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PRIME NUMBER THEOREM FOR REGULAR TOEPLITZ

SUBSHIFTS

KRZYSZTOF FRĄCZEK, ADAM KANIGOWSKI, AND MARIUSZ LEMAŃCZYK

Abstract. We prove that neither a prime nor an l-almost prime number the-
orem hold in the class of regular Toeplitz subshifts. But, when a quantitative
strengthening of the regularity with respect to the periodic structure involving
Euler’s totient function is assumed, then the two theorems hold.

1. Introduction

Given a topological dynamical system pX, T q, where T is a homeomorphism of a
compact metric space X, one says that a prime number theorem (PNT) holds for
pX, T q if the limit

(1) lim
NÑ8

1

πpNq
ÿ

păN
fpT pxq

(p stands always for a prime number) exists for each x P X, an arbitrary f P CpXq
and πpNq denotes the number of primes up to N . Then, via the Riesz theorem, for
all f P CpXq, we have

(2) lim
NÑ8

1

πpNq
ÿ

păN
fpT pxq “

ż

X

f dνx

for a Borel probability measure νx on X, where νx depends only on x P X.
Let us first consider the cyclic case X “ Z{kZ and Tx “ x ` 1. Fix x P X and

notice that (1) indeed holds by the classical prime number theorem in arithmetic
progressions, where νx is the uniform probability measure on the “coset” ta ă k :

pa, kq “ 1u ` x. Hence, a PNT holds in cyclic (and therefore also in finite) systems.
Consider now the procyclic case, that is, assume we are given an odometer system

pH, T q with
H “ liminvtÑ8 Z{ntZ, Tx “ x` p1, 1, . . .q

(here nt|nt`1 for t ě 0). In this case, a PNT still holds. Indeed, the space H has a
sequence of natural partitions Dt “ pDt

0, . . . , D
t
nt´1q, t ě 0, consisting of clopen sets

and such that TDt
i “ Dt

i`1 mod nt
. It follows that the sets Dt

i, i ď nt ´ 1, have the
same diameter which goes to 0 as t Ñ 8. Moreover, it is not hard to see that each
character of the group H is constant on the levels of the towers Dt for t sufficiently
large. Hence, each f P CpHq can be approximated uniformly by functions which
are constant on the levels of the towers Dt and a PNT holds because it does in the
finite case.

Our main results concern prime number theorems for extensions of odometers.
Recall that odometers are zero entropy topological systems which are minimal (all
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T -orbits are dense) and uniquely ergodic (there is only one T -invariant measure -
Haar measure in this case). Before we describe our results, let us discuss a PNT
in the class of uniquely ergodic systems. First, recall that for all such systems (1)
holds a.e. with respect to the unique invariant measure [3], [24]. On the other hand,
one can easily construct a counterexample to the validity of (1) for all x P X.
Indeed, denote by P the set of prime numbers and consider the left shift S on
t0, 1uZ and the subshift pX1PY´P

, Sq obtained by the orbit closure of the characteristic
function 1PY´P of the “symmetrized” primes. It has a unique invariant measure of
zero entropy (which is the Dirac measure at the fixed point . . . 0.00 . . .) and a PNT
fails in it (see e.g. [8] for details). Now, this particular uniquely ergodic model of
the one-point system implies paradoxically that each ergodic dynamical system has
a uniquely ergodic model pX, T q 1 in which a PNT does not hold. To see this,
take any uniquely ergodic model pY, ν, Rq of the given measure-theoretic dynamical
system. Since the one-point system is (Furstenberg) disjoint with any other system,
the product system pX1PY´P

ˆ Y, S ˆ Rq is still uniquely ergodic, with the unique
invariant measure δ...0.00... b ν. It is not hard to see that the product system is still
measure-theoretically isomorphic to the original system. Since the new system has
pX1PY´P

, Sq as its topological factor, a PNT does not hold in pX1PY´P
ˆ Y, S ˆRq.2

Hence, if we think about a necessary condition for a PNT to hold, it looks reasonable
to add the minimality assumption to avoid a problem of „exotic” orbits on which
PNT does not hold (we also recall that a uniquely ergodic system has a unique
subsystem which is strictly ergodic). However, in this class one can still produce
counterexamples to a PNT, see [19] for the first symbolic counterexamples (although
their entropy is not determined in [19]), or [13] for non-symbolic counterexamples.
On the other hand, we have quite a few classes in which a PNT holds, including
systems of algebraic origin [11], [23], symbolic systems [4], [10], [16], [17] or recently
[13] in the category of smooth systems, where a PNT has been proved in the class of
analytic Anzai skew products. Finding a sufficient dynamical condition for a PNT
to hold, postulated a few years ago by P. Sarnak [21] seems to be an important and
difficult task in dynamics, however we rather expect the following:

Working Conjecture: Each ergodic and aperiodic3 measure-theoretic dynamical
system has a strictly ergodic model in which a PNT fails.

If true, this makes Sarnak’s postulate even harder to realize. The present paper
should be viewed as introductory steps in trying to understand the conjecture.

A PNT can be reformulated as the existence of a limit of 1
N

ř
năN fpT nxqΛpnq,

where Λ stands for the von Mangoldt function: Λppℓq “ log p for ℓ ě 1 and 0
otherwise. Proving dynamical prime number theorems for zero entropy systems is

1Recall that the Jewett-Kreiger theorem says the following: Suppose pZ, κ,Rq is an ergodic
measure-theoretic dynamical system. Then there exists a uniquely ergodic (even strictly ergodic,
that is, additionally minimal) topological system pY, Sq with the unique invariant measure ν such
that pZ, κ,Rq and pY, ν, Sq are measure-theoretically isomorphic.

2To illustrate this, consider an irrational rotation Rα on T for which a PNT holds because of
Vinogradov’s theorem (prime “orbits” are equidistributed). However, our observation shows that
there is a uniquely ergodic model of Rα in which the eigenfunctions are still continuous but a PNT
fails, that is, some of the prime “orbits” are not equidistributed.

3The set of periodic points has measure zero.
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closely related to Sarnak’s Möbius disjointness conjecture [20]:

(3) lim
NÑ8

1

N

ÿ

năN
fpT nxqµpnq “ 0

for each x P X, f P CpXq in each zero entropy dynamical system pX, T q (µ
stands for the Möbius function: µp1q “ 1, µpp1 ¨ . . . ¨pkq “ p´1qk for different primes
p1, . . . , pk, and µpnq “ 0 for the remaining n P N). Here, the class of systems for
which we expect the positive answer is precisely defined. In fact, in quite a few cases
(see [4], [5], [9]-[11], [16] and [17]) one can observe the following principle: once we
can prove Sarnak’s conjecture for pX, T q with a “sufficient” speed of convergence to
zero in (3) then a PNT holds in pX, T q.

With all the above in mind we come back to extensions of odometers that we
intend to study. We stay in the zero entropy category of systems and we assume
minimality. Further, we assume that the systems are almost 1-1 extensions of
odometers.4 We also assume that our systems are symbolic.5 All these natural
assumptions determine however a very precise class of topological systems, namely
Toeplitz subshifts pXx, Sq, where x is a Toeplitz sequence over a finite alphabet A,
see Section 7 in Downarowicz’s survey [7]. That is, x P AZ has the property that
for every a P Z there is ℓ P N such that xpaq “ xpa ` kℓq for each k P Z, and Xx is
the set of all y P AZ with the property that all subblocks of y also appear in x. One
shows then that there is a sequence nt|nt`1 such that if Pernt

pxq :“ ta P Z : xpaq “
xpa ` kntq for each k P Zu then

(4)
ď

tě0

Pernt
pxq “ Z.

Moreover, there is a natural continuous factor map π : Xx Ñ H , where H stands
for the odometer determined by pntq. In fact, we will restrict our attention to
so called regular Toeplitz subshifts, whose formal definition is that the density ofŤM

t“0 Pernt
pxq goes to 1. Regular Toeplitz subshifts are zero entropy strictly er-

godic systems, and measure-theoretically isomorphic to the rotation given by their
maximal equicontinuous factors. Although in [7] there are four other equivalent
conditions for regularity (see Theorem 13.1 in [7]), we will choose a different path.
Since π : Xx Ñ H is a continuous and equivariant surjection,

Et :“ π´1pDtq “ pEt
0, . . . , E

t
nt´1q with Et

j “ π´1pDt
jq

is an S-tower of height nt whose levels are closed (hence clopen). By the minimality
of pXx, Sq there is a unique tower with clopen levels and of fixed height. Let us
consider a metric on AZ inducing the product topology given by

dpx, yq “ 2´ inft|n|:xpnq‰ypnqu.

The diameters of the levels of towers Et do not converge to zero, unless x is periodic.
Moreover, the diameters of different levels are in general different as the shift S is

4If pH,T q is a factor of pX,Sq via π : X Ñ H , then pX,Sq is called an almost 1-1 extension of
pH,T q if there is a point h P H such that |π´1phq| “ 1; in fact, in this case the set of points with
singleton fibers is Gδ and dense.

5We recall that each zero entropy system has an extension which is symbolic [2], and clearly if
a PNT holds for a system, it does for a factor.
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not an isometry. Let us consider the diameter of the tower Et given by:

δpEtq :“
ÿ

0ďjănt

diampEt
jq.

It is not hard to see (see Appendix A) that the regularity of a Toeplitz sequence is
equivalent to

(5) lim
tÑ8

δpEtq
nt

“ 0.

It is also not hard to see that this property does not depend on the choice of pntq
satisfying (4). We recall that the Möbius disjointness of subshifts given by regular
Toeplitz sequences has been proved in [1]. Here are two first results of the paper
proved in Section 2 and Section 4, respectively:

Theorem A. A PNT does not hold in the class of minimal almost 1 ´ 1 symbolic
extensions of odometers satisfying (5). That is, a PNT need not hold in a strictly
ergodic subshift determined by a regular Toeplitz sequence.

Theorem B. A PNT holds in the class of minimal almost 1´1 symbolic extensions
of odometers in which (5) holds with a speed

(6) lim
tÑ8

δpEtq
ϕpntq

“ 0,

where ϕ denotes the Euler totient function.

As for all Toeplitz dynamical systems constructed in the proof of Theorem A, we
have

0 ă lim inf
tÑ8

δpEtq
ϕpntq

ď lim sup
tÑ8

δpEtq
ϕpntq

ă `8,

which shows that the condition (6) in Theorem B is optimal to have a PNT. The
systems in Theorem B are strictly ergodic and since they all have non-trivial cyclic
factors, the measures νy, y P Xx, in (2) are never S-invariant.6

We then turn our attention to an l-almost prime number theorem (PlNT) which
is much less explored than the PNT case and which, for the first time in dynamics,
is studied in [14] (for some smooth Anzai skew products). Recall that for any l ě 1 a
natural number is called an l-almost prime if it is a product of l primes. We denote
the set of l-almost prime numbers by Pl. By PNl we denote the set of l-almost prime
numbers ď N and we let πlpNq stand for the cardinality of PNl . A classical result of
Landau asserts that

(7) lim
NÑ8

πlpNq
N

logN

plog logNql´1

pl´1q!
“ 1,

see § 56 in [15].
Analogously to the PNT, we say that a topological dynamical system pX, T q

satisfies a PlNT if the limit

lim
NÑ8

1

πlpNq
ÿ

nPPN
l

fpT nxq

exists for each x P X and each f P CpXq.
6To be compared with the case of Sturmian systems, see Theorem B.1, in which νy, y P Xα,β,

are equal to the unique S-invariant measure.
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In Section 3 and Section 5 we provide sketches of proofs of the exact analogues of
Theorems A and B for a PlNT for regular Toeplitz subshifts.

In Section 6.1 we prove a new polynomial ergodic theorem:

lim
NÑ8

1

N

ÿ

nďN
fpSP pnqxq exists

for monic polynomials P with positive integer coefficients for all symbolic minimal
almost 1-1 extensions of odometers with a modified condition (6). In Section 6.2 we
provide a regular Toeplitz subshift which does not satisfy the polynomial ergodic
theorem for squares but it satisfies a PNT. We refer again to [19] for the first
examples of strictly ergodic systems (of low complexity), where the Birkhoff ergodic
averages along squares do not converge.

While Theorem A confirms the Working Conjecture for a subclass of odometers,
we have been unable to confirm it for the whole class of odometers. Confirming
Working Conjecture for the class of automorphisms with discrete spectrum seems
to be the first step toward a possible general statement. In Appendix B, we provide
a simple argument showing that a PNT holds for all symbolic models of irrational
rotations given by Sturmian sequences. The Sturmian systems are strictly ergodic
and are almost 1 ´ 1 extensions of irrational rotations.

2. Regular Toeplitz subshifts which do not satisfy PNT (proof of
Theorem A)

For all K, n P N and a P Z let

πpK;n, aq “ t1 ď p ď K : p P P, p “ a mod nu.
Theorem 2.1 (PNT in arithmetic progressions, see [22]). For any natural n and
any integer a with pa, nq “ 1 we have

lim
KÑ8

πpK;n, aq
πpKq “ 1

ϕpnq .

We construct a Toeplitz sequence x P t0, 1uZ with the period structure pntq:
(8) nt`1 “ kt`1nt, pkt`1, ntq “ 1

for each t ě 1. We will show that for this x:

lim
tÑ8

1

πpntq
ÿ

pănt

F pSpxq does not exist,

where F pyq “ p´1qyp0q. At stage t, x is approximated by the infinite concatenation
of xtr0, nt ´ 1s P t0, 1, ?unt (that is, we see a periodic sequence of 0, 1, ? with period
nt). Successive “?” will be filled in the next steps of construction of x. We require
that:

ϕpntq
nt

ď 1

2t
,(9)

t0 ď i ă nt : xtpiq “?u Ă t0 ď j ă nt : pj, ntq “ 1u,(10)

#t0 ď i ă nt : xtpiq “?u ě
´
1 ´

tÿ

l“1

1
100l

¯
ϕpntq,(11)

#tp ă nt : xtppq “?u ě 1

2
πpntq.(12)
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We choose kt`1 satisfying (8) and:

ϕpkt`1q
kt`1

ď 1

2
, 7(13)

ϕpkt`1q ě 100t`1,(14)

8 lognt`1 ď πpnt`1q, 8πpntq ď πpnt`1q(15)

and for each 0 ă a ă nt, pa, ntq “ 1, we have

(16) #
`
ta ` jnt : j “ 0, . . . , kt`1u X P

˘
“ πpnt`1;nt, aq ď 2

πpnt`1q
ϕpntq

.

The latter we obtain from Theorem 2.1 (remembering that nt is fixed, so the number
of a is known, we can obtain the accuracy as good as we want by taking kt`1

sufficiently large).
We need two simple observations:

(17) t0 ď k ă nt`1 : pk, nt`1q “ 1u Ă
ď

0ďaănt

pa,ntq“1

ta ` jnt : j “ 0, . . . , kt`1 ´ 1u.

Lemma 2.2. For every 0 ď a ă nt with pa, ntq “ 1, we have

#t0 ď j ă kt`1 : pa` jnt, nt`1q “ 1u “ ϕpkt`1q.
Proof. First note that pa` jnt, nt`1q “ 1 iff pa` jnt, kt`1q “ 1. Indeed, assume that
pa` jnt, kt`1q “ 1. If for some prime p we have p|pa` jntq and p|nt`1 “ ntkt`1, then
p|kt`1. Otherwise, we have p|nt, so p|a. As pa, ntq “ 1, this gives a contradiction.
Thus pa ` jnt, kt`1q “ 1 implies pa ` jnt, nt`1q “ 1. The opposite implication is
obvious. Thus

t0 ď j ă kt`1 : pa ` jnt, nt`1q “ 1u “ t0 ď j ă kt`1 : pa` jnt, kt`1q “ 1u.
Let us consider the affine map

Z{kt`1Z Q j AÞÑ a` jnt P Z{kt`1Z.

If J :“ t0 ď ℓ ă kt`1 : pℓ, kt`1q “ 1u then

t0 ď j ă kt`1 : pa` jnt, kt`1q “ 1u “ A´1pJq.
Since pnt, kt`1q “ 1, the map A is a bijection. It follows that

#t0 ď j ă kt`1 : pa` jnt, kt`1q “ 1u “ #t0 ď ℓ ă kt`1 : pℓ, kt`1q “ 1u
“ ϕpkt`1q,

which completes the proof.

We need to describe now which and how we fill "?" in xt`1r0, nt`1 ´1s. This block
is divided into kt`1 subblocks

xtr0, nt ´ 1sxtr0, nt ´ 1s . . . xtr0, nt ´ 1slooooooooooooooooooooooooomooooooooooooooooooooooooon
kt`1

.

7Note that if pi stand for the i-th prime then
ř

jěi 1{pj “ `8, whence remembering that
ϕppipi`1 . . . pi`sq “ pipi`1 . . . pi`s

śs
j“0

p1´1{pi`jq, we have
śs

j“0
p1´1{pi`jq Ñ 0, and thereforeśs

j“0
p1 ´ 1{pi`jq ă 1{2 for s large enough.
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We fill in all "?" in the first block xtr0, nt ´ 1s in such a way to “destroy” a PNT for
the time nt, namely

1

πpntq
ÿ

pănt

F pSpxq “ 1

πpntq
ÿ

pănt

p|nt

p´1qxppq`

1

πpntq
´ ÿ

pănt

pp,ntq“1
xtppq“0

1 ´
ÿ

pănt

pp,ntq“1
xtppq“1

1 `
ÿ

pănt

pp,ntq“1
xtppq“?

p´1qxppq
¯
.

As the number of the primes dividing nt is bounded by log nt, it is negligible com-
pared to πpntq “ nt{ lognt. It follows that

ˇ̌
ˇ 1

πpntq
ÿ

pănt

p|nt

p´1qxppq
ˇ̌
ˇ ď log nt

πpntq
“ op1q,

so the first summand does not affect the asymptotic of the averages in (1). Since
the number of p in the last summand is at least 1

2
πpntq in view of (12), we can fill in

xt`1 at places tp ă nt : pp, ntq “ 1, xtppq “?u to obtain the sum completely different
that the known number which we had from stage t ´ 1.

We fill in (in an arbitrary way) all remaining places between 0 and nt ´ 1 and
all places a ` jnt for 0 ď j ă kt`1 such that this number is not coprime with nt`1,
so that (10) will be satisfied at stage t ` 1. We must remember that for certain
0 ă a ă nt coprime to nt, xtpaq was already defined at previous stages, so along the
corresponding arithmetic progressions a ` jnt, 0 ď j ă kt`1, these places are also
filled in previously. On the other hand, if xt`1pa`jntq ‰? (that is, xt`1pa`jntq “ 0

or xt`1pa ` jntq “ 1) and pa ` jnt, nt`1q “ 1 for some 0 ă j ă kt`1 then xtpaq ‰?.
In view of (17), it gives

t0 ď i ă nt`1 : pi, nt`1q “ 1, xt`1piq ‰?u
Ă t0 ă a ă nt : pa, ntq “ 1, xt`1paq ‰?u

Y
ď

0ďaănt

pa,ntq“1
xtpaq‰?

ta ` jnt : 0 ă j ă kt`1, pa ` jnt, nt`1q “ 1u.

By (10), Lemma 2.2, (11) and (14), it follows that

#t0 ď i ă nt`1 : pi, nt`1q “ 1, xt`1piq ‰?u
ď ϕpntq ` #t0 ď a ă nt : pa, ntq “ 1, xtpaq ‰?uϕpkt`1q

ď ϕpntq `
´ tÿ

k“1

1

100k

¯
ϕpntqϕpkt`1q “

´ 1

ϕpkt`1q
`

tÿ

k“1

1

100k

¯
ϕpnt`1q

ď
t`1ÿ

k“1

1

100k
ϕpnt`1q ď 1

99
ϕpnt`1q.

In particular, at stage t` 1, also (11) is satisfied.
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Similar arguments show that

tp ă nt`1 : xt`1ppq ‰?u Ă tp ă nt`1 : p|nt`1u Y tp ă nt : xt`1ppq ‰?u
Y

ď

0ďaănt

pa,ntq“1
xtpaq‰?

ta ` jnt : 0 ă j ă kt`1, a ` jnt P Pu.

In view of (16), (11) and (15), it follows that

#tp ă nt`1 : xt`1ppq ‰?u

ď lognt`1 ` πpntq ` 2#t0 ď a ă nt : pa, ntq “ 1, xtpaq ‰?uπpnt`1q
ϕpntq

ď lognt`1 ` πpntq ` 2

99
ϕpntq

πpnt`1q
ϕpntq

ď 1

2
πpnt`1q.

Therefore, at stage t` 1, also (12) is satisfied.
Finally, note that

ϕpnt`1q
nt`1

“ ϕpntq
nt

ϕpkt`1q
kt`1

ď ϕpntq
nt

1

2
,

so (9) holds and the resulting Toeplitz sequence is regular.

3. Toeplitz subshifts for which a PlNT does not hold

We now intend to give an example of a (regular) Toeplitz sequence x such that a
PlNT does not hold for the corresponding subshift. In fact,

lim
tÑ8

1

πlpntq
ÿ

pplqPPnt
l

F pSpplq

xq does not exist.

For any natural m and 0 ď a ă m, let

πlpN ;m, aq :“ #pPNl X pa ` mZqq.
Lemma 3.1. If pa,mq ą 1 then

(18) πlpN ;m, aq “ opπlpNqq.
If pa,mq “ 1 then

(19) lim
NÑ8

πlpN ;m, aq
πlpNq “ 1

ϕpmq .

Proof. The proof is by induction on l. If l “ 1 and pa,mq ą 1 then πlpN ;m, aq ď 1,
so (18) holds. If pa,mq “ 1 then (19) is given by Theorem 2.1.

Suppose that (18) and (19) are satisfied for all parameters less than some natural
number l ě 2. Assume that pa,mq P Pj for some j ě 1. If j ą l then πlpN ;m, aq “ 0.
If pa,mq P Pl then πlpN ;m, aq ď 1, so (18) holds. If ppjq :“ pa,mq P Pj for some
1 ď j ă l then,

πlpN ;m, aq ď πl´jprN{ppjqs;m{ppjq, a{ppjqq “ Opπl´jpNqq

“ O
´Nplog logNql´j´1

logN

¯
“ o

´Nplog logNql´1

logN

¯
“ opπlpNqq.

Now, suppose that pa,mq “ 1. Assume that p1 ď p2 ď . . . ď pl are prime
numbers such that pplq “ p1 ¨ ¨ ¨ pl ď N , pplq “ a mod m. Then p1 ď l

?
N . Since
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pp1, mq “ 1, there exists a unique 0 ď app1q ă m such that p1 ¨ app1q “ a mod m

and papp1q, mq “ 1. Then

πlpN ;m, aq “
ÿ

p1ď l
?
N

πl´1prN{p1s;m, app1qq.

As p1 ď l
?
N implies N{p1 ě N1´1{l, by assumption, for every ε ą 0 there exists Nε

such that for all N ě Nε and p1 ď l
?
N with pp1, mq “ 1, we have

p1 ´ εqπl´1prN{p1sq
ϕpmq ă πl´1prN{p1s;m, app1qq ă p1 ` εqπl´1prN{p1sq

ϕpmq .

Since πlpNq “ ř
p1ď l

?
N
πl´1prN{p1sq, it follows that

p1 ´ εqπlpNq
ϕpmq ă πlpN ;m, aq ă p1 ` εqπlpNq

ϕpmq

for every N ě Nε, so we have (19).

Lemma 3.2. For every l ě 2, we have

(20) #tpplq P P
N
l : ppplq, Nq ą 1u “ opπlpNqq.

Proof. Notice that #tpplq P P
N
l :ppplq, Nq ą 1u ď ř

p|N πl´1pN
p

q. Therefore, using (7),

#tpplq P P
N
l : ppplq, Nq ą 1u “ O

´ ÿ

p|N

N{p
logpN{pq

plog logpN{pqql´2

pl ´ 2q!
¯

“ O
´ N

logN

plog logpNqql´1

pl ´ 1q!
pl ´ 1q
log logN

ÿ

p|N

logN

p logpN{pq
¯
.

So again, by (7), the result will follow by showing that

1

log logN

ÿ

p|N

logN

p logpN{pq “ op1q.

Note that

ÿ

p|N

logN

p logpN{pq “
ÿ

p|N
pďN1{2

logN

p logpN{pq `
ÿ

p|N
pąN1{2

logN

p logpN{pq ,

and that the second term contains at most one prime p. Moreover, as l ě 2 and
ppplq, Nq ą 1, the number N is not prime, so N{p ě 2. Using this, we get

ÿ

p|N

logN

p logpN{pq ď 2
ÿ

p|N

1

p
` 1

log 2

logN

N1{2 “ Oplog log logNq,

as
ř
p|N

1
p

“ Oplog log logNq, see e.g. [12]. This finishes the proof.

Now, we repeat the scheme of the construction from Section 2 almost word for
word, although we have to take care how to choose kt`1.
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First of all, we require that kt`1 is large enough so that

πlpnt`1;nt, aq ď 2
πlpnt`1q
ϕpntq

for every 0 ď a ă nt with pa, ntq “ 1,(21)

ÿ

0ďaănt,pa,ntqą1

πlpnt`1;nt, aq ď ε

8
πlpnt`1q,(22)

#tpplq P P
nt`1

l , ppplq, nt`1q ą 1u “ opπlpnt`1qq.(23)

The existence of such kt`1 is guaranteed by Lemmas 3.1 and 3.2.
Next, we replace (12) by

#tpplq P P
nt

l : xtppplqq “?u ě 1

2
πlpntq

and requiring (instead of (16)) that for pa, ntq “ 1, we have

#pta ` jnt : 0 ď j ă kt`1u X Plq ď 2
πlpnt`1q
ϕpntq

,

cf. (21). Furthermore, we replace (15) by the requirement that

#tpplq P P
nt

l : pplq ” amodnt with pa, ntq ą 1u ď 1

8
πlpnt`1q,

cf. (22). To carry over the previous proof, it remains to show that

1

πlpntq
ÿ

pplqPPnt
l
,ppplq,ntqą1

p´1qxppplqq “ op1q.

This follows from (23) applied in the previous step of the construction.

4. Regular Toeplitz subshifts which satisfy a PNT (proof of
Theorem B)

Let x P AZ be a regular Toeplitz sequence. Then, for every k P N, there is an
nk-periodic sequence xk P pA Y t?uqZ so that

xkpjq ‰? implies xpjq “ xkpjq “ xlpjq for all l ě k

and

?k “?kpxq :“ #t0 ď j ă nk : xkpjq “?u “ opnkq.
For every Toeplitz sequence x P AZ and natural m let us consider a new Toeplitz

sequence xpmq P pA2m`1qZ given by

xpmqpjq “ pxpj ´ mq, . . . , xpj ` mqq for every j P Z.

If pntqtě1 is a periodic structure of x, then it is also a periodic structure of xpmq.
Moreover,

(24) ?kpxpmqq ď p2m` 1q?kpxq for every k ě 1.

Hence, the regularity of x implies the regularity of xpmq.
Theorem B follows directly from Lemma A.1 and the following result.

Theorem 4.1. Suppose that pXx, Sq is a Toeplitz system such that

?k “ opϕpnkqq.
Then pXx, Sq satisfies a PNT.
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Proof. To show a PNT for pXx, Sq, it suffices to show that for every continuous
F : Xx Ñ C and every ε ą 0 there exists Nε so that for every N,M ě Nε and every
r P Z, we have

(25)
ˇ̌
ˇ 1

πpNq
ÿ

pďN
F pSp`rxq ´ 1

πpMq
ÿ

pďM
F pSp`rxq

ˇ̌
ˇ ă ε.

Note that the above is stronger than what is needed as it shows that the convergence
in (1) is uniform in y P Xx. We first assume that F : Xx Ñ R depends only on the
zero coordinate, i.e. F pyq “ fpyp0qq for some f : A Ñ R.

Fix ε ą 0. Fix also k ě 1 so that

(26) ?k ă ε

8
ϕpnkq.

Next choose Nε such that for every N ě Nε, we have
ˇ̌
ˇπpN ;nk, aq ´ πpNq

ϕpnkq
ˇ̌
ˇ ă ε

8

πpNq
ϕpnkq for all a P Z with pa, nkq “ 1,(27)

#tp ď N : p|nku ď log nk ă ε

8
πpNq.(28)

We will show that for all N ě Nε and r P Z we have

(29)
ˇ̌
ˇ

1

πpNq
ÿ

pďN
F pSp`rxq ´ 1

ϕpnkq
ÿ

0ďaănk

pa´r,nkq“1
xkpaq‰?

F pSaxq
ˇ̌
ˇ ď ε}F }sup,

which implies (25).
Recall that xk P pA Y t?uqZ is an nk-periodic sequence (used to construct x at

stage k). If for some a P Z we have

xkpaq ‰ ?,

then

xpa` j ¨ nkq “ xkpaq for every j P Z.

This implies that if p ď N and xkpp ` r mod nkq ‰ ?, then

(30) F pSp`rxq “ F pSp`r mod nkxq.
Note that

#tp ď N : xkpp ` r mod nkq “ ?u
ď

ÿ

0ďaănk

pa´r,nkq“1
xkpaq“?

#tp ď N : p “ a ´ r mod nku

`
ÿ

0ďaănk

pa´r,nkqą1

#tp ď N : p “ a´ r mod nku.

Assume that N ě Nε. By (27) and (28), for every integer v with pv, nkq “ 1 we
have

#tp ď N : p “ v mod nku “ πpN ;nk, vq ď p1 ` ε{8q πpNq
ϕpnkq
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and

(31)
ÿ

0ďaănk

pa´r,nkqą1

#tp ď N : p “ a ´ r mod nku ď #tp ď N : p|nku ă ε

8
πpNq,

where left inequality follows from the fact that if pa ´ r, nkq ą 1 and pa “ a ´ r

mod nk for a prime pa, then pa´ r, nkq “ pa and

tp ď N : p “ a´ r mod nku “ tpau.
It follows that (use also (26))

#tp ď N : xkpp ` r mod nkq “ ?u

ď #t0 ď a ă nk : pa´ r, nkq “ 1, xkpaq “?up1 ` ε{8q πpNq
ϕpnkq ` ε

8
πpNq

ď?kp1 ` ε{8q πpNq
ϕpnkq ` ε

8
πpNq ď ε

2
πpNq.

Let

PN :“ tp ď N : xkpp ` r mod nkq ‰ ?u.
Then by the above, for every N ě Nε,

ˇ̌
ˇ

1

πpNq
ÿ

pďN
F pSp`rxq ´ 1

πpNq
ÿ

pPPN

F pSp`rxq
ˇ̌
ˇ ď ε

2
}F }sup.(32)

But by (30),
ÿ

pPPN

F pSp`rxq “
ÿ

0ďaănk

xkpaq‰?

ÿ

pďN
p”a´r mod nk

F pSaxq

“
ÿ

0ďaănk

xkpaq‰?

F pSaxq#tp ď N, p “ a´ r mod nku.

If pa´ r, nkq “ 1, then again by (27), we have
ˇ̌
ˇ#tp ď N, p “ a ´ r mod nku ´ πpNq

ϕpnkq
ˇ̌
ˇ “

ˇ̌
ˇπpN ;nk, a´ rq ´ πpNq

ϕpnkq
ˇ̌
ˇ ă ε

8

πpNq
ϕpnkq .

In view of (31), it follows that
ˇ̌
ˇ 1

πpNq
ÿ

pPPN

F pSp`rxq ´ 1

ϕpnkq
ÿ

0ďaănk

pa´r,nkq“1
xkpaq‰?

F pSaxq
ˇ̌
ˇ

“
ˇ̌
ˇ

ÿ

0ďaănk

xkpaq‰?

F pSaxqπpN ;nk, a´ rq
πpNq ´ 1

ϕpnkq
ÿ

0ďaănk

pa´r,nkq“1
xkpaq‰?

F pSaxq
ˇ̌
ˇ

ď 1

πpNq
ÿ

0ďaănk

pa´r,nkq“1
xkpaq‰?

|F pSaxq|
ˇ̌
ˇπpN ;nk, a´ rq ´ πpNq

ϕpnkq
ˇ̌
ˇ ` ε

8
}F }sup

ď }F }sup
´ε
8

#t0 ď a ă nk : xkpaq ‰?, pa´ r, nkq “ 1u
ϕpnkq ` ε

8

¯
ď }F }sup

ε

2
.
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Together with (32), this gives (29), which completes the proof in the case of F
depending only on the zero coordinate.

Now suppose that F : Xx Ñ C depends only on finitely many coordinates. Then
there exists natural m and f : A2m`1 Ñ C such that F pyq “ fpyp´mq, . . . , ypmqq for
every y “ pypkqqkPZ P Xx. Denote by Xxpmq Ă pA2m`1qZ the orbit closure of xpmq P
pA2m`1qZ. Then every ypmq P Xxpmq is of the form ypmqpkq “ pypk´mq, . . . , ypk`mqq
for some y “ pypkqqkPZ P Xx.

In view of (24), pXxpmq, Sq is a regular Toeplitz shift with ?kpxpmqq “ opϕpnkqq. Let
us consider F̄ : Xxpmq Ñ C given by F̄ pypmqq “ fpypmqp0qq “ fpyp´mq, . . . , ypmqq for
ypmq P Xxpmq . Since F̄ depends only on the zero coordinate, by (25) applied to xpmq

and the map F̄ , for every ε ą 0 there exists Nε such that for N,M ě Nε, we have
ˇ̌
ˇ 1

πpNq
ÿ

pďN
F pSp`rxq ´ 1

πpMq
ÿ

pďM
F pSp`rxq

ˇ̌
ˇ

“
ˇ̌
ˇ

1

πpNq
ÿ

pďN
F̄ pSp`rxpmqq ´ 1

πpMq
ÿ

pďM
F̄ pSp`rxpmqq

ˇ̌
ˇ ă ε.

Thus (25) holds for every F : Xx Ñ C depending only on finitely many coordinates.
As the set of such functions is dense in CpXxq, (25) also holds for every F P CpXxq,
which completes the proof.

As ϕpnq Ñ 8 when n Ñ 8, we obtain the following result.

Corollary 4.2. If x is Toeplitz for which the sequence p?kq is bounded then pXx, Sq
satisfies a PNT.

5. Toeplitz subshifts for which a PlNT holds

Theorem 5.1. Suppose that pXx, Sq is a Toeplitz system such that

?k “ opϕpnkqq.
Then, for every F P CpXxq and y P Xx, the limit

lim
NÑ8

1

πlpNq
ÿ

pplqPPN
l

F pSpplq

yq exists.

Proof. The proof proceeds along the same lines as the proof of Theorem 4.1. It relies
on the following analogue of (29): for every ε ą 0 there exists a natural Nε such
that for all N ě Nε and r P Z, we have

(33)
ˇ̌
ˇ

1

πlpNq
ÿ

pplqPPN
l

F pSpplq`rxq ´ 1

ϕpnkq
ÿ

0ďaănk

pa´r,nkq“1
xkpaq‰?

F pSaxq
ˇ̌
ˇ ď ε}F }sup.

In turn, the proof of (29) is based on only two elements: (27) and (31). Their
l-almost prime counterparts follow directly from (19) and (18), respectively. Now,
we repeat the arguments of the proof of (29) almost word for word, replacing (27)
and (31) by their l-almost prime counterparts.

Remark 5.2. In view of (29) and (33), under the assumption ?k “ opϕpnkqq, we
have

lim
NÑ8

1

πlpNq
ÿ

pplqPPN
l

F pSpplq

yq “ lim
NÑ8

1

πpNq
ÿ

păN
F pSpyq
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for every F P CpXxq and y P Xx, so a PNT and a PlNT fully coincide for this class
of regular Toeplitz systems.

6. Ergodic averages along polynomial times

Let P be a monic polynomial8 of degree d ą 1 with non-negative integer coeffi-
cients. Note that, under these assumptions, P p¨q is a strictly increasing function on
N. For every n P N, let

RP
n :“ t0 ď a ă n : a “ P pmq mod n for some m P Nu and ψP pnq :“ #RP

n .

For all N, n P N and a P RP
n , let

ρP pN ;n, aq “ #t1 ď m ď N : P pmq “ a mod nu.
and

ρP pn, aq :“ ρP pn;n, aq, ρP pnq :“ max
aPRP

n

ρP pn;n, aq.

Lemma 6.1. The function ψP is multiplicative, i.e. ψP pn1n2q “ ψP pn1qψP pn2q if
pn1, n2q “ 1. If a P Z{nZ, n1, . . . , nk are pairwise coprime and n “ n1 ¨ ¨ ¨nk then
a P RP

n iff ai P RP
ni

for i “ 1, . . . , k, where 0 ď ai ă ni is the remainder of a when
divided by ni (that is, 0 ď ai ă ni and ai “ a mod ni). Moreover,

(34) ρP pn, aq “
kź

i“1

ρP pni, aiq.

Proof. Note that the multiplicativity of ψP follows from the second part of the
lemma.

Moreover, note that a P RP
n iff a “ P pmq mod n for some 0 ď m ă n. Indeed,

if a “ P pmq mod n for some m P N, then a “ P pm1q mod n, where 0 ď m1 ă n is
the remainder of m when divided by n.

If a P RP
n1¨¨¨nk

, i.e. a “ P pmq mod n1 ¨ ¨ ¨nk for some 0 ď m ă n, then ai “ a “
P pmq “ P pmiq mod ni for every i “ 1, . . . , k, where 0 ď mi ă ni is the remainder
of m when divided by ni.

Now, suppose a P Z{nZ, ai “ a mod ni and ai P RP
ni

for i “ 1, . . . , k. Then, for
every i “ 1, . . . , k, there exists 0 ď mi ă ni such that ai “ P pmiq mod ni. By the
Chinese Remainder Theorem, there exists a unique 0 ď m ă n such that m “ mi

mod ni for i “ 1, . . . , k. It follows that

P pmq “ P pmiq “ ai “ a mod ni for all i “ 1, . . . , k.

This yields a “ P pmq mod n1 ¨ ¨ ¨nk and a P RP
n .

The argument above also shows (34).

Remark 6.2. Note that in the argument above we used the fact that the ai’s
determine a as by the ChRT there exists only one 0 ď a ă n such that a “ ai
mod ni for each i “ 1, . . . , k.

For any natural n denote by ωpnq the number of its prime divisors (counted
without multiplicities) and by ppnq the product of its prime divisors.

Corollary 6.3. The arithmetic function ρP is multiplicative and ρP pnq ď dωpnq

ppnq n.

8The leading coefficient of P equals 1. This assumption is only for simplicity. In fact, Theo-
rem 6.8 below is true whenever the set of (non-zero) coefficients of P ´ P p0q is coprime, see the
proof of Corollary 6.3 and the assumptions of Albis theorem in [18].
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Proof. The multiplicativity of ρP follows directly from (34). By Albis theorem (see
Corollary 3 of Theorem 1.23 in [18] 9), for any prime number we have ρP ppnq ď dpn´1.
This result combined with the multiplicativity of ρP gives the required bound of
ρP pnq.
Lemma 6.4. For all n P N, a P RP

n and N ě P pnq, we have

ρP pn, aq
´P´1pNq

n
´ 1

¯
ď #tm P N : 1 ď P pmq ď N,P pmq “ a mod nu

ď ρP pn, aq
´P´1pNq

n
` 1

¯
.

Proof. Let s :“ ρP pn, aq and let 1 ď m1 ă . . . ă ms ď n be all numbers such
that P pmiq “ a mod n. Note that a natural number m satisfies P pmq ď N and
P pmq “ a mod n iff m “ jn ` r with 0 ď j ď pP´1pNq ´ rq{n and 0 ă r ď n

satisfies P prq “ a mod n. Thus, r “ mi for some i “ 1, . . . , s. It follows that

ρ : “ #tm P N : 1 ď P pmq ď N,P pmq “ a mod nu

“
sÿ

i“1

´”P´1pNq ´ mi

n

ı
` 1

¯
.

Since

P´1pNq
n

´ 1 ď P´1pNq ´ mi

n
ă

”P´1pNq ´ mi

n

ı
` 1

ď P´1pNq ´ mi

n
` 1 ă P´1pNq

n
` 1,

by summing up, this gives

s
´P´1pNq

n
´ 1

¯
ď ρ ď s

´P´1pNq
n

` 1
¯
.

Remark 6.5. As P is an increasing function, we can apply the above inequalities
to P pNq instead of N (as P pNq ě N). Then P pmq ď P pNq iff m ď N , and the
result of the lemma implies

ρP pn, aq
´N
n

´ 1
¯

ď ρP pN ;n, aq ď ρP pn, aq
´N
n

` 1
¯
.

We now focus on the simplest case when P pnq “ n2. We continue to write R for
RP , ψ for ψP and ρ for ρP . In view of Theorems 1.27 and 1.30 in [18], we have the
following result.

Proposition 6.6. For every prime number p ą 2, for every a P RpN , where N “ 2n

or 2n` 1, we have

ρppN , aq “

$
&
%

2 if a “ a1 mod p for a1 P Rpzt0u
2pr if a “ p2ra1 and a1 “ a2 mod p for a2 P Rpzt0u
pn if a “ 0.

9Note that compared to notation from [18], we have:

ρP pn;n, aq “ λP´apnq, ρP pnq “ max
aPRP

n

λP´apnq;

the estimate on λP in [18] depends only on the degree of the polynomial.
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Moreover, we have

ψpp2n`1q “ p2n`2 ` 2p ` 1

2pp` 1q and ψpp2nq “ p2n`1 ` p ` 2

2pp` 1q . 10

Furthermore, If p “ 2 then

ρp2, aq “ 1 for all a P R2, ρp4, aq “ 2 for all a P R4

and for any N ě 3, where N “ 2n or 2n ` 1, for every a P R2N , we have

ρp2N , aq “

$
’’’’&
’’’’%

4 if a “ 1 mod 8

4 ¨ 2r if a “ 22ra1, 2r ď N ´ 3, a1 “ 1 mod 8

2 ¨ 2r if a “ 22ra1, 2r “ N ´ 2, a1 “ 1 mod 4

2r if a “ 22ra1, 2r “ N ´ 1, a1 “ 1 mod 2

2n if a “ 0.

Moreover,

ψp22nq “ 22n´1 ` 4

3
and ψp22n`1q “ 22n ` 5

3
.

Corollary 6.7. For every natural n ě 2, we have ρpnq ď 4
?
n. Moreover, if n is

square-free, then ρpnq ď 2ωpnq.

Proof. By a direct inspection of the formulas in Proposition 6.6, we obtain:

ρp2Nq ď 2
?
2N , ρp3N q ď 2

?
3N

but for all p ě 5, we have

ρppN q ď
a
pN .

Indeed, for the cases a “ a1 mod p (for a1 P Rpzt0u) and a “ 0, it is direct. For
the case ρppN , aq “ 2pr, we have a “ p2ra1 ă pN , so 2r ď N ´ 1 and then indeed
2pr ď pN{2.

The second inequality follows directly from ρppq ď 2.

For some future purposes, we are interested in cases (in Proposition 6.6) which
gives possibly smallest values for the function ρ, hence, for every prime number p
and any natural n, let

rRpn :“

$
’’&
’’%

t0 ď a ă pn : a “ a1 mod p for a1 P Rpzt0uu if p ą 2

R2 if pn “ 2

R4 if pn “ 4

t0 ď a ă 2n : a “ 1 mod 8u if n ě 3.

By Proposition 6.6, rRpn Ă Rpn.
Let n “ pm1

1 pm2

2 ¨ ¨ ¨ pmk

k be the canonical representation of n. Let

Φ : Z{nZ Ñ Z{pm1

1 Z ˆ . . .ˆ Z{pmk

k Z

10We obtain these formulas by using the formulas for the values of σ and counting the number
of the possibilites in each row, so for N “ 2n, we have:

ψpp2nq “
p ´ 1

2
p2n´1 `

n´1ÿ

r“1

p ´ 1

2
p2n´2r´1 ` 1 “

1 ` p
p´ 1

2

n´1ÿ

r“0

p2pn´r´1q “ 1 `
ppp´ 1q

2

pp2qn ´ 1

p2 ´ 1
“
p2n`1 ` p` 2

2pp` 1q
.
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be the canonical ring isomorphism. Recall (cf. Lemma 6.1 and Remark 6.2) that Φ

establishes a one-to-one correspondence between Rn and Rp
m1
1

ˆ . . .ˆ Rp
mk
k

. Set

rRn :“ Φ´1p rRp
m1
1

ˆ . . .ˆ rRp
mk
k

q
and

rψpnq :“ # rRn.

Then, clearly, rψ is a multiplicative function. Moreover, by Proposition 6.6, for each

a P rRpN , we have

ρppN , aq “

$
&
%

1 if pN “ 2

2 if pN “ 2 or p ą 2

4 if p “ 2 and N ě 3.

Hence, in view of (34), for every a P rRn, we have

(35)
1

2
¨ 2ωpnq ď ρpn, aq ď 2 ¨ 2ωpnq.

Moreover, by definition,

rψppnq :“

$
’’&
’’%

pn´1 p´1

2
if p ą 2

2 if pn “ 2

2 if pn “ 4

2n´3 if p “ 2 and n ě 3.

It follows that

(36)
1

2

ź

p|n

´
1 ´ 1

p

¯
ď 2ωpnq rψpnq

n
ď 4

ź

p|n

´
1 ´ 1

p

¯
.

(To obtain these inequalities, for n “ pm1

1 pm2

2 ¨ ¨ ¨ pmk

k , write 2ωpnq rψpnq
n

“ śk

i“1

2ψ̃ppmi
i q

p
mi
i

and apply the formula above.)

6.1. Polynomial ergodic theorem. In the result below P is a monic polynomial
of degree d ą 1 with non-negative integer coefficients.

Theorem 6.8. Suppose that pXx, Sq is a Toeplitz system such that

(37) ?k “ opnk{ρP pnkqq.
Then, for every continuous map F : Xx Ñ C and y P Xx, the limit

(38) lim
NÑ8

1

N

ÿ

mďN
F pSP pmqyq

exists.

Proof. To show (38), we need to prove that for every ε ą 0 there exists Nε so that
for every N,M ě Nε and every r P Z, we have

(39)
ˇ̌
ˇ 1
N

ÿ

mďN
F pSP pmq`rxq ´ 1

M

ÿ

mďM
F pSP pmq`rxq

ˇ̌
ˇ ă ε.

We first assume that F : Xx Ñ R depends only on the zero coordinate, i.e. F pyq “
fpyp0qq for some f : A Ñ R.
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Fix ε ą 0. Choose k ě 1 so that

(40) ?k ă ε

8

nk

ρP pnkq
.

Next, choose Nε ě 8n2
k{ε. Then, in view of Remark 6.5 (and the choice of Nε), for

every N ě Nε and a P RP
nk

, we have
ˇ̌
ˇ̌ρP pN ;nk, aq ´ ρP pnk, aqN

nk

ˇ̌
ˇ̌ ă ρP pnkq ď nk ď ε

8

N

nk
.(41)

From now on, we write that an integer number v belongs to RP
nk

if there exists

0 ď v1 ă nk such that v1 “ v mod nk and v1 P RP
nk

. We will show that for all
N ě Nε and r P Z, we have

(42)
ˇ̌
ˇ
1

N

ÿ

mďN
F pSP pmq`rxq ´ 1

nk

ÿ

0ďaănk

a´rPRP
nk

xkpaq‰?

ρP pnk, a´ rqF pSaxq
ˇ̌
ˇ ď ε}F }sup,

and this implies (39).
Recall that xk P pA Y t?uqZ is an nk-periodic sequence (used to construct x at

stage k). Note that for every a P Z, we have

xkpaq ‰ ? ñ xpa ` j ¨ nkq “ xkpaq for every j P Z.

This implies that if m ď N and xkpP pmq ` r mod nkq ‰ ?, then

(43) F pSP pmq`rxq “ F pSP pmq`r mod nkxq.
Therefore,

#tm ď N : xkpP pmq ` r mod nkq “ ?u
“

ÿ

0ďaănk

a´rPRP
nk

xkpaq“?

#tm ď N : P pmq “ a ´ r mod nku “
ÿ

0ďaănk

a´rPRP
nk

xkpaq“?

ρP pN ;nk, a´ rq.

Assume that N ě Nε. By (41), for every integer v P RP
nk

, we have

ρP pN ;nk, vq ď 2ρP pnkqN
nk
.

In view of (40), it follows that

#tm ď N : xkpP pmq ` r mod nkq “ ?u

ď #t0 ď a ă nk : a´ r P RP
nk
, xkpaq “?u2ρP pnkqN

nk

ď 2?kρ
P pnkq

N

nk
ď ε

4
N.

Let

UN :“ tm ď N : xkpP pmq ` r mod nkq ‰ ?u.
Then by the above, for every N ě Nε,

ˇ̌
ˇ
1

N

ÿ

mďN
F pSP pmq`rxq ´ 1

N

ÿ

mPUN

F pSP pmq`rxq
ˇ̌
ˇ ď ε

4
}F }sup.(44)
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But by (43),
ÿ

mPUN

F pSP pmq`rxq “
ÿ

0ďaănk

a´rPRP
nk

xkpaq‰?

ÿ

mďN
P pmq“a´r mod nk

F pSaxq

“
ÿ

0ďaănk

a´rPRP
nk

xkpaq‰?

F pSaxq#tm ď N : P pmq “ a´ r mod nku

“
ÿ

0ďaănk

a´rPRP
nk

xkpaq‰?

F pSaxqρP pN ;nk, a´ rq.

By (41), we have

ˇ̌
ˇρP pN ;nk, a´ rq ´ ρP pnk, a´ rqN

nk

ˇ̌
ˇ ă ε

8

N

nk
.

It follows that
ˇ̌
ˇ 1
N

ÿ

mPUN

F pSP pmq`rxq ´ 1

nk

ÿ

0ďaănk

a´rPRP
nk

xkpaq‰?

ρP pnk, a´ rqF pSaxq
ˇ̌
ˇ

“
ˇ̌
ˇ 1
N

ÿ

0ďaănk

a´rPRP
nk

xkpaq‰?

F pSaxqρP pN ;nk, a´ rq ´ 1

nk

ÿ

0ďaănk

a´rPRP
nk

xkpaq‰?

ρP pnk, a´ rqF pSaxq
ˇ̌
ˇ

ď 1

N

ÿ

0ďaănk

a´rPRP
nk

xkpaq‰?

|F pSaxq|
ˇ̌
ˇρP pN ;nk, a´ rq ´ ρP pnk, a´ rqN

nk

ˇ̌
ˇ

ď }F }sup
ε

8

#t0 ď a ă nk : xkpaq ‰?, a´ r P RP
nk

u
nk

ď }F }sup
ε

8
.

Together with (44), this gives (42), which completes the proof in the case of F
depending only on the zero coordinate. The rest of the proof runs as in the proof
of Theorem 4.1, this is by passing to the Toeplitz sequences xpmq P pA2m`1qZ for
m ě 1.

Remark 6.9. Denote by Ppntq the set of all prime divisors of elements of the sequence

pntqtě1. In view of Corollary 6.3, ?t “ opppntq{dωpntqq implies (37). Unfortunately,
if Ppntq is finite then the sequence pppntq{dωpntqqtě1 is bounded, so Theorem 6.8, in

the way, is not applicable. Fortunately, if Ppntq is infinite then ppntq{dωpntq Ñ `8
as t Ñ `8, so Theorem 6.8 applies to a non-trivial class of regular Toeplitz shifts,
in particular, it applies when the periodic sequences xt defining x have a bounded
number of “?”.

However, Theorem 6.8 applies to a much wider class of regular Toeplitz shifts
when P pnq “ n2. Then, by Corollary 6.7, ?t “ op?

ntq implies (37). Here the
finiteness or the infinity of the set Ppntq does not matter.
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The assumption (37) about the growth of the sequence p?tqtě1 is the least re-
strictive when all nt are square-free. Then, by the second part of Corollary 6.7,

?t “ opnt{2ωpntqq implies (37). Therefore, ?t “ Opnt1´ 1
log2 log2 nt q also implies (37). In-

deed, it suffices to show that 2ωpnq “ opn
1

log2 log2 n q for square-free numbers n Ñ `8.
Suppose that ωpnq “ k and denote by pplqlě1 the increasing sequence of all prime
numbers. Since

lnn ě
kÿ

l“1

ln pl ě k ln k,

we have
2ωpnq

n
1

log2 log2 n

“ 2k

2
log2 n

log2 log2 n

ď 2k

2
k log2 k

log2pk log2 kq

“ 1

2
k log2 log2 k

log2 k`log2 log2 k

.

As k log2 log2 k

log2 k`log2 log2 k
Ñ `8 when k Ñ `8, this gives 2ωpnq “ opn

1
log2 log2 n q.

6.2. Counter-examples. We will show that there exists a regular Toeplitz se-
quence x P t0, 1uZ with the period structure pntqtě1 satisfying

(45) nt`1 “ kt`1nk with pkt`1, ntq “ 1, nt`1 ě 24n2
t and

ÿ

pPPpntq

1
p

ă `8

and such that

lim
tÑ8

1?
nt

ÿ

0ďmă?
nt

F pSm2

xq does not exist,

where F pyq “ p´1qyp0q. Let

0 ă β :“ 1

16

ź

pPPpntq

p ´ 1

p
.

By (36), for every t ě 1, we have

(46)
2ωpntq rψpntq

nt
ě 8β.

Passing to a subsequence of pntqtě1 (and remembering that rψpmq Ñ 8 when m Ñ
8), we can assume that

ÿ

tě1

1

rψpktq
ď 1

2
.

Set

γt :“
tÿ

l“1

1

rψpklq
`

ď 1

2

˘
.

At stage t, x is approximated by the infinite concatenation of xtr0, nt´1s P t0, 1, ?unt

(that is, we see a periodic sequence of 0, 1, ? with period nt). Successive “?” will be
filled in the next steps of construction of x. We require that:

t0 ď i ă nt : xtpiq “?u Ă Rnt
;(47)

#ta P rRnt
: xtpaq “?u ě p1 ´ γtq rψpntq;(48)

#t0 ď m ă ?
nt : xtpm2q “?u ě β

?
nt.(49)
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Recall that, in view of Lemma 6.4 (remembering that P´1pnt`1q “ ?
nt`1), (35)

and (45), for each a P rRnt
, we have11

#pta ` jnt : 0 ă j ă kt`1u X N
2q ě #ptm2 “ a mod nt : m

2 ă nt`1uq ´ 1

ě
´?

nt`1

nt
´ 1

¯
ρpnt, aq ´ 1 ě

´?
nt`1

nt
´ 1

¯1

2
2ωpntq ´ 1

ě 1

2
2ωpntq

´?
nt`1

nt
´ 2

¯
ě 1

4
2ωpntq

?
nt`1

nt
,

so

(50) #pta ` jnt : 0 ă j ă kt`1u X N
2q ě 2ωpntq

4

?
nt`1

nt
.

By the definition of the sets Rn and rRn, we have

Rnt`1
Ă

ď

aPRnt

ta ` jnt : 0 ď j ă kt`1u,(51)

rRnt`1
Ă

ď

aP rRnt

ta ` jnt : 0 ď j ă kt`1u.(52)

Moreover, by Lemma 6.1, for every a P rRnt
, we have

(53) #ti P rRnt`1
: i “ a mod ntu “ # rRkt`1

“ rψpkt`1q.
We need to describe now which and how we fill "?" in xt`1r0, nt`1 ´1s. This block

is divided into kt`1 subblocks

xtr0, nt ´ 1sxtr0, nt ´ 1s . . . xtr0, nt ´ 1slooooooooooooooooooooooooomooooooooooooooooooooooooon
kt`1

.

We fill in all "?" in the first block xtr0, nt ´ 1s in such a way to “destroy” the
convergence of averages in (45) for the time nt, namely

1?
nt

ÿ

0ďmă?
nt

F pSm2

xq “ 1?
nt

´ ÿ

mă?
nt

xtpm2q“0

1 ´
ÿ

mă?
nt

xtpm2q“1

1 `
ÿ

mă?
nt

xtpm2q“?

p´1qxpm2q
¯
.

And, since the number of m in the last summand is at least β
?
nt in view of (49),

we can fill in these places at stage t` 1 to obtain the sum completely different that
the known number which we had from stage t ´ 1. We also fill in (in an arbitrary
way) the remaining places in t0, . . . , nt ´ 1u.

We fill in (in an arbitrary way) all places in tnt, . . . , nt`1´1uzRnt`1
and only these

places, so that (47) will be satisfied at stage t` 1.
We must remember that for any a P Rnt

if xtpaq ‰? then for every 0 ď j ă kt`1,

we have xt`1pa ` jntq “ xtpa ` jntq “ xtpaq ‰?. Moreover, for any a P rRnt
if

xtpaq “? then for every 0 ă j ă kt`1 with a` jnt P rRnt`1
we have xt`1pa` jntq “?.

In view of (52), this gives

#ti P rRnt`1
: xt`1piq ‰?u

ď rψpntq `
ÿ

aP rRnt :xtpaq‰?

#ta ` jnt P rRnt`1
: 0 ă j ă kt`1u.

11
N2 stands for tm2 : m ě 0u.
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In view of (53) and (48), it follows that

#ti P rRnt`1
: xt`1piq ‰?u ď rψpntq ` p rψpkt`1q ´ 1q#ta P rRnt

: xtpaq ‰?u

ď rψpntq ` p rψpkt`1q ´ 1qγt rψpntq “
´
γt ` 1 ´ γt

rψpkt`1q

¯
rψpnt`1q ď γt`1

rψpnt`1q.

Therefore, at stage t` 1, also (48) is satisfied.
A similar argument combined with (50), (48) and (46) shows that

#t0 ď m2 ă nt`1 : xt`1pm2q “?u “ #ti P Rnt`1
X N

2 : xt`1piq “?u
ě

ÿ

aPRnt :xtpaq“?

#ta ` jnt P Rnt`1
X N

2 : 0 ă j ă kt`1u

ě
ÿ

aP rRnt :xtpaq“?

2ωpntq

4

?
nt`1

nt
“

?
nt`1

4nt
2ωpntq#ta P rRnt

: xtpaq “?u

“ p1 ´ γtq
?
nt`1

4nt
2ωpntq rψpntq ě β

?
nt`1.

Therefore, at stage t` 1, also (49) is satisfied. This completes the construction.

Remark 6.10. In view of (47), in the constructed example of Toeplitz system
pXx, Sq we have ?t ď ψpntq. Moreover, ψpntq “ opϕpntqq. Indeed, by Proposition 6.6,
for every prime number p we have ψppnq ď pn´1 p`2

2
. It follows that

ψppnq
ϕppnq ď 1

2
¨ p ` 2

p ´ 1
ď 3

4

for all prime p ě 7. It follows that

ψpntq
ϕpntq

“ O
´´3

4

¯ωpntq¯
“ op1q.

Consequently, we have ?t “ opϕpntqq. Therefore, in view of Theorem 4.1, pXx, Sq
satisfies a PNT.

Appendix A. The diameter of a tower

Let x P AZ be a Toeplitz sequence with the periodic structure given by pntqtě1.
Recall that

Pernt
pxq “ ta P Z : xpa` jntq “ xpaq for all j P Zu.

Let Apernt
pxq :“ ZzPernt

pxq. Then, we define the periodic sequence xt P pAYt?uqZ
by: xtpkq “ xpkq if k P Pernt

pxq and xtpkq “? if k P Apernt
pxq. Note that the

density of the set Apernt
pxq is equal to ?t

nt
, where

?t “ #t0 ď k ă nt : xtpkq “?u “ #pApernt
pxq X t0, 1, . . . , nt ´ 1uq.

It follows that the regularity of pXx, Sq is equivalent to ?t “ opntq.
Lemma A.1. For any Toeplitz sequence x P AZ we have

?t ď δpEtq ď 3?t for every t ě 1.

Proof. First note that for every 0 ď j ă nt we have

Et
j “ ty P Xx : ypk ´ jq “ xpkq “ xtpkq for all k P Pernt

u.
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Moreover, if k P Apernt
pxq then we can find y, z P Et

j , so that ypk ´ jq ‰ zpk ´ jq.
It follows that

diampEt
jq “ 2´ inft|n|:nPApernt

pxq´tjuu.

Suppose that

Apernt
pxq X t0, 1, . . . , nt ´ 1u “ tl1, l2, . . . , lsu

with 1 ď l1 ď . . . ď ls ď nt and s “?t. Thus, diampEt
li

q “ 1 and if li´1 ă j ă li
(l0 “ ls ´ nt and ls`1 “ l1 ` nt) then diampEt

jq “ 2´mintj´li´1,li´ju. Therefore,

δpEtq “
ÿ

0ďjănt

diampEt
jq ě

sÿ

i“1

diampEt
li

q “ s

and

δpEtq “
ÿ

0ďjănt

diampEt
jq “

sÿ

i“1

ÿ

li´1`li
2

ďjă li`li`1
2

diampEt
jq

“
sÿ

i“1

´
1 `

ÿ

1ďjă li`1´li
2

2´j `
ÿ

1ďjď li´li´1
2

2´j
¯

ď 3s,

which completes the proof.

As the regularity of x is equivalent to ?t “ opntq, we have the following conclusion.

Corollary A.2. A Toeplitz sequence is regular if and only if δpEtq “ opntq.

Appendix B. Sturmian dynamical systems satisfy a PNT

Let T : T Ñ T (T :“ R{Z) be an irrational rotation on T by α. For every
non-zero β P T let tA0, A1u be the partition given by the intervals A0 “ r0, βq and
A1 “ rβ, 1q. For every x P T denote by x̄ P t0, 1uZ the code of x defined by x̄pkq “ i

if and only if T kx P Ai. Finally, denote by Xα,β Ă t0, 1uZ the closure of the set
tx̄ P t0, 1uZ : x P Tu. Since Xα,β is an invariant subset for the left shift S on t0, 1uZ,
we can focus the topological dynamical system S : Xα,β Ñ Xα,β.

Theorem B.1. For the topological dynamical system S : Xα,β Ñ Xα,β a PNT holds.

Proof. For every y “ pypnqqnPZ P Xα,β the set
Ş
nPZAypnq Ă T has exactly one

element πpyq P T. Moreover, π : Xα,β Ñ T is a continuous map intertwining S and
T and there exists a unique S-invariant probability measure µ on Xα,β. The π-image
of µ coincides with Lebesgue measure on T.

By Vinogradov’s theorem, for any character fpxq “ e2πinx, n P Z, we have

(54) lim
NÑ8

1

πpNq
ÿ

păN
fpT pxq “

ż

T

fpxq dx for every x P T.

Since every continuous function f : T Ñ C is uniformly approximated by trigono-
metric polynomials, (54) holds also for any continuous f . Moreover, (54) holds for
any Riemann integrable f : T Ñ R. Indeed, for every ε ą 0 there are two continu-
ous functions f´, f` : T Ñ R such that f´pxq ď fpxq ď f`pxq for every x P T and
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ş
T
pf`pxq ´ f´pxqqdx ă ε. It follows that

lim sup
NÑ8

1

πpNq
ÿ

păN
fpT pxq ď lim

NÑ8

1

πpNq
ÿ

păN
f`pT pxq

“
ż

T

f`pxq dx ă
ż

T

fpxq dx` ε

and

lim inf
NÑ8

1

πpNq
ÿ

păN
fpT pxq ě lim

NÑ8

1

πpNq
ÿ

păN
f´pT pxq

“
ż

T

f´pxq dx ą
ż

T

fpxq dx´ ε.

As ε ą 0 can be chosen freely, this gives (54).
Suppose that f : Xα,β Ñ R depends only on finitely many coordinates. More

precisely, assume that fpyq “ gpyp´nq, . . . , ypnqq for some g : t0, 1u2n`1 Ñ R. Then
there exists F : T Ñ R such that f “ F ˝ π and F is constant on the atoms of
the partition

Žn

i“´n T
´itA0, A1u (for example, if n “ 0 and f is the characteristic

function of ty P Xα,β : yp0q “ 0u then F is 1A0
). It follows that F is Riemann

integrable. Therefore, for every y P Xα,β, we have

1

πpNq
ÿ

păN
fpSpyq “ 1

πpNq
ÿ

păN
F pT pπpyqq Ñ

ż

T

F pxqdx “
ż

Xα,β

f dµ.

Since every continuous function f : Xα,β Ñ R is uniformly approximated by func-
tions depending on finitely many coordinates,

1

πpNq
ÿ

păN
fpSpyq Ñ

ż

Xα,β

f dµ for any y P Xα,β

holds for every continuous f .
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