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Abstract. We study the cohomological equation Xu = f for smooth locally
Hamiltonian flows on compact surfaces. The main novelty of the proposed ap-
proach is that it is used to study the regularity of the solution u when the flow has
saddle loops, which has not been systematically studied before. Then we need to
limit the flow to its minimum components. We show the existence and (optimal)
regularity of solutions regarding the relations with the associated cohomological
equations for interval exchange transformations (IETs). Our main theorems state
that the regularity of solutions depends not only on the vanishing of the so-called
Forni’s distributions (cf. [2, 3]), but also on the vanishing of families of new in-
variant distributions (local obstructions) reflecting the behavior of f around the
saddles. Our main results provide some key ingredient for the complete solution
to the regularity problem of solutions (in cohomological equations) for a.a. locally
Hamiltonian flows (with or without saddle loops) to be shown in [5].

The main contribution of this article is to define the aforementioned new families
of invariant distributions dkσ,j , Ck

σ,l and analyze their effect on the regularity of
u and on the regularity of the associated cohomological equations for IETs. To
prove this new phenomenon, we further develop local analysis of f near degenerate
singularities inspired by tools from [4] and [7]. We develop new tools of handling
functions whose higher derivatives have polynomial singularities over IETs.

1. Introduction

Let M be a smooth compact connected orientable surface of genus g ≥ 1. We deal
with smooth flows ψR = (ψt)t∈R on M (associated to a vector field X : M → TM)
preserving a smooth positive measure µ, i.e. such that for any (orientable) choice of
local coordinates (x, y) we have dµ = V (x, y)dx ∧ dy with V positive and smooth.
These flows are called locally Hamiltonian flows. Indeed, for any (orientable) choice
of local coordinates (x, y) such that dµ = V (x, y)dx ∧ dy, the flow ψR is a local
solution to the Hamiltonian equation

dx

dt
=

∂H
∂y

(x, y)

V (x, y)
,

dy

dt
= −

∂H
∂x

(x, y)

V (x, y)

for a smooth real-valued function H, or equivalently dz
dt

= −2ι
∂H
∂z

(z,z)

V (z,z)
. For general

introduction to locally Hamiltonian flows, we refer readers to [7, 4, 10, 12].
For any smooth observable f : M → C we are interested in understanding the

smoothness of the solution u :M → C of the cohomological equation

(1.1) u(ψtx)− u(x) =

∫ t

0

f(ψsx) ds for all x ∈M, t ∈ R,
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2 K. FRĄCZEK AND M. KIM

or equivalently Xu = f , where Xu(x) = d
dt
u(ψtx)|t=0.

We always assume that all fixed points of the flow ψR are isolated, so the set of
fixed points of ψR, denoted by Fix(ψR), is finite. For g ≥ 2, Fix(ψR) is non-empty. As
ψR is area-preserving, fixed points are either centers, simple saddles or multi-saddles
(saddles with 2k prongs with k ≥ 2). We will deal only with perfect saddles defined
as follows: a fixed point σ ∈ Fix(ψR) is a (perfect) saddle of multiplicity m = mσ ≥ 2
if there exists a chart (x, y) (called a singular chart) in a neighborhood Uσ of σ such
that dµ = V (x, y)dx ∧ dy and H(x, y) = ℑ(x + ιy)m ((0, 0) are coordinates of σ).
Then the corresponding local Hamiltonian equation in Uσ is of the form

dx

dt
=

∂H
∂y

(x, y)

V (x, y)
=
mℜ(x+ ιy)m−1

V (x, y)
,

dy

dt
= −

∂H
∂x

(x, y)

V (x, y)
= −mℑ(x+ ιy)m−1

V (x, y)
,

or equivalently dz
dt

= mzm−1

V (z,z)
. The set of perfect saddles of ψR we denote by Sd(ψR).

We call a saddle connection an orbit of ψR running from a saddle to a saddle. A
saddle loop is a saddle connection joining the same saddle. We will deal only with
flows such that all their saddle connections are loops. The set consisting of all saddle
loops of the flow we denote by SL(ψR).

Recall that if every fixed point in Fix(ψR) is isolated, M splits into a finite number
of ψR-invariant surfaces (with boundary) so that every such surface is a minimal
component of ψR (every orbit, except of fixed points and saddle loops, is dense in
the component) or is a periodic component (filled by periodic orbits, fixed points
and saddle loops). The boundary of each component consists of saddle loops and
fixed points.

The problem of existence and regularity of solutions for the cohomological equa-
tion (1.1) was essentially solved in two seminal articles [2, 3] by Forni. Forni con-
sidered the case when the flow ψR is minimal over the whole surface M and the
function f belongs to a certain weighted Sobolev space. More precisely, choose a
non-negative smooth function W :M → R≥0 (with zeros at Sd(ψR)) and an Abelian
1-form ω on M (with zeros at Sd(ψR)) such that X = WS and S is the unite hor-
izontal vector field on the translation surface (M,ω). In singular local coordinates
around any σ ∈ Sd(ψR) we have W (z, z) = |z|2(mσ−1)/V (z, z). Then for any s > 0,
f ∈ Hs

W (M) iff W−1f ∈ Hs
ω(M), where Hs

ω(M) is the fractional weighted Sobolev
space associated to the Abelian form ω and the related area form. For a formal
definition of Hs

ω(M) and useful characterization of its smooth elements we refer the
reader to Section 2 in [3].

In [2, 3], for a.e. flow, Forni proved the existence of fundamental invariant dis-
tributions on Hs

W (M) which are responsible for the degree of smoothness of the
solution of (1.1) for f ∈ Hs

W (M). Roughly speaking, Forni’s distributions are re-
lated to the Lyapunov exponents of the Kontsevich-Zorich cocycle on the absolute
1-cohomological bundle. If all Forni’s distributions at f ∈ Hs

W (M) are zero then
the solution u ∈ Hs′

ω (M) for some s′ < s with s′ not too far away from s. Forni’s
beautiful approach is based on a very deep analysis of the Kontsevich-Zorich cocy-
cle acting on various kinds of abstract objects related to translation surfaces. An
alternative approach to constructing invariant distributions was also presented by
Bufetov in [1]. A different approach, based on moving to a special representation
and studying renormalization behavior for piecewise smooth functions over inter-
val exchange translations, was initiated by Marmi-Moussa-Yoccoz in [8] and later
developed in [9, 7, 4].
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The main goal of this article (and the subsequent one [5]) is to go beyond the
case of a minimal flow on the whole surface M and beyond the case of functions
f belonging to a weighted Sobolev space. We deal with locally Hamiltonian flows
restricted to any minimal component and f : M → C is any smooth function. The
study of locally Hamiltonian flows in such a context gives a rise to new invariant
distributions, which, unlike Forni’s distributions, are local in nature. The first two
new families of such invariant distributions, defined in Section 1.4, read local be-
haviour of functions around saddle points. The last family, which is a counterpart
of Forni’s distributions, is defined in [5] using renomalization techniques inspired by
the approach developed in [8, 9, 7, 4].

All three families of invariant distributions affect the degree of smoothness of the
solution of the cohomological equation. However, in the present article we focus
only on the first two families and the main results of the paper are contained in
Theorems 1.1, 1.2 and 1.3. The methods for studying their effect on the degree of
smoothness are purely analytical, in contrast to the dynamical arguments left to [5],
where the last family play a central role.

1.1. Special representation and IETs. Locally Hamiltonian flows restricted to
their minimal components are represented as special flows over interval exchange
transformations. Let us consider a restriction of a locally Hamiltonian flow ψR on
M to its minimal component M ′ ⊂M . Let I ⊂M ′ be any transversal smooth curve
with its standard parametrization γ : [0, |I|] → I, i.e.

∫ γ(s)
0

η = s for s ∈ [0, |I|],
where η is the closed 1-form given by η = ∂H

∂x
dx + ∂H

∂y
dy in local coordinates. By

minimality, I is a global transversal and the first return map T : I → I is an interval
exchange transformation (IET) in standard coordinates on I. We will denote by
Iα, α ∈ A the subintervals translated by T . In order to minimize the number of
exchanged intervals, we will always assume that each end of I is the first meeting
point of a separatrix (that is not a saddle connection) emanating by a fixed point
(incoming or outgoing) with the set I.

Let τ : I → R>0 ∪ {+∞} be the first return time map. Then each point in
M ′ \ (Sd(ψR) ∪ SL(ψR)) is uniquely represented as ψtx for some x ∈ I and 0 ≤ t <
τ(x). The function τ : I → R>0∪{+∞} is smooth on the interior of any exchanged
interval and has singularities at discontinuities of T . Each such discontinuity is the
first hitting point (forward or backward) of a separatrix emanated by a saddle with
the curve (interval) I. Moreover, degenerate saddles (mσ > 2) of ψR are responsible
for the appearance of singularities of polynomial type and simple saddles (mσ = 2)
are responsible for the appearance of logarithmic type singularities.

1.2. Two crucial operators and two cohomological equations. For any smooth
observable f :M → C we deal with the corresponding map φf : I → C∪{∞} given
by

φf (x) =

∫ τ(x)

0

f(ψtx)dt.

The function φf is smooth on the interior of any interval Iα and can have polynomial
or logarithmic type singularities at discontinuities of T depending on the vanishing
of some invariant distributions on f defined in [4] and based on partial derivatives
of f at saddles in M ′. One of the aim of this paper is a deeper understanding of
the operator f 7→ φf on the kernel of all invariant distributions coming from [4].
Then φf has no singularities, but its derivatives can have. In this paper we define
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an infinite sequence of new (a little bit more sophisticated) invariant distributions
(based on partial derivatives at saddles) which are responsible for understanding the
regularity of φf .

For solving the cohomological equation (1.1) we also need to study another oper-
ator g 7→ ug,f . Suppose that g : I → C is a smooth solution (at least continuous) of
the another cohomological equation

(1.2) g(Tx)− g(x) = φf (x) on I.

This is an obvious necessary condition for the existence of a smooth solution of the
equation (1.1). Indeed, if u is smooth and satisfies (1.1), then the map g : I → C
defined as the restriction of u to I is smooth and satisfies (1.2). A natural problem
is: when is this also a sufficient condition?

Suppose that g : I → C is a smooth solution of (1.2). Then the corresponding
solution ug,f :M ′ \ (Sd(ψR)∪SL(ψR)) → C is defined as follows. If ψtx ∈ I for some
t ∈ R then

ug,f (x) := g(ψtx)−
∫ t

0

f(ψsx) ds.

By the proof of Lemma 6.3 in [6], the function ug,f is well defined on M ′ \ (Sd(ψR)∪
SL(ψR)). Moreover, if M is a C∞-surface, ψR is a C∞-flow and f is a C∞-observable,
then ug,f is as regular as g. Indeed, by the absence of saddle connections joining
different saddles, for every x0 ∈ M ′ \ (Sd(ψR) ∪ SL(ψR)) there exists t0 ∈ R such
that ψt0x0 ∈ Int I. For simplicity, assume that t0 ≤ 0. Then choose ε > 0 such that
[ψt0x0 − ε, ψt0x0 + ε] ⊂ Int I and let

(1.3) R(x0, t0, ε) :=
⋃

−ε≤t≤−t0+ε

ψt[ψt0x0 − ε, ψt0x0 + ε].

If ε > 0 is small enough then ν : [−ε,−t0 + ε]× [ψt0x0 − ε, ψt0x0 + ε] → R(x0, t0, ε)
given by ν(t, x) = ψtx is a C∞-diffeomorphism. Moreover,

ug,f ◦ ν(t, x) = g(x)−
∫ t

0

f ◦ ν(s− t, x)ds = g(x) +

∫ t

0

f ◦ ν(s, x)ds.

It follows that the regularity of ug,f restricted to R(x0, t0, ε) coincides with the
regularity of g on [ψt0x0 − ε, ψt0x0 + ε]. Since x0 ∈ IntR(x0, t0, ε), we obtain our
claim.

However, the solution ug,f of the cohomological equation is not fully satisfactory
because it is defined only on an open (dense) subset of the minimal component,
without fixed points and saddle loops. Our main goal is to find necessary and
sufficient conditions for the existence of a smooth solution (of the cohomological
equation) defined over all of M ′. More precisely, instead of M ′ we will study smooth
solutions defined on the end compactification M ′

e of M ′ \Sd(ψR). Roughly speaking,
if a saddle σ emanates l ≥ 2 loops, then σ is the l-fold end of the set M ′ \ Sd(ψR).
For this reason, σ splits in M ′

e into l different end points σ1, . . . , σl, see Figure 1. We
will look for smooth solutions u :M ′

e → C of (1.1). If a smooth solution u :M ′
e → C

exists then it is smooth in a neighborhood (in M ′
e) of any version σi of the saddle

point σ, but it does not even have to be continuous at σ, whenever the limits of u at σ
with respect to different neighborhood sectors (connected components) are different.
Of course, if each saddle emanates at most one saddle loop then M ′

e coincides with
M ′ and the problem of regularity of u :M ′

e → C and u :M ′ → C are equivalent.
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Figure 1. The minimal component M ′ before and after separation
procedure.

1.3. Grading of smoothness. Let M be a C∞-manifold with a boundary. For
any n ∈ Z≥0 and 0 < a < 1 denote by Cn+a(M) the space of Cn-functions on
M such that their n-th derivative is a-Hölder. Let η : R≥0 → R≥0 be given by
η(x) = −x log x for x ∈ [0, e−1] and η(x) = e−1 for x ≥ e−1. For any n ∈ Z≥0

denote by Cn+η(M) the space of Cn-functions on M such that their n-th derivative
is continuous so that a positive multiple of η is its modulus of continuity. For every
non-natural real r > 0 we will write Cr for C⌊r⌋+{r}.

Let Rη := (R>−1 \ Z) ∪ (Z≥−1 + {η}) and let v : Rη → R be given by v(r) = r if
r ∈ (R>−1 \ N) and v(n+ η) = n+ 1. Then 0 ≤ v(r) ≤ v(r′) iff Cr ⊂ Cr′ .

1.4. Invariant distributions. To solve our main problem, in the present paper
we introduce a family of invariant distributions f 7→ dkσ,j(f) for all σ ∈ Sd(ψR),
k ≥ 0 and 0 ≤ j ≤ k ∧ (mσ − 2). Throughout the article we use the notation
x ∨ y = max{x, y} and x ∧ y = min{x, y} for any pair of real numbers x, y. Recall
that a linear bounded functional f 7→ D(f) is an invariant distribution if D(Xu) = 0
for any u ∈ C∞(M). The distributions are defined locally around saddles and are
obstructions to the existence of smooth solutions to the cohomological equation. The
invariant distributions dkσ,j are defined based on the higher-order partial derivatives
of the function f in saddles or they are linear combinations of partial derivatives (if
k > mσ − 2). We also introduce alternative versions of such invariant distributions,
i.e. f 7→ Ckσ,l(f) for 0 ≤ l < 2mσ, which have a more geometric interpretation, and
generate the same space of invariant distributions as dkσ,j.

Suppose that σ ∈ Sd(ψR) is a saddle of multiplicity mσ ≥ 2. Fix a singular
chart (x, y) in a neighborhood Uσ of σ. Then the local Hamiltonian is of the form
H(x, y) = ℑ(x + ιy)mσ and the ψR-invariant area-measure is dµ = V (x, y)dx ∧ dy,
where V is positive and smooth. Then for every k ≥ 0 and 0 ≤ j ≤ k ∧ (mσ − 2)
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with j ̸= k− (mσ−1)modmσ we define the functional dkσ,j : Ck(M) → C as follows:

(1.4) dkσ,j(f) =
∑

0≤n≤ k−j
mσ

(
k

j+nmσ

)( (mσ−1)−j
mσ

−1
n

)
( (k−j)−(mσ−1)

mσ
n

) ∂k(f · V )

∂zj+nmσ∂zk−j−nmσ
(0, 0).

Note that for k ≤ mσ − 2 we have dkσ,j(f) =
(
k
j

) ∂k(f ·V )

∂zj∂zk−j (0, 0), so dkσ,j are essentially
distributions defined already in [4] to study deviation spectrum of Birkhoff integrals
of f . Let us mention that non-vanishing any of these distributions is an obstacle to
the existence of any solution of the cohomological equation (even measurable). The
distributions dkσ,j for k ≥ mσ − 1 are responsible for determining regularity of the
solution if we already know that equation (1.1) has a smooth solution. To explain
this relation in better way, we need to introduce another family of distributions
Ckσ,l : C

k(M) → C for 0 ≤ l < 2mσ,

(1.5) Ckσ,l(f) :=
∑
0≤i≤k

i ̸=mσ−1modmσ

i ̸=k−(mσ−1)modmσ

θl(2i−k)σ

(
k

i

)
B( (mσ−1)−i

mσ
, (mσ−1)−k+i

mσ
)
∂k(f · V )

∂zi∂zk−i
(0, 0),

where θσ is the principal 2mσ-th root of unity and the (beta-like) function B(x, y)
is defined for any pair x, y of real numbers such that x, y /∈ Z as follows

B(x, y) =
πeι

π
2
(y−x)

2x+y−2

Γ(x+ y − 1)

Γ(x)Γ(y)
,

where we adopt the convention Γ(0) = 1 and Γ(−n) = 1/(−1)nn!. The functionals
Ckσ,l for 0 ≤ l < 2mσ are not linearly independent, in contrast to the family of
functionals dkσ,j. Indeed, Ckσ,l′ = (−1)kCkσ,l if l′ = l ±mσ and∑

0≤l<2mσ

θ(k−2j)l
σ Ckσ,l = 0 if j = mσ − 1 or j = k − (mσ − 1).

The element of Rη given by

e(dkσ,j) = e(Ckσ,l) = e(σ, k) =

{
k−(mσ−2)

mσ
if k−(mσ−2)

mσ
/∈ Z

k−2(mσ−1)
mσ

+ η if k−(mσ−2)
mσ

∈ Z.

is called the exponent of dkσ,j or Ckσ,l. Then

o(dkσ,j) = o(Ckσ,l) = o(σ, k) := v(e(σ, k)) =
k − (mσ − 2)

mσ

is called the order of dkσ,j or Ckσ,l. Finally, let ê(dkσ,j) = ê(σ, k) = k − (mσ − 1) + η

and ô(dkσ,j) = ô(σ, k) = v(̂e(dkσ,j)) = k − (mσ − 2).
For any saddle σ ∈ Sd(ψR) its (singular) neighbourhood Uσ splits into 2mσ (an-

gular) sectors bounded by separatrices emanated from σ. In singular coordinates
z = (x, y) they are of the form

Uσ,l := {z ∈ Uσ : Arg z ∈ ( πl
mσ
, π(l+1)

mσ
)} for 0 ≤ l < 2mσ.

Each such sector is either included in a minimal component M ′ of ψR or is disjoint
from M ′. In the problem of studying the regularity of the solutions of the coho-
mological equation, only non-zero values of invariant distributions Ckσ,l(f) such that
Uσ,l ∩M ′ ̸= ∅ turn out to be relevant.



SOLVING COHOMOLOGICAL EQUATION - PART I. LOCAL OBSTRUCTIONS 7

1.5. Main results. The first main theorem describes the smoothness of the function
φf depending on the values of the functionals described in Section 1.4. To precisely
describe the regularity of φf , in Section 2, for any n ∈ Z≥0 and 0 ≤ a < 1 we
introduce the space Cn+Pa(⊔α∈AIα) (and its geometric version Cn+PaG) of functions
whose n-th derivative has polynomial singularities of order at most −a at the ends
of the intervals translated by the IET T . We should mention that for any n ∈ N we
have Cn+Pa ⊂ C(n−1)+(1−a) if 0 < a < 1 and Cn+P0 ⊂ C(n−1)+η.

Recall that we always assume that M is a compact connected orientable C∞-
surface and ψR is a locally Hamiltonian C∞-flow on M with isolated fixed points
and such that all its saddles are perfect and all saddle connections are loops. Let
M ′ ⊂M be a minimal component of the flow and let I ⊂M ′ be a transversal curve.
The corresponding IET T : I → I exchanges the intervals Iα, α ∈ A.

For any r ≥ −m−2
m

, where m is the maximal multiplicity of saddles in Sd(ψR)∩M ′,
let

kr =

{
⌈mr + (m− 1)⌉ if − m−2

m
≤ r ≤ −m−3

m
⌈mr + (m− 2)⌉ if − m−3

m
< r.

Note that
(1.6) max{k ≥ 0 : ∃σ∈Sd(ψR)∩M ′o(σ, k) < r}+ 1 = ⌈mr + (m− 2)⌉.

Denote by T D the set of triples (σ, k, j) ∈ (Sd(ψR)∩M ′)×Z≥0 ×Z≥0 such that
0 ≤ j ≤ k ∧ (mσ − 2) and j ̸= k − (mσ − 1)modmσ and by T C the set of triples
(σ, k, l) ∈ (Sd(ψR) ∩M ′)× Z≥0 × Z≥0 such that 0 ≤ l < 2mσ and Uσ,l ∩M ′ ̸= ∅.

Theorem 1.1. Fix r ≥ −m−2
m

. Suppose that f ∈ Ckr(M) is such that Ckσ,l(f) = 0 for
all (σ, k, l) ∈ T C such that o(Ckσ,l) < r. Then φf ∈ Cn+PaG(⊔α∈AIα) with n = ⌈r⌉
and a = ⌈r⌉ − r. Moreover, the operator

Ckr(M) ∩
⋂

(σ,k,l)∈T C
o(Ck

σ,l)<r

ker(Ckσ,l) ∋ f 7→ φf ∈ Cn+PaG(⊔α∈AIα)

is bounded.

This result provides a descending filtration of the space Φk := {φf : f ∈ Ck(M)},
k ∈ N∪{∞} that is the basis for proving a spectral theorem (in [5]) for the so-called
Kontsevich-Zorich cocycle on Φk. Using renormalization techniques, the aforemen-
tioned spectral result allows understanding the regularity of the solution of the
cohomological equation (1.2) (see also [5]) for a.e. IET T .

The second main theorem solves the problem regarding regularity of the solutions
of (1.1) provided we know the degree of smoothness for the solution of (1.2). This
result is another ingredient in the proof of the final theorem on the regularity of the
solution of the cohomological equation (1.1) presented in [5].

Theorem 1.2. Fix r ∈ Rη so that v(r) > 0. Assume that f ∈ Ckv(r)(M) is such
that

• dkσ,j(f) = 0 for all (σ, k, j) ∈ T D with ô(dkσ,j) < v(r);
• Ckσ,l(f) = 0 for all (σ, k, l) ∈ T C with o(Ckσ,l) < v(r).

Suppose that g ∈ Cr(I) is a solution of the cohomological equation φf = g ◦ T − g.
Then there exists ug,f ∈ Cr(M ′

e) satisfying Xug,f = f on M ′
e. Moreover, there exists

a constant Cr > 0 such that

∥ug,f∥Cr(M ′
e) ≤ Cr(∥g∥Cr(I) + ∥f∥

C
kv(r) (M)

).
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Theorem 1.3 (optimal regularity). Let r ∈ Rη with v(r) > 0 and let f ∈ Ckv(r)(M).
If there exists u ∈ Cr(M ′

e) such that Xu = f on M ′
e then

• dkσ,j(f) = 0 for all (σ, k, j) ∈ T D with ô(dkσ,j) < v(r);
• Ckσ,l(f) = 0 for all (σ, k, l) ∈ T C with o(Ckσ,l) < v(r).

In summary, all three main results provide an analytical background necessary
to fully solve the regularity problem of solving the cohomological equation for lo-
cally Hamiltonian flows. The dynamical component, using mainly renormalization
techniques, the authors left to [5].

If the locally Hamiltonian flow has no saddle loops then for any k ≥ 0 the func-
tionals Ckσ,l and dkσ,j generate the same space of invariant distributions. In general,
the former space is a subspace of the latter. Since o(σ, k) < ô(σ, k), the condi-
tions involving the functionals dkσ,j can be removed. Then our main result has the
following form.

Corollary 1.4. Fix r ∈ Rη so that v(r) > 0. Assume that f ∈ Ckv(r)(M) and
g ∈ Cr(I) is a solution of the cohomological equation φf = g ◦ T − g. Then the
existence of ug,f ∈ Cr(M) satisfying Xug,f = f is equivalent to Ckσ,l(f) = 0 for all
σ ∈ Sd(ψR), 0 ≤ l < mσ and k < mσv(r) + (mσ − 2).

Let us mention that local C∞-solutions of cohomological equations for flows with-
out saddle loops around saddles were studied by Roussarie in [11]. We should em-
phasize that our results are new (even for flows without saddle loops) because they
involve solutions with finite differentiability, which causes significant technical com-
plications. In this case, Forni has suggested us an alternative strategy potentially
simplifying the complex techniques used in this article.

However, the main advantage and novelty of local tools introduced in this article
is the ability to study solutions in closed angular sectors (so-called semi-solutions),
which makes it possible to apply to flows that have saddle loops. These types of
problems has not been systematically studied before. Under an assumption that
some saddles have (many) loops, for every k large enough the functionals Ckσ,l gener-
ate less space than that generated by dkσ,j. Then some functionals dkσ,j begin to have
an independent effect on the regularity of solutions, but their influence has less in-
tensity than the functionals Ckσ,l, even though both types of functionals (for fixed k)
have the same order of regularity. This seems to be a completely new phenomenon,
not previously observed in the study of the regularity of solutions to cohomological
equations in parabolic dynamics.

1.6. Structure of the paper. The paper is organized as follows. In Section 2,
we define one-parameter family of Banach spaces of functions whose (higher order)
derivatives have polynomial singularities at the ends of intervals exchanged by an
IET. We establish their basic properties necessary in next sections of the article. In
Section 3, for any continuous function f defined around a saddle, we define three
types of functions: φf,l, Ff,l and Ff . The map φf,l is a local version of the function
φf defined in Section 1.2 and is necessary to study the local behavior of φf near the
ends of intervals exchanged by an IET. The map Ff is (in a sense) a local solution to
the cohomological equation Xu = f in open angular sectors Uσ,l around the saddle.
The map Ff,l is a covering of Ff and is a technical tool for showing basic properties
of the other two. In Section 3, we prove basic properties of Ff,l, which are used
to understand the behavior of Ff on open angular sectors Uσ,l. In Section 4, using
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the tools introduced in Section 3, we determine precisely the form of φf,l and Ff,l

on some angular sectors. Both of these results are then used to prove that Ff has
a smooth extension to closed angular sectors Uσ,l and to establish necessary and
sufficient conditions (expressed in the language of local invariant distributions) for
such an extension. Finally, in Section 5, we use the contents of all previous sections
to prove Theorem 1.1, 1.2 and 1.3.

2. Functions whose (higher order) derivatives have polynomial
singularities

In this section we introduce one-parameter family of Banach spaces of functions
whose (higher order) derivatives have polynomial singularities at the ends of intervals
exchanged by an IET. The new spaces simply generalize Banach spaces Pa studied
in [4].

2.1. Space Cn+Pa. Fix 0 ≤ a < 1 and an IET T : I → I satisfying so called Keane’s
condition. Denote by Iα = [lα, rα), α ∈ A all subintervals exchanged by T . The IET
is determined by a pair (π, λ), where λ = (λα)α∈A ∈ RA

>0 is the vector of lengths
of exchanged intervals, i.e. λα = rα − lα, and π = (π0, π1) is the pair of bijections
πε : A → {1, . . . , d} for ε = 0, 1 (d = |A| is the number of exchanged intervals) such
that π0(α) is the item of Iα before the translation and π1(α) after the translation.

For every α ∈ A, denote by mα the middle point of Iα, i.e. mα = (lα+ rα)/2. For
every φ ∈ C1(⊔α∈A Int Iα,C) let us consider

pa(φ) :=max
α∈A

{
sup

x∈(lα,mα]

|Dφ(x)(x− lα)
1+a|, sup

x∈[mα,rα)

|Dφ(x)(rα − x)1+a|
}
.

Definition 1. For every integer n ≥ 0, we denote by Cn+Pa(⊔α∈AIα) the space of
functions φ ∈ Cn+1(⊔α∈A Int Iα,C) such that pa(Dnφ) < +∞ and for every α ∈ A
the limits

Ca,+
α,n (φ) = (−1)nC+

α (D
nφ) := (−1)n+1 lim

x↘lα
Dn+1φ(x)(x− lα)

1+a,

Ca,−
α,n (φ) = C−

α (D
nφ) := lim

x↗rα
Dn+1φ(x)(rα − x)1+a

exist. We denote by Cn+PaG(⊔α∈AIα) ⊂ Cn+Pa(⊔α∈AIα) the subspace of functions
φ ∈ Cn+Pa(⊔α∈AIα) of geometric type, i.e. such that

Ca,−
π−1
0 (d),n

(φ) · Ca,−
π−1
1 (d),n

(φ) = 0 and Ca,+

π−1
0 (1),n

(φ) · Ca,+

π−1
1 (1),n

(φ) = 0.

For every 0 ≤ a < 1 and every integer n ≥ 0, by Lemma 4.3 in [4], if φ ∈
Cn+Pa(⊔α∈AIα) then Dnφ ∈ L1(I). Let us consider the norm on Cn+Pa(⊔α∈AIα)
given by

(2.1) ∥φ∥Cn+Pa :=
n∑
k=0

∥Dkφ∥L1(I) + pa(D
nφ).

Recall that, by Lemma 4.2 in [4], for n = 0 the space Cn+Pa(⊔α∈AIα) equipped with
the norm ∥ · ∥Cn+Pa is Banach. This gives Banach’s condition also for all n ≥ 1.
Moreover, Cn+PaG(⊔α∈AIα) is a closed subspace of Cn+Pa(⊔α∈AIα) for any n ≥ 0.

Let η : R≥0 → R≥0 be given by η(x) = −x log x for x ∈ [0, e−1] and η(x) = e−1

for x ≥ e−1. Denote by Cη(⊔α∈AIα) the space of functions f : I → C such that

|f |Cη := max
α∈A

sup

{
|f(x)− f(y)|
η(|x− y|)

: x, y ∈ Int Iα, x ̸= y

}
< +∞.
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Then Cη(⊔α∈AIα) equipped with the norm ∥f∥Cη = ∥f∥L1 + |f |Cη is a Banach
space. For every 0 < a < 1 denote by Ca(⊔α∈AIα) the space of piecewise a-Hölder
continuous functions, i.e. such that

|f |Ca := max
α∈A

sup

{
|f(x)− f(y)|

|x− y|a
: x, y ∈ Int Iα, x ̸= y

}
< +∞,

equipped with the Banach norm ∥f∥Ca = ∥f∥L1 + |f |Ca .
For every n ≥ 0 we also deal with the Banach spaces Cn+η(⊔α∈AIα), Cn+a(⊔α∈AIα)

equipped with the norms

∥φ∥Cn+η =
n∑
k=0

∥Dkφ∥L1 + |Dnφ|Cη , ∥φ∥Cn+a =
n∑
k=0

∥Dkφ∥L1 + |Dnφ|Ca , resp.

For every non-natural real number r > 0 we will write Cr for C⌊r⌋+{r}.

Remark 2.1. In view of Lemma 4.5 in [4], for every φ ∈ C0+Pa(⊔α∈AIα) and x ∈
Int Iα,

|φ(x)| ≤ ∥φ∥L1

|I|
+ pa(φ)

( 1

amin{x− lα, rα − x}a
+

2a+2

a(1− a)|Iα|a
)

if 0 < a < 1

|φ(x)| ≤ ∥φ∥L1

|I|
+ pa(φ)

(
log

|Iα|
2min{x− lα, rα − x}

+ 2
)

if a = 0.

It follows that if φ ∈ Cn+Pa for some n ≥ 1, then

φ ∈ C(n−1)+(1−a) with ∥φ∥C(n−1)+(1−a) ≤
22+amaxα∈A |Iα|1−2a

a(1− a)
∥φ∥Cn+Pa if 0 < a < 1

φ ∈ C(n−1)+η with ∥φ∥C(n−1)+η ≤ (|I|−1 + 3)∥φ∥Cn+Pa if a = 0.

Remark 2.2. For any 0 ≤ a < 1 and any interval J ⊂ Iα let

pa(φ, J) := sup{(min{x− lα, rα − x})1+a|φ′(x)| : x ∈ J}.
Moreover, for any n ≥ 0 let

∥φ∥Cn+Pa (J) :=
n∑
k=0

∥Dkφ∥L1(J) + pa(D
nφ, J).

In view of Lemma 4.3 in [4], if J = (lα, lα + ε] or J = [rα − ε, rα) with ε ≤ |Iα|/2,
then for every 0 ≤ b < 1 we have

(2.2) pb(φ, J) ≤ ∥φ′∥L1(J) +
pa(φ

′, J)

1− a
.

Let n, n′ ≥ 0 and 0 ≤ a, a′ < 1 such that n − a ≤ n′ − a′. In view of (2.2),
Cn′+Pa′ ⊂ Cn+Pa and ∥φ∥Cn+Pa (J) ≤ 1

1−a′∥φ∥Cn′+Pa′ (J)
.

If J ⊂ [lα + ε, rα − ε] for some ε > 0 then for any n ≥ 0 and 0 ≤ a < 1,
∥φ∥Cn+Pa (J) ≤ ∥φ∥Cn+1(J).

3. Local analysis around saddles

In this section we present a local representation of the flow near singularity. This
analysis is the main ingredient for proving relations between the regularity of the
function f :M → C and higher derivatives of associated cocycle φf : I → C. Unlike
previous approach developed for polynomial singularities appeared in [4, §8], our
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new methods generalizes the way of computing the Cn+Pa-norm of φf in an angular
sector.

Let m ≥ 2 be the multiplicity of a saddle point. Let G0 : C → C be the principal
branch of the m-th root G0(re

ιt) = r1/meιt/m if t ∈ [0, 2π) and let θ and θ0 be the
principal m-th and 2m-th root of unity respectively. Then G = Gl : C → C given
by Gl = θlG0 for 0 ≤ l < m is the l-th branch of the m-th root.

Let f : D → C be a bounded Borel map where D = Dm is the pre-image of
the square [−1, 1] × [−1, 1] by the map C ∋ ω 7→ ωm ∈ C. We will usually treat
f as a function depending on a pair of complex variables (ω, ω̄). The purpose of
this and the next section is to understand the properties of two types of functions
φf,l : [−1, 0) ∪ (0, 1] → C and Ff,l : [−1, 1]2 \ ([0, 1] × {0}) → C for 0 ≤ l < m
associated with f , which are crucial in proving the main results of this article. They
are given by

(3.1) φf,l(s) =

∫ 1

−1

f(Gl(u, s))

(u2 + s2)
m−1
m

du, Ff,l(u, s) =

∫ u

−1

f(Gl(v, s))

(v2 + s2)
m−1
m

dv.

Then φf,l(s) = Ff,l(1, s) for s ̸= 0. We will usually treat Ff,l as a function depend-
ing on a pair of complex variables (z, z̄), where z = u+ ιs.

For any 0 ≤ α < β ≤ 1 let D(α, β) := {ω ∈ D \ {0} : Arg(ω) ∈ (2πα, 2πβ)}.
We denote its closure by D(α, β). For any A ⊂ C denote by A1/m the pre-image
of A for the map ω 7→ ωm. We will also need third type of associated function
Ff : D\ ([0, 1]×{0})1/m → C. As D\ ([0, 1]×{0})1/m =

⋃
0≤l<mD( l

m
, l+1
m
), the map

Ff is defined by
Ff (ω, ω) := Ff,l(ω

m, ωm) on D( l
m
, l+1
m
).

Note that Ff ·V is (in a sense) a local solution to the cohomological equation Xu = f
in any angular sector D( l

m
, l+1
m
). Indeed, since dω/dt = mω̄m−1/V , we have

Xu = m
(
ωm−1 ∂u

∂ω
+ ωm−1 ∂u

∂ω

)
/V.

By definition,

∂Ff ·V,l(z, z̄)

∂z
+
∂Ff ·V,l(z, z̄)

∂z̄
=
∂Ff ·V,l(u, s)

∂u
=

(f · V )(Gl(u, s))

(u2 + s2)
m−1
m

=
(f · V )(Gl(z))

|z|2m−1
m

.

Then for any ω ∈ D( l
m
, l+1
m
),

XFf ·V (ω, ω) =
m(ωm−1 ∂Ff ·V,l(ω

m,ωm)

∂ω
+ ωm−1 ∂Ff ·V,l(ω

m,ωm)

∂ω
)

V (ω, ω)

=
m2|ω|2(m−1)(

∂Ff ·V,l(ω
m,ωm)

∂z
+

∂Ff ·V,l(ω
m,ωm)

∂z
)

V (ω, ω)
= m2f(ω, ω).

The map Ff is well defined and smooth on every open angular sector D( l
m
, l+1
m
). One

of the most important technical challenges of this article is to answer the question
of when and how the map Ff extends smoothly into the closure D( l

m
, l+1
m
).

Some key properties of the three functions are taken in Theorems 3.11, 4.7 and 4.10.
Since their proofs are very technical, long and intertwined, we precede them with a
long list of auxiliary results, which should be regarded as intermediate steps in the
proof of the main theorems.
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3.1. Preliminary calculations. For every r > 0 let S (r) be the circular sector
S (r) = {(u, s) ̸= (0, 0) : u ≤ r|s|}.

For any 0 < s ≤ 1 and any a ∈ R let

⟨s⟩a =


sa−1
−a + 1 if a < 0
1− log s if a = 0

1 if a > 0.

Remark 3.1. Note that
• for any 0 < s ≤ 1 and any pair of real number a ≤ b we have ⟨s⟩a ≥ ⟨s⟩b;
• for any a ≥ 1 we have s−a/a ≤ ⟨s⟩−a ≤ s−a;
• for any 0 < a ≤ 1 we have s−a ≤ ⟨s⟩−a ≤ s−a/a;
• for any m ≥ 1 and a ∈ R we have ⟨sm⟩a ≤ m⟨s⟩am.

Lemma 3.2. For every a ∈ R and r > 0 there exist Ca, Ca,r > 0 such that

(3.2)
∫ u

−1

1

(v2 + s2)a
dv ≤ Ca⟨|s|⟩1−2a for all s ∈ [−1, 1] \ {0}

and

(3.3)
∫ u

−1

1

(v2 + s2)a
dv ≤ Ca,r⟨

√
u2+s2

2
⟩1−2a for all (u, s) ∈ [−1, 1]2 ∩ S (r).

If f : [−1, 1]2 → C is continuous at (0, 0), f(0, 0) = 0 and a ≥ 1/2 then

(3.4)
∫ u

−1

f(v, s)

(v2 + s2)a
dv = o(⟨|s|⟩1−2a).

Proof. Case 1. Suppose that a > 1/2. If s ̸= 0 then∫ u

−1

1

(v2 + s2)a
dv = |s|1−2a

∫ u/|s|

−1/|s|

1

(t2 + 1)a
dt ≤ |s|1−2a

∫ +∞

−∞

1

(t2 + 1)a
dt,

which gives (3.2).
If s = 0 and u < 0 then

(3.5)
∫ u

−1

1

(v2 + s2)a
dv =

∫ 1

|u|
v−2a dv =

1

2a− 1
(|u|1−2a − 1) ≤ 1

2a− 1
|u|1−2a.

Let us consider the function ν : (−∞,+∞) → R+ given by ν(x) :=
∫ x
−∞

1
(t2+1)a

dt.
If s ̸= 0 then

∫ u
−1
(v2 + s2)−a dv ≤ |s|1−2aν(u/|s|). As

lim
x→−∞

ν ′(x)
d
dx
(x2 + 1)1/2−a

= lim
x→−∞

(x2 + 1)−a

(1− 2a)x(x2 + 1)−a−1/2
=

1

2a− 1
,

we have ν(x)/(x2+1)1/2−a → 1/(2a−1) as x→ −∞. Therefore there exists Ca,r > 0

such that ν(x) ≤ Ca,r(
x2+1
2

)1/2−a for x ≤ r. It follows that for every (u, s) ∈ S (r)
with s ̸= 0,∫ u

−1

dv

(v2 + s2)a
≤ |s|1−2aν(u/|s|) ≤ Ca,r|s|1−2a

( (u/s)2+1
2

)1/2−a
= Ca,r

(
u2+s2

2

)1/2−a
,

which (together with (3.5)) gives (3.3).
Case 2. Suppose that a = 1/2. If s ̸= 0 then∫ u

−1

(v2 + s2)−1/2 dv = log
u+

√
u2 + s2

−1 +
√
1 + s2

≤ −2 log
s

3
,



SOLVING COHOMOLOGICAL EQUATION - PART I. LOCAL OBSTRUCTIONS 13

which gives (3.2). If s = 0 and u < 0 then

(3.6)
∫ u

−1

(v2 + s2)−1/2 dv = − log |u|.

Moreover, for any (u, s) ∈ S (r) with s ̸= 0,∫ u

−1

(v2 + s2)−1/2 dv = log
1 +

√
1 + s2

−u+
√
u2 + s2

≤ log
6(r2 + 1)√
u2 + s2

,

which (together with (3.6)) gives (3.3).

Case 3. Suppose that a < 1/2. If 0 < a < 1/2 then∫ u

−1

(v2 + s2)−a dv ≤ 2

∫ 1

0

v−2a dv =
2

1− 2a
.

If a ≤ 0 then ∫ u

−1

(v2 + s2)−a dv ≤ 21−a,

which gives (3.2) and (3.3).

Last claim. Suppose that f : [−1, 1]2 → C is continuous at (0, 0), f(0, 0) = 0
and a ≥ 1/2. For any ε > 0 choose δ > 0 such that |f(v, s)| ≤ ε if |v|, |s| < δ. It
follows that if |s| < δ then∣∣∣ ∫ u

−1

f(v, s)

(v2 + s2)a
dv
∣∣∣ ≤ ∫ δ

−δ

|f(v, s)|
(v2 + s2)a

dv + 2

∫ 1

δ

∥f∥sup
(v2 + s2)a

dv

≤ ε

∫ 1

−1

1

(v2 + s2)a
dv + 2

∫ 1

δ

∥f∥sup
v2a

dv

≤ εCa⟨|s|⟩1−2a + 2∥f∥sup⟨|δ|⟩1−2a.

This gives (3.4). □

Remark 3.3. For z = u+ ιs, the followings hold:

∂

∂u
=

(
∂

∂z
+

∂

∂z

)
,

∂

∂s
= ι

(
∂

∂z
− ∂

∂z

)
(3.7)

∂

∂z
=

1

2

(
∂

∂u
− ι

∂

∂s

)
,

∂

∂z
=

1

2

(
∂

∂u
+ ι

∂

∂s

)
.(3.8)

For any n1, n2, a1, a2 ∈ Z≥0 and any f ∈ Cn(D) (n = n1 + n2), we will deal with
some auxiliary functions Fn1,n2,a1,a2 , Gn1,n2,a1,a2 : [−1, 1]2 \ ([0, 1]× {0}) given by

Fn1,n2,a1,a2(z, z) = Fn1,n2,a1,a2(u, s) =
∂nf

∂ωn1∂ωn2
(G(u, s)) ·G(u, s)−a1G(u, s)

−a2
,

Gn1,n2,a1,a2(z, z) = Gn1,n2,a1,a2(u, s) =

∫ u

−1

Fn1,n2,a1,a2(v, s)dv.

The functions Fn1,n2,a1,a2 and Gn1,n2,a1,a2 will be called F -type and G-type functions.
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Lemma 3.4. For any f ∈ Cn+1(D) we have
∂Fn1,n2,a1,a2

∂z
=

1

m
Fn1+1,n2,a1+m−1,a2 −

a1
m
Fn1,n2,a1+m,a2 ,(3.9)

∂Fn1,n2,a1,a2

∂z
=

1

m
Fn1,n2+1,a1,a2+m−1 −

a2
m
Fn1,n2,a1,a2+m,(3.10)

∂Gn1,n2,a1,a2

∂z
=

1

2
Fn1,n2,a1,a2 +

1

2m
(Gn1+1,n2,a1+m−1,a2 − a1Gn1,n2,a1+m,a2)(3.11)

− 1

2m
(Gn1,n2+1,a1,a2+m−1 − a2Gn1,n2,a1,a2+m),

∂Gn1,n2,a1,a2

∂z
=

1

2
Fn1,n2,a1,a2 −

1

2m
(Gn1+1,n2,a1+m−1,a2 − a1Gn1,n2,a1+m,a2)(3.12)

+
1

2m
(Gn1,n2+1,a1,a2+m−1 − a2Gn1,n2,a1,a2+m).

Proof. Since ∂G
∂z

= 1
m
G1−m, ∂G

∂z
= 0, ∂G

∂z
= 1

m
G

1−m and ∂G
∂z

= 0, we obtain

∂Fn1,n2,a1,a2

∂z
=

1

m

∂n1+n2+1

∂ωn1+1∂ωn2
f(G,G) ·G−a1+1−mG

−a2

− a1
m

∂n1+n2

∂ωn1∂ωn2
f(G,G) ·G−a1−mG

−a2

=
1

m
Fn1+1,n2,a1+m−1,a2 −

a1
m
Fn1,n2,a1+m,a2 .

We also verify (3.10) in the same manner.
To obtain (3.11), in view of (3.7) and (3.8), we get

∂Gn1,n2,a1,a2

∂z
=

1

2

(
∂

∂u
− ι

∂

∂s

)∫ u

−1

Fn1,n2,a1,a2(v, s) dv

=
1

2
Fn1,n2,a1,a2 −

ι

2

∂

∂s

∫ u

−1

Fn1,n2,a1,a2(v, s) dv

=
1

2
Fn1,n2,a1,a2 +

1

2

∫ u

−1

(
∂

∂z
− ∂

∂z

)
Fn1,n2,a1,a2(v, s) dv.

Therefore, in view of (3.9) and (3.10), this gives (3.11). Likewise, we repeat the
same for (3.12). □

The quantities

d(Fn1,n2,a1,a2) =
n1 + n2 + a1 + a2

m
, d(Gn1,n2,a1,a2) =

n1 + n2 + a1 + a2
m

− 1

we call the degrees of the functions Fn1,n2,a1,a2 and Gn1,n2,a1,a2 . In view of (3.9)-(3.12),
we have the following conclusion.

Corollary 3.5. For any (l1, l2) ∈ Z2
≥0 the partial derivative ∂lGn1,n2,a1,a2

∂zl1∂zl2
is a linear

combination of F -type and G-type functions of degree d(Gn1,n2,a1,a2) + l, where l =
l1+l2. Moreover, each component of the linear combination is of the form Fn′

1,n
′
2,a

′
1,a

′
2

and Gn′
1,n

′
2,a

′
1,a

′
2

such that n ≤ n′
1 + n′

2 ≤ n+ l.

Lemma 3.6. Let n,∈ Z≥0. Assume that f ∈ Ck∨n(D) and Djf(0, 0) = 0 for
0 ≤ j < k. Then

|Fn1,n2,a1,a2(z, z)| ≤ ∥f∥Ck∨n|z|−d(Fn1,n2,a1,a2 )+
k∨n
m .
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Moreover, there exists C = Ca1,a2,n,k > 0 such that

|Gn1,n2,a1,a2(z, z)| ≤ C∥f∥Ck∨n⟨|ℑz|⟩−d(Gn1,n2,a1,a2 )+
k∨n
m(3.13)

for any z ∈ [−1, 1]2\([−1, 1]×{0}). For every r > 0 there exists Cr = Ca1,a2,n,k,r > 0
such that

|Gn1,n2,a1,a2(z, z)| ≤ Cr∥f∥Ck∨n⟨|z|/
√
2⟩−d(Gn1,n2,a1,a2 )+

k∨n
m(3.14)

on [−1, 1]2 ∩ S (r).
If additionally n ≤ k and Dkf(0, 0) = 0 then

|Fn1,n2,a1,a2(z, z)| = o(|ℑz|−d(Fn1,n2,a1,a2 )+
k
m ) if k

m
≤ d(Fn1,n2,a1,a2) and

|Gn1,n2,a1,a2(z, z)| = o(⟨|ℑz|⟩−d(Gn1,n2,a1,a2 )+
k
m ) if k

m
≤ d(Gn1,n2,a1,a2).

(3.15)

Proof. As Djf(0, 0) = 0 for 0 ≤ j < k,∣∣∣∣ ∂nf

∂ωn1∂ω̄n2
(ω, ω̄)

∣∣∣∣ ≤ ∥Dk∨nf∥C0|ω|(k∨n)−n.

Hence

|Fn1,n2,a1,a2(z, z)| ≤ ∥f∥Ck∨n|z|−
a1+a2+n

m
+ k∨n

m = ∥f∥Ck∨n|z|−d(Fn1,n2,a1,a2 )+
k∨n
m .

If dF = d(Fn1,n2,a1,a2) =
n+a1+a2

m
then

|Gn1,n2,a1,a2(z, z)| ≤
∫ u

−1

|Fn1,n2,a1,a2(v, s)|dv = ∥f∥Ck∨n

∫ u

−1

(v2 + s2)
−dF+ k∨n

m
2 dv.

As dG = d(Gn1,n2,a1,a2) = dF − 1, the inequalities (3.13) and (3.14) follow directly
from Lemma 3.2.

Suppose that 0 ≤ n ≤ k, f ∈ Ck(D) and Djf(0, 0) = 0 for 0 ≤ j ≤ k. Then∣∣ ∂nf
∂ωn1∂ω̄n2

(ω, ω̄)
∣∣ = o(|ω|k−n). Hence

|Fn1,n2,a1,a2(z, z)| = o(|z|−
a1+a2+n

m
+ k

m ) = o(|ℑz|−dF+ k
m ) if

k

m
≤ dF .

Moreover,

|Gn1,n2,a1,a2(z, z)| ≤
∫ u

−1

|Fn1,n2,a1,a2(v, s)|dv =

∫ u

−1

ξ(v, s)

(v2 + s2)
dG+1− k

m
2

dv,

where lim(v,s)→(0,0) ξ(v, s) = 0. If dG ≥ k
m

then the second line of (3.15) follows
directly from (3.4). □

3.2. Higher derivatives of functions F and F . In this section, using the results
proved in Section 3.1, we study the behaviour around zero of the higher order partial
derivatives for the functions Ff,l and Ff . For any a ∈ Z≥0 and any bounded Borel
map f : D → C let us consider F = Fl = Ff,l : [−1, 1]2 \ ([0, 1]× {0}) → C given
by

Ff,l(u, s) =

∫ u

−1

f(Gl(v, s))

(v2 + s2)
a
m

dv.
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Lemma 3.7. Assume that f ∈ Ck∨n(D) and Djf(0, 0) = 0 for 0 ≤ j < k. Then
there exists C = Ca,n,k > 0 such that for every (n1, n2) ∈ Z2

≥0 with n1 + n2 = n we
have ∣∣∣∣∂nF (z, z)

∂zn1∂zn2

∣∣∣∣ ≤ C∥f∥Ck∨n⟨|ℑz|⟩−( 2a
m

+(n−1)− k
m
) if ℑz ̸= 0.(3.16)

For every r > 0 there exists Cr = Ca,n,k,r > 0 such that∣∣∣∣∂nF (z, z)

∂zn1∂zn2

∣∣∣∣ ≤ Cr∥f∥Ck∨n⟨|z|/
√
2⟩−( 2a

m
+(n−1)− k

m
) on S (r).(3.17)

If additionally 0 ≤ n ≤ k and Dkf(0, 0) = 0 then∣∣∣∣∂nF (z, z)

∂zn1∂zn2

∣∣∣∣ = o(⟨|ℑz|⟩−( 2a
m

+(n−1)− k
m
)) if

2a

m
+ (n− 1) ≥ k

m
.(3.18)

Proof. By definition, F = G0,0,a,a. In view of Corollary 3.5, the partial deriva-
tive ∂nG0,0,a,a

∂zn1∂zn2
is a linear combination of F -type and G-type functions of the form

Fn′
1,n

′
2,a

′
1,a

′
2

and Gn′
1,n

′
2,a

′
1,a

′
2

such that their degree is 2a/m + n − 1 and 0 ≤ n′ :=
n′
1 + n′

2 ≤ n.
Suppose that n ≤ k. Then (3.16) and (3.17) follow directly from Lemma 3.6. The

same arguments combined with (3.15) yield (3.18).
Suppose that n > k. Then k ≤ n′ ∨ k < n. Therefore, ∥f∥Cn′∨k ≤ ∥f∥Cn and for

any 0 ≤ s ≤ 1 and d ∈ R we have ⟨s⟩−d+n′∨k
m ≤ ⟨s⟩−d+ k

m . In view of Lemma 3.6 this
gives (3.16) and (3.17). □

By change of coordinates, we obtain the bound of higher derivatives of the map
F = Ff : D \ ([0, 1]× {0})1/m → C given by Ff (ω, ω) = Ff,l(ω

m, ωm) on D( l
m
, l+1
m
).

Lemma 3.8. Assume that f ∈ Ck∨n(D) and Djf(0, 0) = 0 for 0 ≤ j < k. Then for
any r > 0 there exists Cr,n > 0 such that for every (n1, n2) ∈ Z2

≥0 with n1 + n2 = n,∣∣∣∣∂nF (ω, ω)∂ωn1∂ωn2

∣∣∣∣ ≤ Cr,n∥f∥Ck∨n(1 + | log |ω||)|ω|(−2a+m+k−n)∧0(3.19)

for ω ∈ D ∩ S (r)1/m.

Proof. Recall that F (ω, ω) = F (ωm, ωm). By Faà di Bruno’s formula,
∂nF (ω, ω)

∂ωn1∂ωn2
=
dnF (ωm, ωm)

dωn1dωn2

=
∑
p̄,q̄

Cp̄,q̄
∂|p̄|+|q̄|F

∂z|p̄|∂z|q̄|
(ωm, ωm) ·

n1∧m∏
j=1

(ωm−j)pj
n2∧m∏
j=1

(ωm−j)qj ,

where the sum is over all n1-tuples p̄ = (p1, . . . , pn1) and n2-tuples q̄ = (q1, . . . , qn2) of
non-negative integers satisfying the constraints

∑n1

j=1 jpj = n1, pj = 0 for j > n1∧m
and

∑n2

j=1 jqj = n2, qj = 0 for j > n1 ∧m, and we use the notation |p̄| =
∑n1

j=1 pj
and |q̄| =

∑n2

j=1 qj. Let

P := {|p̄| :
n1∑
j=1

jpj = n1, pj = 0 for j > n1 ∧m}

Q := {|q̄| :
n2∑
j=1

jqj = n2, qj = 0 for j > n2 ∧m}.
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Then
∂nF (ω, ω)

∂ωn1∂ωn2
=
∑
p̄,q̄

Cp̄,q̄
∂|p̄|+|q̄|F

∂z|p̄|∂z|q̄|
(ωm, ωm) · ωm|p̄|−n1ωm|q̄|−n2

=
∑

p∈P,q∈Q

C ′
p,q

∂p+qF

∂zp∂zq
(ωm, ωm) · ωmp−n1ωmq−n2 .

In view of Lemma 3.7 and Remark 3.1, for every ω ∈ D ∩ S (r)1/m,∣∣∣∣∂p+qF∂zp∂zq
(ωm, ωm)

∣∣∣∣ ≤ mCr∥f∥Ck∨n⟨|ω|/ 2m
√
2⟩−(2a+(p+q−1)m−k).

Therefore, taking l = p+ q ∈ P +Q, for every ω ∈ D ∩ S (r)1/m,∣∣∣∣∂nF (ω, ω)∂ωn1∂ωn2

∣∣∣∣ ≤ ∑
l∈P+Q

mCr∥f∥Ck∨n⟨|ω/ 2m
√
2|⟩−(2a+(l−1)m−k)|ω|ml−n.(3.20)

Moreover, for l = p+ q ∈ P +Q we have

ml − n =

n1∧m∑
j=1

(m− j)pj +

n2∧m∑
j=1

(m− j)qj ≥ 0.

If 2a+ (l − 1)m− k > 0 then

⟨|ω/ 2m
√
2|⟩−(2a+(l−1)m−k)|ω|ml−n = O(|ω|−(2a+n−m−k)).

If 2a+ (l − 1)m− k = 0 then

⟨|ω/ 2m
√
2|⟩−(2a+(l−1)m−k)|ω|ml−n = O((1 + | log |ω||)|ω|−(2a+n−m−k)).

If 2a+ (l − 1)m− k < 0 then

⟨|ω/ 2m
√
2|⟩−(2a+(l−1)m−k)|ω|ml−n = |ω|ml−n = O(1).

In view of (3.20), this gives (3.19). □

3.3. Preliminary results necessary to define invariant distributions. For
any pair of integers (a1, a2), let Fa1,a2 = Fla1,a2 : [−1, 1]2 \ ([0, 1] × {0}) → C and
Ga1,a2 = Gl

a1,a2
: [−1, 1]2 \ ([0, 1]× {0}) → C be given by

Fa1,a2(z, z) = Fa1,a2(u, s) = Gl(u, s)
−a1Gl(u, s)

−a2
,

Ga1,a2(z, z) = Ga1,a2(u, s) =

∫ u

−1

Fa1,a2(v, s)dv.

Then Gl
a1,a2

= θl(a2−a1)G0
a1,a2

for every 0 ≤ l < m. As

G0(−u− ιs) = θ0G0(u+ ιs) and G0(u− ιs) = θ20G0(u+ ιs) for s > 0,

it follows that

(3.21) Gl
a1,a2

(1, s) =

{
θ
2l(a2−a1)
0 G0

a1,a2
(1, |s|) if s ∈ (0, 1]

θ
(2l+1)(a2−a1)
0 G0

a1,a2
(1, |s|) if s ∈ [−1, 0)

and

(3.22) Gl
a1,a2

(u, s) =

{
θ
2l(a2−a1)
0 G0

a1,a2
(u, |s|) if s ∈ (0, 1]

θ
(2l+2)(a2−a1)
0 G0

a1,a2
(u, |s|) if s ∈ [−1, 0).
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For any set A ⊂ Rd denote by Cω(A) the space of complex-valued real-analytic
maps on A which have analytic extention to the closure Ā. If f, g : A→ C are such
that f − g ∈ Cω(A) then we write f = g +Cω(A). We denote by Cω,m

l the space of
functions f : [−1, 1]2\([0, 1]×{0}) → C such that ω 7→ f(ωm, ωm) has a real analytic
extension on D( l

m
, l+1
m
). For example, Fa1,a2 ∈ Cω,m

l if a1, a2 are non-positive.

Lemma 3.9. For any pair of integers (a1, a2),

(3.23) a1G
l
a1+m,a2

(1, s) + a2G
l
a1,a2+m

(1, s) ∈ Cω((0, 1]) ∩ Cω([−1, 0)).

If a1, a2 are additionally both non-positive then

(3.24) a1G
l
a1+m,a2

+ a2G
l
a1,a2+m

∈ Cω,m
l .

Proof. Note that

Fa1,a2(z, z)− Fa1,a2(−1 + ιℑz,−1− ιℑz) = Fa1,a2(u, s)− Fa1,a2(−1, s)

=

∫ u

−1

∂

∂v
Fa1,a2(v, s) dv =

∫ u

−1

(
∂

∂z
+

∂

∂z

)
Fa1,a2(v, s) dv

= −
∫ u

−1

(a1
m
Fa1+m,a2(v, s) +

a2
m
Fa1,a2+m(v, s)

)
dv

= − 1

m
(a1Ga1+m,a2(z, z) + a2Ga1,a2+m(z, z)).

It follows that

a1Ga1+m,a2(1, s) + a2Ga1,a2+m(1, s)

= m(Gl(−1, s)−a1Gl(−1, s)
−a2 −Gl(1, s)

−a1Gl(1, s)
−a2

).

Since the maps [−1, 1] ∋ s 7→ Gl(−1, s) ∈ C, [0, 1] ∋ s 7→ Gl(1, s) ∈ C and
[−1, 0) ∋ s 7→ Gl(1, s) ∈ C are analytic and the latter has an analytic extension to
[−1, 0], this gives (3.23). Moreover, for any ω ∈ D( l

m
, l+1
m
),

a1Ga1+m,a2(ω
m, ωm) + a2Ga1,a2+m(ω

m, ωm)

= m(Gl(−1 + ιℑωm)−a1Gl(−1 + ιℑωm)
−a2 −Gl(ω

m)−a1Gl(ωm)
−a2

)

= m(Gl(−1 + ιℑωm)−a1Gl(−1 + ιℑωm)
−a2 − ω−a1ω−a2).

Since −a1,−a2 are non-negative integers, all functions on the RHS are analytic
which completes the proof. □

As a conclusion we obtain that for any integer k ̸= m,

G0,k(1, s),Gk,0(1, s) ∈ Cω((0, 1]) ∩ Cω([−1, 0))

and for any integer k < m,

(3.25) G0,k,Gk,0 ∈ Cω,m
l .

Moreover,

G0,m(1, s) =

∫ 1

−1

1

v − ιs
dv =

∫ 1

−1

v + ιs

v2 + s2
dv = ι sgn(s)

∫ 1/|s|

−1/|s|

1

x2 + 1
dx

= ι sgn(s)(arctan(1/|s|)− arctan(−1/|s|))
= ι(arccot(s)− arccot(−s)) + ι sgn(s)π.
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Hence, G0,m(1, s),Gm,0(1, s) ∈ Cω((0, 1])∩Cω([−1, 0)). Using (3.23) again, we have

(3.26) Gk,−lm(1, s),G−lm,k(1, s) ∈ Cω((0, 1]) ∩ Cω([−1, 0)) for all k ∈ Z, l ∈ Z≥0.

3.4. Invariant distributions ∂kj and their effect on the regularity of F and
F . For every m ≥ 2, 0 ≤ l < m, k ≥ 0 and f ∈ Ck(D) we deal with three associated
functions Ff,l, φf,l and Ff . Recall that Ff,l : [−1, 1]2 \ ([0, 1] × {0}) → C is given
by

Ff,l(z, z) = Ff,l(u, s) =

∫ u

−1

f(Gl(v, s))

(v2 + s2)
m−1
m

dv,

φf,l : [−1, 0) ∪ (0, 1] → C is given by φf,l(s) = Ff,l(1, s) and Ff : D \ ([0, 1] ×
{0})1/m → C is given by Ff (ω, ω) = Ff,l(ω

m, ωm) on D( l
m
, l+1
m
).

For every k ≥ 0 and let us consider functionals ∂kj : Ck(D) → C for 0 ≤ j ≤
k ∧ (m− 1) given by

(3.27) ∂kj (f) =
∑

0≤n≤ k−j
m

(
k

j+nm

)( (m−1)−j
m

−1
n

)
( (k−j)−(m−1)

m
n

) ∂kf

∂ωj+nm∂ωk−j−nm
(0, 0).

Comparing with (1.4), functionals ∂kj will play a key role in understanding the
meaning of distribution dkσ,j. If 0 ≤ k ≤ m − 2 then ∂kj (f) =

(
k
j

)
∂kf

∂ωj∂ωk−j (0, 0). If
k ≥ m−1 then as we will see in the following lemma, only m−2 functionals matter.
More precisely, ∂kj is irrelevant if j = m− 1 or j = k− (m− 1)modm. Note that if
k = m− 2modm then, in this exceptional case, we have m− 1 relevant functionals.

Recall that for any 0 ≤ α < β ≤ 1 let D(α, β) := {ω ∈ D \ {0} : Arg(ω) ∈
(2πα, 2πβ)}. We denote its closure by D(α, β).

Lemma 3.10. Suppose that f ∈ C[ω, ω] is a polynomial of degree at most k such
that ∂ji (f) = 0 for all 0 ≤ j ≤ k and 0 ≤ i ≤ j∧ (m−2) with i ̸= j− (m−1)modm.
Then

Ff ∈ Cω(D( l
m
, l+1
m
)) and φf,l ∈ Cω([−1, 0)) ∩ Cω((0, 1]) for 0 ≤ l < m.

Moreover, for any n ≥ 0 there exists a constant Cn
k > 0 such that

∥Ff∥Cn(D( l
m
, l+1

m
)) ≤ Cn

k ∥f∥Ck(D) and ∥φf,l∥Cn([−1,0)∪(0,1]) ≤ Cn
k ∥f∥Ck(D).(3.28)

Proof. First note that (3.28) follows directly from the first part of the lemma. Indeed,
f 7→ Ff ∈ Cω(D( l

m
, l+1
m
)) and f 7→ φf,l ∈ Cω([−1, 0))∩Cω((0, 1]) are linear operators

on a finite-dimensional space, so they are bounded. This gives (3.28).
By assumption, f =

∑
0≤j≤k fj with

fj(ω, ω) =
1

j!

∑
0≤i≤j

(
j

i

)
∂jf

∂ωi∂ωj−i
(0, 0)ωiωj−i.

We will show that if ∂ji (f) = 0 for all 0 ≤ i ≤ j∧(m−2) with i ̸= j−(m−1)modm,
then

Ffj ∈ Cω(D( l
m
, l+1
m
)) and φfj ,l ∈ Cω([−1, 0)) ∩ Cω((0, 1]) for 0 ≤ l < m.

This gives our claim.
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Note that

Ffj ,l =
1

j!

∑
0≤i≤j

(
j

i

)
∂jf

∂ωi∂ωj−i
(0, 0)G(m−1)−i,(m−1)−(j−i) =

1

j!

∑
0≤i<m

ξi,

where

ξi(z, z) =
∑

0≤n≤ j−i
m

(
j

i+ nm

)
∂jf

∂ωi+nm∂ω(j−i)−nm (0, 0)G(m−1)−i−nm,(m−1)−(j−i)+nm(z, z).

For every 1 ≤ n ≤ j−i
m

we have a1 = (m− 1)− i− nm < 0 and a2 = (m− 1)− (j −
i) + (n− 1)m < 0. In view of (3.24),

((m− 1)− i− nm)G(m−1)−i−(n−1)m,(m−1)−(j−i)+(n−1)m

+ ((m− 1)− (j − i) + (n− 1)m)G(m−1)−i−nm,(m−1)−(j−i)+nm ∈ Cω,m
l ,

so

G(m−1)−i−nm,(m−1)−(j−i)+nm

=
( (m−1)−i

m
− n)

( (j−i)−(m−1)
m

− (n− 1))
G(m−1)−i−(n−1)m,(m−1)−(j−i)+(n−1)m + Cω,m

l ,

It follows that for every 0 ≤ n ≤ j−i
m

,

(3.29) G(m−1)−i−nm,(m−1)−(j−i)+nm =

( (m−1)−i
m

−1
n

)( (j−i)−(m−1)
m
n

)G(m−1)−i,(m−1)−(j−i) + Cω,m
l .

It follows that for every 0 ≤ i ≤ m− 1,

ξi = ∂ji (f)G(m−1)−i,(m−1)−(j−i) + Cω,m
l .

If i = m − 1 then, by (3.25), G(m−1)−i,(m−1)−(j−i) ∈ Cω,m
l so ξi ∈ Cω,m

l . If i =

j − (m − 1)modm then (m − 1) − (j − i) + nm = 0 with n = ⌊ j−i
m
⌋ = j−i−(m−1)

m
.

Again by (3.25), G(m−1)−i−nm,(m−1)−(j−i)+nm ∈ Cω,m
l . In view of (3.29), it follows

that G(m−1)−i,(m−1)−(j−i) ∈ Cω,m
l and again ξi ∈ Cω,m

l . Hence

(3.30) Ffj ,l =
1

j!

∑
0≤i≤j∧(m−2)

i ̸=j−(m−1)modm

∂ji (f)G(m−1)−i,(m−1)−(j−i) + Cω,m
l .

As ∂ji (fj) = 0 for i ̸= m − 1 and i ̸= j − (m − 1) modm, this yields Ffj ,l ∈ Cω,m
l

and Ffj ∈ Cω(D( l
m
, l+1
m
)).

Using (3.23) instead of (3.24), the same arguments show φfj ,l = Ffj ,l(1, s) ∈
Cω([−1, 0)) ∩ Cω((0, 1]). □

We finish this section by showing a smooth extension of Ff on angular sectors.

Theorem 3.11. Let k ≥ m − 1. Suppose that f ∈ Ck(D) and ∂ji (f) = 0 for all
0 ≤ j < k and 0 ≤ i ≤ j ∧ (m − 2) with i ̸= j − (m − 1)modm. Then for every
r > 0 the map Ff on every angular sector of D ∩ S (r)1/m has a C ê(σ,k)-extension
at (0, 0) (recall that ê(σ, k) = k − (m− 1) + η). Moreover, there exists Cr > 0 such
that ∥Ff∥C ê(σ,k)(D∩S (r)1/m) ≤ Cr∥f∥Ck .
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Proof. Let A be an angular sector of D∩S (r)1/m. Let us decompose f = f<k + ef
with

f<k(ω, ω) =
∑

0≤j<k

1

j!

∑
0≤i≤j

(
j

i

)
∂jf

∂ωi∂ωj−i
(0, 0)ωiωj−i.

Note that the operator Ck(D) ∋ f 7→ f<k ∈ Ck(D) is bounded. By Lemma 3.10,
Ff<k

is analytic and for every n ≥ 0 there exists Cn
k > 0 such that ∥Ff<k

∥Cn(D( l
m
, l+1

m
)) ≤

Cn
k ∥f∥Ck(D) for every 0 ≤ l < m . On the other hand,Dj(ef ) = 0 for every 0 ≤ j < k.

In view of Lemma 3.8, if (n1, n2) ∈ Z2
≥0 is such that n1 +n2 = n = k− (m− 2) then

for every ω ∈ A ,∣∣∣∣∂nFef (ω, ω)∂ωn1∂ωn2

∣∣∣∣ ≤ Cr,n∥ef∥Ck(D)(1 + | log |ω||)|ω|(k−n−(m−2))∧0.

As ∥Dk−(m−2)Fef (ω, ω)∥ ≤ Cr,n∥ef∥Ck(D)(1 + | log |ω||), Dk−(m−1)Fef on A has a
continuous extension on A = A ∪ {(0, 0)} with the modulus of continuity bounded
by a multiplicity of η. Therefore, Fef can be extended to a Ck−(m−1)+η-function on
A and ∥Fef∥Ck−(m−1)+η(A ) ≤ C∥ef∥Ck(D) ≤ C ′∥f∥Ck(D). As Ff = Ff<k

+ Fef , this
gives our claim. □

4. Local analysis of φf

This section is devoted to computing a limiting behavior of higher derivatives of
φf related to singularities on angular sectors of D. We introduce a family of func-
tionals C k

l which are responsible for the asymptotic behaviour of φf,l around zero.
The new result is inspired by the approach for multi-saddles (related to polynomial
singularities) in [4]. The main results of this section (Theorem 4.7) plays a central
role in proving Theorem 1.1 in §5 as well as is applied to extend the regularity of
Ff (obtained in Theorem 3.11) to the closure of any sector D( l

m
, l+1
m
).

4.1. Preliminary properties of Ga1,a2(1, s). Firstly we present limiting behaviour
of dn

dsn
Ga1,a2(1, s) around zero. We show that for large enough higher derivatives their

asymptotic is polynomial with a weight factor established by the Beta-like function
B. This is further used in evaluating asymtotics of Dn+1φf,l in §4.2.

Note that for any pair of integers a1, a2,
d

ds
Ga1,a2(1, s) = −2ιa1

m
Ga1+m,a2(1, s) + Cω((0, 1]) ∩ Cω([−1, 0))

=
2ιa2
m

Ga1,a2+m(1, s) + Cω((0, 1]) ∩ Cω([−1, 0)).

(4.1)

Indeed,
d

ds
Ga1,a2(u, s) =

∫ u

−1

d

ds
Fa1,a2(v, s)dv =

∫ u

−1

ι

(
∂

∂z
− ∂

∂z

)
Fa1,a2(v, s)dv

=

∫ u

−1

ι
(
−a1
m
Fa1+m,a2(v, s) +

a2
m
Fa1,a2+m(v, s)

)
dv

=
ι

m
(−a1Ga1+m,a2(u, s) + a2Ga1,a2+m(u, s)).

In view of (3.23), this gives (4.1). It follows that for every n ≥ 1,

(4.2)
dn

dsn
Ga1,a2(1, s) = n!(−2ι)n

(
−a2

m

n

)
Ga1,a2+nm(1, s) + Cω((0, 1]) ∩ Cω([−1, 0))
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and

(4.3)
dn

dsn
Ga1,a2 = ιnn!

∑
0≤j≤n

(−1)n−j
(
−a1

m

j

)(
−a2

m

n− j

)
Ga1+jm,a2+(n−j)m.

Suppose that a1, a2 are integers such that a1 + a2 > m. Then for every s ∈ (0, 1],

G0
a1,a2

(1, s) =

∫ 1

−1

G0(v + ιs)−a1G0(v + ιs)
−a2

dv

= s−
a1+a2−m

m

∫ 1/s

−1/s

G0(x+ ι)−a1G0(x+ ι)
−a2

dx.

Therefore,

lim
s→0+

s
a1+a2−m

m G0
a1,a2

(1, s) = B(a1
m
, a2
m
) :=

∫
R
G0(x+ ι)−a1G0(x+ ι)

−a2
dx.

Note that, by change of variables,

B(a1
m
, a2
m
) =

∫ π

0

eι
a2−a1

m
t

sin−a1+a2
m

+2 t
dt

and for a1
m
, a2
m
/∈ Z≤0,∫ π

0

eι
a2−a1

m
t

sin−a1+a2
m

+2 t
dt =

πeι
a2−a1
2m

π

2
a1+a2−2m

m
a1+a2−m

m

Γ(a1
m
+ a2

m
− 1)

Γ(a1
m
)Γ(a2

m
)
.

For any pair x, y of real numbers such that x, y /∈ Z≤0 and x+ y /∈ Z≤1 let

B(x, y) =
πeι

π
2
(y−x)

2x+y−2(x+ y − 1)B(x, y)
=
πeι

π
2
(y−x)

2x+y−2

Γ(x+ y − 1)

Γ(x)Γ(y)
̸= 0.

Note that

(4.4) B(x, y) = B(y, x) = e−ιπ(y−x)B(x, y).

By (3.21), for any pair of integers a1, a2 such that a1 + a2 > m and a1
m
, a2
m
/∈ Z≤0,

lim
s→0+

|s|
a1+a2−m

m Gl
a1,a2

(1, s) = θ
2l(a2−a1)
0 B(a1

m
, a2
m
)

lim
s→0−

|s|
a1+a2−m

m Gl
a1,a2

(1, s) = θ
(2l+1)(a2−a1)
0 B(a1

m
, a2
m
).

(4.5)

In view of (3.26), if a1
m

∈ Z≤0 or a2
m

∈ Z≤0 then the limit is zero. For this reason, we
extend the definition of the function B by letting

(4.6) B(x, y) = 0 if x ∈ Z≤0 or y ∈ Z≤0.

Lemma 4.1. Suppose that a = a1 + a2 > m. For every 0 < r < 1 there exist
ρ±, ϱ± ∈ Cω([0, r]) such that if 0 < u ≤ 1 and 0 < |s| ≤ ru then

Gl
a1,a2

(u, s)=θ
2l(a2−a1)
0

(
B(a1

m
, a2
m
)|s|−

a−m
m + ρ+(|s|) + u−

a−m
m ϱ+( |s|

u
)
)

if s > 0

Gl
a1,a2

(u, s)=θ
(2l+1)(a2−a1)
0

(
B(a1

m
, a2
m
)|s|−

a−m
m +ρ−(|s|)+u−

a−m
m ϱ−( |s|

u
)
)

if s < 0.
(4.7)
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Proof. In view of (3.22) and (4.4), it suffices to show the first line of (4.7) for l = 0.
By change of variables used twice, for every s, u ∈ (0, 1],

G0
a1,a2

(u, s) = s−
a−m
m

∫ u/s

−1/s

G0(x+ ι)−a1G0(x+ ι)
−a2

dx

= s−
a−m
m

(∫ +∞

−∞
−
∫ −1/s

−∞
−
∫ +∞

u/s

)
G0(x+ ι)−a1G0(x+ ι)

−a2
dx

= s−
a−m
m B(a1

m
, a2
m
) + s1−

a
m

(∫ s/u

0

ξ+(t)

t2−
a
m

dt+

∫ s

0

ξ−(t)

t2−
a
m

dt
)
,

where ξ± : R → C, ξ±(t) = −G0(±1 + ιt)−a1G0(±1 + ιt)
−a2 is an analytic map

with the radius of convergence at 0 equal to 1. Then for every 0 < r < 1 let∑
n≥0 |c±n |rn < +∞ such that

∑
n≥0 c

±
n t

n tends to ξ±(t) uniformly on [0, r]. As
a
m
> 1,

1

t2−
a
m

∑
n≥1

c±n t
n =

∑
n≥1

c±n t
(n−1)+ a

m
−1 tends on [0, r] uniformly to

ξ±(t)− c±0
t2−

a
m

.

It follows that

s1−
a
m

∫ s

0

(ξ±(t)− c±0 )

t2−
a
m

dt = s1−
a
m

∑
n≥1

c±n

∫ s

0

t(n−1)+ a
m
−1dt =

∑
n≥1

c±n s
n

n+ a
m
− 1

.

Since
∑

n≥0 |c±n |rn < +∞, the map s1−
a
m

∫ s
0

(ξ±(t)−c±0 )

t2−
a
m

dt ∈ Cω([0, r]). Moreover,

s1−
a
m

∫ s

0

ξ±(t)

t2−
a
m

dt =
c±0

a
m
− 1

+ s1−
a
m

∫ s

0

(ξ±(t)− c±0 )

t2−
a
m

dt,

so ξ̃±(s) = s1−
a
m

∫ s
0

ξ±(t)

t2−
a
m
dt ∈ Cω([0, r]). As

G0
a1,a2

(u, s) = s−
a−m
m B(a1

m
, a2
m
) + u−

a−m
m ξ̃+(s/u) + ξ̃−(s) if 0 ≤ s/u ≤ r,

this completes the proof of (4.7). □

By definition, for every natural number n if x, y /∈ Z and x+ y /∈ Z≤1 then

(4.8) (2ι)n
(−y
n

)
B(x, y + n) =

(
x+y+n−2

n

)
B(x, y) = (−2ι)n

(−x
n

)
B(x+ n, y).

We can extend again the domain of the function B by adding the pairs (x, y) such
that x, y /∈ Z and x+y ∈ Z≤1. For every such pair we let B(x, y) = πeι

π
2 (y−x)

2x+y−2

Γ(x+y−1)
Γ(x)Γ(y)

,
where we adopt the convention Γ(0) := limx→0 xΓ(x) = 1 and Γ(−n) := Γ(0)

(−1)···(−n) =
1

(−1)···(−n) for any n ∈ N. Then for any n ∈ N we also have

(4.9)
(−x
n

)
B(x+ n, y − n) = (−1)n

(−y+n
n

)
B(x, y).

The extended Γ-function satisfies Γ(x + 1) = xΓ(x) for all x ∈ R \ {0} and Γ(1) =
Γ(0) = 1. It follows that (4.8) holds even when x+ y + n ∈ Z≤1.

Finally note that, if x+ y = 1 then we also have

(4.10) B(x, y) =
2πeιπ(y−1/2)

Γ(1− y)Γ(y)
= −2ιeιπy sin(πy) = 1− e2ιπy = 1 + eιπ(y−x).



24 K. FRĄCZEK AND M. KIM

Lemma 4.2. Suppose that a1 + a2 = m. There exist ρ±, ϱ± ∈ Cω([0, 1]) such that
for all 0 < u ≤ 1 and 0 < |s| ≤ u,

Gl
a1,a2

(u, s)=θ
2l(a2−a1)
0

(
−B(a1

m
, a2
m
)log |s|+log u+ρ+(|s|)+ϱ+( |s|

u
)
)
if s > 0

Gl
a1,a2

(u, s)=θ
(2l+1)(a2−a1)
0

(
−B(a1

m
, a2
m
)log |s|+θa2−a10 log u+ρ−(|s|)+ϱ−( |s|

u
)
)
if s < 0.

(4.11)

Proof. In view of (3.22) and (4.4), it suffices to show the first line of (4.11) for l = 0.
By change of variables, for every u, s ∈ (0, 1],

ψ(u, s) :=

∫ u

0

G0(v + ιs)−a1G0(v + ιs)
−a2

dv −
∫ u

0

1

v − ιs
dv

=

∫ u

0

((
G0(v + ιs)

G0(v + ιs)

)a1

− 1

)
1

v − ιs
dv =

∫ u/s

0

((
G0(x+ι)
G0(x+ι)

)a1
− 1
)

x− ι
dx.

It follows that ψ(u, s) = ψ̃(s/u), where

ψ̃′(x) = − 1

x2

(
G0(1/x+ι)
G0(1/x+ι)

)a1
− 1

1/x− ι
=

(
G0(1+ιx)
G0(1+ιx)

)a1
− 1

x

1

ιx− 1
.

As the map x 7→
(
G0(1+ιx)
G0(1+ιx)

)a1
−1 is real analytic and vanishes at 0, ψ̃′ is also analytic.

Hence ψ̃ ∈ Cω(R). Moreover,∫ u

0

1

v − ιs
dv =

∫ u

0

v + ιs

v2 + s2
dv = log

√
u2 + s2 − log s+ ι arccot(s/u).

Hence ∫ u

0

G0(v + ιs)−a1G0(v + ιs)
−a2

dv = − log(s/u) + ϱ+(s/u),

where ϱ+(x) = log
√
1 + x2 + ψ̃(x) + ι arccot(x) is analytic. In particular,

(4.12)
∫ 1

0

G0(v + ιs)−a1G0(v + ιs)
−a2

dv = − log s+ ϱ+(s).

Since∫ 0

−1

G0(v + ιs)−a1G0(v + ιs)
−a2

dv =

∫ 1

0

G0(−v + ιs)−a1G0(−v + ιs)
−a2

dv

and G0(−v + ιs) = θ0G0(v + ιs) if s, v ∈ (0, 1], we get∫ 0

−1

G0(v + ιs)−a1G0(v + ιs)
−a2

dv = θ
(a2−a1)
0

∫ 1

0

G0(v + ιs)−a2G0(v + ιs)
−a1

dv.

In view of (4.12), this gives

G0
a1,a2

(u, s) = −(1 + θ
(a2−a1)
0 ) log s+ log u+ θ

(a2−a1)
0 ϱ+(s) + ϱ+(s/u).

Since, by (4.10), 1 + θ
(a2−a1)
0 = 1 + eπι(

a2
m

−a1
m

) = B(a1
m
, a2
m
), which gives the first line

of (4.11). □
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Lemma 4.3. Suppose that a = a1+a2 < m and a1
m
, a2
m
/∈ Z. If a

m
/∈ Z then for every

0 < r < 1 there exist ρ±, ϱ± ∈ Cω([0, r]) such that if 0 < u ≤ 1 and 0 < |s| ≤ ru
then

Gl
a1,a2

(u, s)=θ
2l(a2−a1)
0

(
B(a1

m
, a2
m
)|s|

m−a
m +ρ+(|s|)+u

m−a
m ϱ+( |s|

u
)
)
if s > 0

Gl
a1,a2

(u, s)=θ
(2l+1)(a2−a1)
0

(
B(a1

m
, a2
m
)|s|

m−a
m +ρ−(|s|)+u

m−a
m ϱ−( |s|

u
)
)
if s < 0.

(4.13)

If a
m

∈ Z then there exist ρ±, ϱ± ∈ Cω([0, 1]) and c± ∈ C such that if 0 < u ≤ 1 and
0 < |s| ≤ u then

Gl
a1,a2

(u, s) = θ
2l(a2−a1)
0

(
−B(a1

m
, a2
m
)|s|

m−a
m log |s|

+ c+|s|
m−a
m log u+ ρ+(|s|) + u

m−a
m ϱ+( |s|

u
)
)

if s > 0

Gl
a1,a2

(u, s) = θ
(2l+1)(a2−a1)
0

(
−B(a1

m
, a2
m
)|s|

m−a
m log |s|

+ c−|s|
m−a
m log u+ ρ−(|s|) + u

m−a
m ϱ−( |s|

u
)
)

if s < 0.

(4.14)

Proof. In view of (3.22) and (4.4), it suffices to show the first line of (4.13) and
(4.14) for l = 0. Let n = ⌈m−a

m
⌉. By (4.3), for every k ≥ 0,

dk

dsk
G0
a1,a2

= ιk
∑

0≤j≤k

k!(−1)k−j
(
−a1

m

j

)(
−a2

m

k − j

)
G0
a1+jm,a2+(k−j)m.

A direct computation shows that if a = a1 + a2 < m and u ∈ [0, 1] then

G0
a1,a2

(u, 0) =
m

m− a
(u

m−a
m + θa2−a10 ).

It follows that if k < m−a
m

(i.e. k < n) then there exists ck,1, ck,0 ∈ C such that

(4.15)
dk

dsk
G0
a1,a2

(u, 0) = ck,1u
m−a
m

−k + ck,0.

If a
m
/∈ Z then for any 0 ≤ j ≤ n we have a1 + jm+ a2 + (n− j)m = a+ nm > m.

Hence, by Lemma 4.1, there exist ρ+n , ϱ+n ∈ Cω([0, r]) such that for all 0 < u ≤ 1
and 0 < s ≤ ru,

dn

dsn
G0
a1,a2

(u, s) = ρ+n (s) + u
m−a
m

−nϱ+n (
s
u
)

+ ιn
∑

0≤j≤n

n!(−1)n−j
(
−a1

m

j

)(
−a2

m

n− j

)
B(a1

m
+ j, a2

m
+ n− j)s

m−a
m

−n.

If a
m

∈ Z then n = m−a
m

and a1 + jm + a2 + (n − j)m = a + nm = m. Hence, by
Lemma 4.2, there exist ρ+n , ϱ+n ∈ Cω([0, 1]) such that for all 0 < u ≤ 1 and 0 < s ≤ u,

dn

dsn
G0
a1,a2

(u, s) = ρ+n (s) + ϱ+n (
s
u
)

+ ιn
∑

0≤j≤n

n!(−1)n−j
(
−a1

m

j

)(
−a2

m

n− j

)(
−B(a1

m
+ j, a2

m
+ n− j) log s+ log u).
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By (4.8) (and its extension in the integer case),

ιn
∑

0≤j≤n

n!(−1)n−j
(
−a1

m

j

)(
−a2

m

n− j

)
B(a1

m
+ j, a2

m
+ n− j)

= (−1/2)n
∑

0≤j≤n

n!

(
n

j

)(
a
m
+ n− 2

n

)
B(a1

m
, a2
m
) = (−1)nn!

(
a
m
+ n− 2

n

)
B(a1

m
, a2
m
).

Therefore, in the non-integer case, for all 0 < u ≤ 1 and 0 < s ≤ ru,

dn

dsn
G0
a1,a2

(u, s) = ρ+n (s) + u
m−a
m

−nϱ+n (
s
u
) + (−1)nn!

(−(m−a
m

−(n−1))
n

)
B(a1

m
, a2
m
)s

m−a
m

−n.

In the integer case, for all 0 < u ≤ 1 and 0 < s ≤ u,

dn

dsn
G0
a1,a2

(u, s) = ρ+n (s) + ϱ+n (
s
u
)− n!B(a1

m
, a2
m
) log s+ cn log u.

Since

dk

dsk
G0
a1,a2

(u, s) =
dk

dsk
G0
a1,a2

(u, 0) +

∫ s

0

dk+1

dsk+1
G0
a1,a2

(u, t)dt for all 0 ≤ k < n,

using the formulae for dn

dsn
G0
a1,a2

together with (4.15) and induction, we obtain (4.13)
and (4.14). □

Remark 4.4. To summarize, by Lemmas 4.1, 4.2 and 4.3, for any pair of integer
numbers a1, a2 such that a1

m
, a2
m
/∈ Z if m−a

m
/∈ Z (a = a1 + a2) or m−a

m
∈ Z<0 then

Gl
a1,a2

(1, s) = θ
2l(a2−a1)
0 B(a1

m
, a2
m
)|s|

m−a
m + Cω((0, 1])

Gl
a1,a2

(1, s) = θ
(2l+1)(a2−a1)
0 B(a1

m
, a2
m
)|s|

m−a
m + Cω([−1, 0)).

(4.16)

If m−a
m

∈ Z≥0 then

Gl
a1,a2

(1, s) = −θ2l(a2−a1)0 B(a1
m
, a2
m
)|s|

m−a
m log |s|+ Cω((0, 1])

Gl
a1,a2

(1, s) = −θ(2l+1)(a2−a1)
0 B(a1

m
, a2
m
)|s|

m−a
m log |s|+ Cω([−1, 0)).

(4.17)

Indeed, in the non-integer case, we obtain the analyticity of the remainder only on
intervals [−r, 0] and [0, r] for any 0 < r < 1. Nevertheless, for any choice of integer
a1, a2, the function Gl

a1,a2
(1, s) is analytic on [r, 1] and [−1,−r] for any 0 < r < 1.

This gives our claim.

4.2. Evaluation of asymptotic factors for φf,l. The behaviour of higher deriva-
tives of φf,l at zero is evaluated by linear combinations of invariant distributions ∂kj .
For this reason, we define a list of new functionals C k

l : Ck(D) → C for k ≥ 0 and
0 ≤ l < 2m given by

C k
l (f) =

∑
0≤j≤k∧(m−2)

j ̸=k−(m−1)modm

θ
l(2j−k)
0 B( (m−1)−j

m
, (m−1)−(k−j)

m
)∂kj (f).

Comparing with (1.5), functionals C k
l play a key role in understanding the meaning

of distribution Ckσ,l.
From now on, we adopt the convention

(
0
n

)
:= limx→0

(
x
n

)
/x = (−1)n−1

n
.
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Theorem 4.5. For any k ≥ 0 let n = ⌈k−(m−2)
m

⌉ and b = n− k−(m−2)
m

. Suppose that
f ∈ Ck∨(n+1)(D) is such that ∂ji (f) = 0 for all 0 ≤ j < k and 0 ≤ i ≤ j∧(m−2) with
i ̸= j − (m − 1)modm. Then φf,l ∈ Cn+Pb([−1, 0) ∪ (0, 1]) and there exists C > 0
such that ∥φf,l∥Cn+Pb ([−1,0)∪(0,1]) ≤ C∥f∥Ck∨(n+1)(D). Moreover, for every 0 ≤ l < m,

lim
s→0+

|s|b+1Dn+1φf,l(s) = (−1)n+1 (n+ 1)!

k!

(
b

n+ 1

)
C k
2l(f)(4.18)

lim
s→0−

|s|b+1Dn+1φf,l(s) =
(n+ 1)!

k!

(
b

n+ 1

)
C k
2l+1(f).(4.19)

Remark 4.6. Before the proof, let us note that

k ∨ (n+ 1) =

{
k + 1 if k = 0 or (k = 1 with m = 2)
k otherwise.

Indeed, the inequality k−(m−2)
m

+1 ≤ k is equivalent to 2 ≤ k(m− 1). It follows that
if k ≥ 1 with m ≥ 3 or k ≥ 2 then n < k, so k ∨ (n+ 1) = k.

Proof. Let us decompose f = f<k + fk + ef with

f<k(ω, ω) =
∑

0≤j<k

1

j!

∑
0≤i≤j

(
j

i

)
∂jf

∂ωi∂ωj−i
(0, 0)ωiωj−i,

fk(ω, ω) =
1

k!

∑
0≤i≤k

(
k

i

)
∂kf

∂ωi∂ωk−i
(0, 0)ωiωk−i.

By Lemma 3.10,

φf<k,l ∈ Cω([−1, 0)) ∩ Cω((0, 1]) for 0 ≤ l < m,(4.20)

∥φf<k,l∥Cn+1([−1,0)∪(0,1]) ≤ Cn+1
k ∥f∥Ck(D).(4.21)

Since Dj(fk + ef ) = 0 for every 0 ≤ j < k, in view of (3.16), if (j1, j2) ∈ Z2
≥0 is such

that j1 + j2 = j ≤ n+ 1 then∣∣∣∣∂jFfk+ef ,l(z, z)

∂zj1∂zj2

∣∣∣∣ = O
(
∥fk + ef∥Ck∨(n+1)(D)⟨|ℑz|⟩−(

(m−2)−k
m

+j)
)

= O
(
∥f∥Ck∨(n+1)(D)⟨|ℑz|⟩(n+1−j)−(b+1)

)
.

As dj

dsj
=
(
ι
(
∂
∂z

− ∂
∂z

))j, this gives

|Djφfk+ef ,l(s)| = O
(
∥f∥Ck∨(n+1)(D)

)
if 0 ≤ j ≤ n− 1(4.22)

|Dnφfk+ef ,l(s)| = O
(
∥f∥Ck∨(n+1)(D)⟨|s|⟩−b

)
(4.23)

|Dn+1φfk+ef ,l(s)| = O
(
∥f∥Ck∨(n+1)(D)|s|b+1

)
.(4.24)

By (4.23),
∥Dnφfk+ef ,l∥L1 = O

(
∥f∥Ck∨(n+1)(D)

)
.

In view of (4.21), (4.22) and (4.24), this gives

∥φf,l∥Cn+Pb ≤ ∥φf<k,l∥Cn+Pb + ∥φfk+ef ,l∥Cn+Pb = O
(
∥f∥Ck∨(n+1)(D)

)
.

Since Dj(ef ) = 0 for every 0 ≤ j ≤ k, we also have

(4.25) |Dn+1φef ,l(s)| = o(|s|−(b+1)).
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Indeed, if k ∨ (n+ 1) = k + 1, i.e. k = n then, again by (3.16),∥∥Dn+1Fef ,l(z, z)
∥∥ = O(⟨|ℑz|⟩−(

(m−2)−(k+1)
m

+n+1)) = O(|ℑz|−(b+1)+ 1
m ).

If k ∨ (n+ 1) = k, i.e. n+ 1 ≤ k then, by (3.18),∥∥Dn+1Fef ,l(z, z)
∥∥ = o(|ℑz|−(

(m−2)−k
m

+n+1)) = o(|ℑz|−(b+1)).

Both yield (4.25).
Therefore, by (4.20) and (4.25),

(4.26) |s|b+1Dn+1φf,l(s) = |s|b+1Dn+1φfk,l(s) + o(1).

By (3.30) (see the proof of Lemma 3.10),

Ffk,l(1, s)=
1

k!

∑
0≤j≤k∧(m−2)

j ̸=k−(m−1)modm

∂kj (f)G
l
(m−1)−j,(m−1)−(k−j)(1, s)+C

ω((0, 1])∩Cω([−1, 0)).

As m−((m−1)−j+(m−1)−(k−j))
m

= k−(m−2)
m

= n − b, by (4.16), (4.17) and the definition
of C k

l (f),

(4.27) φfk,l(s) =
C k
2l(f)

k!
|s|n−b +Cω((0, 1]), φfk,l(s) =

C k
2l+1(f)

k!
|s|n−b +Cω([−1, 0))

if 0 < b < 1 and

φfk,l(s) = −C k
2l(f)

k!
|s|n log |s|+ Cω((0, 1])

φfk,l(s) = −
C k
2l+1(f)

k!
|s|n log |s|+ Cω([−1, 0))

(4.28)

if b = 0. After n+ 1 times differentiation, it follows that

Dn+1φfk,l(s) = |s|−(b+1)(−1)n+1 (n+ 1)!

k!

(
b

n+ 1

)
C k
2l(f) + Cω((0, 1])

Dn+1φfk,l(s) = |s|−(b+1) (n+ 1)!

k!

(
b

n+ 1

)
C k
2l+1(f) + Cω([−1, 0)).

Finally, by (4.20) and (4.26), this yields (4.18) and (4.19). □

Theorem 4.7. Let k ≥ 0, 0 ≤ l < m and ϵ ∈ {0, 1}. Suppose that f ∈ Ck∨(n+1)(D)
and C j

2l+ϵ(f) = 0 for all 0 ≤ j < k. Then φf,l ∈ Cn+Pb((0, (−1)ϵ]) with

(4.29) lim
s→0

s∈(0,(−1)ϵ]

|s|b+1Dn+1φf,l(s) = (−1)(1−ϵ)(n+1) (n+ 1)!

k!

(
b

n+ 1

)
C k
2l+ϵ(f)

and

(4.30) there exists C > 0 such that ∥φf,l∥Cn+Pb ((0,(−1)ϵ]) ≤ C∥f∥Ck∨(n+1)(D).

In particular, if k ≥ m−1 then φf,l ∈ Ce(σ,k)((0, (−1)ϵ]) and there exists C > 0 such
that ∥φf,l∥Ce(σ,k)((0,(−1)ϵ]) ≤ C∥f∥Ck∨(n+1)(D).

On the other hand, if f ∈ Ck∨(n+1)(D) is such that φf,l ∈ Cr((0, (−1)ϵ]) for
some r ∈ Rη with 0 < v(r) ≤ o(σ, k) then C j

2l+ϵ(f) = 0 for all j ≥ 0 such that
o(σ, j) < v(r).
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Proof. We will focus only on the even case, when ϵ = 0. The proof in the odd
case proceeds in the same way. Let us decompose f = f<k + fk + ef , where f<k =∑

0≤j<k fj with

fj(ω, ω) =
1

j!

∑
0≤i≤j

(
j

i

)
∂jf

∂ωi∂ωj−i
(0, 0)ωiωj−i.

By (4.27), (4.28),

φfj ,l(s) =
C j
2l(f)

j!
s

j−(m−2)
m + Cω((0, 1]) if j ̸= m− 2 modm

φfj ,l(s) = −C j
2l(f)

j!
s

j−(m−2)
m log s+ Cω((0, 1])) if j = m− 2 modm.

(4.31)

Since the operator f 7→ fj takes values in the finite-dimensional space of homogenous
polynomials of degree j, for every 0 ≤ j < k there exists Cj > 0 such that

∥φfj ,l(s)−
C j
2l(f)

j!
s

j−(m−2)
m ∥Cn+Pb ((0,1]) ≤ Cj∥f∥Ck(D) or

∥φfj ,l(s) +
C j
2l(f)

j!
s

j−(m−2)
m log s∥Cn+Pb ((0,1]) ≤ Cj∥f∥Ck(D).

If C j
2l(f) = 0 for all 0 ≤ j < k then

(4.32) φf<k,l ∈ Cω((0, 1]) and ∥φf<k,l∥Cn+Pb ((0,1]) ≤
∑

0≤j<k

Cj∥f∥Ck(D).

Again, by Theorem 4.5 applied to fk + ef , we have φfk+ef ,l ∈ Cn+Pb((0, 1]),

∥φfk+ef ,l∥Cn+Pb ((0,1]) ≤ C∥fk + ef∥Ck∨(n+1)(D) ≤ C ′∥f∥Ck∨(n+1)(D)

and
lim
s→0+

sb+1Dn+1φfk+ef ,l(s) = (−1)(n+1) (n+ 1)!

k!

(
b

n+ 1

)
C k
2l(f).

Since φf,l = φf<k,l + φfk+ef ,l, in view of (4.32), this yields (4.29) and (4.30). As
n− b = o(σ, k), by Remark 2.1, this gives φf,l ∈ Ce(σ,k)((0, 1]).

Now suppose that f ∈ Ck∨(n+1)(D) is such that φf,l ∈ Cr((0, 1]) for some r ∈ Rη

with 0 < v(r) ≤ o(σ, k). Choose m − 2 < j0 ≤ k such that o(σ, j0 − 1) < v(r) ≤
o(σ, j0). By the first part of the theorem, φf−f<j0

,l ∈ Ce(σ,j0)((0, 1]). As φf,l ∈
Cr((0, 1]) and v(r) ≤ o(σ, j0), it follows that φf<j0

,l ∈ Cr((0, 1]). In view of (4.31),

φf<j0
,l(s) =

∑
0≤j<j0

j ̸=m−2modm

C j
2l(f)

j!
s

j−(m−2)
m +

∑
0≤j<j0

j=m−2modm

C j
2l(f)

j!
s

j−(m−2)
m (− log s) + Cω((0, 1]).

Therefore,∑
0≤j<j0

j ̸=m−2modm

C j
2l(f)

j!
s

j−(m−2)
m −

∑
0≤j<j0

j=m−2modm

C j
2l(f)

j!
s

j−(m−2)
m log s ∈ Cr((0, 1])

with j−(m−2)
m

≤ o(σ, j0 − 1) < v(r) for 0 ≤ j < j0. It follows that C j
2l(f) = 0 for

0 ≤ j < j0. □

By the proof of Theorem 4.7, we also have the following.
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Corollary 4.8. Let k ≥ 0, 0 ≤ l < m and ϵ ∈ {0, 1}. Suppose that f ∈ Ck∨(n+1)(D).
Then

φf,l(s) = −
∑

0≤j<k
j=m−2modm

C j
2l+ϵ(f)

j!
|s|

j−(m−2)
m log |s|

+
∑

0≤j<k
j ̸=m−2modm

C j
2l+ϵ(f)

j!
|s|

j−(m−2)
m + Cn+Pb((0, (−1)ϵ]).

(4.33)

4.3. Basic properties of C k
l . Recall that C k

l : Ck(D) → C for k ≥ 0 and 0 ≤ l <
2m are given by

C k
l (f) =

∑
0≤j≤k∧(m−2)

j ̸=k−(m−1)modm

θ
l(2j−k)
0 B( (m−1)−j

m
, (m−1)−(k−j)

m
)∂kj (f).

The functionals C k
l , 0 ≤ l < 2m are not independent. By definition,

C k
l+m = (−1)kC k

l for any 0 ≤ l < m.(4.34)

Moreover, we can also get back the value of ∂kj from C k
l . Indeed, for every 0 ≤ j ≤

k ∧ (m− 2) with j ̸= k − (m− 1)modm,

B( (m−1)−j
m

, (m−1)−(k+1)+j
m

)∂kj =
1

2m

∑
0≤l<2m

θ
l(k−2j)
0 C k

l =
1

m

∑
0≤l<m

θ
l(k−2j)
0 C k

l .

Similarly, if k ∧ (m− 2) < j ≤ m− 2 or j = m− 1 or j = k − (m− 1)modm, then

∑
0≤l<2m

θ
l(k−2j)
0 C k

l = 2
∑

0≤l<m

θ
l(k−2j)
0 C k

l = 0.

Together with (4.34) this gives all linear relations involving the functionals C k
l .

Moreover, using (3.27), we obtain an elegant formula for C k
l depending on the

partial derivatives of the function f . Indeed, if 0 ≤ j ≤ m−2, j ̸= k−(m−1)modm
and 0 ≤ n ≤ j−i

m
then, by (4.9),

B( (m−1)−j
m

, (m−1)−(k−j)
m

)

( (m−1)−j
m

−1
n

)( (k−j)−(m−1)
m
n

)
= B( (m−1)−j−nm

m
+ n, (m−1)−(k−j)+nm

m
− n)(−1)n

(− (m−1)−j−nm
m
n

)(− (m−1)−(k−j)+nm
m

+n
n

)
= B( (m−1)−j−nm

m
, (m−1)−(k−j)+nm

m
).
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By the definition of ∂kj , it follows that

C k
l (f) =

∑
0≤j≤k∧(m−2)

j ̸=k−(m−2)modm

(
θ
l(2j−k)
0 B( (m−1)−j

m
, (m−1)−(k−j)

m
)

∑
0≤n≤ k−j

m

(
k

j+nm

)( (m−1)−j
m

−1
n

)
( (k−j)−(m−1)

m
n

) ∂kf

∂ωj+nm∂ωk−j−nm
(0, 0)

)

=
∑
0≤i≤k

i ̸=m−1modm
i ̸=k−(m−1)modm

θ
l(2i−k)
0

(
k

i

)
B( (m−1)−i

m
, (m−1)−(k−i)

m
)

∂kf

∂ωi∂ωk−i
(0, 0).

According to (4.6),

C k
l (f) =

∑
0≤i≤k

θ
l(2i−k)
0

(
k

i

)
B( (m−1)−i

m
, (m−1)−(k−i)

m
)

∂kf

∂ωi∂ωk−i
(0, 0).(4.35)

Remark 4.9. This formula generalizes the one for C±
α (φf,l), α ∈ A in [4, Theorem

9.1] by replacing new functionals for higher order derivatives.

We now strengthen Theorem 3.11 by proving that Ff is also smooth (with some
drop of regularity) on the closed sectors D( l

2m
, l+1
2m

).

Theorem 4.10. Fix k ≥ m− 1 and 0 ≤ l < 2m. Let m− 1 ≤ k ≤ k be the natural
number given by ô(σ, k) = k − (m − 2) = ⌈k−(m−2)

m
⌉ = ⌈o(σ, k)⌉ =: n. Suppose that

f ∈ Ck∨(n+1)(D) is such that ∂ji (f) = 0 for all 0 ≤ j < k and 0 ≤ i ≤ j ∧ (m − 2)

with i ̸= j − (m − 1)modm and C j
l (f) = 0 for all 0 ≤ j < k. Then the map

Ff : D( l
2m
, l+1
2m

) → C has a Ce(σ,k)-extension on D( l
2m
, l+1
2m

) and there exists C > 0
such that ∥Ff∥Ce(σ,k)(D( l

2m
, l+1
2m

)) ≤ C∥f∥Ck∨(n+1)(D).

Proof. We focus only on the even sectors D( 2l
2m
, 2l+1

2m
). The proof in the odd case

proceeds in the same way. By Theorem 3.11, for every 0 < ε < 1/2 the map Ff has
a C ê(σ,k)-extension on D(2l+ε

2m
, 2l+1

2m
) ⊂ D(2l+ε

2m
, 2l+2−ε

2m
) and there exists Cε > 0 so that

∥Ff∥C ê(σ,k)(D( 2l+ε
2m

, 2l+1
2m

)) ≤ Cε∥f∥Ck(D). Moreover,

Ff,l(u, s) =

∫ u

−1

f(Gl(v, s))

(v2 + s2)
m−1
m

dv = φf,l(s)−
∫ 1

u

f(Gl(v, s))

(v2 + s2)
m−1
m

dv

= φf,l(s)−
∫ −u

−1

f(Gl(−v, s))
(v2 + s2)

m−1
m

dv.

As Gl(−v, s) = θ−1
0 Gl(v,−s) for s > 0, this gives

Ff,l(z, z) = φf,l(ℑz)− Ff◦θ−1
0 ,l(−z,−z) if ℑz > 0.

It follows that

(4.36) Ff (ω, ω) = φf,l(ℑωm)− Ff◦θ−1
0
(θ0ω, θ

−1
0 ω) on D( 2l

2m
, 2l+1

2m
).

Note that
∂j(f ◦ θ−1

0 )

∂ωi∂ωj−i
(0, 0) = θ

−(2i−j)
0

∂jf

∂ωi∂ωj−i
(0, 0).
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By (3.27), it follows that ∂ji (f ◦ θ−1
0 ) = θ

−(2i−j)
0 ∂ji (f). Therefore, by assumption,

∂ji (f ◦θ−1
0 ) = 0 for all 0 ≤ j < k and 0 ≤ i ≤ j∧ (m−2) with i ̸= j− (m−1)modm.

Using Theorem 3.11 again, we obtain the map Ff◦θ−1
0

has a C ê(σ,k)-extension on
D(2l+1

2m
, 2l+2−ε

2m
) ⊂ D(2l+ε

2m
, 2l+2−ε

2m
) and ∥Ff◦θ−1

0
∥C ê(σ,k)(D( 2l+1

2m
, 2l+2−ε

2m
)) ≤ Cε∥f◦θ−1

0 ∥Ck(D).
In particular,

Ff◦θ−1
0
(θ0ω, θ

−1
0 ω) is of the class C ê(σ,k) on D( 2l

2m
, 2l+1−ε

2m
) and

∥Ff◦θ−1
0
(θ0ω, θ

−1
0 ω)∥C ê(σ,k)(D( 2l

2m
, 2l+1−ε

2m
)) ≤ Cε∥f∥Ck(D).

(4.37)

By Theorem 4.7, φf,l has a Ce(σ,k)-extension on [0, 1] with

∥φf,l∥Ce(σ,k)([0,1]) ≤ C∥f∥Ck∨(n+1)(D).

Therefore, ω → φf,l(ℑωm) has a Ce(σ,k)-extension on D( 2l
2m
, 2l+1

2m
)

∥φf,l(ℑωm)∥Ce(σ,k)(D( 2l
2m

, 2l+1
2m

)) ≤ C ′∥f∥Ck∨(n+1)(D).

As Ff is a C ê(σ,k)-map on D(2l+ε
2m

, 2l+1
2m

) with ∥Ff∥C ê(σ,k)(D( 2l+ε
2m

, 2l+1
2m

)) ≤ Cε∥f∥Ck(D),
o(σ, k) ≤ ⌈o(σ, k)⌉ = ô(σ, k) and k ≤ k, in view of (4.36) and (4.37), this gives our
claim. □

We now show that Theorem 4.10 is optimal.

Theorem 4.11. Fix k ≥ m − 1 and 0 ≤ l < 2m. If f ∈ Ck∨(n+1)(D) is such that
Ff ∈ Cr(D( l

2m
, l+1
2m

)) for some r ∈ Rη with 0 < v(r) ≤ o(σ, k) then C j
l (f) = 0 for

all j ≥ 0 such that o(σ, j) < v(r) and ∂ji (f) = 0 for all j ≥ 0 with ô(σ, j) < v(r)
and 0 ≤ i ≤ j ∧ (m− 2) with i ̸= j − (m− 1)modm.

Proof. We will focus only on the even sectors D( 2l
2m
, 2l+1

2m
). The proof in the odd case

proceeds in the same way.
By definition, φf,l(s) = Ff,l(1, s) = Ff (Gl(1 + ιs), Gl(1 + ιs)) on (0, 1]. As Ff ∈

Cr(D( 2l
2m
, 2l+1

2m
)), it follows that φf,l ∈ Cr((0, 1]). In view of Theorem 4.7, C j

2l(f) = 0
for all j ≥ 0 such that o(σ, j) < v(r).

The proof of the vanishing of ∂ji is much more involved. Choosem−1 ≤ k ≤ k < k
such that o(σ, k − 1) < v(r) ≤ o(σ, k) and ô(σ, k − 1) < v(r) ≤ ô(σ, k). By the first
part of the theorem, C j

2l(f) = 0 for all 0 ≤ j < k. Let us decompose f = f<k + ef ,
where f<k =

∑
0≤j<k fj with

fj(ω, ω) =
1

j!

∑
0≤i≤j

(
j

i

)
∂jf

∂ωi∂ωj−i
(0, 0)ωiωj−i.

Then for every 0 ≤ j < k we have Djef (0, 0) = 0 and C j
2l(ef ) = 0 and for k ≤ j < k

we have C j
2l(ef ) = C j

2l(f) = 0. Since ô(σ, k) = ⌈o(σ, k)⌉, in view of Theorem 4.10,
this gives Fef ∈ Ce(σ,k)(D( 2l

2m
, 2l+1

2m
)). As Ff ∈ Cr(D( 2l

2m
, 2l+1

2m
)) and v(r) ≤ o(σ, k),

this yields Ff<k
= Ff − Fef ∈ Cr(D( 2l

2m
, 2l+1

2m
)).

For every 0 < a < 1 let ∆a = {(u, s) : 0 < u ≤ 1, 0 < s ≤ au}. By Lemmas 4.1,
4.2, 4.3 and (4.35), for every 0 < a < 1, there exist ϱj ∈ Cω([0, a]) and cj ∈ C for
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0 ≤ j < k and ρ ∈ Cω([0, a]) such that for any (u, s) ∈ ∆a,

Ff<k,l(u, s) =
∑

0≤j<k

1

j

∑
0≤i≤j

(
j

i

)
∂jf(0, 0)

∂ωi∂ωj−i
Gl

(m−1)−i,(m−1)−(j−i)(u, s)

=
∑

0≤j<k

u
j−(m−2)

m ϱj(s/u) + log u
∑

0≤j<k

cjs
j−(m−2)

m + ρ(s).

Let α ∈ (0, 1/4) so that tan(πα) = a. Fix any 0 < β < α and let ω0 = e2πι
2l+β
2m .

Then for any t ∈ (0, a],

Ff<k,l((tω0)
m, tω0

m
) = Ff<k,l(t

m cos(πβ), tm sin(πβ))

=
∑

0≤j<k

cos(πβ)
j−(m−2)

m ϱj(tan(πβ))t
j−(m−2) + ρ(tm sin(πβ))

+
∑

0≤j<k

cj sin(πβ)
j−(m−2)

m tj−(m−2) log(tm cos(πβ)).

Since (0, a] ∋ t 7→ Ff<k,l((tω0)
m, tω0

m
) ∈ C is of class Cr, [0, a] ∋ t 7→ ρ(tm sin(πβ)) ∈

C is analytic and v(r) > ô(σ, k − 1) = k − 1 − (m − 2) ≥ j − (m − 2) for
every 0 ≤ j < k, it follows that cj = 0 for all 0 ≤ j < k, so Ff<k,l(u, s) =∑

0≤j<k u
j−(m−2)

m ϱj(s/u) + ρ(s).
For every 0 ≤ j < k let Υj : ∆a → C be a real analytic homogenous map of

degree j−(m−2)
m

given by Υj(u, s) = u
j−(m−2)

m ϱj(s/u). Then

Ff<k,l(z, z) =
∑

0≤j<k

Υj(z, z) + ρ(ℑz) on ∆a

and
Ff<k,l(ω

m, ωm) =
∑

0≤j<k

Υj(ω
m, ωm) + ρ(ℑωm) on D( 2l

2m
, 2l+α

2m
).

Since Ff<k
∈ Cr(D( 2l

2m
, 2l+1

2m
)) and ρ(ℑωm) ∈ Cω(D( 2l

2m
, 2l+α

2m
)), we have∑

0≤j<k

Υj(ω
m, ωm) ∈ Cr(D( 2l

2m
, 2l+α

2m
))

and Υj(ω
m, ωm) is a homogenous map of degree j − (m − 2) < v(r) for 0 ≤ j < k.

Then standard arguments for smooth homogenous maps show that Υj = 0 for
0 ≤ j < m− 2 and Υj(ω

m, ωm) is a homogenous polynomial of degree j − (m− 2)
for m− 2 ≤ j < k. Suppose that

Υj(ω
m, ωm) =

∑
0≤i≤j−(m−2)

aj,iω
iω(j−i)−(m−2) for m− 2 ≤ j < k.

Then ∑
0≤j<k

1

j!

∑
0≤i≤j

(
j

i

)
∂jf(0, 0)

∂ωi∂ωj−i
Gl

(m−1)−i,(m−1)−(j−i)(u, s) = Ff<k,l(u, s)

=
∑

0≤j<k

Υj(u, s)+ρ(s) =
∑

m−2≤j<k

∑
0≤i≤j−(m−2)

aj,iGl(u, s)
iGl(u, s)

(j−i)−(m−2)
+ρ(s).
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Differentiating with respect u, we get∑
0≤j<k

1

j!

∑
0≤i≤j

(
j

i

)
∂jf(0, 0)

∂ωi∂ωj−i
G
i−(m−1)
l Gl

(j−i)−(m−1)

=
∑

m−2≤j<k

∑
0≤i≤j−(m−2)

aj,i
(
i
m
Gi−m
l Gl

(j−i)−(m−2)
+ (j−i)−(m−2)

m
Gi
lGl

(j−i)−2(m−1))
=

∑
m−1≤j<k

( ∑
0≤i≤j−(m−1)

aj,i+1
i+1
m
G
i−(m−1)
l Gl

(j−i)−(m−1)

+
∑

m−1≤i≤j

aj,i−(m−1)
(j−i)+1

m
G
i−(m−1)
l Gl

(j−i)−(m−1)
)
.

It follows that Djf(0, 0) = 0 for 0 ≤ j ≤ m − 2 and for every m − 1 ≤ j < k and
0 ≤ i ≤ j,

1

j!

(
j

i

)
∂jf(0, 0)

∂ωi∂ωj−i
= aj,i+1

i+1
m

+ aj,i−(m−1)
(j−i)+1

m
,

here we adhere to the convention that aj,i = 0 if i < 0 or i > j − (m− 2). It follows
that for any m− 1 ≤ j < k and 0 ≤ i ≤ m− 2 with i ̸= j − (m− 1)modm,

∂ji (f)

j!
=

∑
0≤n≤ j−i

m

( (m−1)−i
m

−1
n

)( (j−i)−(m−1)
m
n

) 1j!
(

j

mn+ i

)
∂jf

∂ωmn+i∂ωj−(mn+i)
(0, 0)

=
∑
n≥0

( i−(m−1)
m

+n
n

)(− (j−i)−(m−1)
m

+(n−1)
n

)(aj,i−(m−1)+m(n+1)(
i−(m−1)

m
+ n+ 1)

+ aj,i−(m−1)+mn(
(j−i)−(m−1)

m
− (n− 1))

)
=
∑
n≥0

( i−(m−1)
m

+n+1
n+1

)
(n+ 1)(− (j−i)−(m−1)

m
+(n−1)

n

) aj,i−(m−1)+m(n+1)

−
∑
n≥1

( i−(m−1)
m

+n
n

)
n(− (j−i)−(m−1)

m
+(n−2)

n−1

)aj,i−(m−1)+mn − aj,i−(m−1)(
(j−i)−(m−1)

m
+ 1).

As i − (m − 1) < 0, we have aj,i−(m−1) = 0. Hence ∂ji (f) = 0 for every 0 ≤ j < k
and 0 ≤ i ≤ j ∧ (m− 2) with i ̸= j − (m− 1)modm. □

5. Global properties

In this section, by combining previous results for local analysis near singularity, we
finally obtain solutions for cohomological equations with optimal loss of regularity.

5.1. Transition from local to global results. Let M be a compact connected
orientable C∞-surface. Let ψR be a locally Hamiltonian C∞-flow on M with isolated
fixed points and such that all its saddles are perfect and all saddle connections are
loops. Let M ′ ⊂ M be a minimal component of the flow and let I ⊂ M ′ be
a transversal curve. The corresponding IET T : I → I exchanges the intervals
{Iα : α ∈ A}. There exists 0 < ε ≤ 1 such that for every σ ∈ Sd(ψR) we have
Dσ,ε ⊂ Uσ, where Dσ,ε is the pre-image of the square [−ε, ε] × [−ε, ε] via the map
z 7→ zmσ in local singular coordinates. Moreover, we can assume that every orbit
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starting from I meets at most one set Dσ,ε (maybe many times) before return to I.
For every 0 ≤ l < 2mσ let Dl

σ,ε = Dσ,ε(
l

2mσ
, l+1
2mσ

) be the l-th closed angular sector of
Dσ,ε.

Remark 5.1. By Lemma 8.2 in [4], the enter and exit sets of Dσ,ε(
l
mσ
, l+1
mσ

) are C∞-
curves with standard parametrization

[−ε, ε] ∋ s 7→ Gl(−ε− ιs) ∈ Dσ,ε and [−ε, 0) ∪ (0, ε] ∋ s 7→ Gl(ε− ιs) ∈ Dσ,ε resp.

Every ω ∈ Dσ,ε(
l
mσ
, l+1
mσ

) lies on the positive semi-orbit of Gl(−ε− ιs), s ∈ [−ε, ε] so
that ψξl(ω)Gl(−ε − ιs) = ω for some ξl(ω) > 0. By the proof of Lemma 8.2 in [4],
z = ωmσ = u− ιs for some u ∈ [−ε, ε] and for any f ∈ C(M),∫ ξl(ω)

0

f(ψtGl(−ε− ιs))dt =
1

m2
σ

∫ u

−ε

(f · V )(Gl(v − ιs))

(v2 + s2)
mσ−1
mσ

dv

=
ε−

mσ−2
mσ

m2
σ

∫ u/ε

−1

(f · V )(ε
1

mσGl(v − ι(s/ε)))

(v2 + (s/ε)2)
mσ−1
mσ

dv

=
ε−

mσ−2
mσ

m2
σ

F(f ·V )◦ε1/mσ ,l(z/ε) =
ε−

mσ−2
mσ

m2
σ

F(f ·V )◦ε1/mσ (ε
−1/mσω).

(5.1)

In particular, if ω = Gl(ε−ιs) for s ∈ [−ε, ε]\{0} then τl(s) := ξl(Gl(−ε−ιs)) is the
transit time ofGl(−ε−ιs) through the set Dσ,ε(

l
mσ
, l+1
mσ

), u−ιs = Gl(ε−ιs)mσ = ε−ιs
and ∫ τl(s)

0

f(ψtGl(−ε− ιs))dt =
ε−

mσ−2
mσ

m2
σ

F(f ·V )◦ε1/mσ ,l((ε− ιs)/ε)

=
ε−

mσ−2
mσ

m2
σ

φ(f ·V )◦ε1/mσ ,l(−s/ε).
(5.2)

Remark 5.2. Recall thatm ≥ 2 is the maximal multiplicity of saddles in Sd(ψR)∩M ′.
Then for any r ≥ −m−2

m
we have ⌈r⌉ + 1 ≤ kr. Indeed, if −m−2

m
≤ r ≤ −m−3

m
then

−m−2
m−1

≤ r. Hence r+1 ≤ mr+(m−1), which yields ⌈r⌉+1 ≤ ⌈mr+(m−1)⌉ = kr.
If −m−3

m
< r with m ≥ 3 or 1 ≤ r with m = 2 then −m−3

m−1
≤ r. Hence r + 1 ≤

mr + (m − 2), which yields ⌈r⌉ + 1 ≤ ⌈mr + (m − 2)⌉ = kr. Suppose that m = 2
and 1

2
= −m−3

m
< r < 1. Then ⌈r⌉+ 1 = 2 ≤ ⌈2r⌉ = ⌈mr + (m− 2)⌉ = kr.

Remark 5.3. For any r ≥ −m−2
m

and σ ∈ Sd(ψR) ∩ M ′ let k ≥ 0 be such that
o(σ, k − 1) < r ≤ o(σ, k). It follows that n := ⌈o(σ, k)⌉ = ⌈r⌉. In view of (1.6),
k ≤ ⌈mr+(m−2)⌉ ≤ kr. Moreover, by Remark 5.2, n+1 = ⌈r⌉+1 ≤ kr. Therefore,
k ∨ (n+ 1) ≤ kr.

Proof of Theorem 1.1. Let τ : I → R>0 ∪ {+∞} be the first return time map for
the flow ψR restricted to M ′. For any interval (set) J ⊂ I avoiding the set disc(T )
of discontinuities of T let Jτ = {ψts : s ∈ J, 0 ≤ t ≤ τ(s)}. If an interval J contains
some elements of disc(T ) then Jτ is the closure of (J \ disc(T ))τ .

Case 1. Suppose that J ⊂ Iα is a closed interval such that sup τ(J) < ∞ and
max τ(J) < 2min τ(J). Choose any tJ < min τ(J) so that 2tJ > max τ(J). Let us
consider the set Jτ and its two subsets

(5.3) Jτ+ = {ψts : s ∈ J, 0 ≤ t ≤ tJ}, Jτ− = {ψ−t(Ts) : s ∈ J, 0 ≤ t ≤ tJ}.
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By assumption, Jτ+ ∪ Jτ− = Jτ . Let ρ+, ρ− : Jτ → [0, 1] be the corresponding C∞-
partition of unity, i.e. ρ± are C∞-maps such that ρ++ρ− = 1 and ρ± = 0 on Jτ \Jτ±.
Let v± : J × [0, tJ ] → Jτ± be given by v+(s, t) = ψts and v−(s, t) = ψ−t(Ts). Then

φf (s) =

∫ tJ

0

(ρ+ · f) ◦ v+(s, t)dt+
∫ tJ

0

(ρ− · f) ◦ v−(s, t)dt.

Since v± are of class C∞, it follows that for every q > 0 if f ∈ Cq(M) then φf ∈
Cq(J) and there exists Cq

J > 0 such that ∥φf∥Cq(J) ≤ Cq
J∥f∥Cq(M) for any f ∈

Cq(M). Suppose that f ∈ Ckr(M). In view of Remark 5.3, n + 1 ≤ kr, and hence
φf ∈ Cn+1(J) with

(5.4) ∥φf∥Cn+1(J) ≤ Cn+1
J ∥f∥Ckr (M) for any f ∈ Ckr(M).

Case 2. Suppose that J ⊂ Iα is of the form J = [lα, lα + ε]. Suppose that lα is
the first backward meeting point of a separatrix incoming to σ ∈ Sd(ψR) ∩M ′. It
follows that the orbits starting from J meet the set Dσ,ε before return to I. Suppose
that each such orbit meets Dσ,ε only once and it meets a sector D2l+1

σ,ε for some
0 ≤ l < mσ. In general, the orbits of J can meet Dσ,ε several times in different
sectors. This case arises when the saddle σ has saddle loops, but this situation is
discussed later.

For every s ∈ J denote by τ+(s) the first forward entrance time of the orbit of
s to Dσ,ε and by τ−(s) the first backward entrance time of the orbit of Ts to Dσ,ε.
Then ψτ+(s)(s) = Gl(−ε − ι(s − lα)). Since τ(s) → +∞ as s → lα and τ± are
bounded, decreasing ε, if necessary, we can assume that min τ(J) > max τ±(J).
Choose max τ±(J) < tJ < min τ(J) and let us consider two subsets Jτ± ⊂ Jτ given
by (5.3). Then Jτ = Jτ+ ∪ D2l+1

σ,ε ∪ Jτ−. Let us consider the corresponding C∞-
partition of unity ρ+, ρσ, ρ− : Jτ → [0, 1], i.e. ρ+, ρσ, ρ− are C∞-maps such that
ρ+ + ρσ + ρ− = 1, ρ± = 0 on Jτ \ Jτ± and ρσ = 0 on Jτ \ Dσ,ε. Then

φf (s) =

∫ tJ

0

(ρ+ · f) ◦ v+(s, t)dt+
∫ tJ

0

(ρ− · f) ◦ v−(s, t)dt+
∫ τ(s)−τ−(s)

τ+(s)

(ρσ · f)(ψts)dt.

Repeating the arguments used in Case 1, for any q > 0 we get Cq
J > 0 such that

(5.5)
∥∥∥∫ tJ

0

(ρ+ · f)(ψt · )dt+
∫ tJ

0

(ρ− · f)(ψ−t(T · )dt
∥∥∥
Cq(J)

≤ Cq
J∥f∥Cq(M)

for any f ∈ Cq(M).
Note that for every s ∈ (0, ε],

φσf (lα + s) : =

∫ τ(lα+s)−τ−(lα+s)

τ+(lα+s)

(ρσ · f)(ψt(lα + s))dt

=

∫ τl(s)

0

(ρσ · f)(ψtGl(−ε− ιs))dt.

By (5.2), it follows that for any s ∈ (0, 1], φσf (lα + εs) = ε
−mσ−2

mσ

m2
σ

φf̃ ,l(−s), where

f̃(ω, ω) = (ρσ · f · V )(ε
1

mσ ω, ε
1

mσ ω).

Suppose that f ∈ Ckr(M) for some r ≥ −m−2
m

. Choose k ≥ 0 such that o(σ, k −
1) < r ≤ o(σ, k). By Remark 5.3, we have ⌈o(σ, k)⌉ = ⌈r⌉ = n and k ∨ (n +
1) ≤ kr. Assume that Cjσ,2l+1(f) = 0 for all 0 ≤ j < k, or equivalently for all
j ≥ 0 such that o(Cjσ,2l+1) < r. Since ρσ = 1 in a neighborhood of σ, it follows
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that C j
2l+1(f̃) = ε

j
mσ C j

2l+1(f · V ) = ε
j

mσ Cjσ,2l+1(f) = 0 for all 0 ≤ j < k. Let
a0 := ⌈o(σ, k)⌉ − o(σ, k) = n− o(σ, k). Then n− a0 = o(σ, k) ≥ r = n− a.

As k ∨ (n + 1) ≤ kr and both f and f̃ are of class Ckr , in view of Theorem 4.7,
φf̃ ,l ∈ Cn+Pa0 ([−1, 0)) and there exists Cr

σ,l > 0 such that

∥φf̃ ,l∥Cn+Pa0 ([−1,0)) ≤ Cr
σ,l∥f̃∥Ck∨(n+1)(D) ≤ Cr

σ,l∥ρσ · V ∥Ckr (D)∥f∥Ckr (D).

As φσf (lα+ εs) =
ε
−mσ−2

mσ

m2
σ

φf̃ ,l(−s) and n−a ≤ n−a0, in view of Remark 2.2, for any
f ∈ Ckr(M) with Cjσ,2l+1(f) = 0 for all 0 ≤ j < k,

φσf ∈ Cn+Pa(J) and ∥φσf∥Cn+Pa (J) ≤ C̃r
σ,l∥f∥Ckr (D).

In view of (5.5) and Remark 2.2, it follows that for any f ∈ Ckr(M)∩
⋂

0≤j<k

ker(Cjσ,2l+1),

∥φf∥Cn+Pa (J) ≤ C̃r
σ,l∥f∥Ckr (M) + Cn+1

J ∥f∥Cn+1(M) ≤ (C̃r
σ,l + Cn+1

J )∥f∥Ckr (M).

Case 3. Suppose that J ⊂ Iα is of the form J = [lα, lα + ε], where lα is the first
backward meeting point of a separatrix incoming to σ ∈ Sd(ψR)∩M ′. Suppose that
σ has some saddle loops and Jτ meets σ N -times (1 < N = NJ < mσ). Then all
orbits starting from Int J meet the set Dσ,ε N -times before return to I. Assume that
each such orbit meets its sectors D2li+1

σ,ε for 1 ≤ i ≤ N consecutively. Then σ has
N − 1 saddle loops sli connecting the sector D2li+1

σ,ε with D2li+1+1
σ,ε for 1 ≤ i ≤ N − 1.

In particular,

(5.6) Jτ = Jτ+ ∪ Jτ− ∪
N⋃
i=1

D2li+1
σ,ε ∪

N−1⋃
i=1

Jτi ,

where Jτi = {ψtγi(s) : s ∈ [0, ε], t ∈ [0, ti]} is a rectangle whose base is a C∞-curve
γi([0, ε]) ⊂ D2li+1

σ,ε with a standard parametrization while its left side {ψtγi(0) : t ∈
[0, ti]} is a part of the loop sli. Using a partition of unity associated to the cover
(5.6) and repeating the arguments used in Case 1 and 2, for every r > 0 we get
Cr
J > 0 such that

(5.7) ∥φf∥Cn+Pa (J) ≤ Cr
J∥f∥Ckr (M) for f ∈ Ckr(M) ∩

⋂
1≤i≤NJ

⋂
0≤j<k

ker(Cjσ,2li+1).

Case 4. Suppose that J ⊂ Iα is of the form J = [rα − ε, rα], where rα is the first
backward meeting point of a separatrix incoming to σ ∈ Sd(ψR). Suppose that Jτ
meets σ N -times (N = NJ) and the orbits starting from Int J meet the set D2li

σ,ε for
1 ≤ i ≤ N consecutively before return to I. Then repeating the arguments used in
Case 1, 2 and 3, for every r > 0 we get Cr

J > 0 such that

(5.8) ∥φf∥Cn+Pa (J) ≤ Cr
J∥f∥Ckr (M) for f ∈ Ckr(M) ∩

⋂
1≤i≤NJ

⋂
0≤j<k

ker(Cjσ,2li).

Final step. We can find a finite family of closed subintervals {Jq}Qq=1 of I which
covers the whole interval I and such that every Jq is of the form [lα, lα+ ε] (or [rα−
ε, rα]) with min τ±(Jq) > max τ(Jq), or Jq ⊂ Int Iα with 2min τ(Jq) > max τ(Jq).
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If Jq is an interval of the form [lα, lα + ε] or [rα − ε, rα] then by (5.7) and (5.8),

∥φf∥Cn+Pa (Jq) ≤ Cr
Jq∥f∥Ckr (M) for f ∈ Ckr(M) ∩

⋂
(σ,j,l)∈T C
o(σ,j)<r

ker(Cjσ,l).

If Jq ⊂ Int Iα then, by Remark 2.2 and (5.4),

∥φf∥Cn+Pa (Jq) ≤ ∥φf∥Cn+1(Jq) ≤ Cn+1
Jq

∥f∥Cn+1(M) ≤ Cn+1
Jq

∥f∥Ckr (M) for f ∈ Ckr(M).

This yields φf ∈ Cn+Pa(⊔α∈AIα) and

∥φf∥Cn+Pa ≤
Q∑
q=1

∥φf∥Cn+Pa (Jq) ≤ C∥f∥Ckr (M)

for all f ∈ Ckr(M) such that Cjσ,l(f) = 0 for (σ, j, l) ∈ T C with o(σ, j) < r.

Recall that, by assumption, the right end of I is the first meeting point of a
separatrix (that is not a saddle connection) emanating by a fixed point σ (incoming
or outgoing) with the interval I. Suppose that the right end is the first backward
meeting point of a separatrix incoming to σ. Let α = π−1

1 (d), i.e. the interval
Iα = [lα, rα) is the latest after the exchange. It follows that for every 0 < ε < |Iα| the
strip [rα−ε, rα]τ avoids all fixed points, so sup τ([rα−ε, rα]) <∞. By the continuity
of τ , we can choose ε > 0 so that max τ([rα−ε, rα]) < 2min τ([rα−ε, rα]). In view of
Case 1, φf ∈ Cn+1([rα−ε, rα]). Hence, Ca,−

α,n (φf ) = limx↗rα D
n+1φf (x)(rα−x)1+a =

0. The same argument shows that if the right end is the first forward meeting point
of a separatrix outgoing from σ then Ca,−

α,n (φf ) = 0 for α = π−1
0 (d). Finally we have

Ca,−
π−1
0 (d),n

(φf ) ·Ca,−
π−1
1 (d),n

(φf ) = 0. Analyzing the orbit of the left end in the same way,

we get Ca,+

π−1
0 (1),n

(φf ) ·Ca,+

π−1
1 (1),n

(φf ) = 0, which shows that φf ∈ Cn+PaG(⊔α∈AIα). □

For all (σ, k, j) ∈ T D let χkσ,j : M → C be a C∞-map such that χkσ,j(ω, ω) =

ωjωk−j/(k!V (ω, ω)) on Uσ and it is equal to zero on all Uσ′ for σ′ ̸= σ. By definition,
dkσ,j(χ

k
σ,j) = 1 and dk

′

σ′,j′(χ
k
σ,j) = 0 if (σ′, k′, j′) ̸= (σ, k, j).

In view of Theorem 1.1, we get the following result.

Corollary 5.4. For every r ≥ −m−2
m

and any f ∈ Ckr(M) we have a decomposition

(5.9) f =
∑

(σ,k,j)∈T D
o(σ,k)<r

dkσ,j(f)χ
k
σ,j +Rr(f)

such that φRr(f) ∈ Cn+PaG(⊔α∈AIα) with n = ⌈r⌉ and a = n − r. Moreover, the
operators Rr : Ckr(M) → Ckr(M) and Ckr(M) ∋ f 7→ φRr(f) ∈ Cn+PaG(⊔α∈AIα)
are bounded.

Let us consider an equivalence relation ∼ on T C as follows: (σ, k, l) ∼ (σ, k, l′)
if the angular sectors Uσ,l and Uσ,l′ are connected through a chain of saddle loops
emanating from the saddle σ. For every equivalence class [(σ, k, l)] ∈ T C / ∼, let

C[(σ,k,l)](f) :=
∑

(σ,k,l′)∼(σ,k,l)

Ckσ,l(f).

For any [(σ, k, l)] ∈ T C / ∼ there exists α ∈ A and an interval J of the form
[lα, lα + ε] or [rα − ε, rα] such that lα or rα is the first backward meeting point of
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a separatrix incoming to σ ∈ Sd(ψR) and Jτ contains all angular sectors Uσ,l′ for
which (σ, k, l′) ∼ (σ, k, l). Let ξ[(σ,k,l)] : I → R be given as follows:

• ξ[(σ,k,l)] is zero on any interval Iβ with β ̸= α;
• if J = [lα, lα + ε] then for any s ∈ Iα,

ξ[(σ,k,l)](s) =
(s− lα)

k−(mσ−2)
mσ

m2
σk!

if k ̸= mσ − 2 modmσ

ξ[(σ,k,l)](s) = −(s− lα)
k−(mσ−2)

mσ log(s− lα)

m2
σk!

if k = mσ − 2 modmσ;

• if J = [rα − ε, rα] then for any s ∈ Iα,

ξ[(σ,k,l)](s) =
(rα − s)

k−(mσ−2)
mσ

m2
σk!

if k ̸= mσ − 2 modmσ

ξ[(σ,k,l)](s) = −(rα − s)
k−(mσ−2)

mσ log(rα − s)

m2
σk!

if k = mσ − 2 modmσ.

Of course, ξ[(σ,k,l)] ∈ Cn+PaG(⊔α∈AIα) with n := ⌈o(σ, k)⌉ and a := n− o(σ, k).
In view of the proof of Theorem 1.1 we also have the following.

Corollary 5.5. Fix σ ∈ Sd(ψR) ∩ M ′, k ≥ 0 and let n := ⌈o(σ, k)⌉ and a :=
n− o(σ, k). Suppose that f ∈ Ck∨(n+1)(M) is such that it is equal to zero on Uσ′ for
σ′ ̸= σ. Then

(5.10) φf =
∑

[(σ,j,l)]∈T C /∼
0≤j<k

C[(σ,j,l)](f)ξ[(σ,j,l)] + Cn+PaG(⊔α∈AIα).

Proof. The proof proceeds in the same way as the proof of Theorem 1.1, except that
we use Corollary 4.8 instead of Theorem 4.7 in the key reasoning. For example,
using the notations introduced in the proof of the Theorem 1.1, for any s ∈ (0, 1]

φσf (lα + εs) =
ε−

mσ−2
mσ

m2
σ

φf̃ ,l(−s) with f̃(ω, ω) = (ρσ · f · V )(ε
1

mσ ω, ε
1

mσ ω)

and C j
2l+1(f̃) = ε

j
mσ C j

2l+1(f · V ) = ε
j

mσ Cjσ,2l+1(f). In view of Corollary 4.8, for
s ∈ [−1, 0),

φf̃ ,l(s) = −
∑

0≤j<k
j=mσ−2modmσ

C j
2l+1(f̃)

j!
(−s)

j−(mσ−2)
mσ log(−s)

+
∑

0≤j<k
j ̸=mσ−2modmσ

C j
2l+1(f̃)

j!
(−s)

j−(mσ−2)
mσ + Cn+Pa([−1, 0)).
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It follows that for s ∈ (lα, lα + ε],

φσf (s) =
ε−

mσ−2
mσ

m2
σ

φf̃ ,l((lα − s)/ε)

= −ε
−mσ−2

mσ

m2
σ

∑
0≤j<k

j=mσ−2modmσ

ε
j

mσ Cjσ,2l+1(f)

j!

(s− lα
ε

) j−(mσ−2)
mσ

log
(s− lα

ε

)

+
ε−

mσ−2
mσ

m2
σ

∑
0≤j<k

j ̸=mσ−2modmσ

ε
j

mσ Cjσ,2l+1(f)

j!

(s− lα
ε

) j−(mσ−2)
mσ

+ Cn+Pa((lα, lα + ε])

= −
∑

0≤j<k
j=mσ−2modmσ

Cjσ,2l+1(f)
(s− lα)

j−(mσ−2)
mσ log(s− lα)

m2
σj!

+
∑

0≤j<k
j ̸=mσ−2modmσ

Cjσ,2l+1(f)
(s− lα)

j−(mσ−2)
mσ

m2
σj!

+ Cn+Pa((lα, lα + ε]).

This key observation makes it possible to get (5.10) proceeding further as in the
proof of Theorem 1.1. □

Theorem 5.6. For any r ≥ −m−2
m

let n = ⌈r⌉ and a = n − r. Then for any
f ∈ Ckr(M) we have

sr(f) = φf −
∑

[(σ,k,l)]∈T C /∼
o(σ,k)<r

C[(σ,k,l)](f)ξ[(σ,k,l)] ∈ Cn+Pa(⊔α∈AIα)(5.11)

and the operator sr : C
kr(M) → Cn+Pa(⊔α∈AIα) is bounded.

Proof. Let {ρσ : σ ∈ Sd(ψR)∩M ′} be a C∞-partition of unity of M such that ρσ = 1
on Uσ. For any σ ∈ Sd(ψR)∩M ′ choose kσ ≥ 1 so that o(σ, kσ−1) < r ≤ o(σ, kσ). Let
nσ,kσ = ⌈o(σ, kσ)⌉ and aσ,kσ = nσ,kσ − o(σ, kσ). By Remark 5.3, kσ ∨ (nσ,kσ +1) ≤ kr.
Therefore, Corollary 5.5 applied to f · ρσ, shows that

φf ·ρσ =
∑

[(σ,j,l)]∈T C /∼
0≤j<kσ

C[(σ,j,l)](f · ρσ)ξ[(σ,j,l)] + Cnσ,kσ+Paσ,kσ
G(⊔α∈AIα).

As r ≤ o(σ, kσ), by Remark 2.2, Cnσ,kσ+Paσ,kσ
G ⊂ Cn+PaG. Since C[(σ,j,l)](f · ρσ) =

C[(σ,j,l)](f), this gives

φf ·ρσ =
∑

[(σ,j,l)]∈T C /∼
0≤j<kσ

C[(σ,j,l)](f)ξ[(σ,j,l)] + Cn+PaG(⊔α∈AIα).

When summed against σ, this yields (5.11).
To prove that the operator sr is bounded, we use the decomposition (5.9). Indeed,

sr(f) =
∑

(σ,k,j)∈T D
o(σ,k)<r

dkσ,j(f)sr(χ
k
σ,j) + sr(Rr(f)) =

∑
(σ,k,j)∈T D
o(σ,k)<r

dkσ,j(f)sr(χ
k
σ,j) + φRr(f).

Since the functionals dkσ,j and the operator f 7→ φRr(f) (by Corollary 5.4) are
bounded, this gives that sr is bounded. □
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Proof of Theorem 1.2. Arguments presented in Section 1.2 show that if g ∈ Cr(I)
is a solution of the cohomological equation g ◦ T − g = φf , then the corresponding
function u = ug,f :M

′ \ (Sd(ψR) ∪ SL(ψR)) → C given by

u(x) := g(ψtx)−
∫ t

0

f(ψsx) ds

whenever ψtx ∈ I for some t ∈ R, is of class Cr on M ′ \ (Sd(ψR) ∪ SL(ψR)). We
need to show that if dkσ,j(f) = 0 for all (σ, k, j) ∈ T D such that ô(dkσ,j) < v(r) and
Ckσ,l(f) = 0 for all (σ, k, l) ∈ T C such that o(Ckσ,l) < v(r) then u has a Cr-extension
to M ′

e and

(5.12) ∥u∥Cr(M ′
e) ≤ C(∥g∥Cr(I) + ∥f∥

C
kv(r) (M)

).

We split the proof of our claim into several steps. In fact, we split M ′
e into subsets of

two kinds: subsets which are far from saddles and saddle loops, and sets surrounding
saddles or saddle loops.

Step 1. Sets far from saddles and saddle loops. We will show that for any
compact subset A ⊂M ′ \ (Sd(ψR) ∪ SL(ψR)) there exists CA > 0 such that

(5.13) ∥u∥Cr(A) ≤ CA(∥g∥Cr(I) + ∥f∥
C

kv(r) (M)
).

Recall that, by arguments from Section 1.2, for any x0 ∈ M ′ \ (Sd(ψR) ∪ SL(ψR))
there exist closed intervals [τ1, τ2] and J ⊂ Int I such that the set R(x0) = {ψtx :
x ∈ J, t ∈ [τ1, τ2]} is a rectangle in M ′, i.e. the map

J × [τ1, τ2] ∋ (x, t) 7→ ν(x, t) = ψtx ∈ R(x0)

is a C∞-diffeomorphism and x0 ∈ IntR(x0). Moreover,

u ◦ ν(x, t) = g(x) +

∫ t

0

f ◦ ν(x, s)ds on J × [τ1, τ2].

By Remark 5.2, it follows that there exists Cx0 > 0 such that

∥u∥Cr(R(x0)) ≤ Cx0(∥g∥Cr(I) + ∥f∥Cr(M)) ≤ Cx0(∥g∥Cr(I) + ∥f∥
C

kv(r) (M)
).

Covering A by a finite number of rectangles, this yields (5.13).

Step 2. Some sets far from saddles. Suppose that γ : [a, b] → M \ Fix(ψR)
is a standard C∞-parametrization of a curve and ξ : [a, b] → R>0 is a C∞ map such
that

[a, b]ξ ∋ (x, t) 7→ ν(x, t) = ψtx ∈ ν([a, b]ξ) =: (γ[a, b])ξ

is a C∞-diffeomorphism, where [a, b]ξ = {(x, t) : x ∈ [a, b], 0 ≤ t ≤ ξ(x)}. Then the
arguments used in Step 1 show that if u ◦ γ ∈ Cr([a, b]) then u ∈ Cr([a, b]γ) and
there exists Cγ,ξ > 0 such that

(5.14) ∥u∥Cr(γ([a,b])ξ) ≤ Cγ,ξ(∥u ◦ γ∥Cr([a,b]) + ∥f∥
C

kv(r) (M)
).

Step 3. Strips touching saddles and saddle loops and their decomposi-
tion. From now on we will use a notation introduced in the proof of Theorem 1.1.
Let τ : I → R>0 ∪ {+∞} be the first return time map. Suppose that J ⊂ Iα is
of the form J = [lα, lα + ε], where lα is the first backward meeting point of a sep-
aratrix incoming to σ ∈ Sd(ψR) ∩M ′. Suppose that Jτ meets σ exactly N -times
(1 ≤ N = NJ < mσ) and the orbits starting from Int J meet Dσ,ε in its sectors
D2li+1
σ,ε for 1 ≤ i ≤ N consecutively before return to I. Then σ has N − 1 saddle
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loops sli connecting the sector D2li+1
σ,ε with D2li+1+1

σ,ε for 1 ≤ i ≤ N − 1. Recall that
Jτ is the closure of (Int J)τ . Then

(5.15) Jτ =
N⋃
i=1

D2li+1
σ,ε ∪

N⋃
i=0

Ei,

where each Ei is of the form γi([0, ε])
ξi with

• γ0(s) = γ(lα + s) (here γ is the parametrization of I) and ξ0(s) is the time
spent to go from J to D2l1+1

σ,ε ;
• for 0 ≤ i ≤ N − 1, γi(s) = Gli(ε− ιs) and ξi(s) is the time spent to go from
D2li+1
σ,ε to D2li+1+1

σ,ε ;
• γN(s) = GlN (ε− ιs) and ξN(s) is the time spent to go from D2lN+1

σ,ε to I.
Step 4.0. The set E0. In view of (5.14) in Step 2,

(5.16) u ∈ Cr(E0) and ∥u∥Cr(E0) ≤ Cγ0,ξ0(∥g∥Cr(I) + ∥f∥
C

kv(r) (M)
).

Step 4.1. The sets D2li+1
σ,ε surrounding the saddle σ. We will show that for

every 1 ≤ i ≤ N there exist Ci, C ′
i > 0 such that if u has a Cr-extension on Ei−1

then it has Cr-extension on D2li+1
σ,ε and

(5.17) ∥u∥
Cr(D2li+1

σ,ε )
≤ Ci∥u∥Cr(Ei−1) + C ′

i∥f∥Ckv(r) (M)
.

This is the main inductive step running to the proof of (5.12) restricted to Jτ .
By Remark 5.1, for every ω ∈ Dσ,ε(

li
mσ
, li+1
mσ

) we have ψξl(ω)Gli(−ε − ιs) = ω for
s = −ℑωmσ ∈ [0, ε] and

u(ω)− u(Gli(−ε− ιs)) =

∫ ξl(ω)

0

f(ψtGli(−ε− ιs))dt.

In view of (5.1), for ω ∈ Dσ,ε(
2li+1
2mσ

, 2li+2
2mσ

),

(5.18) u(ω)− u(Gli(−ε+ ιℑωmσ)) =
ε−

mσ−2
mσ

m2
σ

F(f ·V )◦ε1/mσ (ε
−1/mσω).

Choose m−1 ≤ k ≤ k ≤ kv(r) such that o(σ, k−1) < v(r) ≤ o(σ, k) and ô(σ, k−1) <
v(r) ≤ ô(σ, k). Then ô(σ, k) = ⌈o(σ, k)⌉. Moreover, by Remark 5.3, n := ⌈v(r)⌉ =
⌈o(σ, k)⌉ and k ∨ (n+ 1) ≤ kv(r).

By assumption, for every 0 ≤ j < k and 0 ≤ i ≤ j ∧ (mσ − 2) with i ̸= j −
(mσ− 1)modmσ we have ∂ji (f ·V ) = djσ,i(f) = 0 and C j

l (f ·V ) = Cjσ,l(f) = 0 for all
0 ≤ j < k and l = 2li + 1, 1 ≤ i ≤ N .

In view of Theorem 4.10, the map F(f ·V )◦ε1/mσ ◦ ε−1/mσ : Dσ,ε(
2li+1
2mσ

, 2li+2
2mσ

) → C has
a Ce(σ,k)-extension on D2li+1

σ,ε = Dσ,ε(
2li+1
2mσ

, 2li+2
2mσ

) and there exists C ′
i > 0 such that∥∥∥ε−mσ−2

mσ

m2
σ

F(f ·V )◦ε1/mσ ◦ ε−1/mσ

∥∥∥
Ce(σ,k)(D2li+1

σ,ε )
≤ C ′

i∥f∥Ck∨(n+1)(M).(5.19)

Moreover, the map Dσ,ε(
2li+1
2mσ

, 2li+2
2mσ

) ∋ ω 7→ Gli(−ε+ ιℑωmσ) ∈ D2li+1
σ,ε ∩Ei−1 has an

obvious analytic extension on D2li+1
σ,ε . It follows that there exists Ci > 0 such that if

u is of class Cr on Ei−1 then u ◦Gli(−ε+ ιℑωmσ) has a Cr-extension to D2li+1
σ,ε and

(5.20) ∥u ◦Gli(−ε+ ιℑωmσ)∥
Cr(D2li+1

σ,ε )
≤ Ci∥u∥Cr(Ei−1).
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As v(r) ≤ o(σ, k) and k ∨ (n + 1) ≤ kv(r), by (5.18), (5.19) and (5.20), u has a
Cr-extension on D2li+1

σ,ε and (5.17) holds.

Step 4.2. The sets Ei surrounding the saddle loops. We will show that for
every 1 ≤ i ≤ N there exist C ′′

i , C
′′′
i > 0 such that if u has a Cr-extension on D2li+1

σ,ε

then it has Cr-extension on Ei and

∥u∥Cr(Ei) ≤ C ′′
i ∥u∥Cr(D2li+1

σ,ε )
+ C ′′′

i ∥f∥Ckv(r) (M)
.

This is an easy inductive step leading to the proof of (5.12) restricted to Jτ , which
follows directly from (5.14). Indeed, as γi : [0, ε] → D2li+1

σ,ε is an analytic curve,
there exists C > 0 such that if u is of class Cr on D2li+1

σ,ε then ∥u ◦ γi∥Cr([0,ε]) ≤
C∥u∥

Cr(D2li+1
σ,ε )

. As Ei = γi([0, ε])
ξi , in view of (5.14), u has Cr-extension on Ei and

∥u∥Cr(Ei) ≤ Cγi,ξi(∥u◦γi∥Cr([0,ε])+∥f∥
C

kv(r) (M)
) ≤ Cγi,ξi(C∥u∥Cr(D2li+1

σ,ε )
+∥f∥

C
kv(r) (M)

).

Step 4.3. Induction. Starting from Step 4.0 (as the initial inductive step)
and then repeating alternately Steps 4.1 and 4.2 N -times, we have that there exists
CJ > 0 such that u has a Cr-extension on Jτ and

(5.21) ∥u∥Cr(Jτ ) ≤ CJ(∥g∥Cr(J) + ∥f∥
C

kv(r) (M)
).

Step 5. Summary. Using the arguments from Step 4, we obtain (5.21) also in
the case where J = [rα − ε, rα]. Then the strip Jτ touches a saddle on right side.
Let A ⊂M ′ \ (Sd(ψR) ∪ SL(ψR)) be the closure of

M ′ \
⋃
α∈A

([lα, lα + ε]τ ∪ [rα − ε, rα]
τ ).

Then by Step 1 applied to A and Step 4 applied to the intervals [lα, lα + ε] and
[rα− ε, rα] for all α ∈ A, we have that u has a Cr-extension on M ′

e and (5.12) holds
with C = CA +

∑
α∈A(C[lα,lα+ε] + C[rα−ε,rα]). □

Proof of Theorem 1.3. Suppose that there exists u ∈ Cr(M ′
e) such that Xu = f

for some r ∈ Rη with v(r) > 0. Choose σ ∈ Sd(ψR) ∩ M ′ and 0 ≤ l < mσ

such that Uσ,2l+1 ∩M ′ ̸= ∅. We will show that Cjσ,2l+1(f) = 0 for all j ≥ 0 such
that o(σ, j) < v(r) and djσ,i(f) = 0 for all j ≥ 0 such that ô(σ, j) < v(r) and
0 ≤ i ≤ j ∧ (mσ − 2) with i ̸= j − (mσ − 1)modmσ. The proof for even sectors
follows the same way as for odd sectors, so we will only focus on the latter.

In view of (5.18), for ω ∈ Dσ,ε(
2l+1
2mσ

, 2l+2
2mσ

),

u(ω)− u(Gl(−ε+ ιℑωmσ)) =
ε−

mσ−2
mσ

m2
σ

F(f ·V )◦ε1/mσ (ε
−1/mσω).

By assumption, u is of class Cr on Dσ,ε(
2l+1
2mσ

, 2l+2
2mσ

), and hence u(Gl(−ε + ιℑωmσ))

is of class Cr on Dσ,ε(
2l+1
2mσ

, 2l+2
2mσ

). Therefore, F(f ·V )◦ε1/mσ has a Cr-extension on
D(2l+1

2m
, 2l+2

2m
).

Choose k ≥ mσ − 1 such that o(σ, k − 1) < v(r) ≤ o(σ, k). By Remark 5.3, we
have n := ⌈v(r)⌉ = ⌈o(σ, k)⌉ and k ∨ (n + 1) ≤ kv(r). Therefore, by Theorem 4.11,
εj/mσCjσ,2l+1(f) = C j

2l+1((f · V ) ◦ ε1/mσ) = 0 for all j ≥ 0 such that o(σ, j) < v(r)

and εj/mσdjσ,i(f) = ∂ji ((f · V ) ◦ ε1/mσ) = 0 for all j ≥ 0 with ô(σ, j) < v(r) and
0 ≤ i ≤ j ∧ (mσ − 2) with i ̸= j − (mσ − 1)modmσ. □
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