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NEW PHENOMENA IN DEVIATION OF BIRKHOFF INTEGRALS FOR

LOCALLY HAMILTONIAN FLOWS

KRZYSZTOF FRĄCZEK AND MINSUNG KIM

Abstract. We consider smooth locally Hamiltonian flows on compact surfaces of genus
g ≥ 2 to prove their deviation of Birkhoff integrals for smooth observables. Our work
generalizes results of Forni [10] and Bufetov [2] which prove the existence of deviation
spectrum of Birkhoff integrals for observables whose jets vanish at sufficiently high order
around fixed points of the flow. They showed that ergodic integrals can display a power
spectrum of behaviours with exactly g positive exponents related to the positive Lya-
punov exponents of the cocycle so-called Kontsevich-Zorich, a renormalization cocycle
over the Teichmüller flow on a stratum of the moduli space of translation surfaces.

Our paper extends the study of the spectrum of deviations of ergodic integrals beyond
the case of observables whose jets vanish at sufficiently high order around fixed points. We
prove the existence of some extra terms in deviation spectrum related to non-vanishing
of the derivatives of observables at fixed points. The proof of this new phenomenon is
based on tools developed in the recent work of the first author and Ulcigrai [8] for locally
Hamiltonian flows having only (simple) non-degenerate saddles. In full generality, due to
the occurrence of (multiple) degenerate saddles, we introduce new methods of handling
functions with polynomial singularities over a full measure set of IETs.

1. Introduction

Let M be a smooth compact connected orientable surface of genus g ≥ 1. We consider
a smooth flow ψR = (ψt)t∈R on M preserving a smooth measure µ with positive density.
These flows are called locally Hamiltonian flows in the sense that around any point on M ,
we can find local coordinates (x, y) in which dµ = dx ∧ dy and ψR is a solution to the
Hamiltonian equation {

dx
dt =

∂H
∂y (x, y)

dy
dt = −∂H

∂x (x, y)

for a smooth real-valued function H.
For any smooth observable f : M → R we are interested in understanding the asymp-

totics of the growth of ergodic integrals (Birkhoff integrals)
∫ T
0 f(ψtx) dt as T → +∞.

We always assume that all fixed points of the flow ψR are isolated, so the set of fixed
points of flow ψR, denoted by Fix(ψR), is finite. For g ≥ 2, Fix(ψR) is non-empty. As ψR

is area-preserving, singularities are either centers, simple saddles or multi-saddles (saddles
with 2k prongs with k ≥ 2). We will deal only with saddles defined as follows: a fixed point
σ ∈ Fix(ψR) is a saddle of multiplicity m = mσ ≥ 2 if there exists a chart (x, y) (called a
singular chart) in a neighborhood Uσ of σ such that dµ = V (x, y)dx ∧ dy and H(x, y) =
ℑ(x+iy)m ((0, 0) are coordinates of σ). Then the corresponding local Hamiltonian equation
in Uσ is of the form

dx

dt
=

∂H
∂y (x, y)

V (x, y)
=
mℜ(x+ iy)m−1

V (x, y)
and

dy

dt
= −

∂H
∂x (x, y)

V (x, y)
= −mℑ(x+ iy)m−1

V (x, y)
.
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2 K. FRĄCZEK AND M. KIM

If mσ = 2 then we say that the fixed point σ is non-degenerate (the Hamiltonian H is
non-degenerate at σ) or it is a simple saddle.

The phenomenon of deviation spectrum and its relation with Lyapunov exponents were
first observed by Zorich [32] in the context of studying deviations of Birkhoff (ergodic) sums
for piecewise constant observables for almost all interval exchange translations. Inspired
by this result, Kontsevich and Zorich in [16] and [17] formulated the following conjecture:
for almost every locally Hamiltonian flow ψR with non-degenerate fixed points there exist
Lyapunov exponents νi, 1 ≤ i ≤ g so that for every smooth map f : M → R there exists
1 ≤ i ≤ g such that

lim sup
T→+∞

log
∣∣∣
∫ T
0 f(ψt(x)) dt

∣∣∣
log T

= νi for almost every x ∈M.

The exponents νi, 1 ≤ i ≤ g are the positive Lyapunov exponents of the Kotsevich-Zorich
cocycle. This conjecture was positively verified in the seminal paper by Forni [10] and
later developed in Bufetov’s paper [2] for a certain family of observables f . More precisely,
for almost every locally Hamiltonian flow ψR without saddle connections (here we do not
demand that all saddles are non-degenerate) there are g cocycles ui : R×M → R, 1 ≤ i ≤ g
(i.e. ui(t + s, x) = ui(t, x) + ui(s, ψtx) for all t, s ∈ R), introduced by Bufetov, such that
for every observable f : M → R from the weighted Sobolev space H1

W (M) defined in [9]1

or satisfying a weak Lipschitz condition defined in [2] we have

(1.1)

∫ T

0
f(ψt(x))dt =

g∑

i=1

Di(f)ui(T, x) + err(f, T, x),

where

lim sup
T→+∞

log
∣∣ ∫ T

0 ui(t, x) dt
∣∣

log T
= νi, lim

T→+∞

log |err(f, T, x)|
log T

= 0 for a.e. x ∈M,(1.2)

and the coefficients Di(f), 1 ≤ i ≤ g are given by invariant distribution Di, 1 ≤ i ≤ g.2

However, even for non-degenerate saddles, this does not fully solve the original conjecture
because every smooth observable belonging to H1

W (M) has to vanish at each simple saddle
and its derivative is also zero at this point. More generally, if f is smooth and belongs
to H1

W (M) then for every σ ∈ Fix(ψR) we have f (j)(σ) = 0 for all 0 ≤ j < mσ. This
impediment has recently been overcome, for non-degenerate fixed points, in the recent
work of the first author and Ulcigrai [8] using techniques inspired by tools introduced by
Marmi-Moussa-Yoccoz paper [18] on solving the cohomological equation for (Roth-type)
interval exchange transformations (and the follow up article [19] by Marmi and Yoccoz).
In [8] the authors proved (1.1) with (1.2) for a.e. non-degenerate locally Hamiltonian flow
ψR restricted to any of its minimal component and any smooth observable f : M → R,
moreover a somewhat deeper analysis of the asymptotics of the error term is provided.

In the present paper we take a step beyond the original conjecture by considering the
deviation problem in full generality. The main result of this paper concerns the deviation
of ergodic averages for a.a. locally Hamiltonian flows that allow saddles of any multiplicity
and for all smooth observables. More precisely, we deal with a locally Hamiltonian flow
restricted to any of its minimal component. Recall that M splits into a finite number of
components (surfaces with the boundary) such that the interior of each component is filled
by periodic orbits or is minimal (every orbit is dense in the component). The possibility
of saddles σ ∈ Fix(ψR) of higher multiplicity and the non-vanishing of an observable or its

1Recall that f ∈ H1
W (M) if f/W belongs to the standard Sobolev space H1(M), where W :M → R≥0

is a smooth change of velocity which is positive outside Fix(ψR) and W (x, y) = (x2 + y2)mσ/V (x, y) in
singular coordinates on Uσ.

2The distributions Di, 1 ≤ i ≤ g are called Forni’s invariant distributions and play a crucial role in
solving cohomological equations, see [9, 11].
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low-order derivative (of order < mσ − 2) at these saddles causes the deviation spectrum of
the form (1.1) not longer to occur. In this situation, a typical orbit stays around each fixed
point long enough so that this affects the asymptotics of the ergodic integrals. This leads to
a new phenomenon in the study of the deviation of ergodic integrals, which is displayed by a
new family of singular cocycles and invariant distributions associated with each fixed point
(partial derivatives of Dirac distributions). They appear as new elements in the deviation
spectrum and give rise to a new type of polynomial oscillation with exponents that are
of a different nature than the Lyapunov exponents of the Kontsevich-Zorich cocycle. The
new invariant distributions responsible for the intensity of the new type of oscillations
are defined locally in a very simple way (in contrast to the distributions Di, 1 ≤ i ≤ g
which are global objects without any explicit formula) using partial derivatives as follows:
if σ ∈ Fix(ψR) is saddle and (x, y) is a singular chart in the neighborhood Uσ (i.e. dµ =
V (x, y)dx ∧ dy and H(x, y) = ℑ(x+ iy)mσ ) then for every α = (α1, α2) ∈ Z≥0 × Z≥0 with

|α| = α1 + α2 ≤ mσ and any Cmσ -map f we set ∂ασ (f) :=
∂|α|(f ·V )
∂α1x∂α2y (0, 0). Moreover, for

every σ ∈ Fix(ψR) and 0 ≤ k ≤ mσ − 2, let

(1.3) b(σ, k) =
mσ − 2− k

mσ
.

As it is shown in Lemma 8.1, for every α ∈ Z≥0 × Z≥0 with |α| = α1 + α2 ≤ mσ − 2 the
distribution ∂ασ : Cmσ(M) → R is ψR-invariant.

Theorem 1.1. Let ψR be a locally Hamiltonian flow on a compact surface M and let M ′

be its minimal component of genus g ≥ 1. Let m := max{mσ : σ ∈ Fix(ψR) ∩M ′}. For
almost every ψR there exist Lyapunov exponents

1 := ν1 > ν2 > · · · > νg > 0,

invariant distributions Di : C
m(M) → R, 1 ≤ i ≤ g, smooth cocycles ui(T, x) : R×M → R,

1 ≤ i ≤ g and smooth cocycles cσ,α(T, x) : R ×M → R for all σ ∈ Fix(ψR) ∩M ′ and
α ∈ Z≥0 × Z≥0 with |α| < mσ − 2 such that for every f ∈ Cm(M),
(1.4)∫ T

0
f(ψt(x))dt =

∑

σ∈Fix(ψR)∩M ′

∑

α∈Z2
≥0

|α|<mσ−2

∂ασ (f)cσ,α(T, x) +

g∑

i=1

Di(f)ui(T, x) + err(f, T, x)

with

lim sup
T→∞

log |cσ,α(T, x)|
log T

≤ b(σ, |α|) for a.e. x ∈M ′;(1.5)

lim sup
T→∞

log ‖cσ,α(T, ·)‖L1(M ′)

log T
≤ b(σ, |α|)(1.6)

for all σ ∈ Fix(ψR) ∩M ′ and α ∈ Z≥0 × Z≥0 with |α| < mσ − 2,

lim sup
T→∞

log |ui(T, x)|
log T

= νi for a.e. x ∈M ′;(1.7)

lim sup
T→∞

log ‖ui(T, ·)‖L1(M ′)

log T
= νi(1.8)

for every 0 ≤ i ≤ g and if err 6= 0 then

lim sup
T→∞

log |err(f, T, x)|
log T

= 0 for a.e. x ∈M ′;(1.9)

lim sup
T→+∞

log ‖err(f, T, ·)‖L1(M ′)

log T
= 0.(1.10)
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Assume additionally that the flow ψR is minimal on M and let any σ ∈ Fix(ψR) and
0 ≤ k < mσ − 2. Then for every f ∈ Cm(M) which vanishes on

⋃
σ′∈Fix(ψR)\{σ}

Uσ′ and

such that f (j)(σ) = 0 for all 0 ≤ j < k and f (k)(σ) 6= 0 we have

(1.11) lim sup
T→∞

log
∣∣∣
∫ T
0 f(ψtx) dt

∣∣∣
log T

≥ b(σ, k) for a.e. x ∈M.

In particular, for every σ ∈ Fix(ψR) and α ∈ Z
2
≥0 with |α| < mσ − 2 we have

lim sup
T→∞

log |cσ,α(T, x)|
log T

= b(σ, |α|) for a.e. x ∈M.(1.12)

In the case of the locally Hamiltionian flows with only non-degenerate saddles, i.e.
mσ = 2, new terms in the deviation spectrum do not appear, this leads to the recent
result of the first author and Ulcigrai. We see the same effect when the smooth observable
f belongs to the Sobolev space H1

W (M). Then ∂ασ (f) = 0 for every σ ∈ Fix(ψR)∩M ′ and
α ∈ Z

2
≥0 with |α| < mσ − 2. This leads to an extension (we do not assume that M ′ =M)

of the classical results by Forni and Bufetov in the smooth framework.

1.1. Methods and outline. Let us introduce the main steps in the proof. The general
strategy starts by choosing a Poincaré map (first return map) for the locally Hamiltonian
(area-preserving) flow ψR. Poincaré maps for the flow ψR are known to be interval exchange
transformations (IET) T : I → I for I = [0, 1) (see §2.2). Any minimal component of the
locally Hamiltonian flow admits a representation called special flow over an IET T . The
roof function g : I → R>0 ∪ {+∞} which arises from this representation is piecewise
smooth and has singularities at discontinuities e ∈ I of T . In particular, (degenerate)
multi-saddles of ψR are responsible for the appearance of singularities of polynomial type,
specifically if x → e±, then the roof function g(x) blows up polynomially, i.e. g(x) ∼
C±
e /|(x − e)a| for some 0 < a < 1 and the constants C±

e are non-negative. Simple saddles
(non-degenerate) are responsible for the appearance of singularities of logarithmic type, i.e.
g(x) ∼ C±

e | log(x− e)|.
Let f : M → R be smooth observable. To study the deviation of ergodic integrals of f

for the flow ψR on M , we consider a cocycle ϕf : I → R associated with the observable f .
The cocycle ϕf (x) is defined as the integral of f along the ψR-orbit segment starting from
x until its first return to I. This cocycle is also piecewise smooth and has polynomial and
logarithmic singularities but the corresponding constants C±

e (ϕf ) can be positive, negative
or zero. Transition to the cocycle ϕf enables to reduce the deviation of Birkhoff integrals
for f to the deviation of Birkhoff sums of the cocycle ϕf with polynomial and logarithmic
singularities over IETs.

One of the new developments in this paper firstly appears in §4 and involves the in-

troduction of new Banach spaces, Pa (or P̂a) for 0 ≤ a < 1, containing functions with
polynomial singularities of degree at most a. We prove that there is a correspondence
between smooth observables f : M → R and the cocycles ϕf ∈ Pa for any 0 ≤ a < 1
(see Theorem 4.1). In particular, P0 consists of functions with logarithmic singularities.
This case was already extensively studied by the first author and Ulcigrai in [7, 8]. In
their study, functions with logarithmic singularities had a canonical decomposition into a
purely logarithmic part and a piecewise absolutely continuous part. In general (0 < a < 1),
cocycles in Pa cannot be decomposed as before, with purely polynomial part. It means
that we cannot control the growth of cocycles directly by the norms of the same type as
those provided in previous work.

In §3, we introduce a new Diophantine condition for IETs, called the Filtration Dio-
phantine Condition (FDC). This condition is characterized by matrices of the (accelerated)
Kontsevich-Zorich cocycle, and it imposes a growth of matrices of the cocycle and a uni-
formly hyperbolic behaviour of the matrix products. In particular, our condition requires a
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control over cocycles on each subspaces Uj in the Oseledets filtration of the unstable space.
This effective Oseledets control is closely related to the recent approach of the first author
and Ulcigrai [8] and Ghazouani-Ulcigrai [12] (we also refer a recent survey of Ulcigrai about
Diophantine conditions [26]).

Next ingredients are special Birkhoff sums S(k)(ϕ) of cocycles ϕ and correction operators
hj in §5 and §6. The special Birkhoff sum operators are mainly used in controlling bounds
of the sequence of all Birkhoff sums for ϕ in §7. In §5, we review the properties of S(k) on
the space Pa.

The main idea of the construction of correction operators hj in §6 is inspired by the
work of Marmi-Moussa-Yoccoz [18] in solving cohomological equations of IETs for Roth
types. The correction operator was defined there by subtracting piecewise constant func-
tions from the piecewise absolutely continuous cocycles ϕ in order to solve cohomological
equations. In [7, 8], the first author and Ulcigrai extended the construction of such cor-
rection operator to cocycles with logarithmic singularities to get a better control of the
growth of special Birkhoff sums S(k)(ϕ) and all Birkhoff sums. They treated L1-norm
instead of the uniform norm used in the previous approach. After correction of a cocycle ϕ
by a piecewise constant function, the sequence S(k)(ϕ) has subexponential growth and it
is bounded along a subsequence, whenever logarithmic singularities of ϕ are of symmetric
type.

In our work, cocycles ϕ from Pa with 0 < a < 1 cannot be corrected by piecewise
constant functions to have the same conclusion. In §6, we prove that for every ϕ ∈ Pa

after an optimal correction the corresponding sequence S(k)(ϕ) has exponential growth
with the exponent λ1a, where λ1 is the top Lyapunov exponent of the K-Z cocycle. The
piecewise constant correction is given by hj(ϕ) ∈ Uj for some j depending on a. This
phenomenon plays a crucial role in showing the new form of deviation spectrum in later
sections.

Main novelty of this paper is the discovery of new phenomena in the deviation spectrum
of Birkhoff integrals. In our main Theorem 1.1, we have two different kinds of cocycles: ui
and cσ,α. The counterparts of the cocycles ui were previously studied by Bufetov and Forni;
the cocycles ui have polynomial growth determined by the Lyapunov exponents of the
Kontsevich-Zorich cocycle. The Bufetov-Forni deviation spectrum was recently improved
by the first author and Ulcigrai for locally Hamiltonian flows ψR with simple saddles and
observables f non-vanishing on the set of fixed points. Then the corresponding cocycle ϕf
has logarithmic singularities.

In our work, the cocycles cσ,α are constructed as the Birkhoff integrals of functions,
which are locally supported on the neighborhood Uσ. Each such function is corrected to
remove the influence of the Lyapunov exponents of the K-Z cocycle, by using the correcting
operators defined in §9.1. The appearance of new phenomena in deviation spectrum is also
related to the existence of new ψR-invariant distributions ∂ασ responsible for the behaviour
of f around singularities σ and defined as partial derivatives of f at σ.

One of the most important tools developed in this paper are the results of §8 where we
prove some local relations between “flatness” of the observable f around saddles and the
types of singularity for the associated cocycle ϕf . These results play a key role in proving
Theorem 4.1 and its extension in §9. In fact, we generalize the approach developed for
simple saddles in [7] (related to logarithmic singularity type) to multi-saddle type. This
part is also the key ingredient in the detailed proof of our new phenomena.

Finally, to give an idea of technical details for upper and lower bounds for Birkhoff
integrals of cocycles, we return to the special flow representation over IETs. In §7, we
present some results on the deviation of Birkhoff integrals for special flows built over IETs
satisfying FDC and under roof functions in Pa. The upper bounds for such Birkhoff inte-
grals are related to the growth of the sequence S(k)(ϕf ). This provides the opportunity to
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use the analysis of growth of S(k)(ϕf ) developed in §6. Some of the results of §7 are cre-
ative extensions of ideas introduced in [8] for roof functions with logarithmic singularities.
However, the existence of polynomial singularities significantly complicates the arguments.

Lower bounds rely on some Borel-Cantelli type argument. Here, we choose a sequence
of return times for the special flows to a shrinking sequence of segments originating from
Rauzy-Veech induction. By ergodicity of the flow and the Rokhlin tower condition on the
base IETs (see Definition 1) stated in §3.2, a Borel-Cantelli type argument can be applied.

1.2. Structure of the paper. Let us outline the structure of the paper. In §2, we
recall the basic definition of locally Hamiltonian flows. We summarize their relations with
special flows over IETs, Rauzy-Veech induction and accelerations of the Kontsevich-Zorich
cocycle. In §3, we introduce Oseledets filtration of accelerated KZ-cocycles and formulate
Diophantine Condition (FDC) associated with such filtrations. FDC is used in constructing
correction operators in §6.

In §4, the spaces of cocycles (Pa and P̂a) with polynomial singularities over IET are
defined and their basic properties are introduced. In §5, we review renormalization oper-
ators and special Birkhoff sums. In §6, correction operators for cocycles with polynomial
singularities are constructed under FDC conditions.

The asymptotic deviation spectrum for special flows over IETs is studied in §7. In §8, we
relate some local properties of the observable f around saddles σ with types of singularity
for ϕf . In §9, some global properties of the correspondence between an observable f and
the cocycle ϕf with polynomial singularities are established. Moreover, the concept of
correcting operators for observables f is introduced, later applied to the construction of
cocycles cσ,α in §10. Finally, in §10, the proof of the main Theorem 1.1 is presented. In
particular, this section contains the proof of lower bounds. In Appendix A, we prove that
almost every IET satisfies FDC.

2. Preliminary materials

In this section we give a review of basic tools and definitions concerning locally Hamilton-
ian flows and its reduction to special flows, interval exchange transformation, and Rauzy-
Veech induction. We recall here some basic definitions and introduce the notation we used
throughout the paper. For comprehensive introduction to the subject we refer the reader
to [8, 26, 21].

2.1. Locally Hamiltoniain flows on surfaces. Let M be a smooth compact connected
orientable surface of genus g ≥ 1 and fix a smooth area form ω on M (which in local
coordinates is given by V (x, y)dx ∧ dy for some smooth positive real-valued function V ).
The corresponding area measure is denoted by µ. Let X : M → TM be a smooth
tangent vector field with finitely many fixed points and such that the corresponding flow
ψR preserves the smooth area form ω (or equivalently the area measure µ). These flows
are often called locally Hamiltonian flows or multi-valued Hamiltonian flows.

2.1.1. Relation with closed 1-forms. Such flows are in 1 − 1 correspondence with smooth
closed real-valued 1-forms. For every vector field X preserving ω let η := ıXω = ω(X, · ) be
the corresponding 1-form, where ıX denotes the contraction operator. Since η is a smooth
closed 1-form (i.e. dη = 0), for any p ∈ M and any simply connected neighbourhood U
of p there exists a smooth (local Hamiltonian) map (unique up to additive constant) such
that dH = η on U . It follows that the flow ψR is the (local) solution of the Hamiltonian
equation p′ = X(p) with dH = ω(X, · ). In local coordinates, if ω(x, y) = V (x, y)dx ∧ dy
then the Hamiltonian equation is of the form x′ = ∂H

∂y /V , y′ = −∂H
∂x /V .

We denote by Fix(ψR) the set of fixed points of ψR, i.e. the set of zeros of the form η. If
the form η is Morse, locally differential of a Morse function (i.e. the Hessian at every fixed
point is non-zero), it corresponds to either a center or a simple saddle. More precisely,
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by Morse lemma, for every fixed point σ ∈ Fix(ψR) there exists a local chart (x, y) in a
neighborhood Uσ of σ such that H(x, y) = x2 + y2 or H(x, y) = 2xy. In this paper, we
permit the appearance of degenerate fixed points, i.e. saddles of multiplicity m > 2 such
that the corresponding Hamiltonian function is of the form H(x, y) = ℑ(x + iy)m. More
precise description of the local behaviour of ψR around multi-saddles is postponed to §8.

2.1.2. Minimality vs. minimal components. For more detailed explanation of the space of
locally Hamiltonian flows and the partition of the surface into invariant components, we
refer the reader to [21]. We call a saddle connection an orbit of ψR running from a saddle
to another saddle. A saddle loop is a saddle connection joining the same saddle. If every
fixed point in Fix(ψR) is isolated, M splits into a finite number of ψR-invariant surfaces
(with boundary) so that every such surface is a minimal component of ψR (every orbit,
except of fixed points, is dense in the component) or is a periodic component (its interior
is filled by periodic orbits and its boundary consists of saddle connections).

Denote by F the set of smooth locally Hamiltonian flows (or equivalently smooth closed
1-forms) on M with isolated zeros. The set F is equipped with a topology by considering
smooth perturbations of closed smooth 1-forms. For any vector m = (m1,m2, . . . ,ms)
of natural numbers ≥ 2 and any c ≤ ∑s

i=1(mi − 1), denote by Fm,c the set of smooth
locally Hamiltonian flows with c centers and s saddles of multiplicity m1,m2, . . . ,ms. By
the Poincaré-Hopf Theorem, c−∑s

i=1(mi − 1) = 2− 2g. A measure-theoretical notion of
typicality on F (on each Fm,c separately) is defined by the cohomology class of the 1-form
η, so called Katok fundamental class (introduced by Katok in [13]). Let γ1, . . . , γn be a
base of H1(M,Fix(ψR),R), where n = 2g + s+ c− 1. Let us consider the period map

Θ(ψR) =
(∫

γ1

η, . . . ,

∫

γn

η
)
∈ R

n,

which is well-defined in a neighbourhood of ψR ∈ Fm,c. The Θ-pullback of the Lebesgue
measure class (i.e. class of sets with zero measure) gives the desired measure class on Fm,c.
When we use the expression a.e. locally Hamiltonian flow below we mean full measure
in each Fm,c with respect to the corresponding measure class. We distinguish a subset
Fmin =

⋃
m Fm,0 ⊂ F and the corresponding measure class. Then a.e. flow ψR ∈ Fmin is

minimal. On the other hand, every ψR ∈ F \ Fmin has a nontrivial splitting into minimal
and periodic components. Then we only deal this with the flow ψR restricted to any of its
minimal component M ′ ⊂M .

We should mention that mixing properties of a.e. non-degenerate locally Hamiltonian
flow restricted to minimal components are fully described in [4, 21, 22, 23, 24, 25, 26].
When degenerate saddles appear, mixing was proved by Kochergin in [15]. On the other
hand, understanding more subtle spectral properties of locally Hamiltonian flows seems
to be still in its infancy. Only recently the first results have appeared for the singular
spectrum in [3] and the countable Lebesgue spectrum in [6].

2.2. Interval exchange transformations (IET). To define an IET we adopt the nota-
tion from [28]. Let A be a d-element alphabet and let π = (π0, π1) be a pair of bijections
πε : A → {1, . . . , d} for ε = 0, 1. For every λ = (λα)α∈A ∈ R

A
>0 let |λ| := ∑

α∈A λα,
I := [0, |λ|) and for every α ∈ A,

Iα := [lα, rα), where lα =
∑

π0(β)<π0(α)

λβ, rα =
∑

π0(β)≤π0(α)

λβ

I ′α := [l′α, r
′
α), where l′α =

∑

π1(β)<π1(α)

λβ, r′α =
∑

π1(β)≤π1(α)

λβ.

The interval exchange transformation T = T(π,λ) given by the data (π, λ) is the orientation
preserving piecewise isometry T(π,λ) : I → I which, for each α ∈ A, maps the interval Iα
isometrically onto the interval I ′α. Clearly T preserves the Lebesgue measure on I.
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Denote by S0
A the subset of irreducible pairs, i.e. such that π1◦π−1

0 {1, . . . , k} 6= {1, . . . , k}
for 1 ≤ k < d. We will always assume that π ∈ S0

A. The IET T(π,λ) is explicitly given by
T (x) = x+ wα for x ∈ Iα, where w = Ωπλ and Ωπ is the matrix [Ωαβ]α,β∈A given by

Ωαβ =





+1 if π1(α) > π1(β) and π0(α) < π0(β),
−1 if π1(α) < π1(β) and π0(α) > π0(β),
0 in all other cases.

We use also an alternative description of IET. Let Î = (0, |I|] and denote by T̂(π,λ) : Î → Î

the exchange of the intervals Îα := (lα, rα], α ∈ A, i.e. T̂(π,λ)x = x+ wα for x ∈ Îα.
Let End(T ) = {lα, rα, α ∈ A} stand for the set of end points of the intervals Iα, α ∈ A.

A pair (π, λ) satisfies the Keane condition (see [14]) if Tm(π,λ)lα 6= lβ for all m ≥ 1 and for

all α, β ∈ A with π0(β) 6= 1.

2.3. Cocycles and special flows over IETs. Let T : I → I be an ergodic IET. Each
measurable function ϕ : I → R determines an additive cocycle ϕ( · )( · ) for T so that

ϕ(n)(x) :=
∑

0≤k<n

ϕ(T k(x)) for n ≥ 0 and x ∈ I.

Let g : I → R>0 ∪ {+∞} be an integrable function such that g = infx∈I g(x) > 0. Denote

by (T gt )t∈R = T g
R

the special flow built over the IET T and under the roof function g acting
on

Ig := {(x, r) ∈ I × R : 0 ≤ r < g(x)}
so that T gt (x, r) = (x, r+ t−g(n)(x)), where n is the unique integer number with g(n)(x) ≤
r + t < g(n+1)(x).

Locally Hamiltonian flows are represented as special flows. Let us consider a restriction
of a locally Hamiltonian flow ψR on M to its minimal component M ′ ⊂ M . Let I ⊂ M ′

be any transversal smooth curve with its standard parametrization γ : [0, |I|] → I, i.e.∫ γ(s)
0 η = s for s ∈ [0, |I|], where η the closed 1-form η associated with the flow ψR. By

minimality, I is a global transversal and the first return map T : I → I is an IET in
standard coordinates on I. Moreover, ψR restricted to M ′ is isomorphic to the special
flow T g

R
, where g : I → R>0 ∪ {+∞} is the first return time map. The roof function has

logarithmic (polynomial) singularities derived from non-degenerate (degenerate) saddles.
A detailed description of these relations is presented in Theorem 4.1.

Let f : M → R be an integrable map. We study the asymptotics of ergodic integrals∫ T
0 f(ψtx) dt using only the return times to the curve I. More precisely, for every x ∈ I

we deal with ϕf (x) :=
∫ g(x)
0 f(ψtx) dt

3. Then the asymptotic of the cocycle ϕ(n)(x) gives
almost full information about the growth of the ergodic integrals. The cocycle ϕf : I → R

has also logarithmic and polynomial singularities depending on the multiplicity of saddles,
which is described in Theorem 4.1.

The same strategy can be applied to any special flow T g
R

and any integrable function

f : Ig → R. Then ϕf : I → R is given by ϕf (x) =
∫ g(x)
0 f(x, r) dr. By Fubini’s theorem,

ϕf is well-defined for a.e. x ∈ I, is integrable and
∫

I
ϕf (x) dx =

∫

Ig
f(x, r) dx dr.

Remark 2.1. In the reduction of the locally Hamiltonian flow ψR to the special flow T g
R
,

one can see that the length of the interval Iα exchanged by T coincides with one of the
coordinates of Θ(ψR). Hence, for every subset A ⊂ Fm,c of locally Hamiltonian flows, the
set Θ(A) has full Lebesgue measure if and only if a full measure set of IETs appears in the
base of special flows representations of flows in A.

3In fact, the roof function g can be obtained by choosing f = 1, i.e g = ϕ1.



DEVIATION OF BIRKHOFF INTEGRALS FOR LOCALLY HAMILTONIAN FLOWS 9

2.4. Rauzy-Veech induction. The main tool to study the asymptotics of the cocycle
ϕf is a standard renormalization procedure called the Rauzy-Veech induction [20] and its
accelerations. We refer the reader for some background to the lecture notes by Yoccoz
[29, 30] or Viana [28].

Let T be an IET satisfying Keane’s condition and let Ĩ :=
[
0,max(lπ−1

0 (d), lπ−1
1 (d))

)
.

Denote by R(T ) = T̃ : Ĩ → Ĩ the first return map of T to the interval Ĩ. Let

ǫ = ǫ(π, λ) =

{
0 if λπ−1

0 (d) > λπ−1
1 (d),

1 if λπ−1
0 (d) < λπ−1

1 (d).

Let us consider a pair π̃ = (π̃0, π̃1) ∈ S0
A, where

π̃ε(α) = πε(α) for all α ∈ A and

π̃1−ε(α) =





π1−ε(α) if π1−ε(α) ≤ π1−ε ◦ π−1
ε (d),

π1−ε(α) + 1 if π1−ε ◦ π−1
ε (d) < π1−ε(α) < d,

π1−ε ◦ π−1
ε (d) + 1 if π1−ε(α) = d.

(2.1)

Then, by Rauzy (see [20]), T̃ is also an IET on d-intervals and T̃ = T
(π̃,λ̃)

with

λ̃ = A−1(π, λ)λ and A(T ) = A(π, λ) = Id+ Eπ−1
ε (d) π−1

1−ε(d)
∈ SLA(Z),

where Id is the identity matrix and (Eij)kl = δikδjl, using the Kronecker delta notation.
Moreover, the renormalized version of the matrix Ω is of the form

(2.2) Ωπ̃ = At(π, λ) · Ωπ · A(π, λ).

Thus taking H(π) = Ωπ(R
A), we have H(π̃) = At(π, λ)H(π).

2.5. Kontsevich-Zorich cocycle and its accelerations. If an IET T satisfies Keane’s

condition, then T̃ also satisfies Keane’s condition and we can generate a sequence of IETs
(Rn(T ))n≥0. For every n ≥ 1,

A(n)(T ) = A(T ) ·A(R(T )) · . . . · A(Rn−1(T )) ∈ SLA(Z).

This defines a multiplicative cocycle A over the transformation R and taking values in
SLA(Z), called the Kontsevich-Zorich cocycle. Let (nk)k≥0 be an increasing sequence of

integers with n0 = 0 called an accelerating sequence. For every k ≥ 0, let T (k) := Rnk(T ) :

I(k) → I(k) be an IET associated with the accelerating sequence. Denote by (π(k), λ(k))

the pair defining T (k) and λ(k) = (λ
(k)
α )α∈A = (|I(k)α |)α∈A is the vector which determines

T (k). Then T (k) : I(k) → I(k) is the first return map of T : I → I to the interval I(k) ⊂ I.
For every k ≥ 0 let Z(k + 1) := A(nk+1−nk)(Rnk(T ))t. We then have

λ(k) = Z(k + 1)tλ(k+1), k ≥ 0.

By following notations from [18], for each 0 ≤ k < l let

Q(k, l) = Z(l) · Z(l − 1) · . . . · Z(k + 2) · Z(k + 1) = A(nl−nk)(Rnk(T ))t.

Then, Q(k, l) ∈ SLA(Z) and λ(k) = Q(k, l)tλ(l). We write Q(k) = Q(0, k). In what follows,
the norm of a vector is defined as the sum of the absolute value of coefficients and for any
matrix B = [Bαβ ]α,β∈A we set ‖B‖ = maxα∈A

∑
β∈A |Bαβ|. It follows that

(2.3) |I(k)| ≤ |I(l)| ‖Q(k, l)‖ .
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2.6. Rokhlin towers related to accelerations. Recall that Qαβ(k) is the time spent

by any point of I
(k)
α in Iβ until it returns to I(k). It follows that

Qα(k) =
∑

β∈A

Qαβ(k)

is the first return time of points of I
(k)
α to I(k). Therefore, the IET T : I → I splits into a

set of d Rokhlin tower of the form
{
T i(I(k)α ), 0 ≤ i < Qα(k)

}
, α ∈ A.

Then the Qα(k) floors of the tower are disjoint intervals.

3. Diophantine conditions on IETs

In this section we define a Diophantine Condition on IETs that will be crucial in the
proof of the main Theorem 1.1. This condition is inspired by Diophantine Conditions
introduced in [8] and [12], and fits into the scheme presented by Ulcigrai in [26]. Since
the present Diophantine Condition relates more specifically to the filtration occurring in
Oseledets theorem, it is called the Filtration Diophantine Condition (FDC). We also prove
that a.e. IET satisfies FDC, see Theorem 3.2. As the proof is quite standard, it is postponed
to Appendix A.

3.1. Oseledets filtration. For each k ≥ 0, let Γ(k) ⊂ L1(I(k)) be the subspace of piecewise

constant functions on I
(k)
α ⊂ I(k) for each α ∈ A. Then, we identify every function∑

α∈A hαχI(k)α
∈ Γ(k) with h = (hα)α∈A ∈ R

A. We also write Γ = Γ(0).

We deal with accelerations of the Kontsevich-Zorich cocycle for which the Oseledets
ergodic theorem. By the symplecticity of the Kontsevich-Zorich cocycle (see [31]) and the
simplicity of its Lyapunov exponents (see [10] and [1]), there exist λ1 > . . . > λg > λg+1 = 0
such that for a.e. IET (π, λ) there exists a filtration of linear subspaces (Oseledets filtration)

{0} = E0(π, λ) ⊂ E−1(π, λ) ⊂ . . . ⊂ E−g(π, λ) ⊂ Ecs(π, λ)

= Eg+1(π, λ) ⊂ Eg(π, λ) ⊂ . . . ⊂ E1(π, λ) = Γ
(3.1)

such that for every 1 ≤ i ≤ g we have

lim
n→+∞

log ‖Q(n)h‖
n

= −λi for all h ∈ E−i(π, λ) \E−i+1(π, λ)

lim
n→+∞

log ‖Q(n)h‖
n

= 0 for all h ∈ Ecs(π, λ) \E−g(π, λ)

lim
n→+∞

log ‖Q(n)h‖
n

= λi for all h ∈ Ei(π, λ) \ Ei+1(π, λ)

dimE−i(π, λ)− dimE−i+1(π, λ) = dimEi(π, λ) − dimEi+1(π, λ) = 1.

(3.2)

Remark 3.1. Let us consider a filtration of linear subspaces which is partially complemen-
tary to the Oseledets filtration (3.1):

(3.3) {0} = U1 ⊂ U2 ⊂ . . . ⊂ Ug+1 ⊂ H(π) such that Ej(π, λ)⊕Uj = Γ for 1 ≤ j ≤ g+1.

As Uj+1 = Uj ⊕ (Uj+1 ∩ Ej) and dim(Uj+1 ∩ Ej) = 1, for every 1 ≤ j ≤ g there exists
hj ∈ Ej \Ej+1 such that

hj ∈ H(π), Uj+1 = Uj ⊕Rhj and lim
n→+∞

log ‖Q(n)hj‖
n

= λj.

Then for every 2 ≤ j ≤ g + 1 the linear subspace Uj ⊂ Γ is generated by h1, . . . , hj−1 and

(3.4) if 0 6= h ∈ Uj then lim
n→+∞

log ‖Q(n)h‖
n

≥ λj−1 ≥ λg > 0.
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For every k ≥ 0 and 1 ≤ j ≤ g + 1, let E
(k)
j := Q(k)Ej , U

(k)
j := Q(k)Uj . Then for all

0 ≤ k ≤ l we have

E
(l)
j = Q(k, l)E

(k)
j , U

(l)
j = Q(k, l)U

(k)
j .

For any choice of the complementary filtration (3.3), all 0 ≤ k ≤ l and every 1 ≤ j ≤ g+1,

we consider the restrictions of the operator Q(k, l) : Γ(k) → Γ(l) given by

Q|Ej (k, l) : E
(k)
j → E

(l)
j , Q|Uj (k, l) : U

(k)
j → U

(l)
j

and the corresponding projections

P
(k)
Ej

: Γ(k) → E
(k)
j , P

(k)
Uj

: Γ(k) → U
(k)
j , i.e. P

(k)
Ej

⊕ P
(k)
Uj

= Id .

3.2. Rokhlin Tower Condition and Filtration Diophantine Condition. First we
remind the following Rokhlin Towers Condition (RTC) introduced in [8].

Definition 1 (RTC). An IET T(π,λ) together with an acceleration satisfy RTC if there exists
a constant 0 < δ < 1 such that

for any k ≥ 1 there exists number 0 < pk ≤ min
α∈A

Qα(k) such that

{T iI(k) : 0 ≤ i < pk} is a Rokhlin of intervals with measure ≥ δ|I|.
(RT)

For any sequence (rn)n≥0 of real numbers and for all 0 ≤ k ≤ l, we will use the notation
r(k, l) :=

∑
k≤j<l rj.

Definition 2 (FDC). An IET T : I → I satisfying Keane’s condition and Oseledets generic
(i.e. there is a filtration of linear subspaces (3.1) satisfying (3.2)), satisfies the Filtration
Diophantine Condition (FDC) if for every τ > 0 there exist constants c > 0, C, κ ≥ 1, an
accelerating sequence (nk)k≥0, a sequence of natural numbers (rn)n≥0 with r0 = 0 and a
complementary filtration (Uj)1≤j≤g+1 (satisfying (3.3)) such that (RT) holds and

lim
n→+∞

r(0, n)

n
∈ (1, 1 + τ)(3.5)

∥∥Q|Ej(k, l)
∥∥ ≤ Ce(λj+τ)r(k,l) for all 0 ≤ k < l and 1 ≤ j ≤ g + 1(3.6)

∥∥Q|Uj(k, l)
−1
∥∥ ≤ Ce(−λj−1+τ)r(k,l) for all 0 ≤ k < l and 2 ≤ j ≤ g + 1(3.7)

‖Z(k + 1)‖ ≤ Ceτk for all k ≥ 0(3.8)

ceλ1k ≤ ‖Q(k)‖ ≤ Ceλ1(1+τ)k for all k ≥ 0(3.9)

max
α∈A

|I(k)|
|I(k)α |

≤ κ for all k ≥ 0(3.10)

∣∣ sin∠
(
E

(k)
j , U

(k)
j

)∣∣ ≥ c ‖Q(k)‖−τ for all k ≥ 0 and 2 ≤ j ≤ g + 1.(3.11)

Theorem 3.2. Almost every IET satisfies FDC.

As we have mentioned before, the proof is rather standard and we postpone it to Appen-
dix A.

Remark 3.3. By the proof of Theorem 3.2, for every τ > 0 its corresponding accelerating
sequence (nk)k≥0, which we call an FDC-acceleration, is a sequence of return times for the
invertible Rauzy-Veech renormalization to a subset such that its measure converges to 1 as
τ → 0. It follows that for any pair of two distinct and small τ and τ ′ their corresponding
accelerating sequences have most of the elements in common.

Remark 3.4. By (RT) and (3.10), for every α ∈ A and k ≥ 1 we have

(3.12) |I| ≥ Qα(k)λ
(k)
α ≥ min

β∈A
Qβ(k)λ

(k)
α ≥ 1

κ
pk|I(k)| ≥

δ

κ
|I|.
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It follows that for all α, β ∈ A we have δ
κ ≤ Qα(k)

Qβ(k)
≤ κ

δ . Hence

(3.13) min
α∈A

Qα(k) ≤ ‖Q(k)‖ = max
α∈A

Qα(k) ≤
κ

δ
min
α∈A

Qα(k),

so

(3.14) lim
k→∞

logQα(k)

k
= λ1 for every α ∈ A.

Lemma 3.5. For any τ > 0, k ≥ 0 and 2 ≤ j ≤ g + 1, the following holds:

‖P (k)
Ej

‖ ≤ C ‖Q(k)‖τ , ‖P (k)
Uj

‖ ≤ C ‖Q(k)‖τ .(3.15)

Proof. Let us consider any v ∈ Γ(k) and set e := P
(k)
Ej
v ∈ E

(k)
j and u := P

(k)
Uj
v ∈ U

(k)
j .

Then

‖v‖2 ≥ ‖e‖2 + ‖u‖2 − 2| cos∠(e, u)| ‖e‖ ‖u‖ ≥ (‖e‖2 + ‖u‖2) (1− | cos∠(e, u)|)

≥ max{‖u‖2 , ‖e‖2}1
2

(
1− cos2 ∠(e, u)

)
= max{‖u‖2 , ‖e‖2}1

2
sin2 ∠(e, u).

It follows that

‖P (k)
Ej

‖ ≤
√
2
∣∣ sin∠

(
E

(k)
j , U

(k)
j

)∣∣−1
and ‖P (k)

Uj
‖ ≤

√
2
∣∣ sin∠

(
E

(k)
j , U

(k)
j

)∣∣−1
.

In view of (3.11), we obtain required bounds for ‖P (k)
Ej

‖ and ‖P (k)
Uj

‖. �

3.3. Diophantine series. In the proof of our main results, certain sums and series (de-
fined in Definition 3) relying on the matrices of the (accelerated) cocycle play a central
role to control Birkhoff sums of ϕf . We here show that these quantities, under FDC, are
well-defined and grow in a controlled way (see Proposition 3.6).

For every a ≥ 0 and s ≥ 1, let 〈s〉a = sa if a > 0 and 〈s〉a = 1 + log s if a = 0.

Definition 3. For every IET T : I → I satisfying Keane’s condition, any 0 ≤ a < 1, any 1 ≤
i ≤ g, any τ > 0 and any accelerating sequence we define sequences (Ka,i,τ

l )l≥0, (C
a,i,τ
k )k≥0

so that

Ka,i,τ
l (T ) :=

∑

m≥l

∥∥Q|Ui(l,m+ 1)−1
∥∥ ‖Z(m+ 1)‖〈‖Q(m)‖〉a‖Q(m+ 1)‖τ for l ≥ 0,

Ca,i,τk (T ) :=
∑

1≤l≤k

‖Q|Ei(l, k)‖ ‖Z(l)‖〈‖Q(l − 1)‖〉a‖‖Q(l)‖τ .

Proposition 3.6. Let T : I → I be an IET satisfying FDC and let 0 ≤ a < 1. Suppose

that 2 ≤ i ≤ g + 1 is chosen such that λi ≤ aλ1 < λi−1. Then for every 0 < τ < λi−1−λ1a
3(1+λ1)

the sequences (Ka,i,τ
l )l≥0, (C

a,i,τ
k )k≥0 are well defined and

Ka,i,τ
l (T ) = O

(
e(λ1a+5(1+λ1)τ)l

)
, Ca,i,τk (T ) = O

(
e(λ1a+5(1+λ1)τ)k

)
.(3.16)

Proof. By (3.6) applied to j = 1, there exists C ′ ≥ C such that for all m ≥ l + 1, we have

〈‖Q(l,m)‖〉0 = 1 + log ‖Q(l,m)‖ ≤ 1 + logC + (λ1 + τ)r(l,m) ≤ C ′eτr(l,m)(3.17)

〈‖Q(l,m)‖〉a ≤ C ′e(λ1a+τ)r(l,m) for all 0 ≤ a < 1.(3.18)
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By (3.7), (3.8) and (3.9), it follows that for every l ≥ 0 we have

Ka,i,τ
l (T ) ≤

∑

m≥l

Ce(−λi−1+τ)r(l,m+1)C ′e(λ1a+τ)r(0,m)Ceτ(m+1)Cτeλ1(1+τ)(m+1)τ

≤ (C ′)
4
∑

m≥l

Ce(−λi−1+τ)r(l,m+1)e(λ1a+2τ(1+λ1))r(0,m+1)

≤ (C ′)
4
e(λ1a+2τ(1+λ1))r(0,l)

∑

m≥l

e(−λi−1+λ1a+3τ(1+λ1))r(l,m+1)

≤ (C ′)
4
e(λ1a+2τ(1+λ1))r(0,l)

∑

m≥l

e(−λi−1+λ1a+3τ(1+λ1))(m+1−l)

≤ (C ′)
4
e(λ1a+2τ(1+λ1))r(0,l)

∞∑

j=l

e(−λi−1+λ1a+3τ(1+λ1))j .

In view of (3.5), it follows that

lim sup
l→∞

logKa,i,τ
l (T )

k
≤ lim

l→∞

((λ1a+ 2(1 + λ1)τ)r(0, l)

l

)

< (λ1a+ 2(1 + λ1)τ)(1 + τ) < λ1a+ 5(1 + λ1)τ,

which gives the left part of (3.16).

For the second bound, we apply (3.6), (3.8), (3.9) and (3.18),

Ca,i,τk (T ) ≤
∑

0≤l≤k

Ce(λi+τ)r(l,k)C ′e(λ1a+τ)r(0,l−1)CeτlCτeλ1(1+τ)lτ

≤ (C ′)
4
∑

0≤l≤k

e(λi+τ)r(l,k)e(λ1a+2τ(1+λ1))r(0,l)

≤ (C ′)
4
e(λ1a+2τ(1+λ1))r(0,k)

∑

0≤l≤k

e−(λi−λ1a+τ)r(l,k)

≤ (C ′)
4
e(λ1a+2τ(1+λ1))r(0,k)

∑

0≤l≤k

e−(λi−λ1a+τ)(k−l)

≤ (C ′)
4
e(λ1a+2τ(1+λ1))r(0,k)

∞∑

l=0

e−(λi−λ1a+τ)l.

In view of (3.5), it follows that

lim sup
k→∞

logCa,i,τk (T )

k
≤ lim

k→∞

((λ1a+ 2(1 + λ1)τ)r(0, k)

k

)

< (λ1a+ 2(1 + λ1)τ)(1 + τ) < λ1a+ 5(1 + λ1)τ,

which gives the right part of (3.16).
�

4. Functions with polynomial singularities

In this section we first introduce a one-parameter family of spaces of cocycles with
polynomial singularities over a given IET. Then we adopt the norms which make the
spaces of cocycles a Banach space. These new Banach spaces are inspired by the notion of
cocycles with logarithmic singularities and the corresponding space studied in [7, 8]. We
also prove several properties of them which will play a key role in the proofs of the main
results.
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4.1. Spaces PaG and P̂a. Fix 0 ≤ a < 1 and an IET T = Tπ,λ. For every α ∈ A, denote
by mα the middle point of the interval Iα, i.e. mα = (lα + rα)/2. Denote by C1(⊔α∈AIα)
the space of C1-function ϕ :

⋃
α∈A(lα, rα) → R. For every ϕ ∈ C1(⊔α∈AIα) let us consider

pa(ϕ) := sup
{

min
x̄∈End(T )

|ϕ′(x)(x− x̄)1+a| : x ∈ I\End(T )
}

=max
α∈A

{
sup

x∈(lα,mα]
|ϕ′(x)(x− lα)

1+a|, sup
x∈[mα,rα)

|ϕ′(x)(rα − x)1+a|
}
.

Definition 4. We denote by Pa(⊔α∈AIα) the space of functions ϕ ∈ C1(⊔α∈AIα) such that
pa(ϕ) < +∞ and for every α ∈ A the limits

C+
α = C+

α (ϕ) := − lim
xցlα

ϕ′(x)(x− lα)
1+a and C−

α = C−
α (ϕ) := lim

xրrα
ϕ′(x)(rα − x)1+a

exist. Then we say that ϕ ∈ Pa(⊔α∈AIα) has polynomial singularities of degree at most a.
If ϕ ∈ Pa(⊔α∈AIα) then

(4.1) |C+
α (ϕ)| ≤ pa(ϕ) and |C−

α (ϕ)| ≤ pa(ϕ) for all α ∈ A.
We denote by PaG(⊔α∈AIα) ⊂ Pa(⊔α∈AIα) the space of functions with polynomial singu-
larities of geometric type, i.e. such that

C−
π−1
0 (d)

· C−
π−1
1 (d)

= 0 and C+

π−1
0 (1)

· C+

π−1
1 (1)

= 0.

For every 0 ≤ a < 1, let us consider the space P̂a(⊔α∈AIα) of Borel functions ϕ : I → R

such that

max
α∈A

{
sup

x∈(lα,mα]
|ϕ(x)(x − lα)

a|, sup
x∈[mα,rα)

|ϕ(x)(rα − x)a|
}
< +∞ if 0 < a < 1, or

max
α∈A

{
sup

x∈(lα,mα]

|ϕ(x)|
| log(x− lα)|

, sup
x∈[mα,rα)

|ϕ(x)|
| log(rα − x)|

}
< +∞ if a = 0.

By Lemma 4.3, Pa(⊔α∈AIα) ⊂ P̂a(⊔α∈AIα) ⊂ L1(I).

The following result explains how both types of the spaces appear when considering the
deviation of Birkhoff integrals for locally Hamiltonian flows. The proof of theorem (and
extended version (Theorem 9.1)) is postponed to §9.

Theorem 4.1. Let ψR be a locally Hamiltonian flow, M ′ ⊂M its minimal component and
I ⊂M ′ a transversal curve. Let m := max{mσ : σ ∈ Fix(ψR) ∩M ′}.

(i) For every f ∈ Cm(M) we have

ϕf ∈ PaG(⊔α∈AIα) and ϕ|f | ∈ P̂a(⊔α∈AIα) with a = m−2
m .

(ii) Assume that σ ∈ Fix(ψR) ∩M ′ and f :M → R is a Cm-map such that f vanishes
on an open neighbourhood of {σ′ ∈ Fix(ψR) : σ

′ 6= σ}. For every 0 ≤ k ≤ mσ − 2
if f (j)(σ) = 0 for 0 ≤ j < k then

ϕf ∈ Pb(σ,k)G(⊔α∈AIα) and ϕ|f | ∈ P̂b(σ,k)(⊔α∈AIα) with b(σ, k) = mσ−2−k
mσ

.

For every 0 ≤ a < 1, let us consider the norm on Pa(⊔α∈AIα) given by

‖ϕ‖a := ‖ϕ‖L1(I) + pa(ϕ).

Lemma 4.2. For every 0 ≤ a < 1 the space Pa(⊔α∈AIα) equipped with the norm ‖ · ‖a is
Banach. Moreover, PaG(⊔α∈AIα) is its closed subspace.

Proof. Suppose that 0 < a < 1. In the case where a = 0 the proof proceeds in the same
way. For every ε > 0 let C0

ε (⊔α∈AIα)(or C1
ε (⊔α∈AIα)) be the space of C0/C1-maps on⋃

α∈A[lα + ε, rα − ε] equipped with the standard norm denoted by ‖ · ‖C0
ε

(or ‖ · ‖C1
ε
). In
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view of (4.14), there exists C ≥ 1 such that for every ε > 0 and for all ϕ ∈ Pa(⊔α∈AIα)
we have

(4.2) ‖ϕ‖C0
ε
≤ Cε−a‖ϕ‖a and ‖ϕ′‖C0

ε
≤ ε−a−1‖ϕ‖a.

Hence

(4.3) ‖ϕ‖C1
ε
≤ Cε−a−1‖ϕ‖a and ‖ϕ‖L1(I) ≤ ‖ϕ‖a.

On the other hand, for every ϕ ∈ C1(⊔α∈AIα) we have

(4.4) pa(ϕ) ≤ sup
ε>0

ε1+a‖ϕ′‖C0
ε
.

Let (ϕn)n≥1 be a Cauchy sequence in Pa(⊔α∈AIα). Then supn≥1 ‖ϕn‖a < +∞. Since

L1(I) and C1
ε (⊔α∈AIα) for all ε > 0 are Banach spaces, in view of (4.3), the sequence

(ϕn)n≥1 converges in L1(I) and in C1
ε (⊔α∈AIα) for all ε > 0. Then its limit ϕ belong to

L1(I) and to C1(⊔α∈AIα).
By assumption, for every δ > 0 there exists N ∈ N such that ‖ϕn − ϕm‖a < δ/C if

m,n ≥ N . In view of (4.2) and (4.4), for every ε > 0 and n ≥ N we have

‖ϕ′
n − ϕ′‖C0

ε
= lim

m→∞
‖ϕ′

n − ϕ′
m‖C0

ε
≤ Cε−a−1 lim sup

m→∞
‖ϕn − ϕm‖a

≤ Cε−a−1 sup
m≥N

‖ϕn − ϕm‖a ≤ ε−a−1δ.

In view of (4.4), this gives

(4.5) pa(ϕn − ϕ) ≤ sup
ε>0

ε1+a‖ϕ′
n − ϕ′‖C0

ε
≤ δ for all n ≥ N.

It follows that pa(ϕ) <∞ and ‖ϕn − ϕ‖a → 0 as n→ ∞. By (4.1),

sup{|C+
α (ϕn)|, |C−

α (ϕn)| : n ≥ 1, α ∈ A} ≤ sup
n≥1

pa(ϕn) ≤ sup
n≥1

‖ϕn‖a <∞.

Therefore, there exists a subsequence (ϕkn)n≥1 such that

(4.6) C+
α := lim

n→∞
C+
α (ϕkn) and C−

α := lim
n→∞

C−
α (ϕkn)

exist for all α ∈ A. Choose m ≥ 1 such that km ≥ N and

|C+
α − C+

α (ϕkm)| < δ and |C−
α − C−

α (ϕkm)| < δ for all α ∈ A.
As ϕkm ∈ Pa(⊔α∈AIα), there exists δ′ > 0 such that

|C+
α (ϕkm) + ϕ′

km(x)(x− lα)
1+a| < δ if x ∈ (lα, lα + δ′)

|C−
α (ϕkm)− ϕ′

km(x)(rα − x)1+a| < δ if x ∈ (rα − δ′, rα).

In view of (4.5), it follows that for every x ∈ (lα, lα + δ′) we have

|C+
α + ϕ′(x)(x− lα)

1+a|
≤ |C+

α − C+
α (ϕkm)|+ |C+

α (ϕkm) + ϕ′
km(x)(x − lα)

1+a|
+ |ϕ′(x)(x− lα)

1+a − ϕ′
km(x)(x− lα)

1+a|
≤ |C+

α − C+
α (ϕkm)|+ |C+

α (ϕkm) + ϕ′
km(x)(x − lα)

1+a|+ pa(ϕ− ϕkm) < 3δ

for every x ∈ (rα − δ′, rα) we have

|C−
α − ϕ′(x)(rα − x)1+a|
≤ |C−

α − C−
α (ϕkm)|+ |C−

α (ϕkm)− ϕ′
km(x)(rα − x)1+a|

+ |ϕ′(x)(rα − x)1+a − ϕ′
km(x)(rα − x)1+a|

≤ |C−
α − C−

α (ϕkm)|+ |C−
α (ϕkm)− ϕ′

km(x)(rα − x)1+a|+ pa(ϕ− ϕkm) < 3δ.
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Therefore

(4.7) C+
α = − lim

xցlα
ϕ′(x)(x− lα)

1+a and C−
α = lim

xրrα
ϕ′(x)(rα − x)1+a,

so ϕ ∈ Pa(⊔α∈AIα).
Now additionally suppose that ϕn ∈ PaG(⊔α∈AIα) for every n ≥ 1. Hence

C−
π−1
0 (d)

(ϕkn) · C−
π−1
1 (d)

(ϕkn) = 0 and C+

π−1
0 (1)

(ϕkn) · C+

π−1
1 (1)

(ϕkn) = 0

for every n ≥ 1. In view of (4.6) and (4.7), this gives

C−
π−1
0 (d)

(ϕ) · C−
π−1
1 (d)

(ϕ) = 0 and C+
π−1
0 (1)

(ϕ) · C+
π−1
1 (1)

(ϕ) = 0,

so ϕ ∈ PaG(⊔α∈AIα). It follows that PaG(⊔α∈AIα) is a Banach space as well. �

4.2. Basic properties of functions with polynomial singularities. In this subsec-
tion we present basic properties of PaG-functions. Most of them are general versions of
inequalities from [7, 8].

For every integrable function f : I → R and a subinterval J ⊂ I, let m(f, J) stand for
the mean value of f on J , that is

(4.8) m(f, J) =
1

|J |

∫

J
f(x) dx.

For every IET T we define the corresponding mean value projection operator M : L1(I) →
Γ by

(4.9) M(f) =
∑

α∈A

m(f, Iα)χIα .

This operator projects a function onto a piece-wise constant function, whose value is equal
to the mean value of f on the exchanged intervals Iα, α ∈ A.

Lemma 4.3. Suppose that 0 ≤ a < 1. Let us consider any C1-map f : J → R with
J := (x0, x1] such that |f ′(x)(x−x0)1+a| ≤ C for x ∈ (x0, x1]. Then for every s ∈ (x0, x1],
we have

|f(s)−m(f, J)| ≤ C

(
1

a(s− x0)a
+

2a− 1

a(1− a)

1

|J |a
)
, if 0 < a < 1(4.10)

|f(s)−m(f, J)| ≤ C

(
log

|J |
s− x0

+ 1

)
, if a = 0.(4.11)

Moreover, for every 0 ≤ a < 1 we have

(4.12)
1

|J |

∫

J
|f(s)−m(f, J)| ds ≤ 2C

(1− a)|J |a .

Proof. For all t, s ∈ (x0, x1] and a 6= 0, we have

|f(s)− f(t)| =
∣∣∣∣
∫ t

s
f ′(u)du

∣∣∣∣ ≤ C

∣∣∣∣
∫ t

s

1

(u− x0)1+a
du

∣∣∣∣

≤ C

∣∣∣∣−
(t− x0)

−a

a
+

(s − x0)
−a

a

∣∣∣∣ .

It follows that

|f(s)−m(f, J)| ≤ C

|J |

∫ x1

x0

∣∣∣∣−
(t− x0)

−a

a
+

(s− x0)
−a

a

∣∣∣∣ dt

= C

(
2

1− a

(s− x0)
1−a

|J | +
(s− x0)

−a

a
− (x1 − x0)

−a

a(1− a)

)

≤ C

(
1

a(s− x0)a
+

2a− 1

a(1− a)

1

|J |a
)
,
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which gives (4.10). Moreover, we have

1

|J |

∫

J
|f(s)−m(f, J)| ds

≤ C

|J |

∫ x1

x0

(
2

1− a

(s− x0)
1−a

|J | +
(s− x0)

−a

a
− (x1 − x0)

−a

a(1− a)

)
ds

=
2C

(1− a)(2 − a)|J |a ≤ 2C

(1− a)|J |a ,

which gives (4.12) when 0 < a < 1.

Similarly, if a = 0 then

|f(s)− f(t)| =
∣∣∣∣
∫ t

s
f ′(u)du

∣∣∣∣ ≤
∣∣∣∣
∫ t

s

C

u− x0
du

∣∣∣∣ = C

∣∣∣∣log
t− x0
s− x0

∣∣∣∣ .

It follows that

|f(s)−m(f, J)| ≤ C

|J |

∫ x1

x0

∣∣∣∣log
t− x0
s− x0

∣∣∣∣ dt = C

(
log

|J |
s− x0

− 1 + 2
s− x0
|J |

)

≤ C

(
log

|J |
s− x0

+ 1

)
,

which gives (4.11). Moreover, we have

1

|J |

∫

J
|f(s)−m(f, J)| ds ≤ C

|J |

∫ x1

x0

(
log

|J |
s− x0

− 1 + 2
s − x0
|J |

)
ds = C,

which gives (4.12) when a = 0. �

Remark 4.4. By (4.10) and (4.11), we also have

(4.13) |f(x1)−m(f, J)| ≤ C

(1− a)|J |a for every 0 ≤ a < 1.

In particular, specific bounds for averaged function ϕ on Iα are given as follows.

Lemma 4.5. Assume that 0 ≤ a < 1 and ϕ ∈ Pa(⊔α∈AIα). Then for every α ∈ A and
x ∈ IntIα we have

(4.14) |ϕ(x)| ≤ ‖M(ϕ)‖ + pa(ϕ)

(
1

amin{x− lα, rα − x}a +
2a+2

a(1− a)|Iα|a
)

if 0 < a < 1 and

(4.15) |ϕ(x)| ≤ ‖M(ϕ)‖ + pa(ϕ)

(
log

|Iα|
2min{x− lα, rα − x} + 2

)

if a = 0.

Proof. By (4.13) applied to f = ϕ restricted to J = (lα,mα] and [mα, rα), we have

|ϕ(mα)−m(ϕ, [lα,mα])| ≤
2apa(ϕ)

1− a

1

|Iα|a
,

|ϕ(mα)−m(ϕ, [mα, rα])| ≤
2apa(ϕ)

1− a

1

|Iα|a
.

Therefore

|m(ϕ, [mα, rα])−m(ϕ, [lα,mα])| ≤
2a+1pa(ϕ)

1− a

1

|Iα|a
.
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As m(ϕ, Iα) = (m(ϕ, [lα,mα]) +m(ϕ, [mα, rα]))/2, it follows that

|m(ϕ, [lα,mα])−m(ϕ, Iα)| =
|m(ϕ, [lα,mα])−m(ϕ, [mα, rα])|

2
≤ pa(ϕ)2

a

(1− a)|Iα|a
,

|m(ϕ, [mα, rα])−m(ϕ, Iα)| ≤
pa(ϕ)2

a

(1− a)|Iα|a
.

(4.16)

If 0 < a < 1 then we can apply (4.10) to f = ϕ restricted to J = (lα,mα] and [mα, rα)
and taking C = pa(ϕ). This gives

|ϕ(x) −m(ϕ, [lα,mα])| ≤ pa(ϕ)

(
1

a(x− lα)a
+

2a+1

a(1− a)|Iα|a
)
, if x ∈ (lα,mα],

|ϕ(x) −m(ϕ, [mα, rα])| ≤ pa(ϕ)

(
1

a(rα − x)a
+

2a+1

a(1− a)|Iα|a
)
, if x ∈ [mα, rα).

Together with (4.16) this yields (4.14).

If a = 0 then we can apply (4.11) to f = ϕ restricted to J = (lα,mα] and [mα, rα) and
taking C = pa(ϕ). This gives

|ϕ(x)−m(ϕ, [lα,mα])| ≤ pa(ϕ)

(
log

|Iα|
2(x− lα)

+ 1

)
, if x ∈ (lα,mα],

|ϕ(x)−m(ϕ, [mα, rα])| ≤ pa(ϕ)

(
log

|Iα|
2(rα − x)

+ 1

)
, if x ∈ [mα, rα).

Together with (4.16) this yields (4.15). �

Lemma 4.6. For every 0 ≤ a < 1, ϕ ∈ Pa(⊔α∈AIα) and α ∈ A we have

(4.17)
1

|Iα|

∫

Iα

|ϕ(x)−m(ϕ, Iα)| dx ≤ 22+apa(ϕ)

1− a

1

|Iα|a
.

Proof. By (4.12) applied to f = ϕ restricted to J = (lα,mα] and [mα, rα), we have

1

|Iα|

∫

[lα,mα]
|ϕ(x) −m(ϕ, [lα,mα])| dx ≤ 2apa(ϕ)

1− a

1

|Iα|a
,

1

|Iα|

∫

[mα,rα]
|ϕ(x)−m(ϕ, [mα, rα])| dx ≤ 2apa(ϕ)

1− a

1

|Iα|a
.

In view of (4.16), it follows that

1

|Iα|

∫

[lα,mα]
|ϕ(x)−m(ϕ, Iα)| dx ≤ 21+apa(ϕ)

1− a

1

|Iα|a
,

1

|Iα|

∫

[mα,rα]
|ϕ(x) −m(ϕ, Iα)| dx ≤ 21+apa(ϕ)

1− a

1

|Iα|a
.

Summing up, we obtain

1

|Iα|

∫

Iα

|ϕ(x)−m(ϕ, Iα)| dx ≤ 22+apa(ϕ)

1− a

1

|Iα|a
,

which completes the proof. �

We finish the section by introducing a lower bound for function ϕ. This will be crucial
in handling some lower bounds of renormalized cocycles and Birkhoff integrals. (See the
part V in the proof of Theorem 1.1 in §10.)

Lemma 4.7. Suppose that ϕ : J → R (J = (x0, x1]) is an integrable C1-function such that

0 < c ≤ |(x− x0)
1+aϕ′(x)| for all x ∈ J.
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Then there exists a sub-interval Ĵ ⊂ J such that

(4.18) |Ĵ | ≥ |J |/4 and |ϕ(x)| ≥ c

4|J |a for all x ∈ Ĵ .

Proof. We first show that for every ξ > 0 we have

(4.19) Leb{x ∈ J : |ϕ(x)| ≤ ξ} ≤ 2ξ|J |1+a
c

.

Note that ϕ is strictly monotonic. We focus on the strictly decreasing case, i.e. −(x −
x0)

1+aϕ′(x) ≥ c for all x ∈ J . Then ϕ(x) → +∞ as x ց x0. The proof in the strictly
increasing case follows by the same way. Suppose that the set {x ∈ J : |ϕ(x)| ≤ ξ} is not
empty. Then it is an interval [y1, y2] ⊂ J such that ϕ(y1) = ξ and ϕ(y2) = ξ2 ≥ −ξ. It
follows that

y2 − y1 = ϕ−1(ξ2)− ϕ−1(ξ) = −
∫ ξ

ξ2

(ϕ−1)′(x) dx = −
∫ ξ

ξ2

1

ϕ′(ϕ−1(x))
dx

≤
∫ ξ

ξ2

(ϕ−1(x)− x0)
1+a

c
dx ≤ |J |1+a

c
(ξ − ξ2) ≤

2ξ|J |1+a
c

.

Applying (4.19) to ξ = c
4|J |a , we have that {x ∈ J : |ϕ(x)| ≤ c

4|J |a} is an interval whose

length is at most

2 c
4|J |a |J |1+a

c
=

|J |
2
.

Since {x ∈ J : |ϕ(x)| ≥ c
4|J |a} consists of at most two intervals and its measure is at least

|J |/2, one of these intervals satisfies (4.18). �

5. Renormalization of cocycles

In this section we review a renormalization operator on cocycles over IETs derived from
the renormalizations of an IETs given by accelerated Rauzy-Veech induction.

5.1. Special Birkhoff sums. Assume that an IET T : I → I satisfies Keane’s condition.
For any 0 ≤ k < l and any measurable cocycle ϕ : I(k) → R for the IET T (k) : I(k) → I(k),
denote by S(k, l)ϕ : I(l) → R the renormalized cocycle for T (l) given by

S(k, l)ϕ(x) =
∑

0≤i<Qβ(k,l)

ϕ((T (k))ix) for x ∈ I
(l)
β .

We write S(k)ϕ for S(0, k)ϕ and we adhere to the convention that S(k, k)ϕ = ϕ. Sums of
this form are usually called special Birkhoff sums. If ϕ is integrable then

(5.1) ‖S(k, l)ϕ‖L1(I(l)) ≤ ‖ϕ‖L1(I(k)) and

∫

I(l)
S(k, l)ϕ(x) dx =

∫

I(k)
ϕ(x) dx.

Clearly, S(k, l)Γ(k) = Γ(l) and S(k, l) is the linear automorphism of RA whose matrix in
the canonical basis is Q(k, l).

Recalling the definition of C±
α (see Definition 4), the following lemma is simply mimics

of Lemma 3.1 and 3.3 in [7]. Since its proof proceeds in the same way as the proofs of the
mentioned lemmas in [7], we omit it.

Lemma 5.1. Suppose that ϕ ∈ PaG(⊔α∈AIα). For every k > 0 we have S(k)ϕ ∈
PaG(⊔α∈AI(k)α ) and there exists a permutation χ : A → A such that

C+
α (S(k)ϕ) = C+

α (ϕ) and C−
α (S(k)ϕ) = C−

χ(α)(ϕ)
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for every α ∈ A. Moreover, there are distinct α∗, α
∗ in A such that

{
T jl(k)α : 0 ≤ j < Qα(k)

}
∩ End(T ) = {lα} for every α ∈ A

{
T̂ jr(k)α : 0 ≤ j < Qα(k)

}
∩ End(T ) =





{rχ(α)} if α ∈ A \ {α∗, α
∗}{

rπ−1
0 (d), rπ−1

1 (d)

}
if α = α∗

∅ if α = α∗.

In view of the above Lemma, for all 0 ≤ k < l the operator S(k, l) maps PaG(⊔α∈AI(k)α )

into PaG(⊔α∈AI(l)α ). The following three results give estimates for the increase pa along
the sequence of renormalized cocycles.

Proposition 5.2. Suppose that T = T(π,λ) satisfies Keane’s condition. Then for every
0 < a < 1, ϕ ∈ PaG(⊔α∈AIα) and k ≥ 1,

(5.2) pa(S(k)ϕ) ≤


2 + 2dζ(1 + a)

(
max{|I(k)α | : α ∈ A}
min{|I(k)α | : α ∈ A}

)1+a

 pa(ϕ).

Proof. Suppose that x ∈ (l
(k)
β ,m

(k)
β ] (m

(k)
β is the middle point of I

(k)
β ) for some β ∈ A. By

Lemma 5.1, there exists 0 ≤ jβ < Qβ(k) such that lβ = T jβ l
(k)
β . It follows that

|ϕ′(T jβx)(x− l
(k)
β )1+a| = |ϕ′(T jβx)(T jβx− T jβ l

(k)
β )1+a|

= |ϕ′(T jβx)(T jβx− lβ)
1+a| ≤ pa(ϕ).

(5.3)

For any 0 ≤ j < Qβ(k), j 6= jβ denote by eαj an element of the set End(T ) that is

the closest to T jx, more precisely eαj = lαj if T jx ∈ (lαj ,mαj ] and eαj = rαj if T jx ∈
(mαj , rαj ). Then

(5.4) |ϕ′(T jx)(T jx− eαj )
1+a| ≤ pa(ϕ).

Since T jx ∈ T j(l
(k)
β ,m

(k)
β ] with j 6= jβ and the elements of End(T ) lie on the boundary of

intervals T iI
(k)
γ for 0 ≤ i < Qγ(k), γ ∈ A, we have

(5.5) |T jx− eαj | ≥ min{1
2 |I

(k)
β |,min{|I(k)γ | : γ ∈ A}} ≥ 1

2 min{|I(k)γ | : γ ∈ A}.

Suppose that for some j 6= j′ we have αj = αj′ = α. Since T jx ∈ T jI
(k)
β and T j

′
x ∈ T j

′
I
(k)
β

and they are equally distant from the ends of the intervals, we have

(5.6) |(T jx− eαj )− (T j
′
x− eαj′

)| = |T jx− T j
′
x| ≥ |I(k)β |.

In view of (5.4), it follows that for every α ∈ A and eα ∈ Iα we have

∑

0≤j<Qβ(k)
j 6=jβ,eαj=eα

|ϕ′(T jx)| ≤ pa(ϕ)
∑

0≤j<Qβ(k)
j 6=jβ ,eαj=eα

1

|T jx− eα|1+a

≤ pa(ϕ)
∑

l≥0

1
∣∣1
2 min{|I(k)γ | : γ ∈ A}+ l|I(k)β |

∣∣1+a

≤ 21+apa(ϕ)

min{|I(k)γ | : γ ∈ A}1+a
∑

l≥1

1

l1+a

≤ ζ(1 + a)21+apa(ϕ)

min{|I(k)γ | : γ ∈ A}1+a
.
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Therefore, by (5.3), we have

|S(k)ϕ′(x)(x− l
(k)
β )1+a| =

∣∣∣
∑

0≤j<Qβ(k)

ϕ′(T jx)(x− l
(k)
β )1+a

∣∣∣

≤ |ϕ′(T jβx)(x− l
(k)
β )1+a|+

∑

α∈A
eα∈{lα,rα}

∑

0≤j<Qβ(k)
j 6=jβ ,eαj=eα

|ϕ′(T jx)|(|I(k)β |/2)1+a

≤ pa(ϕ)


1 + 2dζ(1 + a)


 |I(k)β |
min{|I(k)γ | : γ ∈ A}




1+a
 .

For the other cases, we assume that x ∈ (m
(k)
β , r

(k)
β ) for some β ∈ A \ {α∗, α

∗} or

β ∈ {α∗, α
∗}. For the former case, by Lemma 5.1, there exists 0 ≤ jβ < Qβ(k) such that

rχ(β) = T̂ jβr
(k)
β . It follows that

|ϕ′(T jβx)(r
(k)
β − x)1+a| = |ϕ′(T jβx)(T̂ jβrβ − T jβx)1+a|

= |ϕ′(T jβx)(rχ(β) − T jβx)1+a| ≤ pa(ϕ).
(5.7)

The estimate from above of |ϕ′(T jx)| for j 6= jβ is the same as previous case. Therefore
we obtain

(5.8) |S(k)ϕ′(x)(r
(k)
β − x)1+a| ≤ pa(ϕ)


1 + 2dζ(1 + a)


 |I(k)β |
min{|I(k)γ | : γ ∈ A}




1+a
 .

For the latter cases, if x ∈ (m
(k)
α∗ , r

(k)
α∗ ), then by Lemma 5.1, there exists 0 ≤ jα∗ <

Qα∗(k) − 1 such that rπ−1
1 (d) = T̂ jα∗r

(k)
α∗ and rπ−1

0 (d) = T̂ jα∗+1r
(k)
α∗ . It follows that the

estimate (5.7) from above of |ϕ′(T jx)| for j 6= jα∗ , jα∗ + 1 is the same as (5.3) in the first
case.

Lastly, if x ∈ (m
(k)
α∗ , r

(k)
α∗ ), then by Lemma 5.1 again, {T̂ jr(k)α∗ : 0 ≤ j < Qα(k)} ∩

End(T ) = ∅. Since the elements of End(T ) lie on the boundary of intervals T iI
(k)
γ for

0 ≤ i < Qγ(k), γ ∈ A, it follows that for every 0 ≤ j < Qα∗(k) we have

dist(T jx,End(T )) ≥ min{1
2 |I

(k)
β |,min{|I(k)γ | : γ ∈ A}} ≥ 1

2 min{|I(k)γ | : γ ∈ A}.

Repeating the same argument as in the first case, we obtain similar bound of (5.8). �

For a = 0, the proof mimics the idea applied in the estimate for logarithmic singularity
type from [7, §3] and [8, §5.2-5.3]. The proof is carried out in each sub-cases as in the
proof of Proposition 5.2 and the reasonings are repetitive.

Proposition 5.3. Suppose that T(π,λ) satisfies Keane’s condition. Then for every ϕ ∈
P0G(⊔α∈AIα) and k ≥ 1 we have

(5.9) p0(S(k)ϕ) ≤ p0(ϕ)

(
2 + 2d(1 + log ‖Q(k)‖)

(
max{|I(k)α | : α ∈ A}
min{|I(k)α | : α ∈ A}

))
.

Corollary 5.4. For every IET T satisfying FDC there exists C ≥ 1 such that for all

0 ≤ k ≤ l and for every function ϕ ∈ PaG(⊔α∈AI(k)α ) we have

pa(S(k, l)ϕ) ≤ Cpa(ϕ) if 0 < a < 1,

pa(S(k, l)ϕ) ≤ C(1 + log ‖Q(k, l)‖)pa(ϕ) if a = 0.
(5.10)

We finish this section by giving a lower bound derived from the proof of Proposition 5.2.
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Proposition 5.5. Suppose that T = T(π,λ) satisfies Keane’s condition and 0 < a < 1.

Assume that ϕ ∈ PaG(⊔α∈AIα) and α ∈ A are such that C+
α (ϕ) 6= 0 or C−

α (ϕ) 6= 0. Then
choose δ > 0 so that

|(x− lα)
1+aϕ′(x)| ≥ |C+

α (ϕ)|/2 for all x ∈ (lα, lα + δ] or

|(rα − x)1+aϕ′(x)| ≥ |C−
α (ϕ)|/2 for all x ∈ [rα − δ, rα).

If k ≥ 1 is such that |I(k)| ≤ δ then for every x ∈ (l
(k)
α ,m

(k)
α ] we have

|S(k)ϕ′(x)| ≥ |C+
α |

2(x− l
(k)
α )1+a

− 22+adζ(1 + a)pa(ϕ)

|I(k)α |1+a


max{|I(k)β | : β ∈ A}

min{|I(k)β | : β ∈ A}




1+a

,

or for every x ∈ [m
(k)
χ−1(α)

, r
(k)
χ−1(α)

) we have

|S(k)ϕ′(x)| ≥ |C−
α |

2(r
(k)
χ−1(α)

− x)1+a
− 22+adζ(1 + a)pa(ϕ)

|I(k)
χ−1(α)

|1+a


max{|I(k)β | : β ∈ A}

min{|I(k)β | : β ∈ A}




1+a

.

Proof. We focus only on the case C+
α (ϕ) 6= 0. The other case can be treated in the same

way. By the proof of Proposition 5.2, for every x ∈ (l
(k)
α ,m

(k)
α ] we have

∣∣∣
∑

0≤j<Qβ(k)
j 6=jα

ϕ(T jx)
∣∣∣ ≤ 22+adζ(1 + a)pa(ϕ)

|I(k)α |1+a


max{|I(k)β | : β ∈ A}

min{|I(k)β | : β ∈ A}




1+a

and
|ϕ′(T jαx)(x− l(k)α )1+a| = |ϕ′(T jαx)(T jαx− lα)

1+a| ≥ |C+
α |/2.

This yields our claim. �

6. Correction operator

In this section we define the whole family of correction operators hj : PaG(⊔α∈AIα) →
Uj ⊂ H(π) for 0 ≤ a < 1 with 2 ≤ j ≤ g + 1 determined by λj ≤ λ1a < λj−1. These
operators are generalizations of the correction operator introduced in [8] for the cocycles
with logarithmic singularities. The correction operator allows us to correct a cocycle with
polynomial singularities by a piecewise constant function, so that we have better control
over the growth of the special Birkhoff sums of the corrected cocycle.

6.1. Correction operator for cocycles with polynomial singularities. Recall the
projection operator M defined on L1(I) in (4.9). For every step of (accelerated) renormal-
ization let us consider the corresponding projection operators on the vector space, i.e. for
every k ≥ 0 let

M(k) : PaG(⊔α∈AIα) → Γ(k) be given by M(k)(ϕ) =
∑

α∈A

m(ϕ, I)χ
I
(k)
α
.

Theorem 6.1. Assume that T satisfies FDC. For any 0 ≤ a < 1 take 2 ≤ j ≤ g+1 so that
λj ≤ λ1a < λj−1. There exists a bounded linear operator hj : PaG(⊔α∈AIα) → Uj such that
for any τ > 0 there exists a constant C = Cτ ≥ 1 such that for every ϕ ∈ PaG(⊔α∈AIα)
with hj(ϕ) = 0 we have

(6.1) ‖M(k)(S(k)ϕ)‖ ≤ C

(
(
Ka,j,τ
k + Ca,j,τk

)
pa(ϕ) + ‖QEj (k)‖

‖ϕ‖L1(I(0))

|I(0)|

)
.

In view of Proposition 3.6 and the fact that ‖QEj (k)‖ = O(e(λj+τ)k) ≤ O(e(λ1a+τ)k) (see
(3.6) combined with (3.5)), we have the following result.
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Corollary 6.2. Assume that T satisfies FDC. Then for every ϕ ∈ PaG(⊔α∈AIα) with
hj(ϕ) = 0, for every small enough τ > 0, there exists a FDC-acceleration such that

(6.2) ‖M(k)(S(k)ϕ)‖ = O(e(λ1a+τ)k).

Corollary 6.2 plays a crucial role in determining the growth rate of ergodic integrals in
§7. Before starting the proof of Theorem 6.1, we provide some basic inequalities regarding
the operator M(k).

Note that, by definition and (4.17),
∥∥M(k)(ϕ)

∥∥
L1(I(k))

≤ 2 ‖ϕ‖L1(I(k))(6.3)

∥∥ϕ−M(k)(ϕ)
∥∥
L1(I(k))

≤ 22+ad

1− a
pa(ϕ)|I(k)|1−a.(6.4)

As for every h ∈ Γ(k),

(6.5)
|I(k)| ‖h‖

κ
≤ min

β∈A
|I(k)β | ‖h‖ ≤ ‖h‖L1(I(k)) ≤ |I(k)| ‖h‖ ,

this gives

(6.6) ‖M(k)(ϕ)‖ ≤ 2κ

|I(k)| ‖ϕ‖L1(I(k)) .

Let us consider a linear operator P
(k)
0 : PaG(⊔α∈AI(k)α ) → PaG(⊔α∈AI(k)α ) given by

P
(k)
0 (ϕ) = ϕ−M(k)(ϕ).

In view of (6.4) and (2.3), for all k ≥ 0 we have

(6.7)
1

|I(k)|
∥∥P (k)

0 (ϕ)
∥∥
L1(I(k))

≤ 22+ad

1− a

pa(ϕ)

|I(k)|a ≤ 22+ad

(1− a)|I|a ‖Q(k)‖apa(ϕ).

Proof of Theorem 6.1. Let us denote vk := M(k) ◦ S(k)(ϕ). Direct calculation shows that
(
S(k, k + 1) ◦ P (k)

0 ◦ S(k)(ϕ) − P
(k+1)
0 ◦ S(k, k + 1) ◦ S(k)(ϕ)

)

= −S(k, k + 1) ◦M(k) ◦ S(k)(ϕ) +M(k+1) ◦ S(k + 1)(ϕ)

= −Z(k + 1)vk + vk+1.

By (5.1), (6.7), (5.10) and (2.3),

1

|I(k+1)|
∥∥S(k, k + 1) ◦ P (k)

0 ◦ S(k)(ϕ)
∥∥
L1(I(k+1))

≤ 1

|I(k+1)|
∥∥P (k)

0 ◦ S(k)(ϕ)
∥∥
L1(I(k))

≤ |I(k)|
|I(k+1)|

22+ad

(1− a)|I|a ‖Q(k)‖a pa(S(k)ϕ)

≤ Ca〈‖Q(k)‖〉a‖Z(k + 1)‖pa(ϕ),
and similarly,

1

|I(k+1)|
∥∥P (k+1)

0 ◦ S(k + 1)(ϕ)
∥∥
L1(I(k+1))

≤ Ca〈‖Q(k + 1)‖〉apa(ϕ).

Therefore, for any 0 ≤ a < 1,

1

|I(k+1)| ‖Z(k + 1)vk − vk+1‖L1(I(k+1)) ≤ Ca (〈‖Q(k)‖〉a‖Z(k + 1)‖ + 〈‖Q(k + 1)‖〉a) pa(ϕ)

≤ C ′
a〈‖Q(k)‖〉a‖Z(k + 1)‖pa(ϕ).

By (6.5), this gives

(6.8) ‖Z(k + 1)vk − vk+1‖ ≤ κC ′
a〈‖Q(k)‖〉a‖Z(k + 1)‖pa(ϕ).
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For any sequence (xk)k≥0 in R
A, let ∆xk+1 = xk+1−Z(k+1)xk for k ≥ 0 and ∆x0 = x0.

Then, by telescoping,

xk =
k∑

j=0

Q(j, k)∆xj .(6.9)

Letting vk = M(k) ◦ S(k)(ϕ), by (6.6) and (6.8),

(6.10) ‖∆v0‖ ≤ 2κ

|I(0)| ‖ϕ‖L1(I(0)) and ‖∆vk+1‖ ≤ κC ′
a〈‖Q(k)‖〉a‖Z(k + 1)‖pa(ϕ).

Now we claim that for any τ > 0, there exists a vector v ∈ U
(0)
j such that

(6.11) ‖Q(k)v − vk‖ ≤ O
(
(pa(ϕ) + ‖ϕ‖L1(I))(K

a,j,τ
k + Ca,j,τk )

)
.

For every k ≥ 0 let ek = P
(k)
Ej
vk ∈ E

(k)
j and uk = P

(k)
Uj
vk ∈ U

(k)
j . Then vk = uk + ek. Since

Z(k + 1)(E
(k)
j ) = E

(k+1)
j and Z(k + 1)(U

(k)
j ) = U

(k+1)
j we have

∆uk+1 = uk+1 − Z(k + 1)uk = P
(k+1)
Uj

∆vk+1, ∆ek+1 = ek+1 − Z(k + 1)ek = P
(k+1)
Ej

∆vk+1,

∆u0 = u0 = P
(0)
Uj

∆v0, ∆e0 = e0 = P
(0)
Ej

∆v0.

In view of (6.10) and (3.15), we have

‖∆u0‖ ≤ C ‖∆v0‖ ≤ 2Cκ

|I(0)| ‖ϕ‖L1(I(0)) , ‖∆e0‖ ≤ C ‖∆v0‖ ≤ 2Cκ

|I(0)| ‖ϕ‖L1(I(0)) ,(6.12)

and for every k ≥ 1 we have

‖∆uk‖ ≤ Ca,τ‖Z(k)‖〈‖Q(k − 1)‖〉a‖Q(k)‖τpa(ϕ),
‖∆ek‖ ≤ Ca,τ‖Z(k)‖〈‖Q(k − 1)‖〉a‖Q(k)‖τpa(ϕ).

(6.13)

Let us consider an infinite series v :=
∑

l≥0Q(0, l)−1∆ul. For any τ > 0 small enough, by

(6.13), (6.12) and the definition of Ka,j,τ
l ,

‖v‖ ≤
∑

l≥0

‖Q|Uj (0, l)
−1‖‖∆ul‖

≤ ‖∆u0‖+ C ′
a,τpa(ϕ)

∑

l≥0

‖Q|Uj (0, l + 1)−1‖‖Z(l + 1)‖〈‖Q(l)‖〉a‖‖Q(l + 1)‖τ

= C ′
a,τ

( 2κ

|I(0)| ‖ϕ‖L1(I(0)) +Ka,j,τ
0 pa(ϕ)

)
< +∞.

(6.14)

Therefore, v ∈ U
(0)
j is well-defined and for every k ≥ 0 we have

‖Q(k)v − uk‖ =
∥∥∥
∑

l≥k

Q|Uj (k, l + 1)−1∆ul+1

∥∥∥

≤ Ca,τpa(ϕ)
∑

l≥k

‖Q|Uj (k, l + 1)−1‖‖Z(l + 1)‖〈‖Q(l)‖〉a‖‖Q(l + 1)‖τ

= Ca,τK
a,j,τ
k pa(ϕ).

(6.15)
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To obtain the bound of norm of ek ∈ Ek, we apply (6.9), (6.13) and (6.12),

‖ek‖ ≤
∑

0≤l≤k

‖Q(l, k)∆el‖ ≤
∑

0≤l≤k

‖Q|Ej (l, k)‖‖∆el‖

≤ Ca,τ

(
pa(ϕ)

∑

0<l≤k

‖Q|Ej (l, k)‖‖Z(l)‖〈‖Q(l − 1)‖〉a‖‖Q(l)‖τ + ‖Q|Ej (k)‖
‖ϕ‖L1(I(0))

|I(0)|
)

≤ O
(
pa(ϕ)C

a,j,τ
k + ‖Q|Ej (k)‖

‖ϕ‖L1(I(0))

|I(0)|
)
.

Combining with (6.15), we conclude

‖Q(k)v − vk‖ ≤ O
(
(Ka,j,τ

k + Ca,j,τk )pa(ϕ) + ‖Q|Ej (k)‖
‖ϕ‖L1(I(0))

|I(0)|
)
.

Since M(k)(S(k)(v)) = Q(k)v, this gives

∥∥M(k)(S(k)(ϕ − v))
∥∥ ≤ O

(
(Ka,j,τ

k + Ca,j,τk )pa(ϕ) + ‖Q|Ej (k)‖
‖ϕ‖L1(I(0))

|I(0)|
)
.(6.16)

Let us consider the linear operator hj : PaG(⊔α∈AIα) → U
(0)
j ⊂ H(π), called the

correction operator given by

hj(ϕ) = v =
∑

l≥0

Q(0, l)−1 ◦ P (l)
Uj

◦
(
M(l) ◦ S(l)− Z(l) ◦M(l−1) ◦ S(l − 1)

)
(ϕ),

where M(−1) = 0. Since hj(ϕ) = liml→∞Q(0, l)−1 ◦ P (l)
Uj

◦M(l) ◦ S(l)(ϕ), by Remark 3.3,

the operator hj is independent of the choice of τ and its FDC-acceleration. By (6.14), we
have

‖hj(ϕ)‖ ≤ C ′
a,τ

( 2κ

|I(0)| ‖ϕ‖L1(I(0)) +Ka,j,τ
0 pa(ϕ)

)
≤ C ′

a,τ

( 2κ

|I(0)| +Ka,j,τ
0

)
‖ϕ‖a ,

thus, the operator hj is bounded. Hence, if hj(ϕ) = 0, then, by (6.16), we have (6.1). �

The construction of the correction operator is similar to that of the correction operator
for logarithmic singularity presented by the first author and C. Ulcigrai in [7, 8]. We apply
also some elements of Bufetov’s approach from [2, §2.6].

7. Deviation of Birkhoff sums and integrals

This section contains main results on the deviation of Birkhoff integrals for special flows
built over IETs satisfying FDC and under roof functions in PaG. Because of the existence
of such special representations for almost every locally Hamiltonian flow (see §2.3), the
contents of this section will be directly used to prove the main Theorem 1.1 in §10. Some
of the results in this section are creative extensions of ideas introduced in [8] for roof
functions with logarithmic singularities. However, the existence of polynomial singularities
significantly complicates the arguments.

7.1. Reduction of Birkhoff integrals to Birkhoff sums. Given an IET T : I → I
and an integrable function g : I → R>0 ∪ {+∞} with g = infx∈I g(x) > 0, we consider the

special flow (T gt )t∈R acting on Ig = {(x, r) ∈ I × R : 0 ≤ r < g(x)}. For every integrable
function f : Ig → R, let

ϕf : I → R be given by ϕf (x) =

∫ g(x)

0
f(x, r) dr for x ∈ I.

For every u ≥ g let Iu be a subset of I such that g(x) ≤ u for every x ∈ Iu. Moreover, for
every s ≥ 0 let

Asu := {(x, r) ∈ Ig : x ∈ Iu} \ {T g−t(x, 0) : x ∈ I \ Iu, 0 ≤ t ≤ s} ⊂ Ig.
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For every (x, r) ∈ Ig and s > 0, let n(x, r, s) ≥ 0 be the number of crossing the interval
I by the orbit segment {T gt (x, r) : t ∈ [0, s]}. Then 0 ≤ n(x, r, s) ≤ s/g + 1.

We recall the following elementary Lemma that relates the Birkhoff integrals of f for
the flow (T gt )t∈R with the Birkhoff sums of ϕf for the IET T . This is a slightly modified
version of Lemma 7.1 in [8] using the quantity χ(u) = sup{ϕ|f |(x) : x ∈ Iu}.
Lemma 7.1 (Lemma 7.1 in [8]). For every integrable map f : Ig → R, s > 0 and u ≥ g if
(x, r) ∈ Asu then

(7.1) T ix ∈ Iu for all 0 ≤ i ≤ n(x, r, s),

and

(7.2)
∣∣∣
∫ s

0
f(T gt (x, r)) dt

∣∣∣ ≤ |ϕ(n(x,r,s))
f (x)| + 2χ(u).

We next estimate ϕ
(n)
f (x) using the decomposition into special Birkhoff sums introduced

by Zorich in [32].

Let T : I → I be an arbitrary IET satisfying Keane’s condition. For every x ∈ I and
n ≥ 0 set

m(x, n) = m(x, n, T ) := max{l ≥ 0 : #{0 ≤ k ≤ n : T kx ∈ I(l)} ≥ 2}.
Proposition 7.2 (see [32] or [28]). For every x ∈ I and n > 0 we have

min
α∈A

Qα(m) ≤ n ≤ dmax
α∈A

Qα(m+ 1) = d‖Q(m+ 1)‖, where m = m(x, n).

Since the sequence
(
minα∈AQα(m)

)
m≥0

increases to the infinity

m(n) = m(n, T ) := max{m(x, n) : x ∈ I} is well-defined.

Lemma 7.3. Assume that T satisfies FDC and ϕ : I → R is a bounded map such that
for some τ > 0 and the corresponding FDC-acceleration we have ‖S(k)ϕ‖sup = O(eλk) for

some λ ≥ 0. Then ‖ϕ(n)‖ = O(n(λ+τ)/λ1).

Proof. By Zorich’s standard argument for the decomposition into special Birkhoff sums
(cf. [18]), for every n > 0,

‖ϕ(n)‖sup ≤ 2

m(n)∑

l=1

‖Z(l + 1)‖ ‖S(l)ϕ‖sup .

By Proposition 7.2, if T satisfies FDC, by (3.9) and (3.13), then for every τ > 0,

eλ1m(n) ≤ O
(
min
α∈A

Qα(m(n))
)
≤ O(n).

Since ‖S(k)ϕ‖sup = O(eλk) and ‖Z(l + 1)‖ = O(eτl), we have

|ϕ(n)(x)| = O
(m(n)∑

l=1

e(λ+τ)l
)
= O(e(λ+τ)m(n)) = O(n(λ+τ)/λ1).

�

If ϕf is not bounded, we need a more subtle estimate coming from [8].

Proposition 7.4 (Proposition 7.3 in [8]). For every integrable map f : Ig → R, s > 0 and
u ≥ g if (x, r) ∈ Asu then

(7.3) |ϕ(n(x,r,s))
f (x)| ≤ 2

m(n(x,r,s))∑

k=0

‖Z(k + 1)‖‖S(k)ϕf ‖L∞(I(k)(u)),
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with

I(k)(u) :=
⋃

α∈A

{x ∈ I(k)α : ∀0≤j<Qα(k)T
jx ∈ Iu}.

Suppose that 0 < b ≤ a < 1, g ∈ PaG(⊔α∈AIα) and f : Ig → R is an integrable

map such that ϕf ∈ PbG(⊔α∈AIα) and ϕ|f | ∈ P̂b(⊔α∈AIα). As g ∈ P̂a(⊔α∈AIα) and

ϕ|f | ∈ P̂b(⊔α∈AIα), there exist positive constants c, C > 0 such that

g(x) ≤ u for all x ∈ Iu :=
⋃

α∈A

[lα + cu−1/a, rα − cu−1/a]

and χ(u) ≤ Cub/a.

Lemma 7.5. Suppose that T satisfies FDC and for every small enough τ > 0,

(7.4) ‖M(k)(S(k)ϕf )‖ = O(ebλ1(1+τ)k).

Then for every τ > 0 there exists a constant C = Cτ ≥ 1 such that for every u ≥ sa and
(x, r) ∈ Asu we have

(7.5)

∣∣∣∣
∫ s

0
f(T gt (x, r))dt

∣∣∣∣ ≤ Cu(1+τ)
b
a .

Proof. Let u ≥ sa. Since [0, cu−1/a] ⊂ I \ Iu, if |I(k)| ≤ cu−1/a, then I(k)(u) = ∅. By (3.9)
and (3.10), we have

eλ1k|I(k)| = O(‖Q(k)‖|I(k)|) = O(
∑

α∈A

Qα(k)|I(k)α |) = O(1).

It follows that

I(k)(u) 6= ∅ ⇒ |I(k)| > cu−1/a ⇒ k ≤ 1

aλ1
log(C ′u).

Moreover, if x ∈ I(k)(u) ∩ I(k)α , then x ∈ [l
(k)
α + cu−1/a, r

(k)
α − cu−1/a]. In view of (4.14),

(5.2), (7.4), (2.3) and (3.9), it follows that for every x ∈ I(k)(u),

|(S(k)ϕf )(x)| ≤ ‖M(k)(S(k)ϕf )‖+ pb(S(k)ϕf )
( 1

b(cu−1/a)
b
+

2b+2

b(1 − b)|I(k)|b
)

≤ O(ebλ1(1+τ)k) +O(pb(ϕf ))
(ub/a
bcb

+
2b+2

b(1− b)
O
(
ebλ1(1+τ)k

))

≤ O
(
u(1+τ)

b
a
)
+O

(
u

b
a
)
= O

(
u(1+τ)

b
a
)
.

Therefore, by (7.2) and (7.3), for every (x, r) ∈ Asu we have

∣∣∣∣
∫ s

0
f(T gt (x, r))dt

∣∣∣∣ ≤ 2χ(u) + 2
∑

k≥0, I(k)(u)6=∅

‖Z(k + 1)‖‖S(k)ϕf ‖L∞(I(k)(u))

= O(u
b
a ) +O

(
u(1+τ)

b
a

∑

0≤k≤
log(C′u)

aλ1

eτk
)

= O(u
b
a ) +O

(
u(1+τ)

b
au

τ
λ1

1
a

)
= O

(
u
(1+τ(1+ 1

bλ1
)) b

a

)
.

�
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7.2. Estimates of ergodic integrals. In this section, we show L1 and a.e. bounds of the
Birkhoff integrals for special flows. These bounds are related to the growth of the sequence
‖M(k)(S(k)ϕ)‖. It is the first step toward complete deviation formula in §10. The main
tools used in this section come from Lemma 7.5.

Recall that 0 < b ≤ a < 1, g ∈ PaG(⊔α∈AIα) and f : Ig → R is an integrable map such

that ϕf ∈ PbG(⊔α∈AIα) and ϕ|f | ∈ P̂b(⊔α∈AIα). Moreover, c > 0 is chosen so that

x ∈ Iu =
⋃

α∈A

[lα + cu−1/a, rα − cu−1/a] =⇒ g(x) ≤ u.

For every s > 0 let

Bsa := {(x, r) ∈ Ig : x ∈ I \ Isa , 0 ≤ r < g(x)− s}.
Lemma 7.6. There exists C ≥ 1 such that for all sa ≤ u1 < u2 we have

(7.6) Leb
(
(Asu2 \ Asu1) \Bsa

)
≤ Cs(u

−1/a
1 − u

−1/a
2 ).

Proof. First note that

(Asu2 \ Asu1) \Bsa ⊂
⋃

0≤t≤s

T g−t
(
(Iu2 \ Iu1)× {0}

)

∪
{
(x, r) ∈ Ig : x ∈ Iu2 \ Iu1 , g(x) − s ≤ r < g(x)

}
.

Therefore

Leb
(
(Asu2 \ Asu1) \Bsa

)
≤ 2sLeb(Iu2 \ Iu1).

Since Iu2 \ Iu1 is the union of 2d disjoint intervals of the same length c(u
−1/a
1 − u

−1/a
2 ), we

have

2sLeb(Iu2 \ Iu1) = 4dcs(u
−1/a
1 − u

−1/a
2 ).

This gives (7.6). �

Lemma 7.7. There exists C ≥ 1 such that

(7.7)
∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L1(Bsa )

≤ Csb for all s ≥ 1.

Proof. First note that for every x ∈ I \ Isa we have
∫ g(x)−s

0

∣∣∣
∫ s

0
f(T gt (x, r)) dt

∣∣∣ dr ≤
∫ g(x)−s

0

∫ r+s

r
|f(x, t)| dt dr

=

∫ g(x)

0

( ∫ min{t,g(x)−s}

max{0,t−s}
|f(x, t)| dr

)
dt

=

∫ g(x)

0
(min{t, g(x) − s} −max{0, t− s})|f(x, t)| dt.

As min{t, g(x) − s} −max{0, t − s} ≤ s, we have
∫ g(x)−s

0

∣∣∣
∫ s

0
f(T gt (x, r)) dt

∣∣∣ dr ≤ s

∫ g(x)

0
|f(x, t)| dt = sϕ|f |(x).

It follows that
∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L1(Bsa )

=

∫

I\Isa

∫ g(x)−s

0

∣∣∣
∫ s

0
f(T gt (x, r)) dt

∣∣∣ dr dx ≤ s

∫

I\Isa
ϕ|f |(x) dx.

As ϕ|f | ∈ P̂b, there exists C > 0 such that for every α ∈ A and every x ∈ Iα we have

ϕ|f |(x) ≤
C

min{x− lα, rα − x}b .
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Since I \ Isa is the union of 2d intervals of length cs−1 with ends at lα, rα for α ∈ A, we
have

∫

I\Isa
ϕ|f |(x) dx ≤ 2dC

∫ cs−1

0
x−b dx =

2dCc1−b

1− b
sb−1.

Therefore
∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L1(Bsa )

≤ 2dCc1−b

1− b
sb.

�

Now we obtain the L1-bound for special flows under the condition for the growth rate
of the renormalized and projected cocycles M(k)(S(k)ϕ).

Theorem 7.8. Suppose that T satisfies FDC, 0 < b ≤ a < 1, g ∈ PaG(⊔α∈AIα), and

f : Ig → R is an integrable map such that ϕf ∈ PbG(⊔α∈AIα) and ϕ|f | ∈ P̂b(⊔α∈AIα).
Assume that for every τ > 0,

‖M(k)(S(k)ϕf )‖ = O(ebλ1(1+τ)k).

Then for every τ > 0 we have

(7.8)
∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L1(Ig)

= O
(
s(1+τ)b).

Proof. Let (un)n≥0 be any strictly increasing sequence diverging to +∞ and such that
u0 = sa. Then

∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L1(Ig)

≤
∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L∞(As

u0
)
Leb(Asu0) +

∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L1(Bu0 )

+

∞∑

j=1

∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L∞((As

uj
\As

uj−1
)\Bu0 )

Leb
(
(Asuj \Asuj−1

) \Bu0
)
.

In view of (7.5), (7.7) and (7.6), we have

∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L∞(As

u0
)
≤ Cu

(1+τ) b
a

0 = Cs(1+τ)b;

∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L∞((As

uj
\As

uj−1
)\Bu0 )

≤ Cu
(1+τ) b

a
j ;

∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L1(Bsa )

≤ Csb;

Leb
(
(Asuj \Asuj−1

) \Bu0)
)
≤ Cs(u

−1/a
j−1 − u

−1/a
j ).

Hence

∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L1(Ig)

≤ Cs(1+τ)b + Csb + sC2
∞∑

j=1

u
(1+τ) b

a
j (u

−1/a
j−1 − u

−1/a
j ).

Let us consider a strictly decreasing sequence of positive numbers (vn)n≥0 given by vn :=

u
−1/a
n . Then v0 = s−1 and vn → 0 as n→ +∞ and

∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L1(Ig)

≤ 2Cs(1+τ)b + sC2
∞∑

j=1

v
−(1+τ)b
j (vj−1 − vj).
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Passing through all possible sequences (un)n≥0 and taking the infimum of values standing
on the right hand side, this gives

∥∥∥
∫ s

0
f ◦ T gt dt

∥∥∥
L1(Ig)

≤ 2Cs(1+τ)b + sC2

∫ s−1

0
x−(1+τ)b dx

= 2Cs(1+τ)b +
sC2

1− (1 + τ)b
s(1+τ)b−1 = O

(
s(1+τ)b

)
.

�

The following measure estimations are key ingredients for Borel-Cantelli argument ap-
plied to prove a.e. pointwise upper bound for Birkhoff integrals.

Lemma 7.9. There exists C > 0 such that for all 1 ≤ s < s′ and τ > 0 we have

Leb
(
(As

s(1+τ)a)
c
)
≤ Cs−τ + Cs−(1+τ)(1−a);(7.9)

Leb
(
(As

′

s′(1+τ)a)
c \ (As

s(1+τ)a)
c
)
≤ C(s′)−(1+τ)(s′ − s).(7.10)

Proof. Recall that

(As
s(1+τ)a)

c =
⋃

0≤t≤s

T g−t((I \ Is(1+τ)a)× {0}) ∪ {(x, r) ∈ Ig : x ∈ I \ Is(1+τ)a},

where
I \ Is(1+τ)a =

⋃

α∈A

[lα, lα + cs−(1+τ)) ∪ (rα − cs−(1+τ), rα].

As I \ Is′(1+τ)a ⊂ I \ Is(1+τ)a, it follows that

(As
′

s′(1+τ)a)
c \ (As

s(1+τ)a)
c ⊂

⋃

s<t≤s′

T g−t((I \ Is′(1+τ)a)× {0}).

Therefore

Leb
(
(As

′

s′(1+τ)a)
c \ (As

s(1+τ)a)
c
)
≤ (s′ − s)Leb(I \ Is′(1+τ)a) = (s′ − s)2dc(s′)−(1+τ),

which gives (7.10). Moreover, we have

Leb
(
(As

s(1+τ)a)
c
)
≤ sLeb(I \ Is(1+τ)a) +

∫

I\I
s(1+τ)a

g(x) dx.

As g ∈ P̂b, there exists C > 0 such that for every α ∈ A and every x ∈ Iα we have

g(x) ≤ C

min{x− lα, rα − x}a .

Hence
∫

I\I
s(1+τ)a

g(x) dx ≤ 2dC

∫ cs−(1+τ)

0
x−a dx ≤ 2dCc1−a

1− a
s−(1+τ)(1−a).

As sLeb(I \ Is(1+τ)a) = s2dcs−(1+τ) = 2dcs−τ , this gives (7.9). �

Now we prove a.e. pointwise upper bound of Birkhoff integrals for special flows under
some restriction on the growth rate of renormalized and projected cocycles M(k)(S(k)ϕf ).

Theorem 7.10. Suppose that T satisfies FDC, 0 < b ≤ a < 1, g ∈ PaG(⊔α∈AIα) and

f : Ig → R is an integrable map such that ϕf ∈ PbG(⊔α∈AIα) and ϕ|f | ∈ P̂b(⊔α∈AIα).
Assume that for every τ > 0,

‖M(k)(S(k)ϕf )‖ = O(ebλ1(1+τ)k).

Then for a.e. (x, r) ∈ Ig we have

(7.11) lim sup
s→+∞

log |
∫ s
0 f ◦ T gt (x, r) dt|

log s
≤ b.
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Proof. Fix τ > 0 small enough. In view of Lemma 7.5, there exists Cτ ≥ 1 such that for
every m ∈ N we have

(7.12)
log |

∫m
0 f(T gt (x, r))dt|

logm
≤ (1 + τ)2b+

Cτ
logm

for every (x, r) ∈ Am
m(1+τ)a .

Moreover, in view of Lemma 7.9, there exists C > 0 such that for every m ∈ N we have

Leb
( ⋃

n≥m

(An
n(1+τ)a)

c
)
= Leb

(
(Am

m(1+τ)a)
c
)
+
∑

n≥m

Leb
(
(An+1

(n+1)(1+τ)a)
c \ (An

n(1+τ)a)
c
)

≤ Cm−τ + Cm−(1+τ)(1−a) +
∑

n≥m

C(n+ 1)−(1+τ)((n+ 1)− n)

≤ Cm−τ + Cm−(1+τ)(1−a) +
C

τ
m−τ .

Hence

Leb
( ⋃

m≥1

⋂

n≥m

An
n(1+τ)a

)
= 1.

In view of (7.12), it follows that for a.e. (x, r) ∈ Ig we have

lim sup
m→+∞

log |
∫m
0 f(T gt (x, r))dt|

logm
≤ (1 + τ)2b.

As we can choose τ > 0 arbitrary small, this gives

lim sup
m→+∞

log |
∫m
0 f(T gt (x, r))dt|

logm
≤ b for a.e. (x, r) ∈ Ig.

Hence

lim sup
s→+∞

log |
∫ s
0 f(T

g
t (x, r))dt|

log s
≤ lim sup

s→+∞

log
(
|
∫ [s]
0 f(T gt (x, r))dt|+ ‖f‖L∞(Ig)

)

log[s]
≤ b

for a.e. (x, r) ∈ Ig. �

The following corollary will be essential in proving a L1-lower bound of Birkhoff integrals
in the next section.

Corollary 7.11. Suppose T satisfies FDC, 0 < b < 1 and ϕ ∈ PbG(⊔α∈AIα) such that

‖M(k)(S(k)ϕ)‖ = O(ebλ1(1+τ)k) for every τ > 0.

Then for a.e. x ∈ I we have

(7.13) lim sup
n→+∞

log |ϕ(n)(x)|
log n

≤ b.

In particular, for every ϕ ∈ PbG(⊔α∈AIα) for a.e. x ∈ I we have

(7.14) lim sup
n→+∞

log |ϕ(n)(x)− nµ(ϕ)|
log n

≤ max

{
b,
λ2
λ1

}
,

where µ(ϕ) =
∫
I ϕ(y) dy.

Proof. Let us consider the constant roof function g : I → R, g ≡ 1. Choose an integrable
map f : Ig → R such that ϕf = ϕ and ϕ|f | = |ϕf | ∈ PbG(⊔α∈AIα) (we can set f(x, r) =

ϕ(x) for (x, r) ∈ Ig). Since g ∈ PbG(⊔α∈AIα), by Theorem 7.10 applied to s = g(n)(x) = n,
we have

lim sup
n→+∞

log |ϕ(n)(x)|
log n

= lim sup
n→+∞

log
∣∣ ∫ g(n)(x)

0 f ◦ T gt (x, r) dt
∣∣

log g(n)(x)
≤ b.
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Denote by Γ0 ⊂ Γ the space of zero mean piecewise constant maps, i.e. h ∈ Γ0 if

〈h, λ〉 =∑d
i=1 hiλi = 0. As h1 6∈ Γ0, h2, . . . , hg ∈ Γ0, we have

(7.15) lim
k→∞

log ‖Q(k)h‖
k

≤ λ2 for every h ∈ Γ0.

In view of Corollary 6.2, there exists
∑

1≤i<j βihi ∈ Uj such that

(7.16)
∥∥∥M(k)

(
S(k)

(
ϕ−

∑

1≤i<j

βihi)
))∥∥∥ = O(ebλ1(1+τ)k) for every τ > 0.

By (7.13), for every τ > 0 we have
(
ϕ −∑1≤i<j βihi

)(n)
(x) = O(n(b+τ)) for a.e. x ∈ I.

Taking τ > 0 such that b+ τ < 1, by the ergodicity of T , we obtain
∫

I

(
ϕ−

∑

1≤i<j

βihi

)
(x) dx = 0.

It follows that µ(ϕ)−∑1≤i<j βihi ∈ Γ0. In view of (7.15), this gives

lim
k→∞

log ‖Q(k)(µ(ϕ) −∑1≤i<j βihi)‖
k

≤ λ2.

By (7.16), it follows that for every τ > 0,

‖M(k)(S(k)(ϕ − µ(ϕ)))‖ = ‖S(k)(ϕ − µ(ϕ))‖ = O(e(max{λ2,bλ1}+τ)k).

Applying again (7.13), we get (7.14). �

7.3. Pure power deviation. In this section we relate the growth of the accelerated KZ
cocycle with the deviation of special flows for functions associated with homology elements.
In particular, it is mostly devoted to prove the lower bound of Birkhoff integrals in a.e. and
L1-norm. In the following proposition, we reprove Bufetov’s result about pure deviations
a.e. Here the L1-estimates account for the novelty of this result.

Proposition 7.12. Suppose that the IET T : I → I satisfies FDC. Assume that 0 < a < 1,
g ∈ PaG(⊔α∈AIα) and f : Ig → R is a bounded function such that there exists K > 0 for
which f(x, r) = 0 for r ≥ K and ϕf = h = (hα)α∈A ∈ H(π). Suppose that there exists
λ > 0 such that

lim
k→+∞

log ‖Q(k)h‖
k

= λ.

Then

lim sup
s→+∞

log |
∫ s
0 f(T

g
t (x, r)) dt|

log s
=

λ

λ1
for a.e. (x, r) ∈ Ig,(7.17)

lim sup
s→+∞

log ‖
∫ s
0 f ◦ T gt dt‖L1

log s
=

λ

λ1
.(7.18)

Proof. First note that for every τ > 0,

(7.19) ‖M(k)(S(k)ϕf )‖ = ‖M(k)(S(k)h)‖ ≤ ‖Q(k)h‖ = O(ek(λ+τ)).

As ϕ|f | is bounded, Theorem 7.8 and 7.10 yield the inequalities ≤ in (7.17) and (7.18).
To show the reverse inequalities, note that for every n ≥ 1 and (x, r) ∈ Ig we have

(7.20)

∫ g(n)(x)−r

0
f(T gt (x, r)) dt =

∫ g(n)(x)

r
f(T gt (x, 0)) dt = ϕ

(n)
f (x)−

∫ r

0
f(T gt (x, 0)) dt.

Moreover, for every α ∈ A we have

(7.21) ϕ
(Qα(k))
f (x) = (Q(k)h)α if x ∈

⋃

0≤i<pk

T iI(k)α .
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Indeed, if x ∈ I
(k)
α then

ϕ
(Qα(k))
f (x) = S(k)ϕf (x) = (Q(k)h)α.

Now suppose that x = T iy so that y ∈ I
(k)
α and 0 ≤ i < pk. Then

ϕ
(Qα(k))
f (x)−ϕ

(Qα(k))
f (y) = ϕ

(Qα(k))
f (T iy)−ϕ

(Qα(k))
f (y) =

∑

0≤l<i

(ϕf (T
lTQα(k)y)−ϕf (T

ly)).

Since y, TQα(k)y ∈ I
(k)
α and, by (RT), {T jI(k)α : 0 ≤ j < pk} is a Rokhlin tower of intervals,

for every 0 ≤ i < pk the points T iy and T iTQα(k)y belong to the same interval Iβ. As
ϕf = h is constant on each interval Iβ, β ∈ A, it follows that

ϕ
(Qα(k))
f (x) = ϕ

(Qα(k))
f (y) = (Q(k)h)α.

Choose α ∈ A and a subsequence (kn)n≥1 such that

(7.22) lim
n→∞

log |(Q(kn)h)α|
kn

= λ.

In view of (RT),

(7.23) Leb
( ⋃

0≤i<pkn

T iI(kn)α

)
≥ δ|I|

κ
for all n ≥ 1.

By the ergodicity of T , for a.e. x ∈ I, passing to a further subsequence, we have

x ∈
⋃

0≤i<pkln

T iI
(kln )
α for all n ≥ 1

and

(7.24) lim
n→∞

g(Qα(kln ))(x)

Qα(kln)
= µ(g) :=

∫

I
g(y) dy.

In view of (7.21), this gives

(7.25) ϕ
(Qα(kln ))
f (x) = (Q(kln)h)α for every n ≥ 1.

For every r ≥ 0 with (x, r) ∈ Ig, let us consider a sequence (τn)n≥1 given by

τn = g(Qα(kln))(x)− r.

Then, by (7.20) and (7.25), we have

log
∣∣∫ τn

0 f(T gt (x, r)) dt
∣∣

log τn
=

log
∣∣(Q(kln)h)α −

∫ r
0 f(T

g
t (x, 0)) dt

∣∣
log(g(Qα(kln ))(x)− r)

=
log
∣∣(Q(kln)h)α −

∫ r
0 f(T

g
t (x, 0)) dt

∣∣
kln

log(Qα(kln))

log(g(Qα(kln ))(x)− r)

kln
log(Qα(kln))

.

Moreover, by (3.14), we have

lim
n→∞

log(Qα(kln))

kln
= λ1;

by (7.24), we have

lim
n→∞

log(Qα(kln))

log(g(Qα(kln ))(x)− r)
= 1;

by (7.22), we have

lim
n→∞

log
∣∣(Q(kln)h)α −

∫ r
0 f(T

g
t (x, 0)) dt

∣∣
kln

= λ.
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It follows that

lim
n→∞

log
∣∣∫ τn

0 f(T gt (x, r)) dt
∣∣

log τn
=

λ

λ1
,

which completes the proof of (7.17).

We now turn to L1-estimate of the lower bound. Let us consider a new sequence (τn)n≥1

given by τn = Qα(kn)µ(g). Take any max{λ2/λ1, a} < ζ < 1 and τ > 0 such that
ζ(λ/λ1 + 2τ)λ1/λ < 1. Since

lim sup
n→+∞

log |g(n)(x)− nµ(g)|
log n

< ζ

(see Corollary 7.11) and by the ergodic theorem, there exist N ∈ N and J ⊂ I such that
Leb(I \ J) < |I|δ/(2κ) and for every n ≥ N and x ∈ J we have

(7.26) |g(n)(x)− nµ(g)| < nζ and nµ(g)/2 < g(n)(x) < 2nµ(g).

Suppose that

(x, r) ∈ Dn :=
(
J ∩

⋃

0≤i<pkn

T iI(kn)α

)
× [0, g]

and Qα(kn) ≥ 2N + 1. As Leb(I \ J) < |I|δ/(2κ), by (7.23), we have Leb(Dn) >
g|I|δ/(2κ) =: δ̄ > 0. Moreover

∣∣∣∣
∫ τn

0
f(T gt (x, r)) dt− (Q(kn)h)α

∣∣∣∣

=

∣∣∣∣∣

∫ τn+r

r
f(T gt (x, 0)) dt −

∫ g(Qα(kn))(x)

0
f(T gt (x, 0)) dt

∣∣∣∣∣

≤ 2r‖f‖C0 +

∣∣∣∣∣

∫ g(Qα(kn))(x)

τn

f(T gt (x, 0)) dt

∣∣∣∣∣ .

Denote by ln(x) the unique natural number such that

g(ln(x))(x) ≤ τn < g(ln(x)+1)(x).

By assumption, ∣∣∣∣∣

∫ g(ln(x))(x)

τn

f(T gt (x, 0)) dt

∣∣∣∣∣ ≤ K‖f‖sup.

It follows that∣∣∣∣
∫ τn

0
f(T gt (x, r)) dt− (Q(kn)h)α

∣∣∣∣ ≤ (2r +K)‖f‖C0 + |ϕ(Qα(kn))
f (x)− ϕ

(ln(x))
f (x)|.

Since ‖S(k)ϕf‖sup = ‖Q(k)h‖ = O(e(λ+τ)k), by Lemma 7.3, there exists C > 0 such that

‖ϕ(n)
f ‖sup ≤ Cnλ/λ1+2τ . Therefore,

(7.27)

∣∣∣∣
∫ τn

0
f(T gt (x, r)) dt− (Q(kn)h)α

∣∣∣∣ ≤ (2r +K)‖f‖C0 + C|Qα(kn)− ln(x)|λ/λ1+2τ .

As g([Qα(kn)/2])(x) < Qα(kn)µ(g) < g(ln(x)+1)(x), we have N ≤ Qα(kn)/2 − 1 ≤ ln(x).
Hence by (7.26),

−ln(x)ζ < g(ln(x))(x)− ln(x)µ(g) ≤ Qα(kn)µ(g) − ln(x)µ(g)

< g(ln(x)+1)(x)− ln(x)µ(g) < (ln(x) + 1)ζ + µ(g).

It follows that there exists C > 0 such that for every (x, r) ∈ Dn (with Qα(kn) ≥ 2N + 1)
we have

|Qα(kn)− ln(x)| ≤ C(Qα(kn))
ζ .
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Then for every (x, r) ∈ Dn, by (7.27), we have
∣∣∣∣
∫ τn

0
f(T gt (x, r)) dt

∣∣∣∣ ≥ |(Q(kn)h)α| − C ′(Qα(kn))
ζ(λ/λ1+2τ).

As Leb(Dn) > δ̄, it follows that

log ‖
∫ τn
0 f ◦ T gt dt‖L1(Ig)

log τn
≥ log δ̄

(
|(Q(kn)h)α| − C ′(Qα(kn))

ζ(λ/λ1+2τ)
)

log µ(g)Qα(kn)
.

By (7.22) and (3.14),

lim
n→∞

log(Qα(kn))
ζ(λ/λ1+2τ)

log |(Q(kn)h)α|
= ζ(λ/λ1 + 2τ)

λ1
λ
< 1.

Therefore,

lim
n→∞

log
(
|(Q(kn)h)α| − C ′(Qα(kn))

ζ(λ/λ1+2τ)
)

log |(Q(kn)h)α|
= 1.

Hence, by (7.22) and (3.14) again,

lim inf
n→∞

log ‖
∫ τn
0 f ◦ T gt dt‖L1(Ig)

log τn
≥ lim

n→∞

log δ̄|(Q(kn)h)α|
log µ(g)Qα(kn)

=
λ

λ1
.

�

We finish the section by checking sub-polynomial bounds for P0G.

Proposition 7.13 (cf. Theorem 2 in [8]). Suppose that the IET T : I → I satisfies the

FDC. Assume that ϕf ∈ P0G(⊔α∈AIα), ϕ|f | ∈ P̂0(⊔α∈AIα), g ∈ PaG(⊔α∈AIα) for some
0 ≤ a < 1 and every τ > 0,

‖M(k)(S(k)ϕf )‖ = O(eτk).

Then

lim sup
s→+∞

log |
∫ s
0 f(T

g
t (x, r))dt|

log s
≤ 0 for a.e. (x, r) ∈ Ig;(7.28)

lim sup
s→+∞

log ‖
∫ s
0 f ◦ T gt dt‖L1(Ig)

log s
≤ 0.(7.29)

Proof. For every 0 < ε < 1 − a we apply Theorem 7.8 and 7.10 to b := ε and a := a+ ε.

Since ϕf ∈ PεG(⊔α∈AIα), ϕ|f | ∈ P̂ε(⊔α∈AIα), g ∈ Pa+εG(⊔α∈AIα), we obtain the upper
bounds by taking arbitrary small ε > 0. �

Remark 7.14. If additionally f 6= 0 then, using arguments from the proof of Theorem 1.4
in [8, §7.2.4], we have equalities in both (7.28) and (7.29).

8. Local analysis around saddles

In this section we mainly prove some local relations between regularity of the function
f : M → R around fixed points and the types of singularity for the associated cocycle
ϕf : I → R. This analysis is one of our main result of this paper that was not studied in
the related literatures beforehand in such a comprehensive way. The main results of this
chapter play a key role in proving Theorem 4.1 and its extension in §9. In fact, we generalize
the approach developed for simple saddles in [7] (related to logarithmic singularity type)
to multi-saddle type.

Let M ′ ⊂ M be a minimal component of a locally Hamiltonian flow ψR associated
with a closed 1-form η. Let I ⊂ M ′ be its transversal curve equipped with a standard
parametrization. Recall that a parametrization of curve γ : [a, b] → M is standard if
γ : I →M if η(dγ) = 1. In the standard coordinates, the first return map T : I → I is an
IET.



36 K. FRĄCZEK AND M. KIM

For every saddle σ ∈ Fix(ψR) of multiplicity m = mσ ≥ 2 let (x, y) be a singular
chart in a neighborhood Uσ of σ. Then the corresponding local Hamiltonian is of the
form H(x, y) = ℑ(x + iy)m. If the ψR-invariant area form ω = V (x, y)dx ∧ dy, then the
corresponding local Hamiltonian equation in Uσ is of the form

dx

dt
=

∂H
∂y (x, y)

V (x, y)
=
mℜ(x+ iy)m−1

V (x, y)
and

dy

dt
= −

∂H
∂x (x, y)

V (x, y)
= −mℑ(x+ iy)m−1

V (x, y)
,

so

(8.1) X(x, y) = X1(x, y) + iX2(x, y) =
m(x+ iy)m−1

V (x, y)

and

η = mℑ(x+ iy)m−1 dx+mℜ(x+ iy)m−1 dy.

Therefore, a C1-curve γ : [a, b] → Uσ is standard if and only if

1 = ηγ(t)γ
′(t) = mℑ(γ(t))m−1ℜγ′(t) +mℜ(γ(t))m−1ℑγ′(t)

= ℑ
(
m(γ(t))m−1γ′(t)

)
= ℑ

(
d

dt
(γ(t))m

)
.

(8.2)

For every f ∈ Cm(M) and any α = (α1, α2) ∈ Z
2
≥0 with |α| = α1 + α2 ≤ m let

∂ασ (f) =
∂|α|(f ·V )
∂α1x∂α2y (0, 0).

Lemma 8.1. For every f ∈ Cm(M) and any α ∈ Z
2
≥0 with |α| ≤ m− 2 we have

∂ασ (f) = ∂ασ (f ◦ ψt) for every t ∈ R.

Proof. First note that for every (x, y) ∈ Uσ ∩ ψ−t(Uσ) we have

d

dt
((f · V ) ◦ ψt)(x, y) =

∂(f ·V )
∂x (ψt(x, y))

V (ψt(x, y))
(V ·X1)(ψt(x, y))

+

∂(f ·V )
∂y (ψt(x, y))

V (ψt(x, y))
(V ·X2)(ψt(x, y)).

Therefore, by induction

d

dt

∂|α|

∂α1x∂α2y
((f · V ) ◦ ψt)(x, y) =

∂|α|

∂α1x∂α2y

d

dt
((f · V ) ◦ ψt)(x, y)

=
∑

|β|≤|α|

Wβ,1(t, x, y)
∂|β|

∂β1x∂β2y
(V ·X1)(ψt(x, y))

+
∑

|β|≤|α|

Wβ,2(t, x, y)
∂|β|

∂β1x∂β2y
(V ·X2)(ψt(x, y)).

As V ·X1 and V ·X2 are homogenous polynomials of degree m− 1, we have

∂|β|

∂β1x∂β2y
(V ·X1)(0, 0) =

∂|β|

∂β1x∂β2y
(V ·X2)(0, 0) = 0 if |β| ≤ m− 2.

It follows that

d

dt

∂|α|

∂α1x∂α2y
((f · V ) ◦ ψt)(0, 0) = 0 for all t ∈ R and |α| ≤ m− 2.

Hence

∂ασ (f ◦ ψt) =
∂|α|

∂α1x∂α2y
((f · V ) ◦ ψt)(0, 0) =

∂|α|

∂α1x∂α2y
(f · V )(0, 0) = ∂ασ (f).

�
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Let G0 : C → C be the principal m-th root map, i.e. G0(re
is) = r1/meis/m if s ∈ [0, 2π),

and let ω ∈ C be the principal 2m-th root of unity.

Definition 5. For every ε > 0 denote by Dε the pre-image of the square [−ε, ε]× [−ε, ε] by
the map z 7→ zm. Given a neighborhood Uσ of σ, choose ε > 0 such that Dε = Dσ,ε ⊂ Uσ.

Let us consider four curves that parametrize some incoming and outgoing segments of
the boundary of Dε: γ

in
+ , γ

out
+ : (0, ε) → ∂Dε, γ

in
− , γ

out
− : (−ε, 0) → ∂Dε are given by

γin± (s) = G0(−ε+ is), γout± (s) = G0(ε+ is).

For every interval J ⊂ [0, 2π) denote by S(J) the corresponding angular sector {z ∈ C :
Arg(z) ∈ J}.
Lemma 8.2. The following statements hold:

(i) The maps γin± /γout± are standard parametrizations of incoming/outgoing segments of
Dε ∩ S([0, 2π/m)) for the flow ψR.

(ii) The orbit segments entering Dε at γin± (s) leave it at γout± (s).
Denote by τ(s) the time spent by this orbit in the set Dε. Then
(iii) for every f ∈ Cm(M) we have

(8.3)

∫ τ(s)

0
f(ψt(γ

in
± (s))) dt =

1

m2

∫ ε

−ε

(f · V )(G0(u, s))

(u2 + s2)
m−1
m

du.

Proof. As

ℑ(γin± (s)m) = ℑ(G0(−ε+ is)m) = s, ℑ(γout± (s)m) = ℑ(G0(ε+ is)m) = s,

in view of (8.2), the parametrizations γin± , γout± are standard.
Since the map z 7→ zm is a bijection between Dε ∩ S([0, 2π/m)) and [−ε, ε] × [−ε, ε],

and G0 is its inverse, let us consider a local flow ψ̃R on [−ε, ε] × [−ε, ε] conjugated to the

flow ψR restricted to Dε ∩ S([0, 2π/m)), i.e. ψ̃t(z) = ψt(G0(z))
m. By (8.1),

d

dt
ψ̃t(z) = mψt(G0(z))

m−1 d

dt
ψt(G0(z)) = mψt(G0(z))

m−1X(ψt(G0(z)))

= m2 |ψt(G0(z))|2(m−1)

V (ψt(G0(z)))
= m2 |ψ̃t(z)|

2(m−1)
m

V ◦G0(ψ̃t(z))
.

Hence

d

dt
ℜψ̃t(z) = m2 |ψ̃t(z)|

2(m−1)
m

V ◦G0(ψ̃t(z))
> 0 and

d

dt
ℑψ̃t(z) = 0.

It follows that the interval {(−ε, s) : s ∈ (−ε, ε)} is the incoming and {(ε, s) : s ∈ (−ε, ε)}
is the outgoing segment of [−ε, ε] × [−ε, ε] for the local flow ψ̃R. Moreover, the orbit
segments entering [−ε, ε] × [−ε, ε] at (−ε, s) leave it at (ε, s). Passing via G0 to the flow
ψR, we obtain the first claim of the lemma.

Recall that τ(s) is the time spent by ψ̃R-orbit starting at (−ε, s) in the set [−ε, ε]×[−ε, ε].
Then

∫ τ(s)

0
f(ψt(γ

in
± (s))) dt =

∫ τ(s)

0
f ◦G0

(
ψ̃t(−ε, s)

)
dt

=

∫ τ(s)

0
f ◦G0

(
ℜψ̃t(−ε, s), s

)
dt.

Next we integrate by substituting u(t) = ℜψ̃t(−ε, s). As

−ε = ℜψ̃0(−ε, s), ε = ℜψ̃τ(s)(−ε, s)



38 K. FRĄCZEK AND M. KIM

and

du

dt
=

d

dt
ℜψ̃t(−ε, s) = m2 |ψ̃t(−ε, s)|

2(m−1)
m

V ◦G0(ψ̃t(−ε, s))

= m2 ((ℜψ̃t(−ε, s))2 + s2)
m−1
m

V ◦G0(ℜψ̃t(−ε, s), s)
= m2 (u

2 + s2)
m−1
m

V ◦G0(u, s)
,

by change of variables, we have
∫ τ(s)

0
f ◦G0

(
ℜψ̃t(−ε, s), s

)
dt =

∫ ε

−ε
f ◦G0(u, s)

V ◦G0(u, s)

m2(u2 + s2)
m−1
m

du

=
1

m2

∫ ε

−ε

(f · V )(G0(u, s))

(u2 + s2)
m−1
m

du.

This gives (8.3). �

Remark 8.3. Lemma 8.2 describes incoming and outgoing segments on the boundary of
Dε but only in the angular sector S([0, 2π/m)). The same arguments apply to the flow ψR

restricted to S([2πk/m, 2π(k+1)/m)) for 0 ≤ k < m. As ω ∈ C is the principal 2m-th root
of unity, the incoming/outgoing segments of Dε ∩ S([2πk/m, 2π(k + 1)/m)) are given by
ω2kγin± and ω2kγout± respectively. Moreover, if τk(s) is the time spent by ψR-orbit starting

at ω2kγin± (s) in the set Dε, then

(8.4) ϕσ,kf (s) :=

∫ τk(s)

0
f(ψt(ω

2kγin± (s))) dt =
1

m2

∫ ε

−ε

(f · V )(ω2kG0(u, s))

(u2 + s2)
m−1
m

du.

Note that for (u, s) ∈ R
2
≥0 we have

G0(−u,−s) = ωG0(u, s), G0(u,−s) = ω2G0(u, s), G0(−u, s) = ωG0(u, s).

It follows that for every s ∈ (0, ε) we have

m2ϕσ,kf (s) =

∫ ε

0

(f · V )(ω2kG0(u, s))

(u2 + s2)
m−1
m

du+

∫ ε

0

(f · V )(ω2kG0(−u, s))
(u2 + s2)

m−1
m

du

=

∫ ε

0

(f · V )(ω2kG0(u, s))

(u2 + s2)
m−1
m

du+

∫ ε

0

(f · V )(ω2k+1G0(u, s))

(u2 + s2)
m−1
m

du

and

m2ϕσ,kf (−s) =
∫ ε

0

(f · V )(ω2kG0(u,−s))
(u2 + s2)

m−1
m

du+

∫ ε

0

(f · V )(ω2kG0(−u,−s))
(u2 + s2)

m−1
m

du

=

∫ ε

0

(f · V )(ω2k+2G0(u, s))

(u2 + s2)
m−1
m

du+

∫ ε

0

(f · V )(ω2k+1G0(u, s))

(u2 + s2)
m−1
m

du.

8.1. Singularities of ϕσ,kf . The purpose of this section is to understand the type of sin-

gularity of functions ϕσ,kf . These functions are responsible for reading the singularities of
ϕf and provide the tools to prove Theorem 9.1 in §9.

For every m ≥ 2 let G : R2
≥0 → C be a continuous inverse of one of the maps z 7→ zm,

z 7→ zm, z 7→ −zm or z 7→ −zm. Then G is homogenous of degree 1/m and analytic on
R
2
>0. If G0 : R2

≥0 → C is the principal m-th root and ω is the principal 2m-th root of

unity, then G is either ωlG0 or ωlG0 for some 0 ≤ l < 2m.

Let f : D → R be a bounded Borel map where D is the pre-image of the square
[−1, 1]× [−1, 1] by the map z 7→ zm. For every a ≥ 1/2 let us consider the map ϕ = ϕf,a :
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(0, 1] → R given by

(8.5) ϕ(s) =

∫ 1

0

f(G(u, s))

(u2 + s2)a
du.

Remark 8.4. Note that for every ε > 0 we have

ϕf,a,ε(s) =

∫ ε

0

f(G(u, s))

(u2 + s2)a
du =

1

ε

∫ 1

0

f(G(u/ε, s))

((u/ε)2 + s2)a
du

= ε2a−1

∫ 1

0

f(ε−1/mG(u, εs))

(u2 + (εs)2)a
du = ε2a−1ϕf◦ε−1/m,a(εs).

Therefore
s2aϕ′

f,a,ε(s) = (εs)2aϕ′
f◦ε−1/m,a

(εs).

Notice that

s2a−1

∫ 1

0

1

(u2 + s2)a
du =

∫ 1

0

1

((us )
2 + 1)a

du

s
=

∫ 1/s

0

dx

(x2 + 1)a
.

Let us recall the definitions of Gamma function Γ(z) and Beta function B(x, y)

B(x, y) :=

∫ 1

0
tx−1(1− t)y−1dt, Γ(z) :=

∫ ∞

0
xz−1e−xdx,

and let us denote

Γa :=

∫ +∞

0

dx

(x2 + 1)a
=

1

2
B(

1

2
, a− 1

2
) =

1

2

Γ(12)Γ(a− 1
2)

Γ(a)
=

√
π

2

Γ(a− 1
2)

Γ(a)
.

Then, for every a > 1/2,

s2a−1

∫ 1

0

1

(u2 + s2)a
du ≤ Γa for all s ∈ (0, 1], and(8.6)

lim
s→0

s2a−1

∫ 1

0

1

(u2 + s2)a
du = Γa.(8.7)

If a = 1/2 then

(8.8)

∫ 1

0

1

(u2 + s2)a
du =

∫ 1/s

0

dx√
x2 + 1

= log
(1
s
+

√
1

s2
+ 1
)
≤ log

3

s
≤ 2 + | log s|.

In view of (8.6) and (8.8), for every s ∈ (0, 1],

s2a−1ϕ|f |,a(s) ≤ ‖f‖supΓa if a ≥ 1/2,

ϕ|f |,a(s) ≤ ‖f‖sup(2 + | log s|) if a = 1/2.
(8.9)

In the following lemmas, we find the upper bound of ϕ′ by Ck-norms of the function f
and the order of vanishing at the saddle.

Lemma 8.5. Suppose that f : D → R is a C1-map. For every 1/2 ≤ a ≤ 1 we have

|s2aϕ′(s)| ≤ 2‖f‖C1Γa+m−1
2m

.

Moreover,
lim
s→0

s2aϕ′(s) = −2af(0, 0)Γa+1.

Proof. First note that ϕ is a C1-function on (0, 1] with

ϕ′(s) =

∫ 1

0

∂f
∂x (G(u, s))

∂G1
∂s (u, s) + ∂f

∂y (G(u, s))
∂G2
∂s (u, s)

(u2 + s2)a
du

− 2a

∫ 1

0

sf(G(u, s))

(u2 + s2)a+1
du.

(8.10)
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As (G1 + iG2)
m = ±u± is, we have

(8.11) m(G1 + iG2)
m−1

(∂G1

∂s
+ i

∂G2

∂s

)
= ±i.

Hence ∣∣∣∂G1

∂s
+ i

∂G2

∂s

∣∣∣ = 1

m|G1 + iG2|m−1
=

1

m(u2 + s2)
m−1
2m

.

It follows that
∣∣∣
∫ 1

0

∂f
∂x(G(u, s))

∂G1
∂s (u, s) + ∂f

∂y (G(u, s))
∂G2
∂s (u, s)

(u2 + s2)a
du
∣∣∣

≤ ‖f ′‖C0

m

∫ 1

0

1

(u2 + s2)a+
m−1
2m

du ≤ ‖f ′‖C0

m

Γa+m−1
2m

s2a−
1
m

≤ ‖f ′‖C0

m

Γa+m−1
2m

s2a

(8.12)

and ∣∣∣
∫ 1

0

sf(G(u, s))

(u2 + s2)a+1
du
∣∣∣ ≤ ‖f‖C0

∫ 1

0

s

(u2 + s2)a+1
du ≤ ‖f‖C0

Γa+1

s2a
.

It follows that

|ϕ′(s)| ≤
(
2a‖f‖C0Γa+1 +

‖f ′‖C0

m
Γa+m−1

2m

) 1

s2a
≤ 2‖f‖C1Γa+m−1

2m

1

s2a
.

Since f is of class C1, we have

|f(G(u, s)) − f(0, 0)| ≤ ‖f‖C1‖G(u, s)‖ ≤ ‖f‖C1(u2 + s2)
1

2m .

Moreover, by (8.6), ∫ 1

0

(u2 + s2)
1

2m

(u2 + s2)a+1
du ≤

Γa+1− 1
2m

s2a+1− 1
m

.

Therefore, in view of (8.10), (8.12), we have
∣∣∣s2aϕ′(s) + 2af(0, 0)s2a+1

∫ 1

0

du

(u2 + s2)a+1

∣∣∣

≤ s2a

∣∣∣∣∣

∫ 1

0

∂f
∂x(G(u, s))

∂G1
∂s (u, s) + ∂f

∂y (G(u, s))
∂G2
∂s (u, s)

(u2 + s2)a
du

∣∣∣∣∣

+ 2as2a+1

∫ 1

0

|f(0, 0) − f(G(u, s))|
(u2 + s2)a+1

du

= s2a‖f ′‖C0

Γa+m−1
2m

s2a−
1
m

+ 2as2a+1‖f‖C1

∫ 1

0

(u2 + s2)
1

2m

(u2 + s2)a+1
du

≤ ‖f‖C1Γa+m−1
2m

s
1
m + 2as2a+1‖f‖C1

Γa+1− 1
2m

s2a+1− 1
m

= O(s
1
m ).

Hence

lim
s→0

s2aϕ′(s) = − lim
s→0

2af(0, 0)s2a+1

∫ 1

0

du

(u2 + s2)a+1
= −2af(0, 0)Γa+1.

�

Lemma 8.6. Assume that f : D → R is a Cm-map, 1/2 ≤ a ≤ 1 and let k be a natural

number such that k ≤ m(2a− 1). Suppose that f (j)(0, 0) = 0 for 0 ≤ j < k. Then

|s2a− k
mϕ′(s)| ≤ ‖f‖CkΓ1

(k − 1)!
for all s ∈ (0, 1].

Moreover, if k < m(2a− 1) then

s2a−
k
m
−1ϕ|f |,a(s) ≤

‖f‖CkΓa− k
2m

k!
for all s ∈ (0, 1]
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and if k = m(2a− 1), then

ϕ|f |,a(s) ≤
‖f‖Ck

k!
(2 + | log s|) for all s ∈ (0, 1].

Proof. By assumption,

|f(G(u, s))| ≤ ‖f (k)‖C0

k!
‖G(u, s)‖k ≤ ‖f (k)‖C0

k!
(u2 + s2)

k
2m ,

∣∣∣∣
∂f

∂x
(G(u, s))

∣∣∣∣ ≤
‖(∂f/∂x)(k−1)‖C0

(k − 1)!
‖G(u, s)‖k−1 ≤ ‖(∂f/∂x)(k−1)‖C0

(k − 1)!
(u2 + s2)

k−1
2m ,

∣∣∣∣
∂f

∂y
(G(u, s))

∣∣∣∣ ≤
‖(∂f/∂y)(k−1)‖C0

(k − 1)!
‖G(u, s)‖k−1 ≤ ‖(∂f/∂y)(k−1)‖C0

(k − 1)!
(u2 + s2)

k−1
2m .

Therefore

ϕ|f |,a(s) ≤
‖f (k)‖C0

k!

∫ 1

0

(u2 + s2)
k

2m

(u2 + s2)a
du =

‖f (k)‖C0

k!

∫ 1

0

1

(u2 + s2)a−
k

2m

du

and, by (8.10),

|ϕ′(s)| ≤ ‖f (k)‖C0

m(k − 1)!

∫ 1

0

(u2 + s2)
k−1
2m

(u2 + s2)
m−1
2m (u2 + s2)a

du

+ 2as
‖f (k)‖C0

k!

∫ 1

0

(u2 + s2)
k

2m

(u2 + s2)a+1
du

≤ ‖f (k)‖C0

m(k − 1)!

∫ 1

0

1

(u2 + s2)a+
m−k
2m

du+ 2as
‖f (k)‖C0

k!

∫ 1

0

1

(u2 + s2)a+1− k
2m

du.

As k ≤ m(2a − 1), we have a + 1 − k
2m > a + m−k

2m = 1 + (2a−1)m−k
2m ≥ 1. By (8.6), this

gives

|ϕ′(s)| ≤ ‖f (k)‖C0

m(k − 1)!

Γa+m−k
2m

s2a−
k
m

+ 2as
‖f (k)‖C0

k!

Γa+1− k
2m

s2a+1− k
m

≤ ‖f (k)‖C0

(k − 1)!

Γ1

s2a−
k
m

.

If additionally k < m(2a− 1) then a− k
2m > 1

2 . By (8.6) again,

ϕ|f |,a(s) ≤
‖f (k)‖C0

k!

∫ 1

0

1

(u2 + s2)a−
k

2m

du ≤ ‖f (k)‖C0

k!

Γa− k
2m

s2a−1− k
m

.

On the other hand, if k = m(2a− 1) then a− k
2m = 1

2 and, by (8.8),

ϕ|f |,a(s) ≤
‖f (k)‖C0

k!

∫ 1

0

1

(u2 + s2)a−
k

2m

du ≤ ‖f (k)‖C0

k!
(2 + | log s|).

�

8.2. Quantities C±
α (ϕf ). In this section, we develop some tools that help compute the

non-vanishing quantities C±
α (ϕf ).

Definition 6. For every real β let Cβ(R
2
>0) be the space of continuous homogenous functions

H : R>0 × R>0 → C of degree β such that H(u, s) = O(‖(u, s)‖β).
For every real a such that 2a− β > 1 and H ∈ Cβ(R

2
>0) let

Γa(H) :=

∫ +∞

0

H(x, 1)

(x2 + 1)a
dx.
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As H(x, 1)/(x2 + 1)a = O(1/(1 + x)2a−β), the quantity Γa(H) is well-defined and

(8.13) s2a−β−1

∫ 1

0

H(u, s)

(u2 + s2)a
du =

∫ 1

0

H(u/s, 1)

((u/s)2 + 1)a
du

s
=

∫ 1/s

0

H(x, 1)

(x2 + 1)a
dx→ Γa(H).

Note that if H(u, s) = H̃(u, s)/‖(u, s)‖max{−β,0} and H̃ : R≥0 × R≥0 → C is continuous
homogenous of degree max{β, 0} then H ∈ Cβ(R

2
>0).

Lemma 8.7. Assume that 2a−β > 1, H ∈ Cβ(R2
>0) is of class C1 and ∂H

∂y ∈ Cβ−1(R
2
>0).

Then

Γa(
∂H
∂y ) = 2aΓa+1(H)− (2a− 1− β)Γa(H).(8.14)

Proof. Note that for every y > 0,

Γa(H) =

∫ +∞

0

H(x, 1)

(x2 + 1)a
dx =

∫ +∞

0

H(x/y, 1)

(x2/y2 + 1)a
dx

y
= y2a−1−β

∫ +∞

0

H(x, y)

(x2 + y2)a
dx.

As H ∈ Cβ(R
2
>0) and ∂H

∂y ∈ Cβ−1(R
2
>0), by differentiating with respect to y, we get

−(2a− 1− β)yβ−2aΓa(H) =
d

dy
y1+β−2aΓa(H) =

d

dy

∫ +∞

0

H(x, y)

(x2 + y2)a
dx

=

∫ +∞

0

∂H
∂y (x, y)

(x2 + y2)a
dx− 2ay

∫ +∞

0

H(x, y)

(x2 + y2)a+1
dx.

Taking y = 1, this yields (8.14). �

Recall that, by Lemma 8.5 for any C1-map f : D → R with f(0, 0) 6= 0 and for every
1/2 ≤ a ≤ 1 we have

lim
s→0

s2aϕ′(s) = −2af(0, 0)Γa+1.

In the next preliminary lemmas, we find precise asymptotics of ϕ′ at zero also when the
function f and some of its derivatives vanish at the saddle. This plays a crucial role in
calculating the quantity C±

α (ϕf ) explicitly in §9.

Lemma 8.8. Let k be an integer number such that 0 ≤ k ≤ m(2a − 1). Suppose that

f : D → R is of class Ck+1 and f (j)(0, 0) = 0 for 0 ≤ j < k. Then

(8.15) lim
s→0

s2a−
k
mϕ′(s) =

k∑

j=0

(
k

j

)
∂kf

∂xj∂yk−j
(0, 0)Γk,ja (G),

where

Γk,ja (G) = −2a− 1− k
m

k
Γa(G

j
1G

k−j
2 )− 2a

k − 1

k
Γa+1(G

j
1G

k−j
2 ) if k ≥ 1

and Γ0,0
a (G) = −2aΓa+1.

Proof. If k = 0, then (8.15) follows directly from Lemma 8.5.
Assume that k ≥ 1. Then, by assumptions,

f(G(u, s)) =
k∑

j=0

(
k

j

)
∂kf

∂xj∂yk−j
(0, 0)Gj1(u, s)G

k−j
2 (u, s) +O(‖G(u, s)‖k+1)

=

k∑

j=0

(
k

j

)
∂kf

∂xj∂yk−j
(0, 0)Gj1(u, s)G

k−j
2 (u, s) +O((u2 + s2)

k+1
2m ).
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Moreover,

∂f

∂x
(G(u, s)) =

k−1∑

j=0

(
k − 1

j

)
∂kf

∂xj+1∂yk−1−j
(0, 0)Gj1(u, s)G

k−1−j
2 (u, s) +O((u2 + s2)

k
2m ),

∂f

∂y
(G(u, s)) =

k−1∑

j=0

(
k − 1

j

)
∂kf

∂xj∂yk−j
(0, 0)Gj1(u, s)G

k−1−j
2 (u, s) +O((u2 + s2)

k
2m ).

As ‖G(u, s)‖ = ‖(u, s)‖ 1
m = (u2 + s2)

1
2m and ‖∂G∂s (u, s)‖ = ‖(u,s)‖−

m−1
m

m = (u2+s2)−
m−1
2m

m , it
follows that

d

ds

f(G(u, s))

(u2 + s2)a
=

∂f
∂x (G(u, s))

∂G1
∂s (u, s) + ∂f

∂y (G(u, s))
∂G2
∂s (u, s)

(u2 + s2)a
− 2a

sf(G(u, s))

(u2 + s2)a+1

=

k∑

j=0

(
k

j

)
∂kf

∂xj∂yk−j
(0, 0)

( j
kG

j−1
1 Gk−j2

∂G1
∂s + k−j

k Gj1G
k−1−j
2

∂G2
∂s

)
(u, s)

(u2 + s2)a

− 2as

k∑

j=0

(
k

j

)
∂kf

∂xj∂yk−j
(0, 0)

(Gj1G
k−j
2 )(u, s)

(u2 + s2)a+1

+O
( 1

(u2 + s2)a+
m−k−1

2m

)
+O

( s

(u2 + s2)a+1− k+1
2m

)
.

(8.16)

Since Gj−1
1 Gk−j2

∂G1
∂s , Gj1G

k−j−1
2

∂G2
∂s are homogenous of degree k−m

m < 2a− 1 and Gj1G
k−j
2

is homogenous of degree k
m < 2(a+ 1)− 1, by (8.13) we have

lim
s→0

s2a−
k
m

∫ 1

0

(Gj−1
1 Gk−j2

∂G1
∂s )(u, s)

(u2 + s2)a
du = Γa(G

j−1
1 Gk−j2

∂G1
∂s ),

lim
s→0

s2a−
k
m

∫ 1

0

(Gj1G
k−j−1
2

∂G2
∂s )(u, s)

(u2 + s2)a
du = Γa(G

j
1G

k−j−1
2

∂G2
∂s ),

lim
s→0

s2a−
k
m

∫ 1

0

s(Gj1G
k−j
2 )(u, s)

(u2 + s2)a+1
du = Γa+1(G

j
1G

k−j
2 ).

(8.17)

Furthermore,

lim
s→0

s2a−
k+1
m

∫ 1

0

1

(u2 + s2)a+
m−k−1

2m

du = Γa+m−k−1
2m

,

lim
s→0

s2a−
k+1
m

∫ 1

0

s

(u2 + s2)a+1− k+1
2m

= Γa+1− k+1
2m
.

In view of (8.16) and (8.17), this gives the statement (8.15) with

Γk,ja (G) =
j

k
Γa(G

j−1
1 Gk−j2

∂G1
∂s ) +

k − j

k
Γa(G

j
1G

k−1−j
2

∂G2
∂s )− 2aΓa+1(G

j
1G

k−j
2 ).

In view of (8.14) applied to H = Gj1G
k−j
2 (which is homogenous of degree k/m), we get

Γk,ja (G) =
1

k
Γa
(
∂
∂s(G

j
1G

k−j
2 )

)
− 2aΓa+1(G

j
1G

k−j
2 )

=
2a

k
Γa+1(G

j
1G

k−j
2 )− 2a− 1− k

m

k
Γa(G

j
1G

k−j
2 )− 2aΓa+1(G

j
1G

k−j
2 )

= −2a− 1− k
m

k
Γa(G

j
1G

k−j
2 )− 2a

k − 1

k
Γa+1(G

j
1G

k−j
2 ).

�
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Let G0 : R2
≥0 → C be the principal branch of the m-th root and let ω and ω0 be the

principal 2m-th and 4m-th root of unity respectively.

Lemma 8.9. Let 1/2 < a ≤ (m − 1)/m, 1 ≤ k < (2a − 1)m and a0, a1, . . . , ak are real
numbers not all equal to 0. Then there exists 0 ≤ l < 2m such that

k∑

j=0

aj
(
Γk,ja (ωlG0) + Γk,ja (ωl+1G0)

)
6= 0.

Proof. Let G : Ck/m(R
2
>0) → C be the linear operator given by

G(H) := −2a− 1− k
m

k
Γa(H)− 2a

k − 1

k
Γa+1(H).

Then G(H) = G(H) and Γk,ja (G) = G(Gj1G
k−j
2 ).

Suppose that, contrary to our claim,

(8.18)
k∑

j=0

aj
(
Γk,ja (ωlG0) + Γk,ja (ωl+1G0)

)
= 0 for every 0 ≤ l < 2m.

Denote by Rk[x, y] the linear space of homogenous polynomial of degree k. The space
Rk[x, y] coincides with the subspace Ck,R[z, z] of complex homogenous polynomials Ck[z, z]

of the form
∑k

j=0 cjz
jzk−j such that cj = ck−j for 0 ≤ j ≤ k. For every P ∈ Rk[x, y] denote

by P̂ ∈ Ck,R[z, z] the unique polynomial such that P̂ (z, z) = P (x, y).

As Q(x, y) =
∑k

j=0 ajx
jyk−j ∈ Rk[x, y] is non-zero by assumptions, the corresponding

polynomial Q̂(z, z) =
∑k

j=0 cjz
jzk−j is also non-zero. Note that

k∑

j=0

ajΓ
k,j
a (G) =

k∑

j=0

ajG(Gj1G
k−j
2 ) = G(Q(G1, G2))

= G(Q̂(G,G)) =

k∑

j=0

cjG(GjG
k−j

).

(8.19)

As k < m(2a− 1) ≤ m− 2, in view of (8.18) and (8.19), for every 0 ≤ l ≤ 2k we have

0 =

k∑

j=0

cj

(
G
(
(ωlG0)

j(ωlG0)
k−j
)
+G

(
(ωl+1G0)

j(ωl+1G0)
k−j
))

= ω−kl
k∑

j=0

ω2jlcj
(
G(Gj0G0

k−j
) + ω2j−kG(G0

j
G0

k−j)
)
.

Let us consider the matrix Ωk = [ω2lj ]0≤l,j≤k ∈ M(k+1)×(k+1)(C). As k < m, by the
Vandermonde determinant,

detΩk =
∏

0≤i<j≤k

(ω2j − ω2i) 6= 0.

This gives

cj

(
G
(
Gj0G0

k−j)
+ ω2j−kG

(
Gj0G0

k−j))
= 0 for all 0 ≤ j ≤ k.

As ck−j = cj and Q̂ is non-zero, there exists 0 ≤ j ≤ k/2 such that cj 6= 0. Then

0 = ωk−2j
0

(
G
(
Gj0G0

k−j)
+ ω2j−k

0 G
(
Gj0G0

k−j))

= G
(
(ω−1

0 G0)
j(ω−1

0 G0)
k−j)

+G
(
(ω−1

0 G0)
j
(ω−1

0 G0)
k−j)

.
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Hence

0 = ℜG
(
(ω−1

0 G0)
j(ω−1

0 G0)
k−j)

= G
(
|G0|jℜ((ω0G0)

k−2j)
)
.

Since G0 is the principal m-th root, for all u, s > 0 we have ArgG0(u, s) ∈ (0, π
2m ). Hence

Arg(ω0G0(u, s)) ∈ (0, π
2m ) and Arg(ω0G0(u, s))

k−2j ∈ (0, (k − 2j) π
2m ) ⊂ (0, π2 ),

so ℜ((ω0G0(u, s))
k−2j) > 0. As 2a− 1− k

m > 0, by the definition of G we have

G
(
|G0|jℜ((ω0G0)

k−2j)
)
< 0,

which is a contradiction. �

9. Global properties of the operator f 7→ ϕf and correcting operators

In this section, we use the results of the previous section to prove an extended version
of Theorem 4.1, which is Theorem 9.1.

For every σ ∈ Fix(ψR), let Gσ : C → C be the principal mσ-root map and let ωσ be the
principal 2mσ-root of unity. For every 0 ≤ k ≤ mσ − 2, recall that

(9.1) a(σ) =
mσ − 2

mσ
, b(σ, k) =

mσ − 2− k

mσ
.

Denote by Cmσ,k(M) the space of maps f ∈ Cm(M), which vanish on
⋃
σ′∈Fix(ψR)\{σ}

Uσ′

and f (j)(σ) = 0 for all 0 ≤ j < k.

Theorem 9.1. The following statements hold:

(i) For every f ∈ Cm(M) we have ϕf ∈ PaG(⊔α∈AIα) and ϕ|f | ∈ P̂a(⊔α∈AIα), where

a = m−2
m . Moreover, the operator

f ∈ Cm(M) 7→ ϕf ∈ PaG(⊔α∈AIα)
is bounded. More precisely, there exists C > 0 such that ‖ϕf‖a ≤ C‖f‖C1 for every
f ∈ Cm(M).

(ii) For every σ ∈ Fix(ψR) ∩M ′ and 0 ≤ k ≤ mσ − 2, there exists Cσ,k > 0 such that
for every f ∈ Cmσ,k(M) we have ϕf ∈ Pb(σ,k)G(⊔α∈AIα), ‖ϕf‖b(σ,k) ≤ Cσ,k‖f‖Ck+1 and

ϕ|f | ∈ P̂b(σ,k)(⊔α∈AIα).
(iii) Moreover, if additionally ψR is minimal on M (i.e. M ′ = M), then for every

f ∈ Cmσ,k(M) and for every α ∈ A the quantity C±
α (ϕf ) is zero or is of the form

(9.2) − 1

m2
σ

k∑

j=0

(
k

j

)
∂(j,k−j)σ (f)

(
Γk,jmσ−1

mσ

(
ωlσGσ

)
+ Γk,jmσ−1

mσ

(
ωl+1
σ Gσ

))

for some 0 ≤ l < 2mσ. On the other hand, for every 0 ≤ l < 2mσ, there exists α ∈ A such
that C±

α (ϕf ) is of the form (9.2).

Proof. Without loss of generality we can assume that ψR is minimal on M . The proof
of (i) and (ii) in the general case proceeds in the same way up to some complications in
notation.

Choose ε > 0 such that Dσ,ε ⊂ Uσ for any σ ∈ Fix(ψR), where Dσ,ε is a closed neigh-
borhood of σ defined in §8. Denote by g : I → R>0 ∪ {+∞} the first return time map.
Since the flow ψR is smooth and f is of class Cm, both g and ϕf belong to C1(⊔α∈AIα).
Moreover, for every x ∈ ⋃α∈A IntIα we have

|ϕ′
f (x)| ≤ |g′(x)|‖f‖C0 + ‖f ′‖C0

∫ g(x)

0

∥∥∥dψt(x)
dx

∥∥∥dt.

If additionally dist(x,End(T )) ≥ ε then |ϕ′
f (x)| ≤ Cε‖f‖C1 , where

Cε := max
{
|g′(x)|+

∫ g(x)

0

∥∥∥dψt(x)
dx

∥∥∥dt : x ∈ I,dist(x,End(T )) ≥ ε
}
< +∞.
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Let e ∈ End(T ) and suppose that e is the first backward intersection of a separatrix
incoming to a fixed point σ ∈ Fix(ψR). For every x ∈ (e − ε, e) ∪ (e, e + ε), let 0 <
τ1(x) < τ2(x) < g(x) be the entrance (τ1(x)) and the exit (τ2(x)) time of the orbit segment
{ψtx : 0 ≤ t ≤ g(x)} to Dσ,ε. Let us consider ϕ1

f , ϕ
2
f : (e− ε, e) ∪ (e, e+ ε) → R given by

ϕ1
f (x) =

∫ τ2(x)

τ1(x)
f(ψtx) dt, ϕ2

f (x) =

∫ τ1(x)

0
f(ψtx) dt+

∫ g(x)

τ2(x)
f(ψtx) dt.

Of course, ϕf (x) = ϕ1
f (x)+ϕ

2
f (x) for every x ∈ (e−ε, e)∪ (e, e+ε). In view of Lemma 8.2

and Remark 8.3, there exists 0 ≤ l < mσ such that for every s ∈ (0, ε) we have

m2
σϕ

1
f (e+ s) =

∫ ε

0

(f · V )(ω2l
σ Gσ(u, s))

(u2 + s2)
mσ−1
mσ

du+

∫ ε

0

(f · V )(ω2l+1
σ Gσ(u, s))

(u2 + s2)
mσ−1
mσ

du,

m2
σϕ

1
f (e− s) =

∫ ε

0

(f · V )(ω2l+1
σ Gσ(u, s))

(u2 + s2)
mσ−1
mσ

du+

∫ ε

0

(f · V )(ω2l+2
σ Gσ(u, s))

(u2 + s2)
mσ−1
mσ

du.

Note that 2
(
mσ−1
mσ

)
− 1 = a(σ). In view of (8.9), Lemma 8.5 and Remark 8.4, it follows

that for every x ∈ (e− ε, e) ∪ (e, e+ ε) we have

|x− e|a(σ)ϕ1
|f |(x) ≤ Γmσ−1

mσ

‖f · V ‖C0 if mσ > 2,(9.3)

ϕ1
|f |(x) ≤ 2‖f · V ‖C0(2 + | log(εs)|) if mσ = 2,(9.4)

|x− e|a(σ)+1|(ϕ1
f )

′(x)| ≤
4ε−1/mσΓ 3(mσ−1)

2mσ

m2
σ

‖f · V ‖C1 ≤ ε−1/m

m2
σ

Γ3/4‖V ‖C1‖f‖C1 ,(9.5)

lim
x→e±

|x− e|a(σ)+1(ϕ1
f )

′(x) = ∓2(a(σ) + 1)

m2
σ

f(σ)V (σ)Γ 2mσ−1
mσ

.(9.6)

If additionally f (j)(σ) = 0 for all 0 ≤ j < k (1 ≤ k ≤ mσ − 2), then by Lemma 8.6, we
have

|x− e|a(σ)−
k

mσ
+1|(ϕ1

f )
′(x)| ≤ 2Γ1

m2
σ(k − 1)!

‖f · V ‖Ck ≤ 2Γ1

m2
σ

‖V ‖Ck‖f‖Ck ,(9.7)

|x− e|a(σ)−
k

mσ ϕ1
|f |(x) ≤

2Γ 2mσ−1−k
2mσ

m2
σk!

‖f · V ‖Ck ,(9.8)

and, by Lemma 8.8,

lim
x→e+

(x− e)a(σ)−
k

mσ
+1(ϕ1

f )
′(x)

=
1

m2
σ

k∑

j=0

(
k

j

)
∂(j,k−j)σ (f)

(
Γk,jmσ−1

mσ

(
ω2l
σ Gσ

)
+ Γk,jmσ−1

mσ

(
ω2l+1
σ Gσ

))
,

(9.9)

lim
x→e−

(e− x)a(σ)−
k

mσ
+1(ϕ1

f )
′(x)

= − 1

m2
σ

k∑

j=0

(
k

j

)
∂(j,k−j)σ (f)

(
Γk,jmσ−1

mσ

(
ω2l+1
σ Gσ

)
+ Γk,jmσ−1

mσ

(
ω2l+2
σ Gσ

))
.

(9.10)

Since τ1 and g − τ2 can be C1-extended to the intervals [e − ε, e] and [e, e + ε], for every
x ∈ (e− ε, e) ∪ (e, e + ε) we have |(ϕ2

f )
′(x)| ≤ Cσ,ε‖f‖C1 , where

Cσ,ε : = max
{
|τ ′1(x)|+

∫ τ1(x)

0

∥∥∥dψt(x)
dx

∥∥∥dt : 0 < |x− e| < ε
}

+max
{
|(g − τ2)

′(x)|+
∫ g(x)−τ2(x)

0

∥∥∥dψ−t(Tx)

dx

∥∥∥dt : 0 < |x− e| < ε
}
< +∞.
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As a(σ) + 1 = 2(mσ−1)
mσ

≤ 2(m−1)
m = a+ 1 for every σ ∈ Fix(ψR), in view of (9.3)-(9.6), it

follows that ϕf ∈ PaG(⊔α∈AIα) and ϕ|f | ∈ P̂a(⊔α∈AIα) for every f ∈ Cm(M) and

pa(ϕ) ≤
( ∑

σ∈Fix(ψR)

(
ε−1/mΓ3/4‖V ‖C1 +mσε

a+1Cσ,ε
)
+ |I|a+1Cε

)
‖f‖C1 .

As ‖ϕf‖L1 ≤ ‖f‖L1 ≤ µ(M)‖f‖C0 , there exists C > 0 such that ‖ϕf‖a ≤ C‖f‖C1 for
every f ∈ Cm(M).

Since a(σ) − k
mσ

= b(σ, k), applying similar arguments for functions f ∈ Cmσ,k(M)

and using (9.7)-(9.10) (instead of (9.3)-(9.6)), we obtain ϕf ∈ Pb(σ,k)G(⊔α∈AIα), ϕ|f | ∈
P̂b(σ,k)(⊔α∈AIα) and the existence of Cσ,k > 0 such that ‖ϕf‖b(σ,k) ≤ Cσ,k‖f‖Ck for every
f ∈ Cmσ,k(M).

Moreover, (9.9) applied to e = lα and (9.10) applied to e = rα and combined with the
inequality |(ϕ2

f )
′(x)| ≤ Cσ,ε‖f‖C1 , yields either

C+
α (ϕf ) = − 1

m2
σ

k∑

j=0

(
k

j

)
∂(j,k−j)σ (f)

(
Γk,jmσ−1

mσ

(
ω2l
σ Gσ

)
+ Γk,jmσ−1

mσ

(
ω2l+1
σ Gσ

))
,

C−
α (ϕf ) = − 1

m2
σ

k∑

j=0

(
k

j

)
∂(j,k−j)σ (f)

(
Γk,jmσ−1

mσ

(
ω2l+1
σ Gσ

)
+ Γk,jmσ−1

mσ

(
ω2l+2
σ Gσ

))

or C±
α (ϕf ) = 0 whenever the forward semi-orbit of e returns to I for the first time to one

of its ends without visiting singular points. The latter option appears exactly twice. On
the other hand, since every incoming separatix crosses I, it follows that every number of
the form (9.2) is obtained as C±

α (ϕf ) for some α. �

9.1. Correcting operators for observables. Let us consider the basis h1, . . . , hg of

Ug+1 ⊂ H(π(0)), defined in Remark 3.1, such that limk→∞
1
k ‖Q(k)hi‖ = λi for 1 ≤ i ≤ g.

Given 0 ≤ b < 1 we choose 2 ≤ j ≤ g + 1 such that λj ≤ λ1b < λj−1. Since h1, . . . , hj−1 is
a basis of Uj (see also Remark 3.1) and the correction operator hj : PbG(⊔α∈AIα) → Uj
(defined in the proof of Theorem 6.1) is bounded, for every 1 ≤ i < j there exists a bounded
operator db,i : PbG(⊔α∈AIα) → R such that

(9.11) hj(ϕ) =

j−1∑

i=1

db,i(ϕ)hi for every ϕ ∈ PbG(⊔α∈AIα).

By Lemma 7.4 in [5], for every hi ∈ Ug+1 ⊂ H(π(0)) (1 ≤ i ≤ g) there exists fi ∈ C∞(M)
such that ϕfi = hi and fi vanishes on

⋃
σ∈Fix(ψR)

Uσ.

Finally, for every σ ∈ Fix(ψR) ∩M ′ and any 0 ≤ k ≤ mσ − 2 we define a correcting
operator Rσ,k : Cmσ,k → Cmσ,k given by

(9.12) Rσ,k(ξ) = ξ −
j−1∑

i=1

db(σ,k),i(ϕξ)fi.

The correcting operator does not change the observable around all fixed points, but it
removes the influence of Lyapunov exponents of the K-Z cocycle on the asymptotic of
Birkhoff integrals.
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Proposition 9.2. Let σ ∈ Fix(ψR) ∩M ′ and 0 ≤ k ≤ mσ − 2. Then for every ξ ∈ Cmσ,k
we have

lim sup
T→∞

log
∣∣ ∫ T

0 Rσ,k(ξ)(ψtx) dt
∣∣

log T
≤ b(σ, k) for a.e. x ∈M ′;

lim sup
T→∞

log
∣∣ ∫ T

0 Rσ,k(ξ) ◦ ψt dt
∣∣
L1(M ′)

log T
≤ b(σ, k).

Proof. In view of Theorem 9.1, ϕRσ,k(ξ) ∈ PbG(⊔α∈AIα) and ϕ|Rσ,k(ξ)| ∈ P̂b(⊔α∈AIα) for

b = b(σ, k). Therefore, by the definition of the correcting operator,

hj(ϕRσ,k(ξ)) = hj(ϕξ)−
j−1∑

i=1

db,i(ϕξ)hj(ϕfi) = hj(ϕξ)−
j−1∑

i=1

db,i(ϕξ)hj(hi)

= hj(ϕξ)−
j−1∑

i=1

db,i(ϕξ)hi = 0.

Hence, by Corollary 6.2, for every τ > 0 we have ‖M(k)(S(k)ϕRσ,k(ξ))‖ = O(e(λ1b+τ)k).

Finally, Theorems 7.8 and 7.10 applied to g = ϕ1 (a = (m − 2)/2) and f = Rσ,k(ξ),
complete the proof. �

Note that, in view of (1.11), the inequalities are optimal whenever ψR on M is minimal.
Hence, it follows that the correction provided by the operator Rσ,k is the most optimal
one.

10. Complete power deviation spectrum of Birkhoff integrals

In this section by combining previous results, we prove the full deviation spectrum of
Birkhoff integrals for locally Hamiltonian flows.

Proof of Theorem 1.1. The proof splits into five parts.

Part I: Deviations around fixed points. For every σ ∈ Fix(ψR) and α ∈ Z≥0 × Z≥0

with |α| < mσ − 2, choose a map ξ̄ασ ∈ Cm(M) supported on the neighborhood Uσ of the

fixed point σ so that ∂βσ (ξ̄ασ ) = δαβ for all β ∈ Z≥0 × Z≥0 with |β| ≤ m, where δαβ is the
Kronecker delta, i.e. δαβ = 1 if α = β and δαβ = 0 if α 6= β. By definition, ξ̄ασ ∈ Cmσ,|α|(M).

Let ξασ := Rσ,|α|(ξ̄
α
σ ) ∈ Cmσ,|α|(M) and cσ,α(T, x) :=

∫ T
0 ξασ (ψt(x))dt. Then, in view of

Proposition 9.2 applied to ξ = ξ̄ασ , for every σ ∈ Fix(ψR) ∩M ′ and α ∈ Z≥0 × Z≥0 with
|α| < mσ − 2 we have (1.5) and (1.6). Recall that, by Lemma 8.1, the corresponding
distribution ∂ασ is bounded and ψR-invariant.

Part II: Construction of the remainder. Let us consider fr ∈ Cm(M) given by

(10.1) f =
∑

σ∈Fix(ψR)

∑

α∈Z2
≥0

|α|<mσ−2

∂ασ (f)ξ
α
σ + fr.

In view of Theorem 9.1, we have ϕfr ∈ P0G(⊔α∈AIα). Indeed, let {χσ : σ ∈ Fix(ψR)} ⊂
Cm(M) be a partition of unity such that for any pair of fixed points (σ, σ′) we have
χσ(x) = δσσ′ for all x ∈ Uσ′ . Then

fr =
∑

σ∈Fix(ψR)

(
f · χσ −

∑

|α|<mσ−2

∂ασ (f)ξ
α
σ

)
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and fσ := f ·χσ−
∑

|α|<mσ−2 ∂
α
σ (f)ξ

α
σ vanishes on

⋃
σ′∈Fix(ψR)\{σ}

Uσ′ and for every β ∈ Z
2
≥0

with |β| < mσ − 2 we have

∂βσ (fσ) = ∂βσ (f · χσ)−
∑

|α|<mσ−2

∂ασ (f)∂
β
σ (ξ

α
σ ) = ∂βσ (f)−

∑

|α|<mσ−2

δαβ∂
α
σ (f) = 0.

Therefore, (fσ)
(l)(σ) = 0 for all 0 ≤ l < mσ− 2. As fσ ∈ Cmσ,mσ−2, in view of Theorem 9.1,

it follows that for every σ ∈ Fix(ψR) ∩M ′ we have ϕfσ ∈ P0G(⊔α∈AIα) and

‖ϕfσ‖0 ≤ C‖fσ‖Cmσ−1 ≤ C‖f‖Cmσ−1‖χσ‖Cmσ−1 + C
∑

|α|<mσ−2

|∂ασ (f)|‖ξασ ‖Cmσ−1 .

By definition, for every σ ∈ Fix(ψR) and α ∈ Z
2
≥0 there exists Cσ,α > 0 such that |∂ασ (f)| ≤

Cσ,α‖f‖C|α| for every f ∈ Cm(M). It follows that there exists another C > 0 such that
‖ϕfr‖0 ≤ C‖f‖Cm−1 for every f ∈ Cm(M).

Part III: Deviation of the remainder fr. Applying Theorem 6.1 to a = 0, we have
a bounded (correction) operator hg+1 : P0G(⊔α∈AIα) → Ug+1 ⊂ H(π(0)) such that
hg+1(h) = h for every h ∈ Ug+1. Let us consider bounded operators di : P0G(⊔α∈AIα) → R

for 1 ≤ i ≤ g such that

(10.2) hg+1(ϕ) =

g∑

i=1

di(ϕ)hi for every ϕ ∈ P0G(⊔α∈AIα).

Let Di : C
m(M) → R, 1 ≤ i ≤ g be operators given by

Di(f) = di(ϕfr ), for f ∈ Cm(M).

Since Cm(M) ∋ f 7→ ϕfr ∈ P0G(⊔α∈AIα) and di : P0G(⊔α∈AIα) → R are bounded linear
operator, the operators Di are also bounded.

Recall that we have fi ∈ C∞(M) such that ϕfi = hi for 1 ≤ i ≤ g. Let us consider
fe ∈ Cm(M) given by

(10.3) fr =

g∑

i=1

Di(f)fi + fe.

For every 1 ≤ i ≤ g let ui(T, x) :=
∫ T
0 fi(ψt(x))dt. As limk→∞

1
k ‖Q(k)hi‖ = λi for

1 ≤ i ≤ g, in view of Proposition 7.12, we have (1.7) and (1.8) with νi = λi/λ1.
By the definition of fe, we have

ϕfe = ϕfr −
g∑

i=1

Di(f)ϕfi = ϕfr −
g∑

i=1

Di(f)hi.

As ϕfr ∈ P0G(⊔α∈AIα), we have ϕfe ∈ P0G(⊔α∈AIα) and

hg+1(ϕfe) = hg+1(ϕfr )−
g∑

i=1

Di(f)hg+1(hi) = hg+1(ϕfr )−
g∑

i=1

di(ϕfr )hi = 0.

By Corollary 6.2, it follows that

‖M(k)(S(k)ϕfe)‖ = O(eτk) for every τ > 0.

Let err(f, T, x) =
∫ T
0 fe(ψt(x))dt. If fe 6= 0 then, in view of Proposition 7.13 and Re-

mark 7.14, this gives (1.9) and (1.10).
By (10.1) and (10.3), we have

(10.4) f =
∑

σ∈Fix(ψR)

∑

α∈Z2
≥0

|α|<mσ−2

∂ασ (f)ξ
α
σ +

g∑

i=1

Di(f)fi + fe.

Passing to the Birkhoff integrals, we obtain (1.4).
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Part IV: Invariance of distributions. We need to show that the distributions Di for
1 ≤ i ≤ g are ψR-invariant. By (10.4), for every s ∈ R we have

f ◦ ψs =
∑

σ∈Fix(ψR)

∑

α∈Z2
≥0

|α|<mσ−2

∂ασ (f ◦ ψs)ξασ +

g∑

i=1

Di(f ◦ ψs)fi + (f ◦ ψs)e.

Since ∂ασ (f ◦ ψs) = ∂ασ (f) (see Lemma 8.1), it follows that

f̄ :=

g∑

i=1

Di(f ◦ ψs − f)fi = f ◦ ψs − f + fe − (f ◦ ψs)e.

Note that for any T > 0 we have
∣∣∣∣
∫ T

0
(f ◦ ψs − f)(ψtx) dt

∣∣∣∣ ≤
∫ s

0
|f(ψtx)| dt+

∫ T+s

T
|f(ψtx)| dt ≤ 2s‖f‖C0 .

In view of (1.9), it follows that

(10.5) lim sup
T→+∞

log
∣∣∣
∫ T
0 f̄(ψtx) dt

∣∣∣
log T

≤ 0 for a.e. x ∈M ′.

On the other hand,

ϕf̄ =

g∑

i=1

Di(f ◦ ψs − f)ϕfi =

g∑

i=1

Di(f ◦ ψs − f)hi ∈ Ug+1.

Suppose that, contrary to our claim, Di(f ◦ ψs − f) 6= 0 for some 1 ≤ i ≤ g. As h1, . . . , hg
are linearly independent,

h := ϕf̄ =

g∑

i=1

Di(f ◦ ψs − f)hi 6= 0.

In view of (3.4), it follows that

λ(h) := lim
k→∞

log ‖Q(k)h‖
k

≥ λg > 0.

By Proposition 7.12, this yields

lim sup
T→+∞

log
∣∣∣
∫ T
0 f̄(ψtx) dt

∣∣∣
log T

=
λ(h)

λ1
> 0 for a.e. x ∈M ′,

contrary to (10.5). Consequently, Di(f ◦ ψs) = Di(f) for all 1 ≤ i ≤ g and s ∈ R.

Part V: Lower bounds. Suppose that M ′ = M . Let us consider any f ∈ Cmσ,l with

f (l)(σ) 6= 0 for 0 ≤ l < mσ − 2 and σ ∈ Fix(ψR). Then ϕ = ϕf ∈ PbG(⊔α∈AIα) with
b = b(σ, l) > 0. The purpose of this part is to show (1.11).

In view of Theorem 9.1 (the last sentence) combined with Lemma 8.9 applied to a =
mσ−1
mσ

and ai = ∂
(i,l−i)
σ (f) for 0 ≤ i ≤ l (at least one of them is non-zero, since f (l)(σ) 6= 0),

there exists α ∈ A such that C+
α (ϕf ) 6= 0 or C−

α (ϕf ) 6= 0. We focus only on the case
C+
α (ϕf ) 6= 0. In the latter case, the proof runs similarly.

For every k ≥ 1 let us consider the interval
(
l
(k)
α , l

(k)
α + ε|I(k)α |

]
with

ε :=

(
|C+
α |

2
4+4b

b κ1+bdζ(1 + b)pb(ϕ)

)1/(1+b)

.
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As d, κ, ζ(b + 1) ≥ 1, by (4.1), we have 16εb ≤ 1. In view of Proposition 5.5, for k large

enough (|I(k)| ≤ δ) and for every x ∈
(
l
(k)
α , l

(k)
α + ε|I(k)α |

]
, we have

∣∣(x− l(k)α )1+b(S(k)ϕ)′(x)
∣∣ ≥ |C+

α |
2

− 22+bκ1+bdζ(1 + b)pb(ϕ)

(
ε|I(k)α |
|I(k)α |

)1+b

≥ |C+
α |
4

> 0.

In view of Lemma 4.7, there exists an interval Ĵ ⊂
(
l
(k)
α , l

(k)
α + ε|I(k)α |

]
such that

(10.6) |Ĵ | ≥ ε|I(k)α |
4

and |(S(k)ϕ)(x)| ≥ |C+
α |

4(ε|I(k)α |)b
≥ |C+

α |
|I(k)α |b

for x ∈ Ĵ .

Finally we can choose an interval J (k) ⊂ Ĵ such that

|J (k)| ≥ ε|I(k)α |/(24κ);(10.7)

dist(J (k), End(T (k))) ≥ ε|I(k)α |/24;(10.8)

dist((T (k))−1J (k), End(T (k))) ≥ ε|I(k)α |/(24κ).(10.9)

Let us consider the set

Bk : = {T gt (x, 0) : x ∈ (T (k))−1J (k), 0 ≤ t < (S(k)g)(x)}
= {T gt (x, 0) : x ∈ J (k),−(S(k)g)((T (k))−1x) ≤ t < 0}.

As g ≥ g > 0, by (10.6), (10.7) and (3.12), we have

Leb(Bk) =

∫

(T (k))−1J(k)

S(k)g(x) dx ≥ g|J (k)|min
β∈A

Qβ(k) ≥
δεg

24κ2
|I|.

For every (x′, r′) = T gr (x, 0) ∈ Bk let

τ0k = τ0k (x
′, r′) := (S(k)g)(x) − r and

τ1k = τ1k (x
′, r′) := (S(k)g)(x) + (S(k)g)(T (k)x)− r.

Then T g
τ0k
(x′, r′) = (T (k)x, 0) and

∫ τ1k

0
f(T gt (x

′, r′)) dt−
∫ τ0k

0
f(T gt (x

′, r′)) dt =

∫ (S(k)g)(T (k)x)

0
f(T gt (T

(k)x, 0)) dt

= (S(k)ϕf )(T
(k)x).

As x ∈ (T (k))−1J (k), by (10.6), we have |(S(k)ϕf )(T (k)x)| ≥ |C+
α |/|I(k)α |b. It follows that

(10.10) max
{∣∣∣
∫ τ1k

0
f(T gt (x

′, r′)) dt
∣∣∣,
∣∣∣
∫ τ0k

0
f(T gt (x

′, r′)) dt
∣∣∣
}
≥ |C+

α |
2|I(k)α |b

.

Choose τk = τk(x
′, r′) among τ0k and τ1k such that

∣∣∣∣
∫ τk

0
f(T gt (x

′, r′)) dt

∣∣∣∣ = max
{∣∣∣
∫ τ1k

0
f(T gt (x

′, r′)) dt
∣∣∣,
∣∣∣
∫ τ0k

0
f(T gt (x

′, r′)) dt
∣∣∣
}
.

As x ∈ (T (k))−1J (k), in view of (10.8), (10.9) and (4.14), we have

|(S(k)g)((T (k))−1x)| ≤ ‖M(k)(S(k)g)‖ + pa(S(k)g)O(|I(k)|−a)
|(S(k)g)(x)| ≤ ‖M(k)(S(k)g)‖ + pa(S(k)g)O(|I(k)|−a).

Moreover, by (6.6), (5.1) and (5.10), we have

‖M(k)(S(k)g)‖ ≤ 2κ

|I(k)| ‖S(k)g‖L1(I(k)) ≤
2κ‖g‖L1(I(0))

|I(k)| , pa(S(k)g) ≤ O(pa(g)).
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Therefore,

|(S(k)g)((T (k))−1x)| ≤ O(|I(k)|−1), |(S(k)g)(x)| ≤ O(|I(k)|−1).

Hence there exists C > 0 such that for every k ≥ 1 and (x′, r′) ∈ Bk we have τk(x
′, r′) ≤

C|I(k)|−1. In view of (10.10), it follows that for every (x′, r′) ∈ Bk we have

log |
∫ τk
0 f(T gt (x

′, r′)) dt|
log τk

≥ log(|C+
α ||I(k)|−b/2)

log(C|I(k)|−1)
.

Since (Bk)k≥1 is a sequence of asymptotically invariant sets (i.e. for every t ∈ R we have
Leb(Bk△T gt Bk) → 0 as k → ∞) and their measures are separated from zero, by the
ergodicity of the flow, a.e. (x, r) ∈ Ig belongs to Bk for infinitely many k. It follows that
for a.e. (x, r) ∈ Ig we have

lim sup
T→+∞

log |
∫ T
0 f(T gt (x, r)) dt|

log T
≥ lim sup

k→+∞

log |
∫ τk
0 f(T gt (x, r)) dt|

log τk

≥ lim
k→+∞

log(|C+
α ||I(k)|−b/2)

log(C|I(k)|−1)
= b.

Finally, (1.12) follows directly from (1.5) and (1.11), since cσ,α(T, x) =
∫ T
0 ξασ (ψt(x))dt

and ξασ ∈ Cmσ,|α|(M) with ∂ασ (ξ
α
σ ) = 1. �
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Appendix A. Proof of Theorem 3.2

We review the natural extension of the Rauzy-Veech induction and prove the full measure
of IETs satisfying FDC.

A.1. Extension of the Rauzy-Veech induction. Let G ⊂ S0
A be a Rauzy class and set

∆A := {λ ∈ R
A
>0 : |λ| = 1}. Let R : G × R

A
>0 → G × R

A
>0 be the standard Rauzy-Veech

map defined in §2.4 by

R(π, λ) = (π̃, λ̃), where λ̃ = A−1(π, λ) and π̃ is given by (2.1).

Then we define (normalized) Rauzy-Veech renormalization

R̃ : G ×∆A → G ×∆A, R̃(π, λ) = (π̃, λ̃/|λ̃|).
By Veech [27], there exists an R̃-invariant ergodic recurrent measure µG which is equivalent
to the product of the counting measure on G and the Lebesgue measure on ∆A. For every
π ∈ S0

A, let

Θπ :=
{
τ ∈ R

A :
∑

π0(α)≤k

τα > 0,
∑

π1(α)≤k

τα < 0 for 1 ≤ k ≤ d
}

and let

X(G) :=
⋃

π∈G

{
(π, λ, τ) ∈ {π} ×∆A ×Θπ : 〈λ,Ωπτ〉 = 1

}
.

Then the natural (invertible) extension of R̃ is of the form

R̂ : X(G) → X(G), R̂(π, λ, τ) =

(
π̃,

A−1(π, λ)λ

|A−1(π, λ)λ| , |A
−1(π, λ)λ|A−1(π, λ)τ

)
.
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The natural extension, constructed by Veech in [27], of the measure µG on X(G) is denoted

by µ̂G . Then µ̂G is R̂-invariant and R̂ is ergodic and recurrent with respect to µ̂G .

We extend the map A : G×∆A → SLA(Z) defined in §2.4 to Â : X(G) → SLA(Z) given

by Â(π, λ, τ) = A(π, τ). Let us consider the extended cocycle Â : Z×X(G) → SLA(Z)

Â(n)(π, λ, τ) =

{
Â(π, λ, τ) · Â(R̂(π, λ, τ)) · · · Â(R̂n−1(π, λ, τ)) if n ≥ 0

Â(R̂−1(π, λ, τ)) · Â(R̂−2(π, λ, τ)) · · · Â(R̂−n(π, λ, τ)) if n < 0.

Then

(A.1) Â(n)(π, λ, τ) = A(n)(π, τ) if n ≥ 0.

Let Y ⊂ X(G) be a subset such that 0 < µ̂G(Y ) < ∞. For a.e (π, λ, τ) ∈ Y , let

r(π, λ, τ) ≥ 1 by the first return time of (π, λ, τ) for the map R̂. Denote by R̂Y : Y → Y

the induced map and by ÂY : Y → SLA(Z) the induced cocycle

R̂Y (π, λ, τ) = R̂r(π,λ,τ)(π, λ, τ), ÂY (π, λ, τ) = Â(r(π,λ,τ))(π, λ, τ)

for a.e (π, λ, τ) ∈ Y . Let µ̂Y be the restriction of µ̂G to Y .

A.2. Oseledets splitting. Assume that log ‖ÂY ‖ and log ‖Â−1
Y ‖ are µ̂Y -integrable. By

the Oseledets multiplicative theorem, the symplecticity of ÂY (see [31]) and the simplicity
of spectrum (see [1]), there exist Lyapunov exponents λ1 > . . . > λg > λg+1 = 0 such that
for µ̂Y -a.e. (π, λ, τ) ∈ Y we have a splitting

R
A =

⊕

1≤i≤g+1

Fi(π, λ, τ) ⊕
⊕

1≤i≤g

F−i(π, λ, τ),

for which

lim
n→±∞

1

n
log ‖Â(n)

Y (π, λ, τ)t ↾Fi(π,λ,τ) ‖ = λi if 1 ≤ i ≤ g + 1(A.2)

lim
n→±∞

1

n
log ‖Â(n)

Y (π, λ, τ)t ↾F−i(π,λ,τ) ‖ = −λi if 1 ≤ i ≤ g(A.3)

Â
(n)
Y (π, λ, τ)tFi(π, λ, τ) = Fi(R̂n

Y (π, λ, τ))(A.4)

for all i ∈ {−g, . . . ,−1, 1, . . . , g + 1} and n ∈ Z and

dimF±i(π, λ, τ) = 1 for i = 1, . . . , g.

Moreover, for every partition {I1, I2} of the set {−g, . . . ,−1, 1, . . . , g + 1} we have

(A.5) lim
n→±∞

1

n
log
∣∣∣ sin∠

(⊕

i∈I1

Fi(π, λ, τ),
⊕

i∈I2

Fi(π, λ, τ)
)∣∣∣ = 0,

and

(A.6) H(π) :=
⊕

i 6=g+1

Fi(π, λ, τ).

For every 1 ≤ j ≤ g + 1 let

Ej(π, λ, τ) :=
⊕

j≤i≤g+1

Fi(π, λ, τ) ⊕
⊕

1≤i≤g

F−i(π, λ, τ)

Uj(π, λ, τ) :=
⊕

1≤i<j

Fi(π, λ, τ) ⊂ H(π).

Then
Ej(π, λ, τ) ⊕ Uj(π, λ, τ) = R

A.

By (A.4), for every n ∈ Z we have

Â
(n)
Y (π, λ, τ)tEj(π, λ, τ) = Ej(R̂n

Y (π, λ, τ)), Â
(n)
Y (π, λ, τ)tUj(π, λ, τ) = Uj(R̂n

Y (π, λ, τ)).
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In view of (A.2), (A.3) and (A.5), for every 1 ≤ j ≤ g + 1 we have

lim
n→+∞

1

n
log ‖Â(n)

Y (π, λ, τ)t ↾Ej(π,λ,τ) ‖ = λj(A.7)

lim
n→+∞

1

n
log ‖Â(−n)

Y (π, λ, τ)t ↾Uj(π,λ,τ) ‖ = −λj−1 if j ≥ 2(A.8)

lim
n→±∞

1

n
log
∣∣∣sin∠

(
Ej(R̂n

Y (π, λ, τ)), Uj(R̂n
Y (π, λ, τ))

)∣∣∣ = 0 if j ≥ 2.(A.9)

A.3. Proof of Theorem 3.2. The arguments used in the proof runs similarly to that
used to prove Theorem 3.8 in [8]. We will omit some repetitive arguments.

Proof of Theorem 3.2. Let us consider a subset Y ⊂ X(G) which satisfies the assumptions
below:

(i) the projection Y of Y on G ×ΛA is precompact with respect to the Hilbert metric;
(ii) there exists 0 < δ < 1 such that for every (π, λ, τ) ∈ Y we have

min
{{ ∑

π0(α)≤k

τα : 1 ≤ k < d
}
∪ {(Ωπ(τ))α : α ∈ A}

}
> δmax{(Ωπ(τ))α : α ∈ A};

(iii) µ̂Y is finite;

(iv) the functions log ‖ÂY ‖ and log ‖Â−1
Y ‖ are µ̂Y -integrable.

Acceleration. In view of (A.8) and (A.7), for every τ > 0 the maps

Y ∋ (π, λ, τ) 7→ sup
n≥0

e−(λj−τ)n‖Â(n)
Y (π, λ, τ)t ↾Ej(π,λ,τ) ‖ ∈ R for 1 ≤ j ≤ g + 1,

Y ∋ (π, λ, τ) 7→ sup
n≥0

e(λj−1+τ)n‖Â(−n)
Y (π, λ, τ)t ↾Uj(π,λ,τ) ‖ ∈ R for 2 ≤ j ≤ g + 1

are a.e. defined and measurable. Therefore, there exists a closed subset K ⊂ Y with
µ̂Y (K)/µ̂Y (Y ) > 1 − τ/2 and a constant C > 0 such that if (π, λ, τ) ∈ K then for every
n ≥ 0 we have

‖Â(n)
Y (π, λ, τ)t ↾Ej(π,λ,τ) ‖ ≤ Ce(λj+τ)n for 1 ≤ j ≤ g + 1,(A.10)

‖(Â(n)
Y (R−n

Y (π, λ, τ))t ↾Uj(π,λ,τ))
−1‖ ≤ Ce(−λj−1+τ)n for 2 ≤ j ≤ g + 1.(A.11)

Let R̂K : K → K be the induced map and let ÂK : K → SLA(Z) be the induced
cocycle, i.e.

R̂K(π, λ, τ) = R̂rK(π,λ,τ)
Y (π, λ, τ),

where rK(π, λ, τ) ≥ 1 is the first return time of (π, λ, τ) ∈ K to K for the map R̂Y and

Â
(n)
K = Â

(r
(n)
K )

Y for every n ≥ 0,

where r
(n)
K :=

∑
0≤i<n rK ◦ R̂i

K for every n ≥ 0. Then

(A.12)
r
(n)
K (π, λ, τ)

n
→ µ̂Y (Y )

µ̂Y (K)
∈ (1, 1 + τ) for a.e. (π, λ, τ) ∈ K.

In view of (A.10) and (A.11), for every (π, λ, τ) ∈ K,

‖Â(n)
K (π, λ, τ)t ↾Ej(π,λ,τ) ‖ ≤ Ce(λj+τ)r

(n)
K (π,λ,τ) for 1 ≤ j ≤ g + 1,(A.13)

‖(Â(n)
K (R−n

K (π, λ, τ))t ↾Uj(π,λ,τ))
−1‖ ≤ Ce(−λj−1+τ)r

(n)
K (R−n

K (π,λ,τ))(A.14)

for 2 ≤ j ≤ g + 1. Moreover, for a.e. (π, λ, τ) ∈ K,

(A.15) lim
n→+∞

1

n
log ‖Â(n)

K (π, λ, τ)‖ = λ1
µ̂Y (Y )

µ̂Y (K)
∈ (λ1, λ1(1 + τ)).
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Since the maps log ‖ÂK‖ and log ‖Â−1
K ‖ are µ̂K-integrable, for a.e. (π, λ, τ) ∈ K,

(A.16) lim
n→+∞

1

n
log ‖ÂK(R̂n

K(π, λ, τ))‖ = 0.

By the ergodicity of R̂ : X(G) → X(G), for a.e. (π, λ, τ) ∈ X(G)
there exists n1 ≥ 0 such that R̂n1(π, λ, τ) ∈ K

and R̂n1(π, λ, τ) satisfies (A.9), (A.12), (A.15) and (A.16).
(A.17)

By Fubini argument, there exists a measurable subset Ξ ⊂ G ×ΛA such that µG(G ×ΛA \
Ξ) = 0 and for every (π, λ) ∈ Ξ, there exists τ ∈ Θπ such that (π, λ, τ) ∈ X(G) satisfies
(A.17).

Full measure. We now show that every (π, λ) ∈ Ξ satisfies the FDC.
Suppose that (π, λ) ∈ Ξ and (π, λ, τ) ∈ X(G) satisfies (A.17). Then the accelerating

sequence (nk)k≥0 required by Definition 2 is defined as follows:

• n0 = 0;

• for k ≥ 1 we take nk so that R̂nk(π, λ, τ) = R̂k−1
K R̂n1(π,λ,τ)(π, λ, τ).

Since (π, λ, τ) is Oseledets generic, (π, λ) is also Oseledets generic with the Oseledets
filtration

{0} = E0(π, λ) ⊂ E−1(π, λ) ⊂ . . . ⊂ E−g(π, λ) ⊂ Ecs(π, λ)

= Eg+1(π, λ) ⊂ Eg(π, λ) ⊂ . . . ⊂ E1(π, λ) = Γ

given by

Ej(π, λ) := Ej(π, λ, τ) for j = −1,−2, . . . ,−g, g + 1, g, . . . , 2, 1.

We can define a complementary filtration {0} = U1 ⊂ U2 ⊂ . . . ⊂ Ug ⊂ Ug+1 by

Uj = Uj(π, λ, τ) for 1 ≤ j ≤ g + 1.

Then for every k ≥ 1,

E
(k)
j = Ej(R̂k−1

K (R̂n1(π, λ, τ))) and U
(k)
j = Uj(R̂k−1

K (R̂n1(π, λ, τ))).

By the definition of Q and (A.1), Q(k, l) = Â
(l−k)
K (R̂k−1

K (R̂n1(π, λ, τ)))t for 1 ≤ k ≤ l, so

‖Q|Ej (k, l)‖ =
∥∥Â(l−k)

K (R̂k−1
K (R̂n1(π, λ, τ)))t ↾

Ej(R̂
k−1
K (R̂n1 (π,λ,τ)))

∥∥

‖Q|Uj (k, l)
−1‖ =

∥∥(Â(l−k)
K (R̂k−1

K (R̂n1(π, λ, τ)))t ↾Uj(R̂
k−1
K (R̂n1 (π,λ,τ))))

−1
∥∥

=
∥∥(Â(l−k)

K (R̂−(l−k)
K (R̂l−1

K ◦ R̂n1(π, λ, τ)))t ↾
Uj(R̂

k−1
K (R̂n1 (π,λ,τ)))

)−1
∥∥.

Since R̂k−1
K ◦ R̂n1(π, λ, τ), R̂l−1

K ◦ R̂n1(π, λ, τ) ∈ K for every 1 ≤ k ≤ l, by (A.13) and
(A.14), we have

‖Q|Ej (k, l)‖ ≤ Ce(λj+τ)r
(l−k)
K (R̂k−1

K ◦R̂n1 (π,λ,τ)) for 1 ≤ j ≤ g + 1,

‖Q|Uj (k, l)
−1‖ ≤ Ce(−λj−1+τ)r

(l−k)
K (R̂k−1

K ◦R̂n1 (π,λ,τ)) for 2 ≤ j ≤ g + 1.

Let us consider a sequence (rn)n≥0 given by r0 = 1 and for n ≥ 1,

rn = rK(R̂n−1
K ◦ R̂n1(π, λ, τ))).

Then for all 1 ≤ k ≤ l we have r(k, l) = r
(l−k)
K (R̂k−1

K ◦ R̂n1(π, λ, τ)), so

‖Q|Ej (k, l)‖ ≤ Ce(λj+τ)r(k,l) and ‖Q|Uj (k, l)
−1‖ ≤ Ce(−λj−1+τ)r(k,l).

Both inequalities extend to the case where k = 0. Then the constant C must be multiplied
additionally by max{‖Q(0, 1)‖, eλ1‖Q(0, 1)−1‖}. This gives (3.6) and (3.7).
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Return time estimate. Since R̂n1(π, λ, τ) ∈ K satisfies (A.12), (A.15) and (A.16), we also
have

r(0, n)

n
=

1 + r
(n−1)
K (Rn1(π, λ, τ))

n
→ µ̂Y (Y )

µ̂Y (K)
∈ (1, 1 + τ),(A.18)

1

n
log ‖Z(n+ 1)‖ =

1

n
log ‖ÂK(R̂n−1

K ◦ Rn1(π, λ, τ))‖ → 0,

1

n
log ‖Q(1, n)‖ =

1

n
log ‖Â(n−1)

K (Rn1(π, λ, τ))‖ → λ1
µ̂Y (Y )

µ̂Y (K)
∈ (λ1, λ1(1 + τ)).

As ‖Q(0, 1)−1‖−1‖Q(1, n)‖ ≤ ‖Q(0, n)‖ ≤ ‖Q(0, 1)‖‖Q(1, n)‖, this gives

(A.19)
1

n
log ‖Q(n)‖ → λ1

µ̂Y (Y )

µ̂Y (K)
∈ (λ1, λ1(1 + τ)).

The above convergences lead directly to (3.5), (3.8) and (3.9).

Angle estimate. Since,

log
∣∣∣sin∠

(
E

(k)
j , U

(k)
j

)∣∣∣
log ‖Q(k)‖ =

log
∣∣∣sin∠

(
Ej(R̂k−1

K (R̂n1(π, λ, τ))), Uj(R̂k−1
K (R̂n1(π, λ, τ)))

)∣∣∣

r
(k−1)
K (Rn1(π, λ, τ))

· r
(k−1)
K (Rn1(π, λ, τ))

k

k

log ‖Q(k)‖ ,

in view of (A.9), (A.18) and (A.19),

lim
k→∞

log
∣∣∣sin∠

(
E

(k)
j , U

(k)
j

)∣∣∣
log ‖Q(k)‖ =

0

λ1
= 0 > −τ.

This leads to (3.11).

Rokhlin tower condition. Since R̂nk(π, λ, τ) ∈ Y and the set Y ⊂ X(G) is chosen to satisfy
the conditions (i) and (ii), by the proof of Lemma 3.6 in [8], (nk)k≥0 is a Rokhlin-balanced
accelerating sequence. Thus (nk)k≥0 satisfies (3.10) and (RT). �
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