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ON THE ASYMPTOTIC GROWTH OF BIRKHOFF INTEGRALS FOR LOCALLY
HAMILTONIAN FLOWS AND ERGODICITY OF THEIR EXTENSIONS

KRZYSZTOF FRACZEK AND CORINNA ULCIGRAI

ABsTRACT. We consider smooth area-preserving flows (also known as locally Hamiltonian flows) on surfaces
of genus g > 1 and study ergodic integrals of smooth observables along the flow trajectories. We show that
these integrals display a power deviation spectrum and describe the cocycles that lead the pure power
behaviour, giving a new proof of results by Forni (Annals 2002) and Bufetov (Annals 2014) and generalizing
them to observables which are non-zero at fixed points. This in particular completes the proof of the original
formulation of the Kontsevitch-Zorich conjecture. Our proof is based on building suitable correction operators
for cocycles with logarithmic singularities over a full measure set of interval exchange transformations (IETs),
in the spirit of Marmi-Moussa-Yoccoz work on piecewise smooth cocycles over IETs. In the case of symmetric
singularities, exploiting former work of the second author (Annals 2011), we prove a tightness result for a
finite codimension class of observables. We then apply the latter result to prove the existence of ergodic
infinite extensions for a full measure set of locally Hamiltonian flows with non-degenerate saddles in any
genus g > 2.

1. INTRODUCTION AND MAIN RESULTS

In this paper we give a contribution to the study of ergodic theory of smooth area-preserving flows on
higher genus surfaces (also known as locally Hamiltonian flows) as well as to the infinite ergodic theory of
flow extensions. The class of surface flows that we work with is introduced in § [I.]] We study in particular
deviations of ergodic averages, by proving the existence of a power deviation spectrum for the ergodic integrals
along the flow. This extends and gives a new proof of results by Forni [23] and Bufetov [6] for observables
with compact support outside a neighbourhood of the fixed points of the flow, to observables which have full
support and are non-zero at singularities. We then use our result to show the existence of infinite extensions
of such flows which are ergodic with respect to the natural infinite invariant measure. This result generalizes
to higher genus a classical result by Krygin [42] in genus one and extends a previous result in higher genus
by the authors (see [20], where we showed the existence of ergodic extensions in any genus, but only for flows
with self-similar foliations) to a full measure set of flows.

1.1. Locally Hamiltonian flows. Let M be a compact, connected, orientable (smooth) surface and let g
denote its genus. We will assume throughout that g > 1. We will consider smooth flows on M preserving
a smooth measure p (i.e. absolutely continuous measure with smooth positive density), see § These
flows, also known in the literature as multi-valued Hamiltonian, are locally Hamiltonian flows: indeed, the
flow g := (¢t)ter is locally Hamiltonian in the sense that around any point in M one can find coordinates
(x1,22) on M in which g is locally given by the solution to the equations

{,.El = 8H/8x2,
ig = —6H/8x1

for some smooth real-valued Hamiltonian function H. A global Hamiltonian H cannot be in general defined
(see [50], § 1.3.4), but one can think of g as globally given by a multi-valued Hamiltonian function. We
will assume throughout this paper that the fixed points of ¥r are non-degenerate (also called Morse fixed
points), namely that for every fixed point p the local Hamiltonian H is a Morse function at p.

The interest in the study of multi-valued Hamiltonians and the associated flows in higher genus (g > 1)
and, in particular, in their ergodic and mixing properties, was highlighted by Novikov [51] in connection
with problems arising in solid-state physics as well as in pseudo-periodic topology (see e.g. the survey [72]
by A. Zorich). The simplest examples of locally Hamiltonian flows with singularities on a torus, i.e. flows
with one center and one simple saddle (see Figure , were studied by V. Arnold in [2] and are nowadays
often called Arnold flows]

On the space of locally Hamiltonian flows, one can define a topology (see § as well as a measure
class (the Katok fundamental class, see §. Our understanding of the typical chaotic properties (in the
measure theoretical sense) of these flows has advanced a lot in the last forty years. While results concerning
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IMore precisely, referring to the decomposition described in § we call Arnold flow the restriction to a minimal
component obtained by removing the center and the disk filled by periodic orbits around it (called island), which, as Arnold
shows in [2], is always bounded by a saddle loop.
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(a) An Arnold flow (g =1) (b) A flow on a surface of g =3

FIGURE 1. Examples of locally Hamiltonian flows on a surfaces.

orbit properties, such as minimality or ergodicity, were known first, since they can be simply deducecﬂ from
classical results which were proved using Teichmiiller dynamics (see below as well as § , results on
finer chaotic properties such as (weak or multiple) mixing, or recently spectral and disjointness results, were
proved only in the last twenty years, since they depend on the movement along trajectories (i.e. on time-
reparametrization) and require more delicate estimates exploiting the locally Hamiltonian parametrization
of the orbits. We summarize some of the known results in § 2.1.4] below.

In the classification of chaotic behaviour in locally Hamiltonian flows it is crucial to distinguish between
two open sets (complementary, up to measure zero, see § for more details): in the first open set, which
we will denote by Z,in, the typical flow is minimal, in the sense that the orbits of all points which are not
fixed points are dense in M. On the other open set, that we call Z_in, the flow is not minimal, but one
can decompose the surface into a finite number of subsurfaces with boundary M;, i = 1,..., N such that for
each i either M; is a periodic component, i.e. the interior of M; is foliated into closed orbits of ¥r (in Figure
(b) one can see three periodic components, namely two disks and one cylinder, all foliated by closed orbits),
or M; is such that the restriction of ¢g to M; is minimal in the sense above (two such subsurfaces are visible
in the example in Figure|l] (b)). The latter are called minimal components and there are at most g of them
(where g is the genus of M), see §

The study of locally Hamiltonian flows is intertwined with the study another famous class of flows on sur-
faces, namely translation (linear) ﬂowsﬂ on translation surfaces, which are at the center of Teichmiiller
dynamics. FEach minimal component of a locally Hamiltonian flow g indeed can be seen as a time-
reparametrization (or a time-change) of a translation flow. Notice though that the time-change is singular at
the fixed points Fix(ig) of g (see §and Remark for a more precise description of the relation). One
of the results which can be inferred from classical results on translation flows (proved through Teichmiiller
dynamics) is that the typical flow (in the measure theoretical sense) in %, is ergodic (with respect to )
and the typical flow in %, is ergodic when restricted to each minimal component (see §; it also
follows that the associated foliation into flow trajectories (or equivalently any Poincaré map of the flow) is
uniquely ergodic (i.e. there is an unique invariant probability transverse measure, the transverse measure
induced by p). Notice, though, that any locally Hamiltonian flow g with Fiz(yg) # 0 is not uniquely
ergodic (as a smooth flow on a compact manifold): indeed, in the presence of singularities, there are always
trivial invariant measures (Dirac deltas) supported at singularities. The presence of such measures and their
effect on ergodic integrals plays a key role in this work.

1.2. Power deviations and asymptotic behaviour of ergodic averages. Let g denote either a locally
Hamiltonian flow on M in %,,;,, or the restriction of ¢g in -, to a minimal component M;, that by abusing
the notation we will again denote by M here, and assume that g is ergodic (and the associated foliation is
uniquely ergodic). Thus, for every smooth observable f : M — R and for almost everyﬁ initial point p € M,

20ne can show (see for example [72]) that every minimal locally Hamiltonian flow on M (as well as the restriction of a locally
Hamiltonian flow to one of its minimal components (see § has the same trajectories (up to time-reparametrization) as a
translation flow. Thus, one can infer properties which depend only on trajectories as sets and not on their time-parametrization,
such as minimality and ergodicity, from the known properties of typical translation flows.

STranslation flows are unit speed linear flows on translation surfaces, namely surfaces which are locally Euclidean outside a
finite number of conical singularities with cone angles of angle 27k, k € N. On these surfaces, one has a well defined notion of
direction and for each 6 € S! one can define a directional flow h% = (h¥)¢er which moves points along lines in direction 0 at
unit speed.

4Equidistribution of almost very point follows simply by ergodicity and Birkhoff ergodic theorem. Unique ergodicity yields a
stronger conclusion if the observable if supported outside the set of fixed points Fiz(¢r): in this case equidistribution, namely
(1.1), holds for any regular p, i.e. any p such that its forward orbit is (¢t(p))¢>0 is dense). One can show though, that this is not
the case for observables f which are non-zero at some fixed points, namely there are regular points for which equidistribution
does not hold.



ON BIRKHOFF INTEGRALS FOR LOCALLY HAMILTONIAN FLOWS 3

the ergodic averages of f converge to the spatial averages, i.e.

T
(1) iim L2 = [ g, where Ir(fp) = Ir(pie) = [ fnt)ar

T—+oc0 T M 0
With deviations of ergodic averages one refers to the study of the oscillations of the ergodic integrals I (f, p)
(or the related Birkhoff sum over an interval exchange map obtained as Poincaré section) of an observable
f: M — R of zero mean [, f(p)dpu = 0 over the orbit of (typical) point p € M. A distinctive phenomenon
first discovered experimentally by A. Zorich in the 1990s (see [70] and also [40, [70]) is that deviations of
ergodic averages have polynomial nature, in the following sense: for a typical flow, for suitable classes of
observables, one can find an exponent v = v(f) with 0 < v < 1 such that, I7(f,p) ~ O(T") for every regular
point p, where we use the notation
(1.2) Ir(f,p) ~ O(T") & lim sup log I (/. p) =v

T—o0 log T

Kontsevich and Zorich explained this phenomenon heuristically using renormalization and conjectured that,
at least in the case of locally Hamiltonian flows with non-degenerate fixed pointsﬂ there is a full deviation
spectrum, namely there are exactly g positive exponents 0 < vy < --- < v < vy := 1 and a corresponding
filtration of Hyy1 C Hy C --- C Hp of the space of smooth functions such that if f € H;\H;t+1, with
1 <i < g, then It (f,p) ~ O(T") (see [40]). Zorich gave in [7I] a rigorous proof of this phenomenon for
ergodic integrals of a special class of functions f : M — R, those which represent cohomology classeﬂ Forni
proved most of this conjecture in [23] (with the exception of simplicity, namely the strict inequalities between
Vg < Vg—1 < --- < vy, which was later proved by Avila and Viana in [5], while the positivity of v, > 0 is a
crucial part of [23]) for smooth observables and typical flows in the closely related class of translation flows
on translation surfaces (see footnote. In the setting of locally Hamiltonian flows, he considers the minimal
case Yr € Upin and has the further assumption that the (smooth) observable f is compactly supported outside
of a neighbourhood of the finite set of fixed points Fix(ir) (or, more generally, in the Sobolev regularity
setting, that at least the function f vanishes on Fix(¢r), see [23] as well as [25]). We comment below on the
consequences of this assumption (see Remark .

The power spectrum of ergodic integrals is related in [71], 23] to Lyapunov exponents of the Kontsevich-
Zorich cocycle (so that in particular the strict inequalities v, < v4_1 < --- < 11 hold in view of the simplicity
of the Lyapunov spectrum, which is the result later shown by Avila-Viana in [5] work); the filtration is
described by Forni in [23] in terms of kernels of what we nowadays call Forni’s invariant distributions. We
refer the interested reader to [72} 24}, 25 [5] for surveys of this phenomenon; in [24] other instances of parabolic
flows for which deviations can be studied via renomalization are also mentioned.

A finer analysis of the behaviour of Birkhoff sums or integrals, beyond the size of oscillations, appears in
the work [6] by Bufetov, as well as in the work [45] by Marmi, Moussa and Yoccoz. In [6], Bufetov studies
limit theorems for ergodic integrals of translation flows (and describe weak limit distributions) in terms of
objects that he calls Holder cocycles (or, in the more general context of Markov compacta, finitely-additive
measures) and turn out to be dual to Forni’s invariant distributions (see [6] for details). In particular,
he shows that for a full measure set of translation flows hr := (h¢)ter (With respect to the Masur-Veech
measure), there exists g — 1 cocycleﬂ D;(t,z) : Rx M — R, for i = 2,...,g (closely related to the limit
shapes introduced independently at the same time by Marmi, Moussa and Yoccoz in [45]), each of which
has a pure power growth, i.e. such that |®;(T,z)| ~ O(T") (in the sense of above), which, together
with the trivial cocycle ®1(¢,x) = t, encode the asymptotic behaviour of the ergodic integrals along the flow,
by providing an asymptotic expansion up to subpolynomial terms, i.e. such that

T
Ir(f.p, hs) = / F(he(p))ds = 1T + cx®o(T,p) + -+ ¢g@(T,p) + err(f, T, p),

where the error term err(f,T,p) is subpolynomial, i.e. for any ¢ > 0 there exists C. > 0 such that
lerr(f,T,p)| < CT¢. The constant of the linear leading term is ¢; = [ fdw, where w is the underlying
translation surface area form, and the other coefficients can be computed evaluating invariant distributions
D;fori=1,...,g,ie ¢; = D;(f).

5This is the framework proposed in the paper [40], where Kontsevich (based on joint work with Zorich) formulates the
conjecture on the existence of the deviation spectrum (which later became known as Kontsevich-Zorich conjecture). They first
state the result for homology classes (or equivalently characteristic functions over interval exchange transformations) and then
suggest that the phenomenon should hold more generally if one considers, for simplicity, locally Hamiltonian flows with Morse
saddles and the space of smooth functions.

6In the setting of [71], this class of functions reduces to the study of Birkhoff sums of piecewise constant functions over
interval exchange maps.

"Here ®;(t, ) is a cocycle over the flow hy in the sense that ®;(t + s, ) = ®;(t, z) + ®; (s, he(z))



4 K. FRACZEK AND C. ULCIGRAI

1.3. Ergodicity of extensions. A classical way to visualize and study the behaviour of ergodic averages
of an observable f : M — R along the flow g on M is to consider the flow on M x R given by coupling ¥g
with the differential equation on R

d

y _
a—f(wt(p)), yeR, teR.

One can see that the solution is given by the flow ®% := (®/),cg on M x R given by the formula

(1.3) ol (p.y) = (wxp), y+ / f(ws(p))d8> . peM yeR teR.

Thus, the flow @HJQ is a skew product and provides an extension to M x R of the flow ¢g on M (i.e. it projects
on the M coordinate to the flow ¢g). The motion in the R fiber is determined by the oscillations of the
ergodic integrals of f along vg. Notice that @Dé preserves the infinite product measure p X Leb, where p is
the invariant measure for yg and Leb denotes the Lebesgue measure on R.

The study of these type of skew products goes back to Poincaré [52] and his work on differential equations
on R? (in the case when 9 is a smooth flow on the torus); the study of infinite skew product extensions
in greater generality became later a central topic in infinite ergodic theory, see for example the monographs
[1, 59]. A basic question is whether the flow <I>]£ is ergodic (see § or, if not, what is a description of
ergodic components. A necessary condition for ergodicity is that f has zero mean, ie. [ o fdp = 0, since

otherwise @HQ has a drift and is not even recurrent (see § . In the setting of extensions, a property
completely opposite to ergodicity is reducibility. If the skew product on M x R is reducible (see § for
the definition), M x R is foliated into invariant sets for @Dé, on which the dynamics is conjugated to g on
M.

Taking a suitably chosen Poincaré section (see § for details), the ergodicity of (I)u]; is equivalent to
the ergodicity of a skew product automorphism T, of the strip I x R, where I = [0,1), of the form

(1.4) To(z,y) = (T(x),y +(x)), wel, yeR,

where T : I — I is a rotation (i.e. the map T(x) = z + @ mod 1) when M is a torus (¢ = 1), or more in
general, for any g > 1, an interval exchange transformation (see §, while ¢ : I — R is a function with
singularities (i.e. points where the function blows up) which are are logarithmic (see § for the precise
definition) whenever ¥r has only non-degenerate saddles (while polynomial in presence of a degenerate
saddle).

Remark 1.1. Notice also that if f is compactly supported in M\Fix(¢¥r) (or, more generally, it vanishes
on Fix(yR), see § in particular Proposition then the function ¢ in is piecewise absolutely
continuous (or even piecewise smooth), in particular does not have logarithmic singularities. Thus, the
singularities are a combined effect of the nature of the locally Hamiltonian parametrization, together with
the assumption that (the jet of) f does not vanish identically zero at Fix(¢g).

We stress that the problem of ergodicity of skew product extensions over IETSs is currently actively re-
searched, but still widely open. See for example [29] 10, 211 [17) 28] (3], 54 [7] for some results in particular
settings.

In the genus one case, the existence of ergodic skew products was first discovered by Krygin, in [42],
in the case where the flow g has no singularities. Ergodicity of extensions of typical Arnold ﬂowsﬁ (or,
correspondingly, of skew products of the form where T is a rotation and ¢ has one asymmetric logarith-
mic singularity, see § for definitions), was proved by Fayad and Lemarnczyk in [14], where they proved
ergodicity for a full measure set of rotation numbers. This case is particularly delicate since the underlying
Arnold flows are mixing; in a related easier case (namely the case when T is a rotation but ¢ in has
one symmetric logarithmic singularity, see § , ergodicity was proved previously by Lemanczyk and the
first author, see [19].

Very little is understood in the case of infinite skew product extensions (i.e. extensions by a non-compact
fiber, for which the natural invariant measure is infinite) of locally Hamiltonian flows in higher genus g > 2,
even in the case when f : M — R has compact support in M\Fix(¢r) and the cocycle ¢ is piecewise-
smooth (see Remark or even piecewise-constant. Some specific results for piecewise constant or piecewise
absolutely continuous cocycles over IETs with d > 2 were proved for example in [10] 2T], [22] 44].

We considered the case of a locally Hamiltonian flow g with non-degenerate saddles and a general
observable f : M — R and, correspondingly, of a cocycle ¢ with logarithmic (symmetric) singularities in our
previous joint work [20], where we showed the existence of ergodic extensions in any genus, but for a very
restrictive class of locally Hamiltonian flows. More precisely, in [20] we could treat only the special (measure

8Recall that an Arnold flow is the restriction to the minimal component of a locally Hamiltonian flow in genus one with one
saddle and one center, see Figure m
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zero) class of locally Hamiltonian flows in %,;, for which the Poincaré section can be chosen to be a self-
similar interval exchange transformatiorﬂ and restrict the observable f to belong to an infinite dimensional
(but finite codimension g) space. For extensions of flows in this special class, though, we could provide a
complete description of the ergodic behavior and prove a dichotomy between ergodicity and reducibility. One
of the main results of this paper is to show that this dichotomy actually holds also for a full measure set of
such minimal locally Hamiltonian flows (see the Main Theorem [1.2 below).

1.4. Main results. One of the main results of this paper is that infinite ergodic extensions exist in any
genus g > 1 for a full measure set of (minimal) locally Hamiltonian flows with non-degenerate fixed points
(with respect to the Katok fundamental class for each stratum, see § . More precisely, we are able to
extend the result previously proved in [20] only for a measure zero class of self-similar IETS to a full measure
set of locally Hamiltonian flows, by proving the following dichotomy for the dynamics of the extensions:

Theorem 1.2 (Ergodic or reducible extensions of locally Hamiltonian flows). For a full measure
set of locally Hamiltonian flows Yr with non-degenerate saddles in Upin, for any e > 0, for any f in a infinite
dimensional (finite codimension) subspace K C €*T¢(M), we have the following dichotomy:

® If > crix(un) |/ (@)] # O then the extension @Hé is ergodic;
o [If ZweFix(wR) |f(x)] = 0 then the extension @Hé is reducible.

We will comment later on the full measure set, which is explicitly described by a new Diophantine-type
condition (see § for the definition) as well as on the infinite dimensional (invariant) subspace K (which
will be defined as the kernel of g invariant distributions, see § .

The proof of this ergodicity result takes as starting point our results on deviations of ergodic averageﬂ of
f, which is of independent interest and we now state. As it is clear from the dichotomy, to produce ergodic
extensions one needs to study observables f : M — R which do not vanish at (at least one) the saddle
pointﬂ in Fix(¢r).

For ergodic integrals of (typical) minimal locally Hamiltonian flows in Uy, (see Theorem , as well as
for minimal components of (typical) locally Hamiltonian flows in U_,;, (see Theorem7 we give asymptotic
descriptions of the deviation spectrum, as follows.

Theorem 1.3 (Asymptotic power spectrum of ergodic integrals (minimal case)). For a full measure
set of locally Hamiltonian flows on M in Umin with non-degenerate saddles, there exist a power spectrum
0<vy <---<wy<wvy:=1, whereg is the genus of the surface M and, for any € > 0, invariant distributions
D;:C?*t(M) - R, i=1,...,g, such that, for every f € C?>T<(M), we have the asymptotic expansion:

T g
(1.5) | r@yae = DinuTa+ Y f@)uo(Ta) (). T.0).

o€Fix(¢r)

where, for 1 <i < g, u; are smooth cocycles u; : R x M — R owver the flow Yr such that

log [|us (T, -)| Lo (nr)
1.6 lim su = v,
(16) T4>+o£>) log T

while, for o € Fix(yYr), u, are smooth cocycles uy, : R x M — R over ¢¥r which grow sub-polynomially
pointwise and in LP norm for every p > 1, i.e. such that

I o T lo - T, . »
(1.7) hmsupw —0forae zeM, and limsup g |luo (T, -)||e(ary
T—+o0 lOgT Tt oo 10gT

=0, forallp > 1,

and erry 1s a uniformely bounded error term, i.e.

(1.8) sup |lerry(f,t, - )||Le < +00.
teR

Furthermore, for every o € Fix(¢¥r) and for p-almost every x € M, the values of the cocyle t — u,(t,x) are
equidistributed on R, i.e. for any pair of intervals Jy, Jo C R we have
Leb{t € [0,T] : us(t,z) € J1} |1}

1.9 li = .
(1.9) T oo Leb{t € [0,1] : ug(t,z) € Jot | Ja]

9These IETs are also known as periodic-type IETs in the literature, see for example [60]. In [20] we further assume that the
periodic-type IET is of hyperbolic type, see [20] for details. Explicit examples of locally Hamiltonian flow of hyperbolic periodic
type were constructed in [I0].

101y particular, to prove ergodicity we need to show a form of tightness of Birkhoff sums, which, combined with enough
oscillations thanks to the presence of logarithmic singularities, allows to apply classical essential values (see [59]).

Lgince we are here assuming that ¥r € Upmin has only non-degenerate fixed points, Fix(¢r) consists of simple saddles only,

see §
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Finally, if we set
(1.10) err(fit.a):= Y f(@)us(t,x) +erry(f,t.),

o€Fix(yYr)

as soon as f does not vanish identically on Fix(¢Yr), for p-almost every x € M also the values of the cocyle
t — err(f,t,z) are equidistributed on R.

Main Theorem completes in particular the proof of the Kontsevich-Zorich conjecture, in its original
formulation for smooth functions over locally Hamiltonian flows with non-degenerate saddles (as formulated
in [40], see the above § . The result should be seen as a generalization (for smootlﬁ functions) of both
the results by Forni [23] (since it proves the existence of a power deviation spectrum) and Bufetov [6] (since
we show the existence of asymptotic cocycles). While the observables in both Forni’s [23] and Bufetov’s [6]
works vanish on Fix(¢g), we allow the observables to be non-zero at singularities in Fix(yg). This leads
to the presence in the asymptotic expansion of k new cocycles, where k is the cardinality of Fix(yr), one
for each saddle o € Fix(¢r). We will call these u, singular cocycles, since they describe the fluctuations
of the ergodic averages due to the presence of singularities. While these cocycles u, have sub-polynomial
deviations, as shown by , they are not uniformly bounded.

Comparison to Forni’s and Bufetov’s works. To further compare the result with Forni’s [23] and Bufetov’s
[6] works, let us consider the global error term err(f,¢,-) defined as in combining the bounded error
erry(f,t,-) together with the cocycles u,, o € Fix(¢r). Then one can see that err(f,t, ) has always sub-
polynomial pointwise growth (in view of combined with ), but we have a dichotomy: on one hand,
if f does vanish identically on Fix(¢r), err(f,t,-) coincides with erry(f,t,-) and is uniformly bounded. In
this case, the g cocycles u;, which lead the power growth, can be shown a posteriori to coincide with the
Bufetov functionals in [6] up to a bounded error. On the other hand, as soon as f does not vanish identically
on Fix(yr), err(f,t,x) cannot be controlled uniformly: for p-almost every x, the function t — err(f,t,x)
is unbounded, in view of the equidistribution of err(f,t,-) in this case (see the final part of Theorem
which follows directly from the ergodicity of the extensions proved in the Main Theorem [I.2] more precisely
from an application of the ratio ergodic theorem in infinite ergodic theory).

This novel phenomenon is an effect of the presence of infinite tails, due to the assumption that f is non-zero
at (some) singularities and the slowing down of trajectories near Hamiltonian saddles. We are nevertheless
able to control the error term err(f,t,-) pointwise almost everywhere (in view of (L.12)) and in average, in
any LP norm with p > 1, in view of .

Minimal components in the non-minimal setting.  Another novelty of our work is that, while Forni and
Bufetov in [23] [6] study only minimal flows, we prove the existence of an asymptotic expansion also for
ergodic integrals of non-mimimal flows in U-,,;,. More precisely, we prove the following result for a minimal
component My C M of a typical flow on U— -

Theorem 1.4 (Asymptotic power spectrum for non minimal components). For a full measure
set of locally Hamiltonian flows on M in U-min with non-degenerate saddles, for any minimal component
My C M of Yw, if go denotes the genus of My, there exist a power spectrum 0 < vy, < -+ < vp < vy :=1
and, for any € > 0, go invariant distributions D; : C?T¢(My) — R, i = 1,..., g0, and go smooth cocycles
u; : Rx My —= R, fori=1,...,90, each of which satisfies , such that for every f € C*¢(My) we have
an asymptotic expansion

/fd}t ) dt = ZD Yui (T, x) + err(f, T, z),

where, if f vanishes on Fix(yr) N My, the error term err(f,T,-) satisfies

1 T, | e
(1.11) lim sup og llerr(f e
T—+o00 logT

while if [ is not identically zero on Fix(yYr) N My then

. log |err(f, T, z)|
1. 12 hm sup —m——m———
( ) T~>+0<I>) logT

Mo)

=0 for p-almost every x € My,

and furthermore

1 ST )| e
(1.13) lim sup o8 flerr(s Merato) =0 for every p > 1.
T—+00 logT

12T he class of functions considered by Forni [23, 25] and Bufetov [6] is more general: smoothness is not required, but only a
Sobolev condition in [23] (see also [25] for a more general result on the cohomological equation) and a weak Lipschitz property
in Bufetov’s work, see [6] for details.
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Notice that in this case, when restricting to a minimal component of ¥ € U-,,;n, We only claim that
err(f,T,-) grows sub-polynomially (which is the same type of estimate proved by Bufetov for the error term
in the symmetric case). This result is in particular an extension of Bufetov’s work [6] to the restriction to a
minimal component in the non minimal case ¥r € U—min-

Thus, Theorems and complete the study of deviations of ergodic averages of smooth functions
over locally Hamiltonian flows with non-degenerate saddles. The study of locally Hamiltonian flows with
degenerate-saddles leads to other new phenomena and additional polynomial terms in the asymptotic expan-
sion and is treated in an upcoming paper by M. Kim and the first author [18].

On the proof and the Diophantine-like conditions. The proof of the asymptotic expansion in Theorem [I.3]
which will be proved at the same time than Theorem follows a completely different approach to both
Forni’s [23] and Bufetov’s [6] works and is inspired by Marmi-Moussa-Yoccoz work [44] on solving the
cohomological equation for (Roth-type) interval exchange transformations (and the follow up work [48] by
Marmi and Yoccoz). We comment in detail on this strategy below in §

An advantage of this different approach is that it allows to give a description of the full measure set of
locally Hamiltonian flows for which the result holds in terms of a Diophantine-type condition. Furthermore,
it also provides a different construction of the cocycles which describe the asymptotic behaviour of ergodic
integrals in terms of the correction operators.

The full measure Diophantine-like conditions (which are different for Theorem and Theorem [1.4
respectively) are expressed more precisely on the interval exchange transformations which arise as Poincaré
sections of the flows. We introduce (in § two such conditions, both of which we show to be of full
measure. The first, that we call Uniform Diophantine Condition (or , is used to prove the existence
of the asymptotic expansion in both Theorem and Theorem up to a subpolynomial error. In the
case of minimal flows in U,,,;,, to improve the estimates on the error and show in particular that the error is
equidistributed (see the second part of Theorem, we need to assume a more restrictive condition, namely
the Symmetric Uniform Diophantine Condition (or . For this result indeed we also need to crucially
exploit the cancellations proved by the second author in [63] to prove typical absence of mixing and these
require further assumptions on the IET to hold.

Both Diophantine-like conditions expressed in terms of the matrices of the Rauzy-Veech cocycle, which
often plays the role of multi-dimensional continued fraction in the study of IETs. These conditions, similarly
to the Roth-type condition for IETs introduced by Marmi-Moussa and Yoccoz in [44] (and its variations, see
for example [44] 46, 48] [47]), impose constraints both on the growth of the matrices of (an acceleration of)
the cocycle, as well as requests on the hyperbolic behaviour of the matrix product, in the form of Oseledets
genericity requests. In addition, we require effective Oseledets control, which in turns allow to control certain
Diophantine series (see §. We point out that similar conditions also appear in the recent work [27] on
rigidity of generalized interval exchanges.

1.5. Correction of cocycles with logarithmic singularities. We comment now on the methods and the
proofs. First of all we work with Poincaré maps, both to study the flow g and its extensions @é; it is well
known that Poincaré maps of area-preserving flows, in suitably chosen coordinates, are interval exchange
transformations (for short IETs), namely, piecewise-isometries of the interval I = [0,1) (the definition is
recalled in §. Moreover, any minimal locally Hamiltonian flow admits a representation as special flow
over the IET T : I — I which arise as Poincaré map (see §for definitions). The roof function r : I — R+
which arise from this representation has singularities at the discontinuities of 7', which, in case of simple
(non-degenerate) saddles, are of logarithmic type (formally defined in §, ie. asx — xzi approaches a
discontinuity z; € I of T' from the right or left, 7(z) blows up as C:|log(z — ;)| , where the constants C:-
are positive and are globally symmetric, namely C’i+ = > C;, for typical flows in Up,n, while asymmetric
for minimal components of typical flows in U_,s, .

Fix now an observable f : M — R which is non-zero on Fix(¢g). To study ergodic integrals, we build the
extension ®% on M x R (given by (L.3)). Choosing a Poincaré section for the extension which projects on I,
namely of the form I X R, the Poincaré first return map of @HQ (in suitable coordinates) turns out to be a skew
product over the IET T of the form (1.4), in which the cocycle ¢ has logarithmic singularities (where the
constants CijE here can be positive or negative, or zero if the function is zero on Fix(¢g), in which case there
are no singularities, see Remark . We have now reduced the study of ergodic integrals and ergodicity of
extensions to the study of Birkhoff sums of cocycles with logarithmic singularities over IETs and ergodicity
of skew products over IETs with logarithmic singularities.

Under the new Diophantine-type conditions that we introduce in §[3:2] for every function with logarithmic
singularities, we prove the existence of a correction operator, namely an operator which, removing the
projection on a finite dimensional space (which corresponds morally to the projection on the unstable space
of renormalization), allows to get a better control of the behaviour of Birkhoff sums of functions with
logarithmic singularities (see Theorem for the precise statement). The result provides an extension of
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the main result in the work of Marmi-Moussa-Yoccoz [44]. In the latter, in order to solve the cohomological
equation for IETs of Roth-type, correction operators are constructed for (piecewise) absolutely continuous
cocycles.

While the main steps of our correction procedure are inspired by the construction introduced in [44] (and
later developed in [48]), there are considerable differences and difficulties. Notably, while the authors of [44]
were interested in controlling the growth of the sequence of Birkhoff sums (S(k)¢)ren of a piecewise absolutely
continuous functions ¢ using the uniform norm (in order to keep them bounded after correction and be able
to apply Gottschalk-Hedlund theorem, see [44] for details), for functions with logarithmic singularities, the
uniform norm cannot be used (since functions with logarithmic singularities are always unbounded). The
key idea to treat cocycles with logarithmic singularities in this paper is to exploit instead the L'-norm and
to build correction operators which allow to bound or control the L*-norm of the sequence (S(k)y)gen. The
use of the L'-norm has already appeared in our previous work [20], where we had considered the correction
problenﬁ for the (measure zero set of) IETs of hyperbolic periodic type. It turns out that to extend the
result to almost every IET requires once again changes in the basic step of construction, as well as the
introduction of the above mentioned delicate Diophantine-type condition on the IET. We refer the interested
reader to § |§| (and in particular the outline of the strategy to build the correction operators given in §
for further details on the differences and the steps in the construction of the correction operators.

The construction of the asymptotic cocycles u; : R x M — R which lead to understanding the behaviour
of ergodic integrals (see the statement of Main Theorem is strictly connected to the finite dimensional
space of corrections. Indeed, corrections can be realized by subtracting piecewise constant cocycles, which,
through the correspondence between extensions and skew-products, allow to define the asymptotic cocycles
Uj.

In the case of minimal locally Hamiltonian flows in U,,;, (which give rise to symmetric logarithmic
singularities), we also exploit the delicate cancellations among contributions of singularities which were
proved by the second author in [63] and, introducing the Diophantine-type condition, we are able
to prove that, after corrections, a subsequence of Birkhoff sums (S(k)p)ren is tight. Tightness, combined
with partial rigidity of the IET in the base (a result which dates back to Katok [33]) and the presence of
logarithmic singularities (which comes from the assumption that f is non identically zero on Fix(¢g)), allows
to apply a quite standard ergodicity criterium based on the existence of essential values (see Proposition
for the precise incarnation of the criterium which we use in this paper). This allows to prove ergodicity of
the corresponding extensions.

Structure of the paper. In §[2] we recall basic definitions and background material on locally Hamiltonian
flows and their extensions. We also summarize their typical ergodic properties and explain the reductions to
special flows and skew products over IETs. In §[3] after recalling the required definitions and properties of
the Rauzy-Veech induction procedure and the associated cocycle, we define the two Diophantine conditions
(the and the conditions) and prove that they have full measure.

In §§ [ [f] and [6] we study cocycles with logarithmic singularities over IETs. After giving definitions
and proving elementary properties in § ] we proceed in § [f] at investigating the renormalization process
induced on such cocycles by performing Rauzy-Veech induction. The correction operators are constructed
in § |§| (where the above mentioned Theorem about existence and properties of the correction operators
is proved).

The asymptotic deviation spectrum (see the first part of Main Theorem [1.3)) is proved in § where the
asymptotic of ergodic integrals is recovered from the cocycles associated to the correction operators. In §[g]
we state the ergodicity criterium that we then apply to prove ergodicity of extensions. After discussing also
the reducibility case, we then prove Main Theorem [1.2] as well as the second part of Main Theorem
Some technical but standard proofs in this part are relegated to the Appendix (in particular the proofs of
the ergodicity criterium and of a cohomological reduction result which is needed for the reducibility part).

2. DEFINITIONS, BACKGROUND MATERIAL AND REDUCTIONS

In this section we recall some basic definitions and background material concerning locally Hamiltonian
flows (§ and their extensions (§ , including a brief summary in § [2.1.4] of our current knowledge of
their typical chaotic properties. We also the definition of special flows (see § [2.2.2) and skew-products (in
§ over interval exchange transformations (defined in §. We finally recall in §the representation
of locally Hamiltonian flows to special flows (see § with logarithmic singularities (defined in §
and the reduction of the study of their extensions to skew products over IETs, see § 2:3.3]

13m [20], for IETs of hyperbolic periodic type, we build correction operators for cocycles with symmetric logarithmic
singularities and we then exploit the result to build ergodic extensions, but we do not work out the full deviation spectrum and
asymptotic cocycles formalism.
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2.1. Locally Hamiltonian flows. Let (M,w) be a surface with a fixed smooth area form w. A smooth area
preserving flow Yr = (¥1)ter on M is a smooth flow on M which preserves the measure p associated to w.
These flows are also called locally Hamiltonian flows or multi-valued Hamiltonian flows in the literature, in
view of their interpretation as flows locally given by Hamiltonian equations, see the introduction.

It turns out that such smooth area preserving flows on M are in one-to-one correspondence with smooth
closed real-valued differential 1-forms as follows. Given a smooth, closed, real-valued differential 1-form 7, let
X be the vector field determined by 1 = ixw where ix denotes the contraction operator, i.e. ixw = w(n,-)
and consider the flow g on M given by X. Since 7 is closed, the transformations 1, t € R, are area-
preserving. Conversely, every smooth area-preserving flow can be obtained in this way.

Let Fix(¢r) denote the set of fixred points (also called singularities) of the flow ¢¥r. We will always require
that Fix(yr) is a finite set, so in particular singularities are isolated. Remark that when g > 2, Fix(¢g) is
always not empty, thus singularities are isolated. Since 1 is area-preserving, singularities in Fix(¢), as
shown in Figure [2] can be either centers (Fig. , simple saddles (Fig. or multi-saddles (i.e. saddles
with 2k pronges, k > 2, see Fig. for k = 3). For g = 1, i.e. on a torus, if there is a singularity then there
has to be another one and we get an Arnold flow as in Figure

N\

(a) center (b) simple saddle (¢) multisaddle

FIGURE 2. Type of singularities of a locally Hamiltonian flow.

We call saddle connection a flow trajectory from a saddle to a saddle and a saddle loop a saddle connection
from a saddle to the same saddle (see Fig.[3). A periodic component is either a (maximal) punctured disk or
a (maximal) cylinder filled with closed (i.e. periodic) trajectories (see Fig. and Fig. respectively). A
minimal component is a subsurface M’ C M, possibly with boundary, such that any trajectory different than
a fixed point is dense in M’. Periodic and minimal components are bounded by union of saddle connections.

(a) periodic island (b) periodic cylinder (¢) g = 2 minimal component

Y

FIGURE 3. Periodic and minimal components.

2.1.1. Open sets, genericity and minimality. Let us denote by F the set of smooth closed 1-forms on M
(i-e. locally Hamiltonian flows) with isolated zeros. One can define a topology on F by considering pertur-
bations of closed smooth 1-forms by (small) closed smooth 1—formﬂ We say that a condition is generic
(in the sense of Baire) if it holds for flows described by an open and dense set of forms with respect to this
topology.

Let A C F be the subset of Morse 1-forms (adopting the notation introduced by Ravotti [56]), namely
forms which are locally the differential of a Morse function (i.e. a function that has non-degenerate zeros,
so that the Hessian at every fixed point is non-degenerate). The set A of Morse 1-forms is then generic.
Locally Hamiltonian flows corresponding to forms in A have only non-degenerate fized points, i.e. centers

and simple saddles (see Figures and , as opposed to degenerate multi-saddles (as in Fig. [2(c)]). We

LY et 1, i’ be two smooth closed 1-forms. We say that 7 is an e-perturbation of 7 if for any = € M there exists coordinates
on a simply connected neighbourhood U of z, such that n|y = dH and (n' — n)|y = dh where ||h||ce < €||H||coo.
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denote by A, . the set of 1-forms in A with s saddle points and c centers. By the Poincare-Hopf Theorem,
¢ — s =2 —2g. Furthermore, each A;; is open and their union A is dense in F (see e.g. Lemma 2.3 in [56]).

For every 1-form in A, the surface M splits into periodic components and (up to ¢g) minimal components
(as proved independently by Maier [43], Levitt [41] and Zorich [72]). Notice that if there is a unique minimal
component (which is equal to the whole surface M), then ¢ = 0 (since if there is a center is associated to a
periodic component) and s = 2g — 2.

Moreover, one can show that if the flow 1r given by a closed 1-form 1 has a saddle loop homologous to
zero (i.e. the saddle loop is a separating curve on the surface), then the saddle loop is persistent under small
perturbations (see § 2.1 in [72] or Lemma 2.4 in [56]). In particular, the set of locally Hamiltonian flows
which have at least one saddle loop is an open set, which consists of non-minimal flows. The set Z-min
mentioned in the introduction is an open and dense set of this open set (where the open condition guarantees
asymmetry in the special flow representation recalled in § we refer to [56] for the precise definition, see
Notation 3.3 in § 3.1 of [56]). The set %min is given by the interior (which one can show to be non-empty)
of the complement of %_.,in, i-e. the set of locally Hamiltonian flows without saddle loops homologous to

Zel‘ﬂ.

2.1.2. Measure class and typicality. Let us fix an open set A, . of closed 1-forms with ¢ centers and s (simple)
saddles. A measure-theoretical notion of typical on A, . can be defined on each Ag . as follows, by using
the Katok fundamental class (introduced by Katok in [32], see also [50]), i.e. the cohomology class of the
1-form 7 which defines the flow. Let 1, ...,7, be a base of the relative homology H; (M, Fix(¢r),R), where
n=2g+ s+ c— 1, and consider the period map

@(n)z(Lln,...,Lnn) cR".

The map O is well defined in a neighbourhood of n in A, . and one can show that it is a complete isotopy
invariant (see [32], or also Prop. 2.7 in [56]).

The pull-back Per,Leb of the Lebesgue measure class (i.e. class of sets with zero measure) by the period
map gives the desired measure class on closed 1-forms in A; .. When we use the expression typical below
(or typical in Upin OF U—pmin) we mean full measure in each A, . with respect to this measure class on each
As.. (or on each open subset of A . contained in the union Uiy O U-pmin)-

2.1.3. Ergodicity and reducibility of extensions. Let o = (@f)teR on M x R denotes the extension of an
ergodic flow g on M by f : M — R given by the formula (1.3). Recall that, if ¥ preserves a measure
L4 @HQ preserves the (infinite) measure p x Leb. The flow fbﬂé is recurrent if p X Leb-almost every point is
recurrent. A result by Atkinson [3] (which holds for 1-dimensional extensions of ergodic flows) shows that
@HQ is recurrent if and only if fM fdu = 0.

We recall that <I>H); is ergodic with respect to the (infinite) measure p x Leb if for any measurable set
A which is invariant, i.e. such that p x Leb(A) = p x Leb(®{ A) for all t € R, either p x Leb(A) = 0 or
p x Leb(A°) = 0, where A° denotes the complement.

Remark that if f = 0, the phase space M x R for the corresponding trivial extension given by <I>tf (z,y) =
(1¢(x),y) is foliated in invariant sets of the form M X {y}, y € R. In this sense, the dynamics is reduced to
the dynamics of the surface flow Y. We say that @Dé is (topologically) reducible if it is isomorphic to ®% and
the isomorphism G : M x R — M x R is of the form G(z,y) = (z,y + g(z)), where g : M — R is continuous.
So the reducibility of @Hé is equivalent to asking that

/O F(tbaz) ds = g(x) — g(thez)

for every regular point x € M and any t € R. In this case, the phase space is again foliated into invariant
sets for @Hé of the form {(z,y + g(x)), = € M}, y € R. On each leaf the action of @Hé is conjugated to g
on M.

2.1.4. Typical chaotic properties of locally Hamiltonian flows. Let us briefly summarize the key chaotic prop-
erties of locally Hamiltonian flows and some of the recent works on this topic. We already recalled in the
introduction, in view of the relation between locally Hamiltonian flows and translation flows (see also Re-
mark [2.3), the seminal works by Keane [36] and Masur [49] and Veech [64] show that a full measure set
of locally Hamiltonian flows in U,,;, are minimal and ergodic and that almost every flow in U-,,;,, the
restriction to each minimal component is ergodic (and in both cases the underlying foliation in uniquely
ergodic).

15Note that saddle loops non-homologous to zero (as well as saddle connections) disappear after arbitrarily small perturba-
tions; therefore neither the set of 1-forms with saddle loops (or more generally saddle connections) non-homologous to zero, nor
its complement are open (see [56] for details).
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Mixing depends crucially on the type of singularities of the flow. For a (non-generic) locally Hamiltonian
flow with at least one degenerate saddle (see e.g. Figure, mixing was proved in the 1970s (by Kochergin
in [39]). When n € A and all saddles are simple, one has the following dichotomy: in %, the typical locally
Hamiltonian flow is weakly mizing, but it is not mizing in view of work [62] [63] by the second author (see
also [37, B8] and [58] for previous special cases of this result). There exist nevertheless exceptional mixing
flows, see the work by [8], which produces sporadic examples in g = 5. If 1§ € U_,in, the restriction of the
typical locally Hamiltonian flow 1g on each of its minimal components is mixing (as proved by Ravotti [56]
extending previous work by the second author [61]). Ravotti also shows in [56] subpolynomial bounds for the
speed of mixing.

Further recent work (see [30]) also shows that locally Hamiltonian flows in U-,;, display a quantitative
shearing property inspired by the Ratner property which plays a crucial role in the theory of unipotent
flows (or more precisely a variation introduced in [I3] to deal with the presence of singularities). From
this property, one can deduce that the restriction of a typical locally Hamiltonian flow g in -, on its
minimal components is not only mixing, but mizing of all orders, see [30]. Arnold flows in genus one were
also recently shown (by A. Kanigowski and M. Lemanczyk and the second author, see [31]) to typically have
disjointesﬂ of rescalings, a property which in particular implies Sarnak Mo6bius orthogonality conjecture
[57] to hold (see [3I] for details and [I5] for a nice survey on the conjecture and progress toward it).

The spectral theory of locally Hamiltonian flows is still largely not understood. Exampleﬂ of locally
Hamiltonian flows on surfaces of any genus > 1 with singular continuous spectrum were build by M.
Lemariczyk and the first author (see [I9, Theorem 1]). For some flows in genus one with a degenerate
singularity (sometimes known as Kochergin flows), Forni, Fayad and Kanigowski could recently, prove in [12]
that the spectrum is countably Lebesgue. The first typical spectral result for surfaces of higher genus, namely
g > 2 was recently proved by Chaika, Kanigowski and the authors, who showed in [9] that a typical locally
Hamiltonian flow on a genus two surface with two isomorphic simple saddles has purely singular spectrum.

2.2. IETs, special flows and extension. Let us now introduce the notation that we will use for interval
exchange transformations (§[2.2.1)) and recall the definition of two basic constructions, special flows (§[2.2.2))
and extensions of IETs (§[2.2.3)).

2.2.1. Interval exchange transformations. Let A be a d-element alphabet and let @ = (g, ) be a pair of
bijections 7. : A — {1,...,d} for e = 0,1. We adopt the notation from [66]. Denote by SY the subset of
irreducible pairs, i.e. such that 71 o 7r0_1{17 kP AA{L Lk for 1 < k< d.

For any A = (Ay)aca € RZ, let

A=A I=[0,]A])

acA
and define

I, =[la,7a), where l, = Z Ag, To= Z Ag-
mo(B) <m0 () o (B) <o ()
Then |I,| = Ao. Denote by Q, the matrix [Qq gla,se4 given by
+1 if’]Tl(Ck) >7T1(5) and 7T0(Ol) <7T0(ﬁ),
Qag: -1 ifTrl(Oé) <7T1(ﬁ) and 7T0(Oz) >7T0(B),
0  in all other cases.
Given (m,A) € S x R let T(, ) : [0,|A]) = [0,|A]) stand for the interval exchange transformation (IET)

on d intervals I, o € A, which are rearranged according to the permutation 7r1_1 oM, 1.e. Tz 2T = T + Wy
for x € I, where w = Q.

Keane condition. Let End(T) stand for the set of end points of the intervals I, : « € A. A pair (7, )
satisfies the Keane condition if T(7! \)lo # g for all m > 1 and for all o, 8 € A with mo(B) # 1. Keane [36]
showed that an IET with an irreducible permutation that satisfy the Keane condition is minimal.

We record here two remarks that will be useful later.

Remark 2.1. Note that for every a € A with mo(a) # 1 there exists § € A such that mo(3) # d and I, = rg.
It follows that

{la :a€ A, mo(a) #1} ={ro:a € A, mo(a) # d}.
Remark 2.2. Denote by f(w’)\) : (0, 1) = (0,|I|] the exchange of the intervals I, := (lo,74], @ € A, ie.
Tirat = 2+ wq for © € (lo,74]. Note that for every a € A with m1(a) # 1 there exists § € A such that
m1(B) # d and T( nyla = ZA“(W,,\)TQ.
16T he notion of disjointness in ergodic theory was introduced in the 1970s by H. Furstenberg, see in particular [26].

"These examples are known as Blokhin examples and are essentially built glueing genus one flows. This allows to study
them using (special flows over) rotations. On the other hand, they are highly non typical.
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2.2.2. Special flow definition. Let T : I — I be an (ergodic) IET and let r : I — Ryg U {+0o0} be an
integrable function such that r = inf,c;r(x) > 0. The special flow over T under the roof function r is the
flow Tf := (T} )1er acting on
I" :={(z,s) e IxR:0<s<r(x)}

so that T} (z,s) = (z,s +t — r(™(x)), where r(™)(z) denote the Birkhoff sums cocycl associated to r and
n is the unique integer number with (™ (z) < s +t < r(»*D(z). Tt describes the motion of a point in
(z,s) € I" C I x R along vertical trajectories, modulo the identification of each point (z,r(x)), € I, with
the point (T'z, 0).

2.2.3. Skew product extensions. Given an IET T : I — I and a function ¢ : I — R the extension of T by ¢
is the skew-product map T, : I x R — I x R defined as in (L.4) by T,,(z,y) = (T'(x),y + ¢(z)). Notice that,
for n > 0, the iterates of 7, have the form

n—1

T (x,y) = (T™(x),y+ ™ (x),  where o™ (z) =) o(T"(x)).

k=0
Remark that the Birkhoff sums (") (-) are a (additive) cocycle over T in view of the cocycle relation
P+ () = ) (T") + ) (z).

2.3. Reduction to special flows and skew-product presentations. We recall two classical results that
show that locally Hamiltonian flows and their extensions can be reduced respectively to the study of special
flows and skew-product extensions over IETs, with roof functions or, respectively, cocycles, with logarithmic
singularities.

2.3.1. Logarithmic singularities. We say that a function (or cocycle) ¢ : I — R for an IET T\, ) has
logarithmic singularities if there exist constants Cf', C; € R, a € A, and a function g, absolutely continuous
on the interior of each interval I,, a € A (i.e. with the notation that we will introduce later, a function
9y € AC(Uaecals)) such that

Qn e =3 Cloa (ITl{(x —L)/ITI}) ~ 3 Cx log (IT1{(ra — 2)/I11}) + g, ()
acA acA
We refer to Figure [4] for some examples. We say that the logarithmic singularities are of geometric type if at

least one among Cﬂ(Tl @ and C;,l @ is zero and at least one among C;ro,l (1) O C’;}l ) is zero (as shown in

1
the examples in Figure . We denote by LG(Uneala) the space of functions with logarithmic singularities
of geometric type. We define also the subspace LSG(Unecaln) C LG(Ugeals) of functions satisfying the
symmetry condition

(2.2) Yoo -> ci=o

acA acA

C(;()?C&l'o: C,;l : : Cojoé

G

(a) Roof function r € LG(Unpeala) (b) Cocycle ¢ € LG(Uqecala)

FIGURE 4. Examples of functions with geometric logarithmic singularities in LG(Unealn)-

18Here r(™(z) denotes the additive cocycle defined by r(")(zx) := Zo<k<n7"(Tkx) ifn > 0 and rM(z) =
=Y n<kcom(TH(@)) if n < 0.
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2.3.2. Special flow representations of locally Hamiltonian flows. It is well known that locally Hamiltonian
flows can be represented as special flows as follows (see for example [63] 656, [10, 20]). Consider either a
minimal locally Hamiltonian flow ¢¥g on M or the restriction of a locally Hamiltonian flow on M to a
minimal component M’ C M. Let 1 be the associated closed 1-form and assume that € A, i.e. 5 is Morse.
Then g can be shown to be (measure theoretically) isomorphic to a special flow T" : I" — I" over an
interval exchange transformation T : I — I of d > 1 intervals and under a roof r € LG(Uqecaln). The
number of exchanged intervals is d = 2g+ s — 1 in the case when g is minimal and s is the number of simple
saddles, or, for a minimal component M’, d = 2¢g’ + s’ — 1, where ¢’ is the genus of M’ and s’ is the number
of saddles in the closure of M’. Furthermore, if ) € Upnin, the logarithmic singularities are symmetric, i.e.
¢ € LSG(Uqecaly) (while they are asymmetric for special flows representations of minimal components of
typical ne uﬁmin)'

Remark 2.3. We recall for contrast that also translation flows can be seen as special flows over an interval
exchange map, but under a roof function r which is piecewise-constant (and constant on each continuity
interval of the IET). One can therefore see from these special representations that minimal (components of)
locally Hamiltonian flows are time-changes of translation flows via a singular reparametrization.

2.3.3. Reduction to skew products. The study of (ergodic properties of) extensions can be reduced to the
study of skew-products over IETs as follows.

Proposition 2.4 (Reduction of ergodicity of extensions to skew products). Consider a Morse closed one-
formn € A on M and let g on M be the associated locally Hamiltonian flow. Consider its minimal
component M' C M. For every C**“-map f : M' — R (¢ > 0), the extension @HQ of Yyr on M’ has a
Poincaré map which, in suitable coordinates, is given by a skew-product of the form

(2.3) (z,y) = Ty, (2,y) = (Tz,y + ¢f(z)), (z,y) €I xR.

where T' = T ) with 7 irreducible and the cocycle py : I — R has logarithmic singularities, i.e py €
LG(Uaecalyn), where (In)aca are intervals exchanged by T.

Moreover, the extension Qﬂé on M' xR is ergodic with respect to ux Leb if and only if T, : I xR — I xR
is ergodic with respect to the (restriction of) the 2-dimensional Lebesgue measure on I x R.

We give here only a brief sketch of the proof, referring to the proof in [20] for details.

Proof. Fix a segment v C M’ C M transverse to the flow ¢g, containing no fixed points and whose endpoints
lie on outgoing separatrices of saddles. It is well known (see for example [68, Section 4.4]) that one can choose
a parametrization ¢ € I — ~(t) of v by the unit interval I = [0,1) so that the Poincaré first return map
T : 1 — I of the flow 9 to v is an IET, which is minimal by assumption. It follows that = is irreducible.

Denote by r : I — Rsq the first return time map for the flow (¢;);er on M’. Then the isomorphism
between the restriction of g to M’ and a special flow T" on I" is given by

I" 3 (z,r) = . (z) € M.

As recalled in the previous § r € LG(Uaealn) and moreover, if ¥g € Upin, i.e. M = M, then
r € LSG(Unealy), see e.g. [56].

Consider now the extension <I>]£ of ¥gr on M’ given by a bounded function f : M’ — R. The Poincaré map
of (b]{; on M’ x R to the section v x R in the parametrization by I x R is by construction an extension of
the Poincaré map T of ¢g to I, with return time function r(z,y) = r(z) (i.e. the return time only depends
on the return to I in the first coordinate, by definition of the section which has full fiber). Moreover, if we
consider the cocycle

r(z)
(2.4) o (x) = / f(e(a)) dt

(which gives the value of the ergodic integrals of f along the trajectory from z until the first return time
to the section), one can then see that the first return Poincaré map of the extension @HQ has the form .
If fis a C?*t¢-map, from the explicit expression and the properties of 7, one can then show that also
05 € LG(Uaeala) (see [20] for details) and ¢ € LSG(Unecals) if 7 € Upin.

The final statement is simply a consequence that ergodicity of a minimal flow is equivalent to ergodicity of
its Poincaré map with respect to the induced measure, together with the remark that, under the isomorphism
described above, the measure induced on the section v x R by the invariant measure p x Leb is mapped to
the Lebesgue measure on I x R. O

The following result shows that not only ergodicity, but also reducibility of the extension <I>]£ can be reduced
to a property of the skew product T,,, given by Proposition
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Proposition 2.5 (Reduction of reducibility to skew products, [20]). For every minimal locally Hamiltonian
flow g on M with non-degenerate saddles and any f € C*T¢(M) vanishing on Fix(¢r), the associated flow
@HJ; is reducible if and only if the cocycle ¢y : I — R is a coboundary with a bounded transfer map having at
least one continuity point, i.e. there exists a bounded g : I — R such that oy = g—goT and g has at least
one continuity point.

The statement of the Proposition is proved in the prooﬁ of Lemma 6.3 in [20].

3. RAUZY-VEECH INDUCTION AND DIOPHANTINE-TYPE CONDITIONS

In this section we define the Diophantine-type condition on IETs which we will use to prove our main results
on deviations of ergodic averages and ergodicity of extensions. The condition is described in terms of Rauzy-
Veech induction, an algorithm introduced by Rauzy and Veech in [55] [64] which is now a well established
tool to study IETs as well to impose Diophantine conditions on them (see e.g. [ [5l [6, 44} [46] 63, 6T} [70]
and many more). We first recall some basic background material concerning Rauzy-Veech induction in §
The condition, that we call Uniform Diophantine Condition, or for short is defined in § (see
Definition [3[in §[3.2.2). In §[3.2.3| we also prove that this condition is satisfied by a full measure set of IETs
(see Theorem [3.8]).

3.1. Rauzy-Veech induction. We recall here some basic definitions and notation related to Rauzy-Veech
induction that will be used throughout the paper, including how it acts on Rokhlin towers (§ |3.1.4) and
on Birkhoff sums (§[3.1.5)), as well as the definition of natural extension (§[3.1.6). We recall also Oseledets

theorem (§[3.1.7).

3.1.1. Elementary step of RV induction. Let T = T(, ), (m,\) € 84 X R%, be an IET satisfying Keane’s
condition. Then )\ﬂ_o—l(d) # )\ﬂ_l—l(d). Let

I = [O,max (lﬁal(d), ﬂl—l(d))>

and denote by R(T) = T : I — I the first return map of T to the interval I. Set

3 = 0 if Aﬂ_o—l(d) > )‘ﬂfl(d)’
6(71’, ) - 1 if Aﬂgl(d) < Aﬂ_;l(d).

Let us consider a pair 7 = (7, 71) € 84, where

Te(a) = me(a) for all « € A and
T1—e (@) if m_c(a) <m_conl(d),
Ti—e(a) = m_e(a) +1 if m_coml(d) < m_c(a) <d,

m_ems(d)+1  if m_(a)=d.

As it was shown by Rauzy in [55], T is also an IET on d-intervals
(3.1) T =T 5 with A= A7 (m, M)A,
where

A(T) = A(m, ) =T+ B, 1 gy 1) € SL(ZA).
Moreover,
(3.2) AT, QAT N) = Qs
It follows that ker Q; = A(m, A) ker Qz. Thus taking H(7) = Qr(RA) = ker QF we get
(3.3) H(7) = A' (7, \)H (7).

Moreover, dim H(7) = 2g and dimker Q, = k(w) — 1, where x(7) is the number of singularities and g is the
genus of the translation surfaces associated to .

19Note that the statement of Lemma 6.3 in |20] claims incorrectly that reducibility requires the existence of transfer function
continous at every point, while a the existence of a point of continuity is sufficient. Nevertheless, the proof of Lemma 6.3 in
[20] is correct and gives a proof of the statement of Proposition here above.
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3.1.2. Renormalized induction. Let G C S8Y be any Rauzy class, i.e. a minimal subset of SY for which G x RZ,
is R-invariant. Let
AA =N eRL, |\ =1}
Then we can define the normalized Rauzy-Veech renormalization
R:Gx AN 5 Gx AY R(m A = (7, M|A]).

Veech in [64] proved the existence of an R-invariant ergodic measure pg (ﬁ is recurrent with respect to pg)
which is equivalent to the product of the counting measure on G and the Lebesgue measure on A,

For every T satisfying the Keane condition, the IET T fulfills the Keane condition as well. Therefore we
can iterate the renormalization procedure and generate a sequence of IETs (R"(T'))n>0. For every n > 1 let

AMN(T) = A(T) - A(R(T)) - ... - A(R*Y(T)).

In what follows, the norm of a vector is defined as the sum of the absolute value of coefficients and for
any matrix B = [Bagla,pea we set || Bl| = maxaea Y 4 [Bagl-

3.1.3. Accelerations. Let T : I — I be an arbitrary IET satisfying Keane’s condition. Let (ng)r>0 be an
increasing sequence of integer numbers with ng = 0, called an accelerating sequence. For every k > 0 let

T®) = R™(T) : I®) — I®). Denote by (), \(¥)) the pair defining 7 and by A(*) = ()\((f))aeA =
(|L§ék)|)a€,4 the vector which determines 7).
In view of (3.D), letting Z(k + 1) := A+1=7:)(R7%(T))¢ for k > 0 we have
AB) = Z(k + 1)!]A*HD for all k > 0.
We use the notation from [44], but adopt the convention later introduced in [48]. For each 0 < k < let
Qk,l)=2(1) - Z(1 = 1) -...- Z(k +2) - Z(k + 1) = Au=0) (R (T))E.
Then Q(k,l) € SLA(Z) and
AE) = Q(k, 1)IAD,
It follows that
(34) [P < 1O QK D).
We will write Q(k) for Q(0, k).

We say that Z(k), k € N (resp. Q(k,1)) are the matrices (resp. the product matrices) of the acceleration of
A along the (accelerating) sequence (ng)ren

3.1.4. Rokhlin towers. By definition, T®" : I — T® is the first return map of T*) : 1) — 1K) to the
interval I ¢ 1) Moreover, Qap(k,1) is the time spent by any point of 19 in I[gk) until it returns to I,
It follows that

Qa(k,1) = > Qap(k,1)
BeA
is the first return time of points of Iél) to 1),

The map T*) : I*) — 1) can be then represented as a Rokhlin skyscraper as follows. For every o € A, we
say that the set

{@®yad),  0<i<QalkD)}
is called a Rokhlin tower. Notice that the Q,(k,1) sets part of it are disjoint intervals called floors of the
tower and that, for 0 < i < Qq(k,1), T®) acts on the i*" floor (T(k))i(Ic(f)) mapping it to the (i + 1) one.
The union of all Rokhlin towers over a € A gives I,

3.1.5. Special Birkhoff sums. We deal with the special Birkhoff sums operators S(k,1) : L*(I*)) — LY(IW)
for 0 < k < [ defined by

SkDf(x)= > f(TWYx) it werld.
0<5<Qa(k,l)
Let T = T be an IET satisfying Keane’s condition. For every k > 0 let T*®) ¢ L'(I%*)) be the subspace

of functions on I®) which are constant on each I, o € A. Then for 0 < k < | we have S(k,)I'*) =T7®,
Let us identify every function ) 4 haX;m € I'®) with the vector h = (ha)aca € RA. Clearly T*) is

isomorphic to RA. Under the identification, the operator S(k,1) is the linear automorphism of R4 whose
matrix in the canonical basis is Q(k,1). In view of (3.3)) for 0 < k < [ we have

Q(k,)H(x®) = H(xW),
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For every k > 0 let
IR = {h e T® : 3,2 0300Yik |Q(K, DA < CllQ(K, 1)]| 77}

The space I‘gk)

is a subspace of H(7(*)) and for every [ > k we have
Qk,Hr =1,
Therefore, the restriction operator and the quotient operators of Q(k,1)
Qs(k, 1) : T =T, Qy(k, 1) : TV /TW - TO/TY, Qy(k,1) - H(x™) /TP — H(x®)/T

0) _

are well defined and are invertible. Arguments presented in Section 3.2 in [48] shows that if dimI's’ = g
then
(3-5) 1Qs(k, D)~ | = 1Qu (DI

3.1.6. The natural extension. Rauzy-Veech induction is not intertible, but it can be extended to an invertible
induction on the space of zippered rectangles (as described in the seminar paper by Veech [64]). We recall
briefly the construction. We refer the reader who needs more background to the lecture notes by Yoccoz [68]
or Viana [66].

For every 7 € Sg' let

O i={reR*: Y >0, Y ro<Oforl<k<d.

7o () <k w1 () <k

For every 7 € O, let h = h(1) = Q7 € R4,. For every Rauzy class G C Sg' let

(3.6) X(G) = [ J{(m A1) € {n} x A x O, : (A, Qp7) = 1}
TeG
For every (m,A\,7) € X(G) denote by M (mw, A\, 7) the translation surface arising in the zippered rectan-
gles process. Then M(m, A, 7) is zippered from the rectangles I, X [0,hs], @ € A such that the points
Eno(a)gk(ka +i74), 0 < k < d are its singular points. Moreover, the IET T is the first return map to
I C M(w, A, 7) for the vertical flow on M (7w, A, 7).
The map R : X(G) = X (G) given by

~ _ AT (T M)A
R0 = (% e

7T,
is an invertible map and is the natural extension of R. Denote by fig the natural extension of the measure
tg. Then fig is R-invariant and R is recurrent and ergodic with respect to fig.

AT, WA AT (M) )

3.1.7. Oseledets splitting. Let us extend the cocycle A : G x A — SLA(Z) to A: X(G) = SLA(Z) by
A(m, A7) = A\ 7)
and let us consider the cocycle A : Z x X(G) — SLA(Z)
AW(r A7) { A A7) AR A ) AR AT) >0
AR Y(m, A\, 7)) - A(RT2(m, A\, 7)) oo - A(R™M(, A\, 7)) if n < 0.
Then
(3.7) A (m A7) = A (1, A) if n > 0.

Let Y C X(G) be a subset with 0 < ig(Y) < Foo. For ae. (m, A\, 7) €Y let r(m, A, 7') > 1 by the first return
time of (m, A\, 7) for the map R. Denote by Ry : Y — Y the induced map and by Ay : Y — SLA(Z) the
induced cocycle, i.e.

ﬁy(m AT) = R (mAT) (my A, T), A\y(ﬂ', AT) = A\(T(”’/\’T))(W, A7)
for a.e. (m,A\,7) € Y. Let iy be the restriction of jig to Y. Then ﬁy is an ergodic measure-preserving
invertible map on (Y, fiy).

Suppose that log || Ay || and log ||A\;1|| are integrable. Then, by Oseledets theorem, symplecticity of Ay
(see [70]) and simplicity of spectrum (see [5]), there exists A\; > ... > Ay > 0 such that for a.e. (1,\,7) €YV

we have a Oseledets splitting
RA= P Ti(m A7)

—g9<i<g
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for which

1 ~
lim —log||AV” (7, A, 7)'|| = A; if v € Ty(m, A\, 7) and i > 0
n

n—=+oo

. 1 (n) t o i ) .
ngrjl;loo - log |Ay" (m, A, 7)*v|| = —=A; if v € Ty(m, A\, 7) and ¢ < 0

1 (n .
lim —log | AU (m, A, 7)'v] = 0 if v € Ty(m, A, 7),

n—+oco n

dimD;(m, A\, 7)=1if i #0, dimTo(m A, 7)=x—1.
Furthermore, we have that
H(m) = @Ti(r, A\, 7).
i#0
We denote by T's(m, A, 7) and T, (7, A, 7) the stable and unstable spaces, which are given respectively by
(3.8) Do(m, A7) = @ Ti(m, A, 7) and Ty (m, A, 7) := @ Ti(m, A, 7).

—g<i<—1 1<i<yg

Notice that both I's(m, A, 7) and T",, (7, A, 7) have exactly dimension g. We say in this case that the Oseledets
splitting is of hyperbolic type.

3.1.8. Veech bases for the kernel ker Q.. In [64] 65], Veech explicitly defines a bases for ker 2, for every =
in a given Rauzy class. We recall the construction (which uses the classical notation for the permutation
describing the IETs, also called monodromy, namely the permutation m o my 1). Let us first define the
extended permutation p: {0,1,...,d,d+ 1} — {0,1,...,d,d+ 1} to be the permutation

1. . .
. M O if 1<j5<d
J if j=0,d+1.
Following Veech (see [64] [65]), denote by o = o the corresponding permutation on {0,1,...,d},
o) =p~(p() +1) —1for 0<j < d.
Notice that (recalling Remark and the definition just before of f), we have f(mk)rﬂo_l(j) = T(WVA)rwo_l(oj)
for all j # 0,p~1(d).

Denote by () the set of orbits for the permutation o. Let 3¢ () stand for the subset of orbits that do not
contain zero. Then ¥(m) corresponds to the set of singular points of any translation surface associated to =
and hence #X(7) = k().

For every O € ¥(7) denote by b(0) € R4 the vector given by

(3.9) b(0)o = xo(mo(a)) — xo(mo(a) — 1) for a € A,

where xo(j) =1 iff 7 € O and 0 otherwise. Moreover, for every O € %(7), we denote by
(3.10) Ao ={a € A, mo(a) € O}, AL ={a €A, m(a)—1€ O}

If « € Af (respectively a € Ag) then the left (respectively right) endpoint of I, belongs to a separatrix of
the saddle represented by O.

Lemma 3.1 (see [65]). For every irreducible pair m we have:

(1) Yoesx b(O) =0;
(ii) the vectors b(O), O € Lo(w) are linearly independent;
(#ii) the linear subspace generated by {b(O), O € ()} is equal to ker Q..

Moreover, h € H(w) if and only if (h,b(O)) =0 for every O € X(r).
Veech also describes how these bases change under Rauzy-Veech induction:

Lemma 3.2 (see Veech, [65]). Suppose that T 5y = R(T(x,x)). Then there exists a bijection & : X(m) — X(7)
such that

A(m, ) 7(0) = b(€0),  for all O € X(x).
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3.1.9. The boundary operator. The following operator 9, is known by boundary operator (as a special case of
the more general operator introduced in [44], see §[4.1.3). Let %(7) and A be as in the previous subsection.

Definition 1. Let 0, : RA — R¥(™) stand for the linear transformation which maps a vector h € R4 to the
vector in R¥(™) whose coordinates (9,:h)o, O € ¥(r) are given by

(Oxh)o == (B, b(O)) = > ha— Y ha,  for O€X(n).
acAg aEA
One sees (in light of Remark that the image of 0, is:
(3.11) &r(R““) = {(a?o)ceg(ﬂ.) : Z To = 0}.
)

0ex(m

Remark 3.3. We can identify a vector h € R4 with a piecewise constant function g, which gives the
constant value h, to the subinterval I,. Then the operator 9 can be thought of as acting on piecewise
constant functions and producing, as a value at O € X(7), the sum of jumps of the function g, at the
endpoints corresponding to the singularity labelled by O.

Two extensions of this operator (viewed as in the previous remark as an operator on functions) will be defined
later, to functions piecewise absolutely continuous on each I, (§ 4.1.3) and to functions with logarithmic
singularities (§ [4.3.3)).

3.1.10. Boundary operator estimate. Let H(m) := ker Or. Denote by pp(x : RA — H(r) the orthogonal
projection on H(m) with respect to the standard scalar product on RA.

Lemma 3.4. For any h € R4, we have

(3.12) psr(m bl < Vd|R].

Moreover, for any Rauzy class G C S there exists a positive constant Cg such that for every m € G and
h € RA we have

(3.13) 17 = e bl < Cgl|0xhll.

Proof. Let H(m)* C R4 be the orthogonal complement of H (7). By Lemma Or : H(m)t — R¥™ is a
linear isomorphism. It follows that there exists C; > 0 such that

Al < CxllOzh|| forall he H(m)™.

Hence (3.13) holds with Cg = max{C, : 7 € G}. Denote by || - ||2 the Euclidean norm on R4. Since
[Rll2 < ||A]| € Vd||h||2 and pp(r) is an orthogonal projection, we have

lpr(mhll < Vdllpamhllz < Vdllk]l2 < V|all.
O

3.2. The Uniform Diophantine-type Condition and its full measure. We will now define the Diophantine-
type condition that we will use. First, it is convenient to introduce an acceleration of Rauzy-Veech induction
which produces times which we call Rokhlin-balanced. We then define the condition and prove that it has
full measure.

3.2.1. The Rokhlin-balanced acceleration. The following acceleration of Rauzy-Veech induction produces
times of the Rauzy-Veech algorithm where the corresponding Rokhlin towers (see are balanced in
the sense that all bases have comparable lengths (see in Definition [2]) and all the towers travel together
for a long enough time (see in Definition . We call these times Rokhlin-balanced.

Definition 2 (Rokhlin-balance). Let us say that an accelerating sequence (ny)g>o is Rokhlin-balanced if there
exist constants K > 1 and 0 < § < 1 such that the following two conditions hold for every k € N:

(B1) 1P| < k|1 for all k> 1 and o € A,
(B2) for every k > 1 there exists a natural number 0 < p; < miﬁ Qo (k) such that
ac

{TiI(k) :0 <14 < pi} is a Rokhlin tower of intervals with measure greater than 4|7|.

We say that an IET is Rokhlin-balanced if it satisfies Keane’s condition and it admits a Rokhlin balanced
accelerating sequence (ny)x>0-



ON BIRKHOFF INTEGRALS FOR LOCALLY HAMILTONIAN FLOWS 19

Remark 3.5. Notice that by conditions (B1f) and m for every o € A and k > 1 we have

(3.1 QNN < & S QuibIP)]| = 1], and
acA
(315) Q) > 1] > 21,

so that each Rokhlin tower of a balanced acceleration induction time has measure uniformly bounded below.

Let us show that for almost every IET one can find a Rokhlin-balanced sequence by considering returns of
Rauzy-Veech induction to special compact sets (for the parameter space of the natural extension, see §[3.1.6)).
Let us recall that X (G) denotes the domain of the natural extension of the Rauzy-Veech induction (see (3.6)

in § BL0).

Lemma 3.6. Let m be irreducible. For Lebesgue-almost every choice of A\, the IET T = T, ) is Rokhlin-
balanced. Furthermore, for every 0 < § < 1 one can define a set Y = Y (d) C X(G) such that a Rokhlin-
balanced accelerating sequence with constant § is given by returns of the natural extension of Rauzy-Veech
induction to Y .

Proof. Fix 0 < 6 < 1. Let us consider a subset Y = Y (§) C X(G) which satisfies:

(i) its projection Yy on G x AA is precompact with respect to the Hilbert metric;
(ii) for every (m,A,7) € Y we have

min{{ Z Ta:1<k< d} U{ha(T) € .A}} > dmax{ha(7): a € A};
mo(a)<k

Let R > 0 be such that Yy C G x By ((1/d,...,1/d), R), where By ((1/d,...,1/d), R) is the closed ball (with
respect to the Hilbert metric dg) of radius R and center at the center of the simplex A*.

Balance at visit times. Consider any sequence (n);>1 which corresponds to visits to the set Y. By definition,
for every k belonging to this subsequence, (7", \(¥) 7(})) € V' Tt follows that dy (A®, (1/d,...,1/d)) < R
Therefore

max|IC(¥k)|/min IR < e,
acA acA

which implies the condition (BI) for x := eff.
As (n®) B r(®)) = R (r, )\ T)) ey, by COHdlthHEln the choice of Y, taking

W mmin{{ > rWia<i<dfup®iaca} a® =nE®)
7F (o)<t

we have that I%) x [0, £(*)] is a rectangle (without singular points inside) in the translation surface M (7(*¥) \(*¥) 7<)y
(= M(mw, A, 7)) and its area is greater than

BN AP > dmaxh( Y AP > s(AB, BW) = 4)1].
acA
acA acA

This gives (B2) with py := [t**) / maxaea ha(7)] and 6 := —2 ¢ minaga ha(r)

2 maxaeA ha(T)
Typical Rokhlin balance. Tt now follows from Poincaré recurrence theorem (and absolute continuity and
finiteness of the Veech invariant measure, see [64]) that almost every IET visits Y (d) infinitely often and
hence is Rokhlin-balanced. U

3.2.2. The Uniform Diophantine Condition definition. The Diophantine-type condition that we will use in
the main theorems is the following.

Definition 3 (UDC). An IET T : I — I satisfying Keane’s condition, satisfies the Uniform Diophantine
Condition UDC if T is Rokhlin-balanced (in the sense of Definition , and for every 7 > 0 there exist
constants 0 < ¢ < C, a Rokhlin-balanced accelerating sequence (nj)r>0 and an increasing sequence of
integers (ry,)n>0 with ro =0 and r,/n — a > 0, so that:

(0) T is Oseledets generic, i.e. there exists an extension (m, A, 7) of T'= T »)
such that it admits an Oseledets splitting of hyperbolic type, as in § 3.1.7

and, furthermore, the matrices Z(k) and product matrices Q(k,[) of the acceleration along the subsequence
(nk)ren (see §13.1.3) satisfy the following conditions:

(UDC1) Qs (k,1)|| < Ce =R for all 0 < k <1, where A\ = \,/2;
(UDC2) 1Z(k+1)|| < Ce™lF=l for all k > 0 and n > 0;
(UDC3) ce™F < ||Q(K)| < CeMFIE for all k > 0;
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Remark 3.7. By conditions (UDC2|) and (UDC3)), there exists C’ > 0 such that

(3.16) 1Z2(k+ 1|l = O(|Q(R)II").
Then using arguments from Section 1.3.1 in [44], one can show that
(3.17) 1Q(R)| = O(min Qu (k) 7).

Thus, the condition implies condition (a) of the Roth-type Diophantine condition defined in [44]. The
other two conditions (as well as the last assumption of the restricted Roth-type conditior@ also hold, in
view of the Oseledets genericity assumption (O] (see for example Remark 3.4 in [48]). Thus IETs which
satisfy the are in particular of (restricted) Roth-type.

3.2.3. Full measure of the[UD( Let us show that the [UDC]| condition has full measure.
Theorem 3.8. Almost every IET satisfies the [UD( Diophantine condition.

Proof. We split the proof in several steps.

Construction of a good recurrence set. Let us consider a subset Y C X (G) which satisfies the assumptions
and in the proof of Lemma which guarantees that visits to Y give a Rokhlin-balanced sequence,
and furthermore such that:

(iii) (Y is finite, so Gy := /u(Y) is a probability measure;
(iv) the functions log || Ay || and log || Ay || are integrable with respect to fiy-.

Let A1 > ... > Ay > 0 the positive Lyapunov exponents of the corresponding accelerated cocycle, which are
g and distinct in view of [22] and [5]. Let A := \;/2 and k = de’’. Fix 0 < 7 < A\;/2. Since for fiy-a.e.
(my A\, 7) €Y we have
1 .
lim — log || A\ ! - -
n~1>rJIrloo n OgH Y (7T,/\,7') rl—‘s(ﬂ',)\;r) H Aga

the map from Y to R given by

(T, A7) = sg%e“g—ﬂﬂ@@(w,A,Ty Iy |

is a.e. defined and measurable. Therefore, there exists a subset K C Y with iy (K)/fiy(Y) > 1—7/2 and a
constant C' > 0 such that if (7, A, 7) € K then for every n > 0 we have

(3.18) IS (7, 0, 1) I, ey || < Ce™Pommm < Cen,

First acceleration. Let us consider the induced map 7/€K : K — K and the induced cocycle /AlK K —
SLA(Z). Then R (m,\,7) = R;K(Tr’/\’ﬂ (m, X\, 7), where 7 (7, \, 7) > 1is the first return time of (m, \,7) € K
to K for the map ﬁy. Let rﬁg) = Zogi<n T} O 7%1( for every n > 0. Then

(n) ~
Y
"k — 'LALY( ) a.e. on K
n py(K)

and furthermore

A — E(T?)) for every n. > 0
K — 4y yn=u.

In view of (3.18)), for every (m, A, 7) € K we have
(3.19) 1A (1, 0, ) Trs oy || < Ce e (TAT) < Cg=n

and for a.e. (m, A, 7) € K we have

1 ~(n) o ay(Y)
(3.20) ngl}rloo - log [|[Ax’ (m, A\, 7|l = M1 (K

S ()\1, Al(l —+ T))

Second acceleration. Since the functions log ||Ax|| and log H/All_(lﬂ are integrable, for a.e. (m,A\,7) € K we
have log || Ax (R (7, A\, 7))||/n — 0 as |n| — 400, also the map from K to R given by

(m, A7) = sup eI Ag (R (m, A, 7))
neZ

is a.e. defined and measurable. Therefore, there exists a subset K’ C K with fix(K’) > 0 and a constant
C’ > 0 such that if (m, A\, 7) € K’ then for every n € Z we have
(3.21) |Ax (R%(m, A\, )| < e,

201, [46], Marmi, Moussa and Yoccoz introduced a more restrictive (but still full measure) Diophantine-type condition, that
they called restricted Roth-type: in addition to all the properties of Roth-type, one requests in this case that the stable space

has exactly dimension g. This holds for IETs which satisfy the in view of the Oseledets genericity assumption (O)), since
we require that the splitting is of hyperbolic type, which means exactly that there are g positive exponents, see § i
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Moreover, for a.e. (w, A\, 7) € K’ there exists an increasing sequence of non-negative integer numbers (7, (7, A, 7)) n>1
such that r1(m, A, 7) = 0 and

T, A,T) N EK(K)

n Ik (K')
Let K" C K’ be a subset of (m,\,7) € K’ for which (3.20) and (3.22) hold. Then fig(K") = fig(K') > 0.
By the ergodicity of R, for a.e. (m, A\, 7) € X(G)

(3.22) R AT (X 1) € K’ for all n > 0 and ra —a>0.

(3.23) there exists ny(m, A, 7) > 0 such that R™ ™ ) (1 A 1) € K”.

By Fubini argument, there exists a measurable subset = C G x A such that ug(G x A4\ Z) = 0 and for
every (m, A) € E there exists 7 € O, such that (7, \,7) € X(G) satisfies (3.23]).

Full measure. We can now show that every (w,A\) € = satisfies the Suppose that (7, A) € E and
(m, A\, 7) € X(G) satisfies (3.23). Then the corresponding acceleration sequence (ny),>o is defined by setting
ng := 0 and then defining ny inductively such that, for every k > 1,

R (m, A\, 1) = 7%];(_17%”1(””\’7) (m, A\, 7).

Let us now consider the cocycle matrices Z(k), k € N, of the acceleration along the sequence (nj)ren, as
), k

defined in § [3.1.3] as well as their products Q(k, ), k,1 € N (see again §[3.1.3). By definition of @ and (3.7),
for 1 < k <[ we have

QUk,1) = AT (REH(R™ (m, A, 7))
Q(0,1) = A (R™M (m, A, )P AT (z, A, 1)
1Qs(k, Dl = A (RET R™ (m, A ) T it s ey |
1Q+(0, Dl < 1AV (R™ (1, A ) T (2ms (o MIAT (0, M)
Since ﬁ’%ﬁl(ﬁnl(w, A\, 7)) € K for every k > 1, by (8.19), for 0 < k < [ we have
1Qu(k, Dl < CeM A (, X) |~ =R),

which gives (UDCIJ).

Consider now the sequence (ry,)n>0 defined setting ro := 0 and, for n > 1,
o= (R (1, A\, 7)) + 1.
As ﬁ"l(ﬂ,/\,T) e K", by , we have r,/n — a > 0 and
Ror =Y (R™ (1, A, 7)) = ﬁ;}"’(ﬁnl(ﬂ’A’T))ﬁnl (m, A\, 7) € K' for n > 1.

Since Z(k 4+ 1) = A (REY(R™ (m, A, 7)))! for k> 1 and Z(1) = A (z, \, 7)t, by (B:21), for every n > 1
and k > 1 we have

12(k + D) = 1Ak (REHR™ (m A D)) = Ak (Ri™ (R TH(R™ (m A r))|| < Cerorel.
For k = 0, on the other hand, we have
1Z(1)]| = AT (7, A)|| < |ATD) (7, A)||eTI™]
for every n > 0. Moreover, as r; = 1, it follows that for every £ > 1 we have
1Z(k +1)|| < C'eTlF—ml < ¢ eIkl

which gives (UDC2)) with C' = max(C’, [|A™) (7, \)|]).
As R™ (m, A\, 7) € K", by (3.20))

A(k_l) Anl ~
i CIQUI o Jog AR (m A T Ay (V)

k—+o0 k k—+o00 k o //Zy(K)

S (/\1,)\1(1 +T)),

which implies the condition (UDC3)). Finally, the sequence is a Rokhlin-balanced acceleration sequence by
Lemma since the set Y was chosen to satisfies the Conditions andwhich guarantee Rokhlin-balance
in the proof of Lemma [3.6] This concludes the proof. O
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3.3. Diophantine series. In the proof of our main results, certain sums and series (defined in Deﬁnition
which depend on the matrices of the (accelerated) cocycle will play a central role, both to control Birkhoff
sums and to prove ergodicity. We here show that these quantities, under the [UDC] are first of all well defined
and furthermore grow in a controlled way (see Proposition .

Definition 4. For every IET T : I — I satisfying Keane’s condition and any accelerating sequence we define
four sequences (K;)i>—1, (K])i>—1, (Ck)k>0, (C})k>o0:
K(T) =Y 112 + DII1Qs(1,5 + 1)|| for 1 >0 and K_; := 0;
Jj=l
D 126G+ DR 5 + 1) log [|Q)|| for I > 0 and K’ := 0;

gzl

> 1Qu R (1ZWI| K11 (T) + Ki(T)) for k > 0;

0<I<k
> Qs RII(IZ WKy (T) + K{(T)) for k > 0.
0<I<k
Proposition below shows in particular that if 7" satisfies the [UDC]| these quantities are finite and hence
well defined for every pairs of integers k > 0, [ > —1.

Proposition 3.9. For every IET T : I — I satisfying the all sequences (Ki)i>—1, (K})i>-1, (Ck)r>0,
(CL)k>o0 are well defined and for every 0 < 7 < A\/2 there exists a constant D > 0 such that

K|(T):

Ci(T) :

C.(T):

(3.24) K(T) < De™(rn=1) ifrn_1 <l<r, for somen > 0;
. < +1)e or every | > 0;
3.25 K|(T) < D(l+1)e™ f 1>0
(3.26) C,, (T) < D for every n > 1,
3.27 Ci(T) < D(k+ 1)e*™ for every k > 0.
k

Proof. By (UDCI1J)) and (UDC2), for r,,_1 < < r, we have
K(T) = > 1Z0IQsEN)+ D> 1ZMINQsE 5]

I+1<5<ry, J>rn
<P Y A L 02 Y o) A6
I+1<j<ry J>rn
< C2€T(rn_l) Z e—>\j + C2€_>\(T"_l+1) Z e—()\—T)j’
j=1 Jj=0

which gives .
By condition , for all j > 1+ 1 we have
bmw<w<k%0+kﬂ+'MSO%SUU+UU*W
Therefore, again by (UDC1)) and (UDC2), we have

K{(T) < C'(1+1) Y 1ZWIIQs (L )IG — D)

j>l+1
SCCHI41) Y (j-Dee AU = C'CP I+ 1)e™ Y je AT
j=l+1 i>1

which gives (3.25]).
In view of (3.24]), (UDC1)) and (UDC2)), we have
Cr,(T) = Y QL) II(IZW)[K1-1 (T) + Ki(T))

o<i<ry,
< C*D Z —)\(rn—l) T(Tn—l+1)eT(T'n—l+1) + eT(’I‘n—l)) < 202 De2™ Ze—(/\—27')l7

0<I<ry, 1>0

which gives (3.26)).
In view of (3.25)), (UDC1)) and (UDC2)), for every k > 0 we have

= > 1QRIIZOIE(T) + K/(T))

0<Ii<k

< C2?D Z e~ k= l) TleT(l—l)+(l_|_1)eTl) < (k+1)2CQDeZTkZe_(>‘_QT)j,
0<i<k j>0

which gives (3.27). O
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4. COCYCLES WITH LOGARITHMIC SINGULARITIES

We define in this section norms on the spaces of cocycles ¢ : I — R with logarithmic singularities over
IETs that we are interested in (in view of the reduction explained in §. We first introduce (in § the
class of cocycles of bounded variation over a given IET, then move to cocycles with logarithmic singularities.
The norms we introduce make the space of such cocycles a Banach space. We then prove several properties
which will be used later in the proofs of the main results.

4.1. Bounded variation and absolutely continuous cocycles. Let us denote by BV (Uyecal,) the space
of functions ¢ : I — R such that the restriction ¢ : I, — R is of bounded variation for every o € A.

4.1.1. Banach structure on bounded variation cocycles. For every function ¢ € BV(Uyealy) and € I we
will denote by ¢4 (x) and ¢_ () the right-handed and left-handed limit of ¢ at x respectively. Let us denote
by Var ()] ; the total variation of ¢ on the interval J C I. Then set

(4.1) Var ¢ := Z Var ()l 7., -
acA

The space BV(Ugeals) is equipped with the Banach norm ||¢||gy = |¢||sup + Var ¢.

4.1.2. Piecewise absolutely continuous cocycles. Denote by AC(Unealn) the subspace of cocycles in BV (Ugealn)
which are absolutely continuous on the interior of each I, o € A.

Denote by BV (LUyeal,) the space of functions ¢ € AC(Uyeal,) such that ¢ € BV(Uaeals). The space
AC(Unenl,) equipped with the BV norm is a Banach space and BV (Uaeal,) is its dense subspace.

4.1.3. Boundary operator on cocycles. Let O : BV(Upealn) — R>(™) be the linear operator given by

(Oxp)o = Z o—(ra) — Z o+ (la)
a€A, Q€AY
for O € X(m). This is an extension of the operator defined in § from piecewise constant cocycles (in
view of Remark [3.3]) to bounded variation cocycles. It associates to each singularity the sum of jumps at the
discontinuities associated to that singularity (see also Remark [3.3).

Remark that if ¢ € AC(Ugealy) then

(1.2) > 0o = [ ¢l)do = se).

0ex(m)

4.2. Cocycles with logarithmic singularities. Consider the space LG(Uneal,) of cocycles with loga-
rithmic singularities of geometric type on Uye4l,, defined in § (see in particular (2.1) for the form of
such cocycles), as well as its subspace LSG(Unecaly ), which consist of cocycles with logarithmic singularities
of geometric type (see §[2.3.1) satisfying in addition also the symmetry condition ([2.2)) (both also defined in
§[2.3.1). We will also use the spaces
LGBV(UQEAIa) = LG(UaEAIa) + BV('—'&EAL})
LSGBV('—'&EAI&) = LSG('—'&EAI&) + BV('—'aEAIa)v

consisting of all functions with logarithmic singularities (respectively symmetric logarithmic singularities) of
geometric type of the form (2.1)) for which we require only that g, € BV(Uaeals). Notice that the space

BV (AC resp.) coincides with the subspace of functions ¢ € LG®Y (LG resp.) as in (2.1)) such that C¥ =0
for all a € A.

4.2.1. Norms and Banach space structures. We now define a norm on LGBV(UaeAIa) which makes it a
Banach space.

Definition 5. For every ¢ € LGPV (Uyeal,) of the form (2.)) set

L(p) =Y (ICH+1CL D), LV(p) = L(¢) + Var g,
acA

The space LGPV (Upeals) equipped with the norm

lellcy = L(#) + llgellBv

becomes a Banach space. Then, since LG (Uneals) and LSG(Uqealy) are closed subspaces of LGBV (Uge a1 ),
they also inherit the Banach space structure. Moreover, for every ¢ € LGBV(Uae al,) we have

1

(4.3) mllw\lym < (14 [log [T[D[l¢l 2v-
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Indeed, since every ¢ € LGBY ( aeAI is of the form , we have

Lo ||L
el < S [ ogaldo + LD < (14 log DL + e

We can associate a value also to each saddle in Fix(¢g) individually as follows. Using the notation
introduced in § let O € X(m) be a saddle and let Ay, A5 be the sets of letters defined in (3.10)),
associated respectively to right and left endpoints of intervals which correspond to this saddle. Then

(4.4) Nolp)= Y, Ca= D, Cd
acAg, aEAY

is the value of the asymmetry at the saddle labelled by O. We also set

AS(p):= Y 1Ao(@)l.

0ex(m)
Comparing the above definition and (4.4)) with Definition |5 one sees that
(4.5) AS(p) < L(p).

4.2.2. Properties of the cocycles arising in the reduction. As we saw in § the study of extensions of
locally Hamiltonian flows can be reduced to the study of skew product extensions of IETs with logarithmic
singularities (see Proposition . We now recall the properties of the cocycles which appear from this
reduction, which were described in [20] (see the proof of Theorem 6.1 and Proposition 6.1).

Let M’ C M be a minimal component of a locally Hamiltonian flow ¢g with non-degenerate saddles. Fix
a section « as in the proof of Proposition and consider the map that associate f € C?T¢(M’) to the
cocycle ¢y which appears in the skew-product presentation of the Poincaré map of the extension <I>Hf§ toyxR

(see Proposition [2.4)).

Proposition 4.1 (Properties of the skew-products cocycles, see [20] and in particulalﬂ Theorem 6.1). For
every € > 0 the map from C?*T¢(M) to LG(Uneals) which maps

f = Q€ LG(L'(XG.AI(X)
18 a bounded linear operator. Moreover, g;f € LG(Uacaly) and there exists C > 0 such that
cto Y f@ISL@)<C Y (o) for every f € CPH(M).
o€Fix(¢r)NM’ o€Fix(¢r)NM’

Furthermore:

(i) if f € CY(M) and f(0) =0 for all o € Fix(¢r) N M’ then the map |z : I — R is bounded;

(it) If Yr € Upmin, so M = M, then AS(¢y) =0 and 0, (ps) = 0.
4.3. Properties of cocycles with logarithmic singularities. We state and prove in this section a number

of elementary properties of cocycles with logarithmic singularities which will be used in the construction of
the correction operators.

4.3.1. Control of tails of the derivatives growth. The derivative of a cocycle with logarithmic singularities
has singularities which explode at most as 1/x, as stated in the following Lemma.

Lemma 4.2. Suppose that LG(Uaeals) and g, = 0. For every o € A denote by mq, the middle point of the
interval I, i.e. My = %(la +74). Then

@' (x) (2 — la)| < L(g) for z € (la, mal,
¢’ (@) (x = ra)| < L(p) for @ € [ma,Ta).

Proof. Indeed, for every x € (l,, my] and 8 € A we have

xz—lg T — g g — T T —T _ T —lg
{(£—21> A )= > .
1| || || 1| ]

(4.6)

It follows that

G5 |(x 1Csl(z —la)
' (@) <) T < ) (C5I+1C5 D) = L)
Z|f|{96‘—l/3 /|f|} %\f\{ ﬂ—w)/\f\} anA
The second inequality of (4.6 . ) follows by the same arguments. O

21The statements are all part of Theorem 6.1 in [20], but (i), namely the boundedness of ¢|y| when f € CY'(M) and f
vanishes on Fix(¢r) N M’. This last statement can be proved with the same arguments used in [20] to prove Theorem 6.1.
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4.3.2. Control of mean value on subintervals. For every integrable function f : I — R and a subinterval
J C I let m(f,J) stand for the mean value of f on J, i.e.

17 J|/f

Proposition 4.3 (Proposition 2.5 in [20]). If ¢ € LGBV (Uaeals) and J C I, for some o € A, then

. L]
(@) . ) g )| < £v(0) (1+ 151
and

1
(438) i /J () — mip, )| dz < BLV(p).

Lemma 4.4. Let ¢ € LGBY (Uncals). Then for every x € Int I, we have

(o) — mp o mel)| < £9(0) (14108 00 if € (1o,

(4.9) (@ |* l|‘*)
[o(2) = i [ o] < £V() (14108 25 if € ).

Proof. Step 1: First note that for any C'-map f : (zg,z1] — R such that |f'(z)(z —z0)| < C for x € (z0, 1],
we have that for all ¢, s € (zg, x1]

s s 1
=0 =1 [ rwa <o [
and hence that

|f(8)—m(f,[l‘0,l‘1])|§ 10 o/lenogz:xO'dt

0

— Zo

1‘0|

du| = C|log
o

(4.10)

—C(log7+1—2 ><C’(log7x0

T — o §— o

Step 2: Suppose now that ¢ € LG(Uaeals) with g, = 0. In view of Lemma (see (4.6), we can apply
(4.10) to f = ¢ restricted to I, and taking C' = LV(¢) = L(yp). This gives (4.9) in the case g, = 0.

Step 3: Consider now the general case. For every g € BV(Uyeal,) and any interval J C I,,, we have

+1).

(4.11) lg(x) —m(g, J)| < Var(g) for every = € J.
Adding this equality to the result of Step 2, we obtain (4.9)) for any ¢ € LG(Upealn)- |

From Lemma and (4.11]), we immediately get the following Corollary:
Corollary 4.5. Let p € LGBV( Uaecaln). Then for every x € Int I, we have

21| el
(412) ()| < T

If additionally ¢ € BV (Uaeals) then

+EV(30)(1 + log — Lo x})

min{z — ly, 7o —

1] lell L
minaE.A'Ial |I|

4.3.3. Eaxtenstion of the boundary opeartor. The operator Oy : BV(Ugeals) — R¥™ introduced in §
can be extended to an operator J; : LGBV(uaeAIa) — RE(™ as follows.

(4.13) [@llsup <

+ Var(yp).

Definition 6. Let 9y : LG®Y (Ugeals) — R¥(™ be a linear operator given by
Onlp)o = lim (3 (plra—2)+C7logz) = 3 (ella+a)+C loga)).
acA, a€AG
for every ¢ € LGBV (Ugeals) and O € X(7).

Let a := min{|I3| : 8 € A}/2. Then for every a € A and every ¢ € LGBV (Uyeal,) there are oh e
[0,a] — R functions of bounded variation such that

P(ra —z) = =Cylogz + ¢_(2), p(la +z) = —Cllogx +£2(x) for « € (0, a].
For every O € ¥(m) let us consider the bounded variation map Do : [0,a] — R given by

(4.14) Do(x):= Y ¢ (z)— > ¢ (z)forzel0a]

a€Ag, aEAL
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Then for all x € (0, a] we have

(4.15) Do(z) = Z (o(ra —z) + Cy logz) — Z (e(la + ) + Cl log z).
acAy, acA}

As Do is of bounded variation, it follows that

(4.16) 0n()0 = (Do) 1 (0)

is well defined.

4.4. Mean value projection. If ¢ € L*(I), we can consider the piecewise constant function that is constant
and equal to the mean m(p, I,) on I,. Formally, we define the linear operator M : L'(I) — R4 given by

M(p)(x) =m(p, I,) if x € I,.

This operator will play an important role in defining corrections operators. In the rest of this subsection we
prove the following Proposition, that gives an estimate on how the boundary operator 9, changes when one
projects using this mean value projection operator M.

Proposition 4.6. For every p € LGBV(I_IaeAIa) we have

#) +2dLV(p) (5 + 2”) .

(417)  10x(M) < 10x()]| + AS(2) (1 + log I

Furthermore, we also have that

2
4.18 9x(0)|| < 2d1log —————— ||l 2y
(418) 19 (o)1 ey /2%

Proof. First suppose that g, = 0. Then the maps fﬁ :[0,a] = R (a:=min{|Ig|: B € A}/2) are of class C*
for all @ € A with

(4.19) \gi:(xﬂ < L(p)loga™ and |(£§)’(1’)| < L(p)/a for x€]0,a].

In view of (4.14) and ([4.16)), it follows that for every O € (7)) the map Do is of class C! and we have
(4.20) 0r()o| = [Do(0)] < (FAS + #A5)L(p) loga™

and

(#AS + #A5)L(p)

|Dp ()] < for z € [0, al.

Therefore, for every z € [0, al,

*1Dp(0) — D d *[Y|D! dsd
(4.21) |DO(0)—m(D(9,[O7aD| < fO | O( )a @(:L‘)| £ < fO fO ‘ ((91(8)‘ sax < (#AE‘F#AFD)E(@)
Moreover, by and , we have
m(Do,[0,a]) = Ao(p)m(log, [0,a) + > mp,fra—ara)— D> m(p [lala +al).
acA,m(a)eO acA,mo(a)—1€0

In view of (4.7)), for every a € A we have
| o]
ml: [ra = a,1a]) = mle, )| < £(g) (14 52)

‘m((pv [la»la + a]) — m((p7]'a)| é E(Sﬁ) (4 4 %)

As m(log, [0,a]) = loga — 1, it follows that
_ I
0 (Mg)o — m(Do, 0,a])| < |Ao(e)|(1+ loga™) + L(p) (4(#AS + #A45) + 210,
Together with (£.16)) and (4.21)), this gives
_ I
0:(Mp)o — Dn(@)ol < |Ao(@)|(1 +loga™) + £(o) (5045 + #45) +211).
As Zoez(n)(#-’éﬁé +#Ap) =2#A =2d and AS(¢) =3 pen(r) [Ao(p)], summing up these inequalities for
all O € 3(w) we have

(4.22) 102 (M) = ()| < AS(2) (1 +loga™) + 2dL () (5 " 'Il) |

Now assume that g, # 0. Since g, € BV(Uacals), we have
(90)+(la) = m(gy, )| < Vargy, and  [(ge)—(ra) — m(gy, a)| < Var g,.
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It follows that for every O € ¥(w) we have

|87T(M(gga))0 - aﬂ(g¢)0| = ’ Z (m(ggmloz) - (gcp)—(raD - Z (m(gcpvloc) - (gtp)-&-(la))’

mo(a)eO mo(a)—1€0
< (#ASL + #A,) Var g,,.
Summing up these inequalities for all O € X(7) we have
(4.23) 107(M(g,)) — O (g¢)|l < 2d Var g,
which together with (4.22)) this completes the proof of (4.17)).
By the definition of 0 (g, )0, we also have
107 (90)0| < (F#AL + #A0)9¢llsup  for every O € ().
This, together with (4.20)), gives

87!‘ S 2d<£’ ——— T Jpllsu )
100 (o)1 < 20(L00) 2+
As |lollzy = L(p) + Var g, + ||ge ||lsup, this completes the proof of (4.18]). O

5. RENORMALIZATION OF COCYCLES

The renormalization map on IETs given by Rauzy-Veech induction (or any of its accelerations) induce
also a renormalization operator on cocycles over IETs defined in §

5.1. Special Birkhoff sums. Recall that for all 0 < k < [ the renormalization operator S(k,1) : L'(I*)) —
LY(IW) is given by
SkDe@) = Y. o((T®)a) for x e 1Y)
0<i<Qp(k,l)

We write S(k)e for S(0, k)¢ and we use the convention that S(k, k)¢ := ¢. Sums of this form are usually
called special Birkhoff sums. Since Rokhlin towers representation allows to write I(*) as

Qp(k,))—1 o
k k)\i
]():U U (T())Iﬁa
BeA =0

where the intervals in the union are all pairwise disjoint, from the definition of special Birkhoff sums, one
can see that for every ¢ € L'(I*)) we have

(5.1) / S(k,)p(z) dx :/ o(x) dz.
0 ()

Therefore we also have that

(5.2) 1S(k, Dl prrwy < llellpr -

If g € BV(Uaeall) then

(5.3) Var S(k,l)g < Varg.

The following Lemma, which was proved by the authors in [20], shows that constants of logarithmic sin-
gularities, as a set, is invariant under renormalization when logarithmic singularities are normalized suitably
(i.e. by the map f(z) — f(AM{a/A}), where X is the length of the inducing interval).

Lemma 5.1 (see [20]). For each 0 < k <1 and for each ¢ € LG(UQGAI&k)) of the form

+ ) & =17 - oo [ —a

there exists a permutation x : A — A such that

S(k,Dp(x) == Clog (I {(@ =) /ITV1}) = Y Crolog (VU = 2) /D) + gsirae (@),
acA acA

where gs i1y, € BVl(uaeAL(f)).
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Remark 5.2. In the general case, when ¢ € LG(I_IaeAL&k)) and g, is non-trivial, the map ¢ — g, is of the
form (5.4). It follows that

Sk, Dp(x) =S(k, 1) (¢ — g,)(x) + S(k,1)(g9,)(x)
=- Z CHlog (JTV[{(z —19)/ITD)}) — Z O\ (o) 108 (O D —2)/110)})
acA acA
+ 95(k,1) (0—g,) () + S (K, 1)(g0) ().

AS g5(k,1)(p—g,) and S(k,1)(g,) belong to AC(I_IaeALgl)), we have

(5.5) ISk = 9S(k1)(p—g,) T Sk, 1)(g,)-

Recalling the definition of £ and AS (see Definition [5)) and of the various spaces of cocycles with logarithmic
singularities (refer to § , we immediately have the following corollary:

Corollary 5.3 (Invariance of £ and AS). For every ¢ € LGBV(uaeAIék))
(5.6) LSk, D)= L(p) and AS(S(k,1)p) = AS(p).
Therefore, the operator S(k,l) maps:
(i) the space LGBV(UaeAIék)) into the space LGBV(I_IaeALg));
(i1) the space LG(UQEAISC)) into the space LG(uaeAléf));
(iii) the space LSGBV(I_IaeALgk)) into the space LSGBV(I_IaeAIg));
(iv) the space LSG(I_IQGAI((})) into the space LSG(I_IQGAIQ)).
The following result (Lemma is a generalization of Lemma 3.2 in [20], which was proved for cocycles

with strongly symmetric logarithmic singularities. Since the proof of the following lemma runs in the same
way, we skip it. The operator d, which appears in the statement was defined in §

Lemma 5.4. For all 0 < k <1 and for every ¢ € LG(LIQGAISC)) we have
(5.7) 1070 (S(k, D)l = (107 () |-

5.2. Cancellations for symmetric singularities. The following property of cocycles with symmetric
logarithmic singularities was proved by the second author in [63] (see Proposition 4.1) and will play a crucial
role to renormalize cocycles with symmetric logarithmic singularities and in the proof of ergodicity.

Let us denote by (z)* the positive part of z, i.e. (z)* =z if 2 > 0 and (2)T = o0 if z < 0, so that if z < 0
then 1/(x)* is zero. Using this notation, let us define, for every a € A,

(5.8) = min  (T'z —1,)", x

[e%

i\t

= min  (ro —T'x)".

0<i<Qp (k) 0<i<Qp (k)

Then !, (resp. 7)) is the closest visit to the singularity I, from the right (resp. to r, from the left) in the
orbit segment {T"%(z), 0 <i < Qz(k)}.

Remark 5.5 (Closest visits comparison). By the proof of Proposition 3.2 in [20], for every x € T ék) and any
a € A we have

1 1 1 1 1 1
zl Y| STo |7 0| [Pz =T
i) e

Thus, the closests visits defined above are comparable with the quantities expressed above in terms of {-}.

(5.9)

The following Theorem (as the proof below indicates) follows from the results in [63], combined with the
acceleration defined in the [UDC]

Theorem 5.6 (Cancellations for Symmetric Logarithmic Singularities). For almost every (m,\) € G x RZ,
there exists an accelerating sequence and a constant M = My > 1 such that T, ) satisfies the

along the accelemting sequence and for every ¢ € LSG I_IaeAla with g’ = 0, any k>1andx € I(k) we
o] = B
have

cr cy k
(SUDC1) (¢) (@0 (g) — §° oy §° Za | o Me(p) k)
s T 1
acA acA
where !, and a7, are the closets visits defined in (5.8)).

Moreover, for every 0 <r < Qg(k) and x € Iék) we have

Qs(k)
1

(SUDC2) @)@ < S 1 5 el g

x
acA X acA ¢
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Proof. By the proof of Propositions 4.1 and 4.2 in [63], there exists a precompact subset Ep C X(G)
with positive measure such that A g, and 2751 are log-integrable and the accelerating sequence defined by

recurrence of (mw, A\, 7) to Ep is such that m and (SUDC2) hold for every k > 1.
Then we repeat all steps of the proof of Theorem starting from the set Y = Ep. Since both
and also holds along a subsequence obtained taking further accelerations, this completes the proof.
O

Definition 7 (SUDC). We say that an IET T satisfies the Symmetric Uniform Diophantine Condition, or
SUDC for short, if it satisfies the along an accelerating sequence (ny)r>o along which the cancellations

(SUDCI1)) and (SUDC2) hold.

Theorem above thus shows that the [SUDC] has full measure.

Proposition 5.7. Suppose that T satisfies the [SUDC,. For every ¢ € LSG(Uaecala) with g, =0 and k > 1
we have gs (), € BVl(I_IaeA[ék)) and
(M +1)L()

(5.10) ||9:s*(k)¢||sup = — &),
mingea 15|

Proof. The proof runs in the same way as the proof of Proposition 3.2 in [20], only replacing Corollary 3.1
in [20] with (SUDC1)).

Let x : A — A be the permutation given by Lemma [5.1] Then

+ C’
(5.11) Grapl@) = SR (@) — 3 — a4 3 e

) O
aea W Esr ) aea [ T®|{ Tt }

Notice that S(k)¢'(z) = (¢') Q) (2) if x € Iék). Thus, (5.11)), in view of (SUDCI]) and Remark and

remarking that (since Rokhlin towers give a partition)
k) min | T3] < Qa(k)|I] < DRI =1
Qp(k) min [157] < Qs k)l I_O;Q (R)7] = (1],

we get that, for every x € Iék)

Qsk) | L) g q) LO)

1] min, \I&k)| B

ming |1’ |

Taking the supremum over z € I*) concludes the proof. O

Proposition 5.8. If T satisfies the then for every k > 1 and for every ¢ € LSGBV(UQEAIQ) we have

1]

(5.12) LYV(S(k)p) < 4M LV(p) <AMkLY(p).

; k
minge 4 |1 [(3 )|
Proof. First suppose that g, = 0. By Proposition @ we then have that gg(r), belongs to the space
BV (UneaI) and

1]

Var gs(k)p = _/M) 1950y (@) dz < g5y llsup TF| < (M + 1)£(@)W~
€ B

If g, # 0 then, by (5.3), we have Var(S(k)g,) < Varg,. As g,—,, = 0, by (5.5), it follows that

LY(S(k)p) = L(S(k)¢) + Var gsxy, = L(p) + Var(gs)(o—g,) + S(k)gyp)
< L(p) + Var(gsw)(p—g,)) + Var(S(k)g,)-

Therefore, by Proposition [5.7] we get

|[(k)| |[(k) |

LY(S(k)p) < L(p) + (M +1) m

L(p — g,) + Var(g,) < 4M LY ().

. k
minge 4 |Ié )|
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5.3. Non-symmetric case. We now estimate Birkhoff sums for the derivative ¢’ of a function ¢ € LG(Uqe Afék))
with asymmetric logarithmic singularities. Birkhoff sums of this type of function over rotations (which can

be thought as IETs with d = 2) were first estimated in the seminar work by Kocergin [37] (see also [38]).
When the base transformation is an IET, they were studied by the second author in [61I] when there is a
unique logarithmic singularity and by Ravotti in [56] in the general case. A crucial estimate in all these
works is provided by the following Remark, which was first used by Kocergin in [37].

Remark 5.9 (Inverses of an arithmetic progression). If the points (x;)Y, C [0,1] are such that, for some
0 >0, |x; — xj| > ¢ for every pair of i # j, then

Yo
DS

i—o i m1n0<z<N T

N log N + 1
S e
= 0 T ming<i<n T; 0

Lemma 5.10. Suppose that T, ) satisfies the Keane condition. Then for every ¢ € LG(Uaecala) with
9,=0,anyk>1andz € I®) we have

c cC- 1+1 k
(5.13) S(k)(¢) (@) = D == Tt | < 5(‘/’)%'
= ey mingea o |

Proof. Notice first that it is enough to prove ([5.13)) in the special cases when
v = oy =log(|I|{(z — la)/|1]}) or ¢ = g = log(|I|{(ra — z)/|I]}).

Indeed, taking the linear combination ) . , C, T+ C’; o, then yields the general form of the result. Since
the reasoning is analogous for functions of the form ot or ¢, we will only do the computations for ¢7.

For any z € I/gk) choose 0 < ig < Qg(k) such that the iterate T%z is the closest to I, among all iterates
Tz with 0 < j < Qs(k) belonging to the interval (Io,|I|). Then x!, = T%(z) — I,. Since all points in the
orbit segment {T%z, 0 < k < Qp(k)} belong to separate floors of a Rokhlin tower on which 7" acts as an
isometry on the floors, we also have that

min{|T(z) ~ T9(@)].0 < i # j < Qa(k)) > min | 1]
Therefore, if we reorder the points in {Tz0 < i < Qg(k)} so that [, < Tz < Thx < Tz < ..., we have

\T{(T% (x) — 1) /|I]} > miﬂ|]&k)\j for all 1 <j < Qp(k).
(1S

Thus, since by definition of special Birkhoff sum S(k)¢'(z) = (¢')( @) () if 2 € ',

1 1 1 1+ logQs(k

(@’)(Qﬁ(k))(x) -—|< E : - < — < — ﬁ(k )’
z {(T"z — 1)/ 1]} m ¥ m 1

@ 0<i<Qp (k) iFio @ 1<j<Qs (k) J Miaea | la”] iNaea|la”]

were in the last inequality we have used the estimate given by Remark [5.9] This completes the proof. ]

Lemma 5.11. Suppose that T x) satisfies the Keane condition. Then for every ¢ € LGBV(I_IaeAIa) and
k > 1 we have

18]
(5.14) LY(S(k)p) <

© mingeq |[In

ey LY (#)(3 +log [QK)])-

Proof. First suppose that g, = 0. Then, by Lemma and in view of Remark we can apply the
derivative estimates given by Lemma and get that for every z € I(%),

’ _ ’ . C(i_ C;(a)
|gS(k)90(DC)‘ = S(k)SD (ZU) % |I(k)|{(x _ lgk))/\l(k)” + (EA |I(k)|{(7“r(xk) _ a:)/|I(k)|} ‘
< L)+ g | Q1))

mingeq [ 167

It follows that

Var gsioe < 195 llsupl 1] < L(9)(2 +log [|Q(R)])
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If g, # 0 then, by (5.3), we have Var(S(k)g,) < Var g,. As g,—4, =0, by (5.5)), it follows that
LY(S(k)e) < L(p) + Var(gs i) (p—g,)) + Var(S(k)g,)
18]

< L(p) + (2 +1og QR —————75:£(p — g,) + Var(gy)
minge 4 [Ia |

1]

< (3 +log [[QR)) LY ().

mingeq | 18]
|

Since by Definition of the Diophantine condition (see (B1]) in Definition [2f and Definition [3|) the IETs

obtained inducing on the subintervals I*) are all k-balanced, i.e. |[I*®)| < kminge \Iék)|, the conclusion of
Lemma [5.11] immediately give the following Corollary.

Corollary 5.12. Let T be an IET satisfying the [UDC| Then for all 0 < k < I and for every function
pE LGBV(uaeAL&k)) we have

(5.15) LY(S(k,1)(#) < K3 +log[|Q(K, DI LV(p).

6. CORRECTION OPERATORS

This section contains the statement and the proof of the key technical result of the paper (Theorem
below), which we now motivate and then state.

6.1. Correction operator for cocycles with logarithmic singularities. Let ¢ be a function with
logarithmic singularities and T an IET satisfying the Keane condition. Let S(k)y be a sequence of special
Birkhoff sums obtained by renormalization, see § Consider the sequence

(6.1) ISK)ell ooy /ML ke,

of L'-norms, renormalized by |I®)|. Notice that if S(k)p were bounded, the sequence would simply be
controlled by the sequence of sup norms ||S(k)g0||Loo(I<k)), k € N. Typically, the sequence in grows
exponentially with an exponent related to the Lyapunov exponents of the cocycle Ay .

Our goal is to eliminate this growth, by correcting the function ¢, namely by subtracting a piecewise
constant function (constant on the continuity intervals of T'). This piecewise constant function, which we
call the correction, can be defined for IETs which satisfy the [UDC| and its values can be identified with a
vector in H(w). The correction vector will be given by a correction operator b : LG(Uneala) — H(w). We
will call correcting operator the operator P := I — b : LG(Upeala) — LG(Uncaly) which performs the
correction, namely to ¢ associates the corrected cocycle P(¢) = ¢ — h(y) obtained subtracting the correction
H(¢). Under the assumption that T satisfies the for every ¢ € LG(Uqealy), the correction h(yp) will
be such that the corrected function P(p) = ¢ — h(¢) produces a sequence

(6.2) IS(K) o P(@)ll sy /I, k€N,
which now has sub-exponential growth. This will then be the starting point to show the existence of a
full deviation spectrum for the L!'-norm (see § . Moreover, if additionally T satisfies the |SUDC| and

¢ € LG(Uqeal,) satisfies a stronger symmetry condition, AS(p) = 0, then the sequence (6.2 is bounded
along a subsequence, and it will play a crucial role in the proof of ergodicity (see § .

6.1.1. The main result on correction of logarithmic cocycles. The formal statement of the result that we are
going to prove is the following.

Theorem 6.1 (Existence of a correction operator). Assume that T = T(, x) satisfies the . There exists
a bounded linear operator b : LG(Ugeala) — H(m) such that for every ¢ € LG(Uagecals) with h(p) = 0 we
have

1S(k) el L1 rem el
e <o (GDliglley + 1y ) 1),
(1] ]
where C}.(T) is the Diophantine series defined in Definition . Furthermore, if additionally T satisfies the

and AS(p) =0 then

S(k 10k 1
PRI < () eve) + 10, @) + Q0| D),

(6.3)

(6.4)

where Cy(T) is the other Diophantine series defined in Definition .

Combining Theorem with the estimates on the Diophantine series given by Proposition (see in
particular (3.27))), we have the following corollary:
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Corollary 6.2 (Subexponential growth of special Birkhoff sums of corrected cocycles). Given T and § as
in Theorem for every ¢ € LG(Upeals) with h(p) =0, we have

IS(R)ell (e k

Notice that, in virtue of the definition of the Diophantine series Cy(T) and C}(T'), the control for the
symmetric case given by is finer than that given by since C},(T') has an additional term which
is logarithmic in the matrix cocycle norms (which comes from the presence of Kj(T') instead of K;(T), see
Definition .

Remark 6.3. More precisely, we will show in the proof of Theorem that for any choice of a subspace
F C H(m) such that F @ I's(r) = H(n), where I's(m) is the stable space of T' = T{ x), one can define a
unique such operator h = hp such that hp(h) = h for any h € F.

The proof of Theorem will take the rest of this section. We first of all comment on the difficulties
which motivate the change of strategy in comparison to [44] and [20] and give an outline of the main steps.

6.1.2. Difficulties and outline of the proof. The idea of correction as well of the strategy for proving of
Theorem are inspired by the seminal work by Marmi-Moussa-Yoccoz on the cohomological equation in
[44] (see also [48]). As we already anticipated in the introduction, though, when considering functions with
logarithmic singularities (or more in general BMO functions) and want to control the L'-norm (which is
the only one that we can controlled for functions with logarithmic singularities, which are unbounded), we
need to modify substantially the original construction. The construction presented here is a modification of
the construction that we introduced in [20] to prove an analogous result for IETs of hyperbolic periodic type.
Working with almost every T, but requires again some major changes in the basic steps of construction. We
comment here on the differences while giving an outline of the steps in the proof of Theorem [6.1}

First note that there is not an unique way to define a correction operator b : LG(Unealn) — H(m) with
the desired properties (as in Theorem , since if we are given a function h(p) that satisfies the desired
estimates (namely and in Theorem and add an element from the stable space I's, we get a
new function that still satisfies the same estimates. On the other hand, if we compose with the projection
U:RA— RA/FS to the quotient by the stable space, the quotient operator

hY :=Uob: LG(Uneuls) — H(m)/Ts

is uniquely defined and is the operator we are going to construct.
We will construct in fact a sequence of correcting operators with values in the quotient by the stable space,
namely

P® LG (UaeaI®) = LG(UaeaIP)/T® . keN
(notice that if T satisfies the the induced IET T satisfies the for every k > 1). For k = 0, the
correcting operator P(©) will have the form I — hY, where hU is the sought correction operator with values
in the quotient. We want the sequence of operators P®*) k € N, to be equivariant under the action of the
renormalization, i.e. to commute with the operation of taking special Birkhoff sums (see Lemma for a
precise statement).
The strategy to construct the sequence P*) k € N of equivariant correcting operators is the following:

(1) As first approximation of the correction operators, consider, for & € N, the mean value projections
M) LG(I_IQEAISC)) — T®) as defined in § and the associated correcting operators Po(k) =
I—M®) keN;

(2) The correcting operators Pék), k € N, are not equivariant and do not take values in the quotient.
Let us hence modify them by subtracting a term A*) and composing with the projection U®) to
the quotient space I'(F) /ng), namely consider, for each k € N, a operator of the form P®*) :=
U® o pE _ AW,

(3) Following [44], one can see that for P(®) defined as in (2) to be equivariant, one needs to define A
so that the modified correction operator U o M©) + A©) is the limit (if it exists) of the sequence
UoQ(k)~ oM™ 0S(k)(¢), which is obtained by ’bringing back’ the correction of ¢ € LG(I_IaeAIéO))
at time k, namely of the function S(k)(y), to time 0 by applying Q(k)~1;

(4) Show that the sequence in (3) converges, so that one can define the modification operator A%, then
the correcting operator P*) = /(%) OPék) — A®) has the required covariance and growths properties.

Thus, to obtain the desired correction operator one has to show that the sequence

UoQ(k)™ o M® o S(k)(p) € Hx®)/TO,  keN
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obtained in (3) converges for every ¢ € LG(I_IaeAL&O)). Notice that when M*) takes values in H(n(®)) c T
then Q(k)~! composed with the projection on I'/T'y contracts exponentially and this allows to prove the
convergence. In [44] and [20], though, the mean value projection M*), obtained taking mean values of the
function over every exchanged interval (see below) takes values also outside H(7(*)). Therefore, the
contraction argument does not apply. To circumvent this problem, in [20] we have used the the projection
on I'/Ts, where T'.s is the central stable space. Unfortunately, though, this is not sufficient now, when we
consider almost every IET.

One of the novelties in this part of the article in relations to the previous correction operators constructions
is that we consider initial corrections M;};) obtained by composing M*) with the projection p H(x(x)) Onto
the space H(r*)) (see §. In view of the boundary operator estimate given by Lemma (see §[3.1.10)),
we can control the displacement between ./\/lgf) and M) in terms of the boundary operator O (see §
in particular the proof of Lemma . It is starting from this modified preliminary correction operators in
step (1) that allows to prove convergence and hence leads to a good definition of correction (and correcting)
operators in the more general setting of this paper, but also requires proving a series of new inequalities
and adding some new technical steps to the construction. The [UDC]|is devised exactly in order to guarantee
convergence of this series. In fact, to show that the series that gives A®*) (which is written in (6.20))
converges, we will exploit the exponential contraction provided by the condition and (3.5)).

The final part of the proof is to show that any correction operator b defined choosing a representative h(¢)
for the equivalence class hY () in H(rw)/T'* is such that ||S(k)(¢ — h(go))||L1(1<k))/|I(k)| has sub-exponential
growth. This part follows quite closely the proof that we gave in [20], along the lines of [44].

6.2. Preliminary corrections. To define initial corrections, let us consider the linear operators on LGEY (Uae ALgk)),
k € N, obtained by considering mean value-projections (which we defined in § |4.4)

(6.5) MW LGP (UaealM) = TW, MBo =% " m(p, II)x 00
acA

6.2.1. Initial corrections. The sequence of initial corrections that we want to use is given by composing these
mean value-projections with the projection onto the space H(7(*)). Recall that PH(=®) I — H(x®) is
the orthogonal projection on H(ﬂ'(k)).

Definition 8 (Initial corrections). Consider the operator
M LGPV (UaeaI®) = HE®), M = pyiaiy o MP,
Set the corresponding initial approximation of the correction operator to be
P LGPV (UaeaI®) = LGBV (U aI™)
o PP = - MPe.

The following properties of the initial corrections follow almost directly from the estimates on mean average
corrections that we proved in §[4:4] as preparatory work, combined with the control of the projection through
the boundary operator (given by Lemma [3.4]).

Lemma 6.4 (Initial correction estimates). There exists a positive constant C such that for every k € N, for
every @ € LG(I_IQGAIék)),

(6.6) 1PSE oll 1 rwy < CHHP | (log [ QUR)IAS(9) + LV(9) + 1050 (2)]])
(6.7) 1P 0l 1oy < 4dCITM) log (261 Q(R) ) o]l v

(6.8) IMP ol <

KVd
II(k)| ||50||L1([(1«)).

Proof. To estimate Pék), we will compare M®*) with Mg;), namely estimate

k k k
69) 1Bl g0y = e = M @lluawy < llo = MP ol remny + IMBp = Mo 11 100
Let us estimate separately the two terms in , namely the mean-value correcting operator and the
difference of the mean value projections.

Estimating the mean-value correcting operator. By the construction of the mean projection operator (see

(6.5) and the definition of m in §, we have

(6.10) IMB @l a0y = D Imlo, I = |/1<’°> p(x) dr| < [l@llprre)
acA acA o
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and, by (4.8), we can therefore estimate the first term in by

(6.11) ||SO*M(’C)SD||L1(I<M) < 8|I(k)|£V(<p).

Estimating the difference of the mean value projections. To estimate the second term in , we recall that
PH(x()), DY Lemma satisfies [|h — pp ()l < Cgl|Orm hl| for every k >0 and h € '), Thus,

(6.12)  [IMP o — prrian MB o 1 100y < TP IMB o — i MP || < Cg|TP| (|0 MPg]].
Moreover, by Proposition [£.6]

(6.13) 1000 M® | < 11000 (¢ )|\+(1+1og ‘),43( o) + 14drLV ().

1€
Proof of (6.6). Going back to and combining the two separate estimates just proved, namely (6.11)),
(6.12) and (6.13]), it follows that

1PSP el oy < 11D (CallOpw (0 >||+cg(1+1og|l(,€)|)As< @) + (14drCg +8)LV(%) ).

As, by (3.4), we have [I®)|=1 < ||Q(k)||, so we get 1—|— log(2x/|I®|) = O(||Q(k)||) which yields (6.6).
Proof of (6.7). Recall now that, by the estimate ) of |0, (¢)|| and balance, we have that ||0,x) (¢)| <

2d1og(2x/[T™]) [l cv < 2d10g(2/<d||Q( )||)||<P||£v- Thus7 as AS(p) < LV(¢) < [l¢llzv, it follows from
that

1PSE oll 1 ) < CHH® | log [|Q(E)|| + 1 + 2d Log (26| Q(K) ) o]l v

< 4dC|1™ |1og(2[|Q(K) D[ oIl 2v-
This proves also (6.7)).

Proof of . Finally, to prove (6.8)), let us apply once more Lemma which also gives that, for every
k>0and h e ), [Pe e R < Vd||h||. Using this combined with (6.10)), we get

K wVd kVd
1M Pl = o Ml < VAIM© el < ‘HM el < Tl )

which proves also and concludes the proof. O

6.2.2. The series bringing back the corrections. We can now build the modification A®) as a series (see (6.15))
below), obtained by quotienting and pulling back the preliminary corrections defined in the previous section.
Consider, for k € N, the projections U*) on the quotient by the stable space, namely

U . LGBV(uae AI) = LGBV (LpeaI(®) /00,

Since S(k, l)F‘(g =T and S(k,1) : T® — ' is invertible, the quotient linear transformation

Sb(kal) : GBV(I—laEAI((yk )/Fs - LGBV(uaEAIg )/Fs
is well defined and S, (k,1) : F(k)/f‘gk) — F(l)/Fgl) is invertible. Moreover,
(6.14) Sy(k, 1) o UM o =UW o S(k, 1) for ¢ € LGEY (Ugeal™).
The following Lemma shows that our Diophantine Condition guarantees the convergence of the series (6.15))
obtained bringing back the corrections and hence it can be used to define a modification operator A(¥
Furthermore, it provides estimates that show that the modification operator is bounded.
Lemma 6.5 (Convergence of the modification series). Suppose that T' satisfies the . For every function
pE LG(I_IaeAIék)), the following limit

(6.15) AW = lim UM o S(k,1)7 o (S(k, o P® — pW o5k, l))
— 00
exists in H(ﬂ(k))/l“gk) and
(6.16) 1AW < CKLLV(9) + 10700 ()])-
Moreover,
(6.17) AW (S(R)p)l| < CKLLV() + [0x(p)) for every ¢ € LG(Uaeala)-
If additionally T satisfies the and ¢ € LG(Uaeals) with AS(p) = 0 then for every k > 1 we have
(6.18) IAB(S(R)p)l| < CKR(LV(9) + [0x()]))-

Let us first show that the Lemma implies that A®*) is bounded.

Corollary 6.6 (Boundedness of the modification). For every k > N, the operator A% LG(I_IaeAIék)) —
H(ﬁ(k))/ng) defined by (6.15)) is bounded.
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Proof. In view of and , for every ¢ € LG(uaeAIC(Yk)) we have

(6.19) JABG]| < K1+ 2d1og(2xd|Q(K) ) el v

This shows that A®) : LG(Uaea ) — H(x®)/T% is bounded. O
The rest of this section is devoted to the proof of Lemma [6.5

Proof of Lemma[6.5 Exploiting the telescopic nature of the series, calculations similar to those in [20] show
that

U® oSk, 1)L o (S(k, 1o P® — PV o s(k, 1))
= > (Sy(k,r+1)toU o MU o S r +1) 0 P o S(k, 7).
k<r<l

It follows that we need to prove the convergence of the series
(6.20) > (Sylk,r+ 1) o U o MY o S(rr + 1) 0 B 0 S(k 1)
r>k
in H(z®) /).
Convergence of the series and the estimate (6.16]). For any r > k, using , (15.2)), , we obtain
MG 0 SGror+1) 0 P 0 Sk, )|

2/<;\/Zi ,
= WHS(TaT + ].) [¢] P(g ) [¢] S(k,T)SD||L1(I(T+1))
2/<;\/Zi .
= |[I0+D)] 175" S(k,r)ellLrre
7
= CM(AS(S%T)@) 10g [|Q(r)|| + LV(S(k, 7)) + [|0rcn (S, 7)9)]]).-

By the invariance of AS, LV and the boundary operator (see , (5-6) in Corollary [5.3] (5.7)), (3.4) and
(4.5) consecutively, we have

1M 0 S(ryr+1) 0 P 0 S(k, )|

(r)
< 0M<£v<s<k,r>w> 10700 (SC, 7)) + AS(S (k. 7)) og [Q(r)])

10|

<C 76D (r(3 +1og [|Q(k, 7))LV () + (|07 ()| + AS () log [[Q(r)]])

<N Z(r + DILV(e) + [0z (9)]) Log [|Q(r)]-
In view of (3.5), for 0 <k <l and h € H(r(®) we have
(6.21) (S, (k, 1)~ 0 UL )| < 1Qs(k, DINIT D ()| < [1Qs (&, D[]

Since Mg'ﬂ) oS(r,r+1)o Pér) 0 S(k,r)p € H(x("+t1), by (6.21), the norm of the r-th element of the series
(6.20) is bounded from above by

CNQs(k,r+ DIZ(r + DII(LV(2) + 107 (0)]]) 1og [|Q(r)]].
Since T satisfies the [UDC] by Proposition the series

D 1Qs(k,r + DI Z(r + 1) log |Q(r) |

r>k

is convergent and its sum is K. As A" is the sum of the series (6.20), it follows that the operator A(*)
is well defined and (6.16)) holds.

The estimates (6.17). If o € LG(Uneal,) then we can repeat the above arguments for S(k)¢ € LG(I_IaeAL(Xk))
instead of ¢. As

LY(S(k,7)(S(k)p)) < Clog [Q(r)[ILV (),
[0 (S(k, ) (S(R)p)) || = [0 (@) ||, AS(S(k, r)(S(k)¢)) = AS(¢),
now the norm of the r-th element of the series where ¢ is replaced by S(k)¢p, is bounded from above
by
CNQs(k,m + DINIZ(r + DILV(#) + [|10x(0)]]) log [|Q(r)]|-
This gives also .
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Symmetric singularities estimates. Now suppose that T satisfies the [SUDC| and ¢ € LG(Upecaln) with
AS(p) = 0. Using (5.12)) and reasoning similar to the above we obtain

157 0 S(k, ) (SR s 10y = 1267 (S 2 aieny < CUTNLV(S(r)p) + 11050 (S(r)ep) )
< CNZ @ + DITTDULY (@) + [0 ()])-
Thus
1Sy (kyr+1)) " o U 0 MUY 0 S(r,r 4 1) 0 B 0 Sk, 7)(S(k)9)]|
< CllQs(k,r + DIIZ(r + DILY () + 10 (2)])-
This gives . (|
6.2.3. The equivariant correction operators. Consider now the operator
P® LG (UgealP) = LG(UaealP)/TH
given by PF) = U*) o Pék) — A®) " As the operators U*) and Po(k) (see ) are bounded linear operators,

P®) is also linear and bounded when LG(I_IaeAIék))/ng) is equipped with the LI(I(k))/ng) norm. We will
now show that this modified correcting operator satisfies the sough equivariance property, i.e. commutes with
the operation of considering special Birkhoff sums.

Lemma 6.7 (Equivariance). Suppose that T satisfies the[UD( For all 0 < k <1 we have

(6.22) Sy(k,1) o P®) = PO o S(k,1).
Moreover, for every ¢ € LG(Unealn) we have
1
(6.23) TIPSO s gy g0 < Ouli) i= CElelev.

If additionally T satisfies the and ¢ € LG(Ugeals) with AS(¢) = 0 then holds with
Or(p) := CK(LV (@) + [|0x(0)]])-

Proof. The condition (6.22) is a direct consequence of the definition of P(*). Its proof run along similar lines
as the proof of the first part of Lemma 4.2 in [20].

In view of [U®)] = 1, (8), (617, (B-14) and (1) we get
k
PO SE 1 g0 rr < NP (SEN@) 1 acony + TP AP (SRR < CUB KLV () + [0-(2)])-

Moreover, using (6.7) and (6.19) instead of and (6.17)), we also have
PO SER 1 g0y e < CHPIEL el v
which give (6.23)).

Symmetric singularities case. Suppose that T satisfies the [SUDC|and ¢ € LG(Unpealn) with AS(p) = 0.

Then, using (6.18) and (5.12)) instead of (6.16) and (5.14)), we get (6.23) with Ox(p) = CKL(LV(p) +
10 (o)) 0

6.3. Proof of Theorem Now that we have build the correcting operator P(®) with values in the space
LG(Une AIéO)) /Fgo) and the desired equivariance properties (see Lemma we want to check that any
choice of representative for the equivalence class P(®) ¢ satisfies the desired growth estimates and then to
lift P() to an operator I — b with values in LG(uaeAIék)). We first prove a Lemma that shows that any
choice of representative of the equivalence class P(?) () satisfies the desired estimates hold (see Lemma
and in particular the estimates in and then use it to show that the correction is uniquely defined (see
Corollary . The proof of Theorem then follows easily from this Lemma and Corollary and is
given at the end of the section.

Recall that we defined the equivariant correction operator P(®) by setting P(?) = U o Péo) — A We

say that a map ¢ € LG(UQGAIéO)) is a correction of ¢ if it is a representative of the corrected equivalence
class POy, ie. UO(P) = PO(p). With this in mind, the following Lemma shows that any correction of
¢ satisfies the desired estimates on the growth of Birkhoff sums. The constants Cj and C), which appear in
the estimates of Birkhoff sums of corrected functions (see part of the Lemma below) are given by the
Diophantine series Cy(T) and Cj,(T) which we defined for any k¥ € N in § §| and showed that they converge
and hence are well defined under the assumption that T satisfies the [UDC|or [SUDC]

Lemma 6.8 (Birkhoff sums estimates for corrected functions). Suppose that T satisfies the . Assume
that o, p € LG(I_I(XEAI&O)) and that U3 = POy, Then:
(i) ¢ —p € H(x®).
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(i) For any k > 1 we have

1S (R) (@)l £ (reo @1l L2 (1o
(6.24) 70| < O(%H@Hw + CQIW)
and if T satisfies the and AS(p) =0 then
1S(R) (@)l L1 (re0 @1l L2 (7
(6.25) T = C(Cueve) + 100 (D)) + CE )

with Cy, := Cy(T), C}, := C,(T) (refer to §f07“ the definition of the Diophantine series Cy, and C},)
and Cy = [|Qs(F)||-

The Lemma shows that every correction of ¢ is of the form ¢ —h with h € H(7(?)). Let us first show that the
Lemma also implies that the correction h is uniquely defined, once we fix a complement to FS” in H (W(O)).

Corollary 6.9 (Uniqueness of the correction). Fiz a subspace F' C H(n(®)) such that F & = H(r©).
Suppose that hy, ho € F are two vectors such that

U (o —h) =UO(p—hy) = POy
Then h1 = h2.
Proof. In view of (6.24) of Lemma[6.8] combined with (3.27), we have

I1S(k)(e—Ri)ll 1 1)

log

. [70R] .
lim sup <0fori=1,2.
k—+4oc0 k
Thus
1 _
oy 21 QUN B — )| _
k—+400 k
As hy —hs € H(ﬂ'(o))7 by the condition @ in Deﬁnition it follows that h; — hy € Fgo). Since hy —hy € F
and T N F = {0}, we have hy = ho. O

Let us now prove the Lemma.

Proof of Lemma[6.8 Since by definition of the operators
U(O)Q — P(O)Lp ()RS PO(O)%O _ A(O)ap — U(O)go —_U©® ¢ Mg)ﬁp _ A(O)go,

we have

U0 —2)=U® o MW+ A0y e H(=x@)T©.
Therefore
(6.26) 0—3€ HmxO)+TO c HxO).

In view of and ,
U® 0 S(k)g = Sy(k) o UV G = S, (k) o PO = PH o S(k)p.
Therefore, from , we have
HU(k) ° S(k)@HLl(I(k))/pgk) = ||P(k)(5(k)90)||L1(I<k>)/pgk>|I(k)| < Ok(p).

It follows from the definition of || - ||L1(I<k))/1_‘(.k)

IS LG(I_IaeAL(lk)) and sy, € ng) such that

on the quotient space that for every k > 0 there exists

. ekl e
(6.27) S(k)p = i + s and HL#)(‘I) < Ok(p).
Next note that
(6.28) Pr+1+ k1 =Sk +1)p = Sk, k +1)S(k)p = S(k, k + )pr, + Q(k, k + 1)sy,

so setting Asgi1 = Sp+1 — Z(k + 1)si (Asg = sp) we have

Aspp1 = =1+ Sk, k+ L)y
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Moreover, by (5.2)), for & > 0,
K K
[Asp1] < WHASIC+1HL1(I<"+1)) = m”@kﬂ — Sk, k 4+ D)kl L1z

K
< ey ekl oy + 1S (ks &+ D)ol L1 1))
|[I(k+1))

- H(‘I@k+1||L1(I(k+1)) |1(F)| ||90k||L1(1<k>)>

Next, by (6.27) and (3.4), it follows that
1Aser1ll < (1 Z(k + 1)[10k(¢) + Ors1(p)) for k >0

and

sollzrroy 1@ —pollLrro 121l L1 (1)

HASOH <K |I(O)| =K |I(O)| S K |I(O)| + K:@O(QO)

Since s = Zoglgk Q(l,k)As; and As; € Fgl), setting ©_; := 0, we have

skl < D 1QUEAs ] < Y 1Qs(L k) Asi]

0<I<k 0<I<Lk
12l L1z
<k Y Qs R)I(O(p) + HZ(Z)H@z-l(w))+H\|Qs(k>||w
0<i<k

In view of (6.27) and taking O (p) = CK},||¢| zv, it follows that for & > 1,
||S(k)§5||L1(I<k>) < H‘PkHLl(I(k))

+ llsell < dnC (Chlell v + c,;’”‘p”Lw)

|[1(F)] - [1(F)| |1(0)]
If T satisfies the[SUDC|and AS(¢) = 0 then the same argument applied to O () = CK(LV(p)+]|0r (©)|])
shows also (6.25]). O

We have now all the elements to conclude the proof of Theorem

Proof of Theorem [6.1} Fix a subspace F C H(7(®) such that F @ ¥ = H(r®). Choose any @ €
LG(Upeal,) with U () = POy, By |(i)| of Lemma ? — ¢ € H(r®). Therefore, there exist h € F
and 1’ € T such that o—h=3¢+h. As UO(p) = POy, it follows that

UO (o~ h) = U (G + 1) = UO(3) = PO,
By Corollary for every ¢ € LG(Uqeals) there exists a unique h = h(p) € F such that U (¢ — h) =
P© . Thus, there exists a unique linear operator b : LG(Uqecala) — F (the correction operator) such that
(6.29) U () = P (p).

As the operator P : LG(Ugpeals) — LG(I_IaeAIa)/Fgo) is bounded, by the closed graph theorem, the
operator f is also bounded. Indeed, if ¢, — ¢ in LG and h(p,,) — h in F then have both

POy, — POu=UO(p —p(yp)),
POy, = U0, —bh(pn) = UV (p—h).

It follows that h(p) — h € F and at the same time h(p) — h € r'” soh= h(y). Since the vector norm and
the L'-norm are equivalent on I'(®)| we get that the operator is bounded.

Suppose now that () = 0. Then
U (p) = U (o - () = PO (o).
Therefore, (6.3) and (6.4) follow directly from (6.24) and (6.25) of the part of Lemma, respectively.

This concludes the proof and proves as well the statement of Remark [6.3] O

7. DEVIATIONS OF BIRKHOFF SUMS AND INTEGRALS

In this section we prove the main results on the deviation spectrum of locally Hamiltonian flows, by first
reducing the study of integrals along a locally Hamiltonian flow to the study of Birkhoff sums (see § ,
then exploiting the correction operator built in §|§| to build (in the spirit of Bufetov functionals and Bufetov
work [6]) the cocycles which correspond to pure power behaviour, see §[7.2]
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7.1. Estimates of Birkhoff integrals through Birkhoff sums. In this section we provide effective
estimate for the growth of Birkhoff integrals (Proposition , which can be applied when the roof function
g is unbounded. We first exploit the special flow representation of the flow as a suspension flow over an IET
under a roof function with logarithmic singularities (refer to § . ) to reduce to estimates of Birkhoff sums,
see § [T.1.1] We then exploit a standard decomposition of Birkhoff sums in special Birkhoff sums, see § -
The estimates relies on the speed of decay of the tails of g. This crucial new ingredient is explained in § [7-1.3]
The main result of this section is then the estimate given by Proposition [7.7]in § [7.1.4]

7.1.1. Reduction of integrals along the flow to Birkhoff sums. Let T' : I — I be an ergodic IET and let
g:I = RygU {400} be an integrable function such that g = inf,c; g(x) > 0. Following § we denote
by T : 19 — I9 the special flow over T' under the roof g. For every integrable function f : I9 — R let

@7 : I — R be given by ¢s(z) = Og(m) f(z,7)dr. By Fubini’s theorem, ¢, is well defined for a.e. z € I, is
integrable and

/Lpf(x) de = | f(z,r)dzdr
I I9

For every (z,7) € I9 and s > 0 denote by n(z,r,s) > 0 the number of times the orbit segment {7 (x,7) : t €
[0, s]} crosses the interval I (identified with I x {0}), i.e. the unique non-negative integer number such that

(71) g(n(z,r,s))(x) <r+s< g(n(w,r,s)—i-l)(x).

Then 0 < n(z,r,s) <s/g+1.

For every ¢ > g, let I. C I be the level set defined by g(z) < ¢ for every x € I.. Moreover, for every s > 0
let

(7.2) AS={(x,r) eI :x e I\ {T(2,0):x €I\ I,0<t<s}CI.

The following elementary Lemma relates the Birkhoff integrals of f for the flow 7} with the Birkhoff sums
of s for the IET T

Lemma 7.1. Suppose that f : 19 — R is bounded. For every s >0 and ¢ > g if (x,r) € A} then Tix €1,
for all0 < i <n(zx,rs), and
(73) | [ @y dt] < 16§ @)+ 2]
0
Proof. For every (z,r) € AS we decompose the orbit segment {77 (z,r) : ¢t € [0, s]} into n(z,r,s) + 1-pieces
using its meeting points with I x {0} C I9, i.e. along crossing times
0<t;<...<t, <s, where n :=n(x,rs)and t; := ¢"(z) —r for 1 <i < n.

Then T (z,7) = (T"x,0) for 0 < i < n, with tg := —r. As (z,7) € A, it follows that g(T"xz) < ¢ for
0 < i < n, which proves the first part of the Lemma. As t;;, —t; = g0tV (2) — ¢ (2) = ¢g(T’x), according
to the decomposition we obtain

/ng:Er )) dt — / F(T (2, 7)) dt + Z/+ F(T (2, 7)) dt+/fT9xr))dt

0<j<n tj

g( ja:) r s—tn
= Z /O ' f(zj,t)dt—/O f(xnf)dt—k/o tf(T"m,t)dt

0<j<n

—tn
=z / F(z,t) dt+/ F(T" 2, t) dt.

Since r < g(z) < c and s — t,, < g(T") < ¢, we also have

g(I
]/ fla,b) dt‘ / (z,)] dt < ¢||f|| o

s—tn g(T"x)
[ sarenal< [T pare e < el -
0 0

and

Therefore
| [ @ ] < [0 @)+ 20l

for every (z,r) € AS. O
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7.1.2. Decomposition of Birkhoff sums in special Birkhoff sums. In this subsection we estimate (") (z) by
decomposing the sum into special Birkhoff sums introduced by Zorich in [7I]. Let T : I — I be an arbitrary
IET satisfying Keane’s condition. For every x € I and n > 0 set

m(z,n) =m(z,n,T) :=max{l >0: #{0<k<n: TFr e 1O} > 2}.
Proposition 7.2 (see [71] or [67]). For every x € I and n > 0 we have

miﬁQa(m) <n< dmaj\(Qa(m +1) =d||Q(m + 1)||, where m = m(z,n).
ac ac

Since the sequence (minae AQa (m)) increases to the infinity

m>0
m(n) =m(n,T) := max{m(x,n) :x € I}

is well defined. If T' additionally satisfies the then, by (UDC3) and (3.17)), for every 7 > 0 we have

(7.4) M) < O(|Qum(m))) < O min Qa(m(n)*7) = On'*").

Proposition 7.3. For every s >0 and ¢ > g if (x,r) € A} then

m(n(z,r,s))

(7.5) PN @) <2 ST 120k + DINSE)@f | oo (100 e
k=0

with

IW(c) == | J{z € I : Vocjcqum Tz € L}.
acA

Proof. Fix s > 0 and ¢ > 0. For each point (z,r) € I9 we will decompose the orbit segment
z,Tx,..., T" 'z with n := n(z,7, s)

into segments. Let m := m(z,n), so I(™) is hit by the the orbit segment at least twice and I™*1 at most
once. For each 0 < k < m let

ny =min{j >0: Tz c I®}, n. =min{j >1:T" 7z c W}
For 0 < k < m we also have

Tz = (TW)YE T g and T Mg = (TH) bk T g

with

(7.6) 0<bf.b; < 1 Z(k+ D).

Moreover,

(7.7) (TYom T gy = T gy with 1 < by, < || Z(m + 1))

Here T";x, T "mg are the first and the last visit of the orbit segment in 7(™). Thus

m—lbzfl byy—1
P (@) =" S (SR (TRYT™ )+ 3 (S(m)py) (1) T )
k=0 ;=0 e
m—1by —1
37 3 (SR (TOYP T ).
k=0 ;=0

If (z,7) € AS, then, by the first part of Lemma Tlz € 1, for all 0 < [ < n. Hence
(TEYIT™ ¢, (TR T "z € TR ().
In view of (7.6) and (7.7)), it follows that

o (@) <2312k + DS (k)os oo (10 ()
k=0

which proves (|7.5]). O
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7.1.3. Control of the tail behaviour. Let g : I — Rsq U {+o0o} be an integrable roof map with g =
minger g(x) > 0. Suppose that for every s > g we have a subset I, C I such that g(z) < s for x € I.
Let us consider the map & : [g, +00) — Rx>q given by

(7.8) &(s) := Leb(I\ Iy).
Denote by F, : R>g — R>q the tail distribution function of g, i.e.
Fy(s) .= Leb({z € I : g(x) > s}) for s > 0.
By definition,
(7.9) {xel:g(x)>stCI\I;and Fy(s) <&(s) for s > g.

Lemma 7.4. Suppose that ¢ : [g, +00) — Rxq is decreasing integrable and of class C* map with lims_, 4 o, s£(s) =

0. Let us consider = : [g,+00) — Rxq be given by Z(s) = f;oo £(t)dt for s > g. Then for every s > 0 and
¢ > g we have

(7.10) Leb(I9 \ A7) < s&(c) + 2¢€(c) + E(c).
Proof. By the definition of = and ([7.9)), using integration by part we have

/ g(x)dx = — /Ootng(t) = cFy(c) + /OO Fy(t)dt < c€(c) +
{z€l:g(x)>c} c c

(1]

().
Therefore

/ g(x)dr < / g(x)dx —|—/ g(x)dx < 2¢€(c) + Z(c).
I\, {z€l:g(2)>c} (z€I\L:g(x)<c}

It follows that for every ¢ > g and s > 0 we have
Leb(I9\ A3) < / g(x)dx + sLeb(I \ I.) = s&(c) + 2¢€(c) + Z(e),
NI,

which completes the proof 0

Remark 7.5. Note that, by definition, = is a decreasing C2-map and lim =(s) = 0.

s——+00

Remark 7.6. Suppose that the roof function g € LG(Usecualn). Then there exist two positive constants
C, b > 0 such that for every s > g we have

g(x) < sforall x € U [lo +Ce™b 1y — Ce™].
acA
Let us define the following sets (corresponding tail level sets):
I, = U [lo + Ce b, r, — Ce_bs} for any s > g.
acA

Then £(s) = dCe™* and Z(s) = (dC/b)e™", so they satisfy the assumptions of Lemma In view of
Lemma taking c(s) = ¢ log s for some a > 1 we have

(7.11) Leb(19\ AS,)) < sdCs™ + 2%(10g 5)dCs™ + %.s*“ = O(s~ (@),

so the measure of 19\ Az(s) decays with the polynomial speed.

7.1.4. Estimates of integrals and tails. We can now combine the results on the two previous subsections,
i.e. the reduction of integrals along the flow to Birkhoff sums (Lemma and the decomposition of Birkhoff
sums into special Birkhoff sums (Propostion , to get the following estimate of ergodic integrals in terms
of special Birkhoff sums:

Proposition 7.7. Letn: R>o — [g, +00) be an increasing Ct-map. Let f : 19 — R be a measurable bounded
map. Then, for every s € R>o,

(7.12) Leb(I7\ A} ) < s §(n(s)) + 2n(s)€(n(s)) + E(n(s))

(where (- ) is defined by and Z(-) is given by Lemma , and for every (x,r) € A;(S),

(713) | [ @ ar] <2 30120+ IS W)l g + 2l
k>0

Proof. The result follows by combining Lemma Proposition and Lemma with ¢ = n(s). O
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7.2. Deviation spectrum and asymptotic behaviour of ergodic integrals. We present in this section
the proof of Theorem [[.4]and the first part of Theorem[I.3] namely the existence of the asymptotic spectrum
for ergodic integrals both in the minimal and non-minimal case. We first define, in §[7.2.1] the cocycles that
will govern the asymptotic behaviour of the ergodic integrals. Notice that, since we are proving at the same
time the existence of the expansions in Theorems and we will define cocycles u, parametrized by
o € Fiz(yr) N M’ also when considering the restriction of a typical Yg € U—nin to a minimal component
M’ (even if these do not appear explicitely in the statement of Theorem where they are absorbed in
err(f,T,-)). We then estimate the error term and shows that it exhibit subpolynomial deviations, see §
and then prove in §[7.2.3| that the cocycles that we build have the desired pure power behaviour, i.e. each has
oscillations of the order of T"* where v; is one of the g distinct exponents in the power spectrum. Finally, in
§ [7-2.4] we conclude the proof.

7.2.1. Definition of the distributions and the cocycles. Assume that T' = T(, x) satisfies the [[DC] Then, in
view of the Oseledets genericity property @ of the condition (refer to Definition [3|) there exists vectors
hi,...,hy € H(x®) such that

1
. i — Al = A\ <11 <q.
(7.14) kEToo : IQ(E)hi|| =X for 1 <i<g

and furthermore span{hi,...,hy} & ' =g (7(©)). We will now use these vectors h; to define the distribu-
tions and the cocycles which appear in the asymptotic expansion.

The distributions. By Theorem (in view of Remark and Corollaryapplied to F:=span{hi,..., hy},
there exists a bounded operator § : LG(Uyecaly) — F, such that h(h) = h for every h € F and for every
7> 0if p € LG(Upeualn) and h(¢) = 0 then

IS(R)ell Lz
|T(R)|
Let d; : LG(Uneala) = R, i =1,...,g be bounded operators such that

(7.15) — 0@,

(7.16) Zd Yh; for every p € LG(Uqealy).

We can then define bounded operators D; : C**¢(M) — R, for i = 1,...,g, by using the map f — ¢y (see
Proposition for its basic properties) which associates to an observable f : M — R the cocycle which arise
in the skew-product representation of the Poincaré map described in § 2:3.3] and setting

(7.17) Di(f) = di(py), l<i<y.

We will prove in § that these are the distributions which enter in the asymptotic expansion.

The power growth cocycles. To construct the cocycles we exploit the following Lemma, proved in [I0].

Lemma 7.8 (Lemma 7.4 in [10]). For every h € H(w) there exists a C*°-function f : M — R, which vanishes
on a neighborhood Fix(¢r), such that o5 = h.

Let f; € C*°(M) be the observable such that ¢y, = h;, given by Lemma applied to h = h;. Let us now
define

T
(T, ) :/ filbo(@))ds, forl<i<g.
0
The singular cocycles. For every o € Fix(¢g) N M’, to define u,, let & : M — R be any C>°-map which is

equal to 1 on an open neighbourhood of ¢ and equal to zero on an open neighbourhood of all other fixed
points. Let &, : M — R be a C°°-map given by

Then, since each f; given by Lemma vanishes on a neighbourhood of Fiz(pr) (see Lemma , &, is
also equal to 1 on an open neighbourhood of o and equal to zero on an open neighbourhood of all other fixed
points. Moreover, by linearity of the operator h, the definition (7.17)) of D; and ( n,

(7.18) bge,) = blpe,) ZD (&)b(ys,) = blpe,) Zd e )hi =0.

Finally, the cocycle u, : R x M — R is deﬁned by

T
uo (T, ) = / €0 (ths(2)) ds

We will show in § that each wu;, in view of (7.14)), displays the desired deviation behaviour and in
§ that they are indeed the desired asymptotic cocycles. We first estimate the error term though.
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7.2.2. Subpolynomial deviation case. The following Proposition provides subpolynomial estimates for the
growth of corrected ergodic integrals (in light of Corollary|6.2]) and will be used in § to control the error
term in the asymptotic expansion.

Proposition 7.9 (Subpolynomial deviation). Suppose that the IET T : I — I satisfies the . Assume
that g, 05 € LG(Upeals) and

7 k)| 1S(R)erllpr iy = O(e™) for every T > 0.
Then for a.e. (x,r) € I9 we have

lo F(T(z,r))dt
(7.19) lim sup el fo ) |
s—+00 log s

Moreover, for every p > 1 we have

1 * foTodt| v
(7.20) lim sup og |l Jo f o T dtllLrs)

<0.
s—+o00 log s

Proof. As we have already seen in Remark there exist two positive constants C, b > 0 such that for every
s> g we have
g(x) <sforallz €I := U [lo +Ce™% 1y — Ce™b).
acA
Then

£(s) = Leb(I'\ I,) = dCe " and Z(s) = (dC/b)e .
Take any a > 2 and set 7)(s) = ¢ logs. By the description of C,b > 0, we have [0,Ce=t()] T\ Lys)
Hence, if [I*)| < Ce="1() = C'/s% then I®) (5(s)) = . By condition (UDC3)) and (3.14)), it follows that

1O(m(s)) £ 0= [10] > O/s" = QK| < 55" /C = k < - 1og(C"s).
1

Moreover, if 2 € 1% (n(s)) N 1 then
ze [IF) 4 Ce) (k) _ et = 1] L /50 rF) — /57,
In view of ([£.12), (5.15) and (UDC3), it follows that for every z € I¥)(n(s)),

S0l 1 0
(S(R)P) (@) < 2“%'15(“”

= 0(e™) + O(log slog [|Q(k)||) = O(e™) + O(klog s).
Therefore, by (7.13)), for every (z,r) € A} 5 we have

+ LV(S(k)p) (1 +log(|IPM]s*/C))

‘/Osf(Ttg(x,r))dt’§O(10g2$)+0( > Zk+nlet) +0(10gs > 1Z(k+1)|k)

Ok log(C7s) 0<k< & log(C's)
< O(log? s) + O(s277/2) + O(s97/M log? 5) = O(s227/M),

Moreover, by (7.11)), we have Leb(19 \ A7 ) = O(1/5%71) with @ — 1 > 1. Therefore, for every 7 > 0 and
a > 2 there exists C, > 0 such that for every s > 0 we have

(7.21) Leb{(w,) € I ’/ FI (e )dt| > Cras?me/ M} < Leb(17\ 43 ,)) < C“‘.

It follows that for a.e. (z,r) € I9 we have

1 F(T2( dt
s 198 LI ST )

< 27a/)A;.
s—4o00 1Og$ Ta/ !

This gives (|7.19).
Finally, the inequality - ) follows also directly from . Indeed, if a > p + 1, then

H/ fngdt’ </As ‘/ FoTf(x rdt‘ da dr + Leb(I7 \ A3 ,))s”| 112

Le(19)
— 0(82[7&7'/>\1) + O(Sp—H a) — O(S2pa7—/)\1)_
O

Corollary 7.10. Suppose that T is an IET satisfying the and ¢ € LG(Uacala). If b(p) = 0 then
J; () dx = 0.
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Proof. Let us consider any roof function g : I — Ry such that ¢ € LG(Uneals) and |p(x)] < g(x) for
z €1 Let f: 19— R be given by f(z,7) = ¢(x)/g(x) for (x,r) € I9. Then f is bounded and ¢y = ¢. In
view of Theorem and the ergodicity of T', for every 0 < 7 < 1, for a.e. € I and a.e. r € [0, g|] we have

9" (@)
9" (z) = O(n) and / F(TF (2,)) dt = O((g"™ (2))7).

0

‘@(”)($> B /Og(m(m) f(Ttg(-T, ) dt’ _ ‘ /Og<'z)(m) f(Ttg(x, 0)) dt - /Og(m(z) f(Ttg(x7 ) dt)
<| [ razona+| [ e, 0)ar] < 21 o,

it follows that (™ (z) = O(n7). On the other hand, for a.e. z € T we have (™ (z)/n — J; o(x) dz. This
gives [, p(z)dx = 0. O

7.2.3. Pure power deviation case. We consider first a function f such that ¢y = h, where h has exponential
growth rate .

Proposition 7.11 (Pure deviation). Suppose that the IET T : I — I satisfies the . Assume that the
roof function g € LG(Unealn) and f: I9 — R is a bounded function such that there exists K > 0 for which
flz,r) =0 forr > K and @y € L>(I). Suppose that for some XA > 0 we have

log ||S(k o
ey EISBN D =y
k—+o00 k
Then
1 " fo T dt|
(7.22) limsup 28 1Jo S TPt~ A
$—+00 log s A1
If additionally oy = h = (ha)aca € H(m), A >0 and
I
i TosllQUR
k—+o0 k
then
1 SfoTfdt|~ A
(7.23) lim sup ol Jo foT? dr -2

s—>t00 log s AL

Proof. Let us consider the trimmed roof function gx : I — [0, K], gx(x) = min{g(x), K'}. Taking n = K
and I, ) = Ix = I we have A;(s) = I9%. Note that, by assumption, the map ¢, does not change after
passing to the trimmed roof function. In view of (7.13)), for every regular point (z,r) € I9% we have

m(nk(x,r,s))

| [ e waal <230 126+ DISE o, + 2K
k=0

where ng (z,r, s) is defined by for the roof gx. Then
0 <ng(x,rs) <n(z,rs) <s/g+1
By assumption, for every 7 > 0 we have
IS(R)os ]l oo (1) = O(eXFTF).
Moreover, by (7.4),
Mk (@) = O(nge(z,r,5)77) = O(s117).
Therefore, by 7 it follows that

m(ng (z,r,s))

| / JE< (@,m))dt| < O 120k + DS es e g0y + 112 KC2)

m(ng (z,r,s))

Z e()\+2‘r)k + ||fHL<>CK2)

k=0
(eAF2Imnsc @) | £ Lo K2)
( (>\+2T)(1+T))_

X
(

I
Q

=0
)

S
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By assumption and the definition of g, for every regular (z,r) € I9 and s > 0 there exists 0 < s’ =
s'(x,r,s) < s such that

‘/Os f(Ttg(a:,r))dt‘ _ ’/05 F(TI% (x,r))dt‘ _ O((S,)(A+2r)(1+r)) _ O(S(A+2r)(1+7)).

This gives (7.22)) and proves one inequality (namely the upper bound) in ([7.23]).

To prove the inverse inequality and therefore (7.23), note that for every x € L(Xk) we have
(Qa (k)
g (z)

S(k)g(x) (@ (k)
/ f(Ttg(%O))dt=/ (T (2,0) dt = " (x) = S(k)ps(x) = (Q(k)h)a-
0 0
Moreover, by assumption, for every 7 > 0 there exists ¢ > 0 such that for every k > 0 we have

S 1QUR)a] = QKR > ce =",
acA
As g is positive, by (B1)), (3.4) and (UDC3)), we have

(k) I
w7 )\ - km(g, 1)
m(S(k)g, 15") < |I&k)'m(S(k)g,I )< W)

For every k > 0 choose o € A such that [(Q(k)h)s| = 5[|Q(k)h| and then we take any z(*¥) € 1 such that
sp = S(k)g(z®) < wm(g, I)Cer+7)E Then

< wm(g, D|Q(K)|| < km(g, I)CerHmk,

| / jortal = /OS(k)g(z(k)) FT @D, 0)) dt] = [(Qk)h)al
C

d(km(g, T)C) %5 77

1 C N1-—
— > — (1—-7)k >
Ly = S0t

It follows that for every 7 > 0 we have

1 PfoT?dt||p~ A 1-—
lim sup ogll [, foT{dt|L SALl-7
S 400 log s M1l+T

which gives (7.23)). O
To have uniform control over the asymptotics of the error growth, we also need the following Corollary.

Corollary 7.12. Let T : I — I is an IET satisfying the and g € LG(Unpeals) be a roof function.
Suppose that f : 19 — R is a bounded function such that oy, € L>(I). Then for every A > 0,
b log [|S (k) (1)l o< log | fg fo T dtllL= _ X

: 100) :
7.24 1 <A =1 < —.
(7.24) i k = ey log s =N

Proof. For any K > 0 let us consider the bounded map fx : I9 — R given by
fl,r) it glz) <K
fr(z,m) =1 ¢s(x)/K if g(x) > K and r < g(z)
0 if g(z)> K and r > g(z).
Then fx satisfies the assumptions of the first part of Proposition and ¢ys, = . Hence
1 N T dt|| A
(7.25) timsup 280 S 0 T dtlli= A
S—>+00 log s A1

Note that for every x € I in the interior of exchanged intervals and any pair 0 < 1 < r9 < g(x) we have

T2
1

T g(z)
| / far)dr| < / ()] dr < / (@) dr = o171(2) < Il loue

T2
[ ) drl < ey @) < 0100 < oyl
T1
As
g(x) g(x)
[ seenar =g =g = [ farn
0 0
it follows that for every regular point (x,r) € I9 and any s > 0 we have
[ = [ el < oy o
Together with ((7.25)) this yields (7.24]). O



46 K. FRACZEK AND C. ULCIGRAI

7.2.4. Power deviation spectrum. Combining the results in the two previous subsections, we can now prove
the full deviation spectrum result stated in Theorem [I.4]as well as the existence of the asymptotic expansion
in Theorem [L.3]

Proof of Theorem[I.]] and of the first part of Theorem[I.3 Let D;,;1 < i < g, u;,1 < i < g and u,, 0 €
Fix(¢¥r) N M’, be respectively the distributions and the cocycles defined in § One can see that, for
each 1 < i < g, u; displays the desired power behaviour (1.6, by the pure deviation Theorem proved in
§ which can be applied to f = f; since by construction ¢y, = h; and h; has exponential growth rate

Ai, see (7.14)).

The error term function. Let us consider f, € C**¢(M) given by
g
fer=F=>Y_Di(f)f
i=1
By the definition of f;,i=1,...,g,

(7.26) fe(o) = f(o) for every o € Fix(¢yr) N M.

Then we set

T
err(f.1a) = [ L) ds
0
Let be the cocycle associated to f. (refer to §[2.3.3). We can then check that b = 0, since
