(m—2)] < k,. Moreover, by Remark[5.2, n+1 = [r]|+1 < k,. Therefore,
Ev(n+1)<k,.

Proof of Theorem[1.1. Let 7 : I — R.q U {+o0} be the first return time map for
the flow ¢ restricted to M’. For any interval (set) J C I avoiding the set disc(T)
of discontinuities of T" let J™ = {iys : s € J,0 <t < 7(s)}. If an interval J contains
some elements of disc(T') then J7 is the closure of (J \ disc(T'))".

Case 1. Suppose that J C I, is a closed interval such that sup7(J) < co and
max7(J) < 2min7(J). Choose any t; < min7(J) so that 2t; > max7(J). Let us
consider the set J7 and its two subsets

(5.3) Jo={s:se€J0<t<t;}, J ={p(Ts):s€J0<t <t}
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By assumption, J] U JT = J7. Let py,p_ : J© — [0,1] be the corresponding C'*°-
partition of unity, i.e. p+ are C*°-maps such that p, +p_ = 1land py =0on J7\ JI.
Let vy : J x [0,t;] — JI be given by v, (s,t) = ¢ys and v_(s,t) = 1_4(T's). Then

er(s) :/OJ(P+‘f)OU+(S7t)dt+/OJ(p'f)ov(s,t)dt.

Since vy are of class C*, it follows that for every ¢ > 0 if f € C9(M) then ¢y €
C%(J) and there exists C9 > 0 such that ||¢yl|cay < C| fllcaar for any f €
C?(M). Suppose that f € C*(M). In view of Remark [5.3] n + 1 < k,, and hence
Y NS CnJrl(J) with

(5.4) o flleniiry < C¥ | fllomar for any f e CF(M).

Case 2. Suppose that J C [, is of the form J = [l,, [, + €]. Suppose that [, is
the first backward meeting point of a separatrix incoming to o € Sd(yg) N M'. It
follows that the orbits starting from J meet the set D, . before return to /. Suppose
that each such orbit meets D, only once and it meets a sector D2F" for some
0 <1 < m,. In general, the orbits of J can meet D, . several times in different
sectors. This case arises when the saddle ¢ has saddle loops, but this situation is
discussed later.

For every s € J denote by 7, (s) the first forward entrance time of the orbit of
s to D, and by 7_(s) the first backward entrance time of the orbit of T's to D,..
Then ¥, (5(s) = Gi(—e — 1(s — l5)). Since 7(s) — +oo as s — [, and 74 are
bounded, decreasing e, if necessary, we can assume that min7(J) > max7.(J).
Choose max74(J) < t; < min7(J) and let us consider two subsets JL C J7 given
by (6.3). Then J™ = JL UD2H U JT. Let us consider the corresponding C*-
partition of unity py, ps, p— : J7 — [0,1], i.e. py, ps, p— are C-maps such that
p++ps+p-=1,pr=00nJ \J] and p, =0 on J" \ D,.. Then

ty ty 7(s)—71=(s)
ero) = [ o novatstides [ pov-s.it+ | (0o ) (Ws)t.

+(s)

Repeating the arguments used in Case 1, for any ¢ > 0 we get C% > 0 such that

55 | [ o s [ -] < o

for any f € CUM).
Note that for every s € (0, ],
T(la+s)—7—(la+s)

Sl +5) = / (0o - ) (Wrll + 5))dt

T4+ (la+s)

T1(s)
- / (9o - )(nGrl— — 15)).

_mg—2

By (5.2), it follows that for any s € (0,1], ¢5(lo + €s) = %g@il(—s), where
F@,@) = (ps - - V)(ePow,eme ).

Suppose that f € C* (M) for some r > _mT—2' Choose k > 0 such that o(c, k —
1) < r < o(o,k). By Remark [5.3) we have [o(0,k)] = [r] = n and kV (n +
1) < k,. Assume that &, ,(f) = 0 for all 0 < j < k, or equivalently for all
j > 0 such that 0(6{77%“) < r. Since p, = 1 in a neighborhood of o, it follows
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that €3,,(f) = ene Gy (f - V) = ey ((f) = Oforall 0 < j < k. Let
ap := [o(o, k)] —o(o,k) =n—o0(o,k). Then n —ayg=0(0,k) >r=n—a.

As kV (n+1) <k, and both f and f are of class C*, in view of Theorem
@5, € C"tPao([=1,0)) and there exists C; > 0 such that

le7illcmtvan (210 < Coillfllervninmy < Coillps - Viies @)l fller )

mg—2

As 9F(la+es) = 3¢, (—s) and n —a < n —ay, in view of Remark, for any
fec(M )WlthQ:J (f)=0forall 0 <j <k,

0,2l+1

¢ € C"2(J) and ||@F||cniracyy < Cg,leHC’W(D)

In view of ({5.5)) and Remark it follows that for any f € C* (M m ker (€ <  ol41)

0<j<k

logllenseacry < Coill fllerany + CT I fllomany < (Cop+ CT I llom

Case 3. Suppose that J C I, is of the form J = [l,, [, + €], where [, is the first
backward meeting point of a separatrix incoming to o € Sd(¢r) N M’. Suppose that
o has some saddle loops and J™ meets o N-times (1 < N = N; < m,). Then all
orbits starting from Int J meet the set D, . N-times before return to I. Assume that
each such orbit meets its sectors DZZ 1 for 1 < i < N consecutively. Then ¢ has
N — 1 saddle loops sl; connecting the sector Dﬁ{;ﬂ with Dgfé““ for1l1<:< N -—1.
In particular,

N-1
(5.6) JT=J]UJ U UDQZ ARISR g8

=1 =
where JT = {¢yvi(s) : s € [0,¢],t € [0,%]} is a rectangle whose base is a C*°-curve
7([0,¢]) € D2it! with a standard parametrization while its left side {1yy;(0) : ¢ €
[0,¢;]} is a part of the loop sl;. Using a partition of unity associated to the cover

(5.6) and repeating the arguments used in Case 1 and 2, for every r > 0 we get
C" > 0 such that

(5.7)  Mesllonseaiy < Collfllos for feCH )N () () ker(€]g,4)

1<i<Nj 0<j<k

Case 4. Suppose that J C I, is of the form J = [r, — &, 7,], where r, is the first
backward meeting point of a separatrix incoming to o € Sd(¢g). Suppose that J*
meets o N-times (N = N;) and the orbits starting from Int J meet the set D% for
1 <4 < N consecutively before return to I. Then repeating the arguments used in
Case 1, 2 and 3, for every r > 0 we get C; > 0 such that

(58)  lleslleniran < Collfllw@n for f € CH(M)n () [ ker(€Z,,)

1<i<Nj; 0<j<k

Final step. We can find a finite family of closed subintervals {J, } ~, of I which
covers the whole interval I and such that every J, is of the form [l,, l, +¢] (or [ra —
£,7q]) with min 7, (J;) > max7(.J,), or J, C Int Ia with 2min 7(J;) > max7(J,).
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If J, is an interval of the form [l,, 1, + €] or [rq, — €, 74| then by (5.7)) and (5.8)),

lesllonsraiy < Co I fllow o for feC(M)N (] ker(e)).

(0,5,)eTE
o(o,5)<r

If J, C Int I, then, by Remark and ((5.4)),
lesllenieaisy < lleslleniy < CHEI fllonran < CHH| fllos ary for fe CF (M),
This yields ¢ € C"™*(Upeal,) and

Q

lpsllcnira < llgllonracsy < CllFllew
q=1

for all f € C* (M) such that Q‘;l(f) =0 for (0,4,l) € € with o(0,j) <.

Recall that, by assumption, the right end of [ is the first meeting point of a
separatrix (that is not a saddle connection) emanating by a fixed point o (incoming
or outgoing) with the interval I. Suppose that the right end is the first backward
meeting point of a separatrix incoming to o. Let a = m;'(d), i.e. the interval
I, = [la,74) is the latest after the exchange. It follows that for every 0 < e < |I,| the
strip [ro —¢, 4|7 avoids all fixed points, so sup 7([rq —¢,74]) < 00. By the continuity
of 7, we can choose € > 0 so that max 7([ro—¢,7,]) < 2min7([ro,—¢,7,]). In view of
Case 1, py € C""([rq —¢,14]). Hence, C&; (¢y) = limg sy, D"y () (rq —x)' T =
0. The same argument shows that if the right end is the first forward meeting point
of a separatrix outgoing from o then C%, (¢;) = 0 for a = m;'(d). Finally we have

Cafl(d) (vf) -C’a’,_l(d) (¢f) = 0. Analyzing the orbit of the left end in the same way,

o n T n

we get C“’_Jﬁ(l) (of) .C“’j(l) (¢f) = 0, which shows that ¢y € C"™%(U,cl,). O
o n T n

For all (0,k,j) € TP let ng : M — C be a C*°-map such that X’;,j(w,w) =
Wk =7 /(k'V (w,@)) on U, and it is equal to zero on all U, for o’ # o. By definition,

Dg,j<X§,j) =1 and Dgl’,j’(X];,j) =0 lf (0/7 klaj/> 7& (07 km])
In view of Theorem [I.T], we get the following result.

Corollary 5.4. For everyr > —mT_Q and any f € C* (M) we have a decomposition

(5.9) F= Y (O +%R()
(0,k,J)ETD
o(o,k)<r

such that ox,(p) € C" P2 (Upeals) with n = [r] and a = n —r. Moreover, the
operators R, : C* (M) — C* (M) and C* (M) 2 f — on.(p) € C" % (Useala)
are bounded.

Let us consider an equivalence relation ~ on . 7% as follows: (o, k,l) ~ (o,k,l")
if the angular sectors U,; and U, are connected through a chain of saddle loops
emanating from the saddle o. For every equivalence class [(o,k,l)] € TE€/ ~, let

Corn(f) = D € f).
(o,k ") ~(0,k,l)

For any [(0,k,l)] € %/ ~ there exists a € A and an interval J of the form
la,lo + €] or [ry — &,74] such that [, or r, is the first backward meeting point of
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a separatrix incoming to o € Sd(ig) and J7 contains all angular sectors U, for
which (o, k,1") ~ (0,k,1). Let {o ) : I — R be given as follows:

® {[(o,k,) 18 zero on any interval Ig with § # «;
o if J =][l,, 1o+ €| then for any s € I,

k=(mg—2)

(s =ly) e
Sewn(s) = —— 70

if k #m, —2 modm,

k—(mg—2)
(s —lyn) mo  log(s—1a)

o) () = — mZE] if Kk =m, —2 modmy;

o if J=[r, —e,7,] then for any s € I,,

k—(mg—2)
To —8) mo
€l (8) = ( m)2 - if k # m, — 2 modm,
0 E:Qﬁgizll
Eionn)(s) = = o =5) a%, %8Ta = %) it | — . — 2 modm,.
mzk!

Of course, &k € C"*%(Uneals) with n := [o(o, k)] and a :=n — o(0, k).
In view of the proof of Theorem [I.1] we also have the following.

Corollary 5.5. Fiz 0 € Sd(¢ygr) N M', k > 0 and let n := [o(0, k)] and a :=
n—o(a, k). Suppose that f € C*VOFV (M) is such that it is equal to zero on Uy for

o' # o. Then

(5.10) or= . e (Heiesn + C T Uaealn).

[(0:5.D]€eTE [~
0<j<k

Proof. The proof proceeds in the same way as the proof of Theorem [I.1} except that

we use Corollary instead of Theorem in the key reasoning. For example,
using the notations introduced in the proof of the Theorem , for any s € (0, 1]

_mg—2
mo

. € . 5 _ 1 1
Pilla t+es) = ——5—pz(=s) with f(w,0) = (po - f - V)(emrw, emow)

o

and ‘KQJZH(JF) = 5#}‘@%1(‘]@ V) = 5%7@;2”1(]"). In view of Corollary , for
s €[-1,0),

TCEED DI L C Rt

7 f J—(me—2
oy Gl s ooy g)),

0<j<k
jF#me—2mod my
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It follows that for s € (I4, 1, + €],

1) = o7l — 9)/2)

— J )
_mo=2 i=(mg—2)

__¢ m";" Z EWQZT,QZH(]C)(S—SZQ)%log(s—gla>

1
o 0<j<k J:
j=ms—2mod mg

_mg=2 z j—(mg—2)

p gmo @I — g Py
+ < 3 312!”1("0) (5 - ) + O™ (I, 1 + €])

i—(mg—2)

(s =1lo) ™ log(s—1y)
m2j!

- Z €§,2l+1(f)

0<j<k
j=mge—2mod my

+ Z Q:Zy,21+1 (f)

0<j<k
j#me—2mod mg

This key observation makes it possible to get (5.10) proceeding further as in the

j—(mg—2)

(s —1ly) ™o
m2j!

+ C" P2 ((Iy, 1y +€]).

proof of Theorem [I.1] O
Theorem 5.6. For any r > _msz let n = [r] and a = n —r. Then for any
€ C* (M) we have
(5.11) s(N=¢r— Y. Conn)(Horn € C" (Uaealn)
[(0.k,1)]€TE |~
o(o,k)<r

and the operator s, : C* (M) — C"*Pa(Ugealy) is bounded.

Proof. Let {p, : 0 € Sd(¢yg) N M’} be a C*°-partition of unity of M such that p, =1
on U,. For any o € Sd(¢r)NM' choose k, > 1so that o(c, k,—1) < r < o(0,k,). Let
Ne, = [0(0, k)] and agx, = Ny, —0(0, ks). By Remark 5.3} ks V (g, +1) < k.
Therefore, Corollary applied to f - p,, shows that

Pror = Y, Coinilf - Po)Eiieiay + C o o0 S (Unealy).

[(0.0D]€TC /[~
0<j<ko

As 1 < o(0,k,), by Remark 2.2 C"ohePoons @ C CPaG Since €y (f - po) =
(o] (f), this gives

Pfpe = Z Cliogi) (NEein + C™2% (Uacala).

[(0.3:D]€TC [~
0<j<ko

When summed against o, this yields (5.11]).
To prove that the operator s, is bounded, we use the decomposition (5.9)). Indeed,

si(f)= D (Ns0G) Fe ()= Y0 (s () + e

(0,k,J)ETD (0,k,j)ETD
o(o,k)<r o(o,k)<r

Since the functionals Df,,j and the operator f — ¢n 5y (by Corollary are
bounded, this gives that s, is bounded. U
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Proof of Theorem [1.2 Arguments presented in Section show that if g € C"(1)
is a solution of the cohomological equation g o T — g = ¢y, then the corresponding
function w = u, p : M’ \ (Sd(¢r) U SL(¢r)) — C given by

u(®) = gliz) — / Fliuz) ds

whenever ¢,z € I for some t € R, is of class C" on M’ \ (Sd(¢yr) U SL(¢r)). We
need to show that if 9} ;(f) = 0 for all (0, k,j) € 72 such that 9(d% ;) < v(r) and
¢h,(f) =0 for all (0, k,1) € € such that o(€% ;) < v(r) then u has a C"-extension
to M! and

(5.12) [ullerany < Cllglleray + 171l gk ary)-

We split the proof of our claim into several steps. In fact, we split M into subsets of
two kinds: subsets which are far from saddles and saddle loops, and sets surrounding
saddles or saddle loops.

Step 1. Sets far from saddles and saddle loops. We will show that for any
compact subset A C M’ \ (Sd(¢r) U SL(¢r)) there exists C4 > 0 such that

(5.13) [ulleray < Calllglleray + 1 groe (ar)-

Recall that, by arguments from Section [1.2] for any zo € M’ \ (Sd(¢r) U SL(¢r))
there exist closed intervals [y, 73] and J C Int [ such that the set R(xy) = {2 :
x € J,t € |1, 7]} is a rectangle in M’ i.e. the map

J X [11,72) 3 (x,t) = v(z,t) = Yz € R(xo)

is a C*°-diffeomorphism and xy € Int R(x(). Moreover,

t
uov(x,t)=g(x) +/ fov(z,s)ds on J X [, Ta].
0
By Remark [5.2] it follows that there exists Cy, > 0 such that
[uller oy < Cauo(llglleray + [1fllern) < Cro(llglleray + 11l groe (ar))-
Covering A by a finite number of rectangles, this yields (5.13]).

Step 2. Some sets far from saddles. Suppose that v : [a,b] — M \ Fix(¢r)
is a standard C'*°-parametrization of a curve and & : [a,b] — R+ is a C* map such
that

[a,0° 3 (2,1) = v(z,t) = Y € v([a,b]°) =: (7[a, b])®
is a C-diffeomorphism, where [a, b]* = {(z,t) : © € [a,b],0 < t < &(x)}. Then the
arguments used in Step 1 show that if uw o~y € C"([a,b]) then u € C"([a,b]”) and
there exists C, ¢ > 0 such that

(5.14) lullerrame) < Crilllv o vllerqaen + 1Fll croir (ar))-

Step 3. Strips touching saddles and saddle loops and their decomposi-
tion. From now on we will use a notation introduced in the proof of Theorem
Let 7 : I — Ryo U {400} be the first return time map. Suppose that J C I, is
of the form J = [l,,l, + €], where [, is the first backward meeting point of a sep-
aratrix incoming to ¢ € Sd(¢¥r) N M’. Suppose that J7 meets o exactly N-times
(1 < N = N; < m,) and the orbits starting from IntJ meet D, . in its sectors
Dgfg*l for 1 < i < N consecutively before return to I. Then o has N — 1 saddle
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loops sl; connecting the sector D2it! with DI for 1 <i < N — 1. Recall that
J7 is the closure of (Int J)™. Then

N
(5.15) UD” FulJE,
=0

where each E; is of the form ~;([0, €])% with

e Y(s) = Y(lo + 5) (here v is the parametrization of I) and &y(s) is the time
spent to go from J to DAL+
o for 0 <i < N —1, v(s) =Gy, (e —s) and &(s) is the time spent to go from
DAL ¢ D2l§;+1+1'
o, g, Y
e n(s) = Giy (e — 1s) and En(s) is the time spent to go from D2NT! to I.
Step 4.0. The set Ey. In view of (5.14]) in Step 2,

(5.16) u € C"(Ey) and [[ullorm) < Croeollglloray + 1l ok ar)-

Step 4.1. The sets D2i*' surrounding the saddle 0. We will show that for
every 1 < i < N there exist C;,C! > 0 such that if u has a C"-extension on E;_;
then it has C™-extension on D2t and
(5'17> HUHCT(Dgfg‘H) < CiHuHC’"(Eiﬂ) + Cz{”fHC’%(r)(M)-
This is the main inductive step running to the proof of (5.12)) restricted to J7.

By Remark [5.1, for every w € Dag(mi ,lmil) we have 1¢,,) G, (—¢ — ts) = w for
s = —Qwm € [0 5] and

§i(w)
u(w) — u(Gy,(—e —18)) = /o F(WeGp (—e — 18))dt.

In view of (5.1)), for w € D, (%Ll 2it2)

2mes 7 2ms
_mg—2
g mo
(5'18) u(w> - u(Gli(_g + ngmcr)) = 2 F(f.v)ofl/mcr (efl/m"w).

Choose m—1 < k < k < ky(,y such that o(0, k—1) < v(r) < o(o, k) and 3( k—1) <
v(r) <0(c,k). Then o(o,k) = [o(o,k)]. Moreover, by Remarkﬂ n = [v(r)] =
[o(0,k)] and kV (n+1) < kypy.

By assumption, for every 0 < j < kand 0 < i < j A (m, — 2) with i # j —
(mg — 1) mod m, we have &/ (f-V) :b{”(f) =0and €/ (f-V) =¢.,(f) =0 for all
0<j<kandl=2;+11<i<N. ’

In view of Theorem the map F 1.y )oe1/mo og~V/mas . D, (Zitl 2it2) _, C has

2mes 7 2meo

a C*"F_extension on D2it! =D, (%t 2it2) anq there exists C! > 0 such that
y ? Mo ng 7

_mg—2

(519) Hg mga F(f-V)Osl/mU o €7l/mc

Celo, k)(D2l +1) — Cz{HfHCkV(nH)(M)-

Moreover, the map D, (2L 2Lt2) 5 () 1y Gy (—e +1Sw™) € D2t N E;_; has an

2mes 7 2mg
obvious analytic extension on D%“ It follows that there exists C’ > ( such that if

u is of class C" on F;_; then uo Gli( £+ 13w™ ) has a C"-extension to D2i*! and

(5.20) ||u o Gli(—g + 1w 211+1 < Ci||u||cr(Ei71).

[
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As 0(r) < o(o,k) and £V (n+1) < kg, by (B15), (19) and (F20), u has a

C"-extension on D2i*! and (5.17) holds.

Step 4.2. The sets E; surrounding the saddle loops. We will show that for
every 1 <i < N there exist C, C}” > 0 such that if u has a C"-extension on DZit!
then it has C"-extension on E; and

luller gy < G llull grpziny + C'"||f||c Far) (a1)"

This is an easy inductive step leading to the proof of restricted to J7, which

follows directly from ((5.14). Indeed, as ~; : [0,¢] — Dg,}jl is an analytic curve,
there exists C' > 0 such that if u is of class C" on D2it! then |lu o i[lcr(o,) <

C|’“”C"(D§f§“)' As E; = v;([0,¢])%, in view of (5.14]), u has CT-extension on E; and

HUHCT(Ei) < C’Yiy&(

uo%HCT([U:E])_‘_HfHCkv(r)(M)) < C%y&i(CHUHCr(Dgfzjl)_'_Hf”ckv(r)(M))'

Step 4.3. Induction. Starting from Step 4.0 (as the initial inductive step)
and then repeating alternately Steps 4.1 and 4.2 N-times, we have that there exists
C'; > 0 such that v has a C"-extension on J” and

(5.21) lulleremy < Calllgllerwy + 1 [l ghoe (ar)-

Step 5. Summary. Using the arguments from Step 4, we obtain ([5.21)) also in
the case where J = [r, — &,74). Then the strip J7 touches a saddle on right side.
Let A C M'\ (Sd(¢r) USL(¢g)) be the closure of

M\ ([l lo + €] Ura — &,70])-
acA
Then by Step 1 applied to A and Step 4 applied to the intervals [l,, [, + €] and
7 —€,74] for all @ € A, we have that u has a C"-extension on M/ and ((5.12]) holds
with C' = Cy + ZaeA(C[la,la+€] + C[TQ_E’TQ]). O

Proof of Theorem[1.3. Suppose that there exists u € C"(M!) such that Xu = f
for some r € R, with v(r) > 0. Choose ¢ € Sd(¢gr) N M’ and 0 < | < m,
such that U, 941 N M # (. We will show that Qﬁiglﬂ(f) = 0 for all 7 > 0 such
that o(c,j) < v(r) and o/ ,(f) = 0 for all j > 0 such that 0(s,j) < v(r) and
0<i<jA(m,—2) with 4 # j — (my, — 1)modm,. The proof for even sectors

follows the same way as for odd sectors, so we will only focus on the latter.
In view of (5.18), for w € D, (2Ll 2t2)

2meg ’ 2meg /7’

_mg—2
g mo —i/m
u(w) = u(Gi(—e +1Sw™)) = m2 Fp.vyost/mo (67

w).

By assumption, u is of class C" on D, (24, 242 "and hence u(Gy(—¢ + (Sw™))

2mes ? 2ms
20+1 2l+2)

.
is of class C" on Dma(Qm(,’ ST

(2041 2042
Con m)-

Choose k > m, — 1 such that o(o,k — 1) < v(r) < o(0, k). By Remark [5.3] we
have n = [v ( )] = [o(o,k)] and k V (n+1) < ky). Therefore, by Theorem
]
Gy

gi/m “@UQlH(f) = L((f - V)ogt/me) =0 for all j > 0 such that o(c,7) < v( )
and /™m0l (f) = & ((f - V)oet/™) =0 for all j > 0 with 8(c,j) < v(r) and
0<i<jA(my,—2)withi# j— (m,—1)modm,. d

Therefore, F{.yyo.1/m, has a C"-extension on
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