Backward stochastic differential equations driven by multidimensional fractional Brownian motion ${ }^{1}$

Katarzyna Jańczak-Borkowska

Institute of Mathematics and Physics
University of Science and Technology
Kaliskiego 7, 85-789 Bydgoszcz, Poland
kaja@utp.edu.pl

Introduction

We study the existence and uniqueness of the backward stochastic differential equations driven by multidimensional fractional Brownian motion with Hurst parameters H_{k} greater than $1 / 2, k=1, \ldots, m$. The stochastic integral used throughout the paper is the divergence type integral.

Fractional calculus - multidimensional fBM

Assume that $B^{H_{1}}, B^{H_{2}}, \ldots, B^{H_{m}}$ are independent fractional Brownian motions with Hurst parameters $H_{1}, H_{2}, \ldots, H_{m}$ respectively, where $H_{k} \in\left(\frac{1}{2}, 1\right), k=1,2, \ldots, m$. It is well known that $E B_{t}^{H_{k}}=0$ and

$$
E\left(B_{t}^{H_{k}} \cdot B_{s}^{H_{j}}\right)=\frac{1}{2}\left(|t|^{2 H_{k}}+|s|^{2 H_{k}}-|t-s|^{2 H_{k}}\right) \delta_{k j}
$$

$1 \leq k, j, \leq m$, where $\delta_{k j}=1$ for $k=j$ and $\delta_{k j}=0$ for $k \neq j$.
Set $X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{d}\right)$ where

$$
X_{t}^{i}=X_{0}^{i}+\int_{0}^{t} b_{i}(s) d s+\sum_{k=1}^{m} \int_{0}^{t} \sigma_{i k}(s) d B_{s}^{H_{k}}, \quad t \in[0, T], \quad i=1, \ldots, d
$$

$X_{0}=\left(X_{0}^{1}, \ldots, X_{0}^{d}\right)$ is a constant vector and b_{i} are deterministic continuous functions with $\int_{0}^{T}\left|b_{i}(s)\right| d s<\infty, i=1, \ldots d$.
Theorem 1 (multidimensional fractional Itô formula) Let $\sigma_{i k} \in L^{2}([0, T]), \quad i=$ $1, \ldots d, k=1, \ldots m$ be deterministic functions. Let F be continuously differentiable with respect to t and twice continuously differentiable with respect to x. Then

$$
\begin{aligned}
F\left(t, X_{t}\right)= & F\left(0, X_{0}\right)+\int_{0}^{t} \frac{\partial F}{\partial s}\left(s, X_{s}\right) d s+\sum_{i=1}^{d} \int_{0}^{t} \frac{\partial F}{\partial x_{i}}\left(s, X_{s}\right) b_{i}(s) d s \\
& +\sum_{i=1}^{d} \sum_{k=1}^{m} \int_{0}^{t} \frac{\partial F}{\partial x_{i}}\left(s, X_{s}\right) \sigma_{i k}(s) d B_{s}^{H_{k}} \\
& +\frac{1}{2} \sum_{i, j=1}^{d} \int_{0}^{t} \frac{\partial^{2} F}{\partial x_{i} x_{j}}\left(s, X_{s}\right) \sum_{k=1}^{m} \frac{d}{d s}\left(\left\langle\sigma_{i k}, \sigma_{j k}\right\rangle_{k, s}\right) d s, \quad t \in[0, T] .
\end{aligned}
$$

Theorem 2 (fractional Itô chain rule) Let $E \int_{0}^{T} \int_{0}^{T}\left|\mathbb{D}_{t}^{H_{j}} \sigma_{i j}(s)\right|^{2} d s d t<\infty$. Then

$$
\begin{aligned}
X_{t}^{1} X_{t}^{2}= & X_{0}^{1} X_{0}^{2}+\int_{0}^{t} X_{s}^{1} b_{2}(s) d s+\sum_{k=1}^{m} \int_{0}^{t} X_{s}^{1} \sigma_{2 k}(s) d B_{s}^{H_{k}} \\
& +\int_{0}^{t} X_{s}^{2} b_{1}(s) d s+\sum_{k=1}^{m} \int_{0}^{t} X_{s}^{2} \sigma_{1 k}(s) d B_{s}^{H_{k}} \\
& +\sum_{k=1}^{m}\left(\int_{0}^{t} \mathbb{D}_{s}^{H_{k}} X_{s}^{1} \sigma_{2 k}(s) d s+\int_{0}^{t} \mathbb{D}_{s}^{H_{k}} X_{s}^{2} \sigma_{1 k}(s) d s\right) .
\end{aligned}
$$

BSDE with respect to multidimensional fBm

For a given vector constant $\eta_{0}=\left(\eta_{0}^{1}, \ldots, \eta_{0}^{d}\right)$ consider $\eta_{t}^{i}=\eta_{0}^{i}+\sum_{k=1}^{m} \int_{0}^{t} \sigma_{i k}(s) d B_{s}^{H_{k}}$, $t \in[0, T]$, where for $i=1, \ldots, d, k=1, \ldots, m$
$\left(H_{1}\right) \sigma_{i k}:[0, T] \rightarrow \mathbb{R}$ are deterministic, continuous, differentiable functions such that $\sigma_{i k}(t) \neq 0$, for all $t \in[0, T]$.

Since $\left\langle\sigma_{i k}, \sigma_{j k}\right\rangle_{k, t}=H_{k}\left(2 H_{k}-1\right) \int_{0}^{t} \int_{0}^{t}|v-u|^{2 H_{k}-2} \sigma_{i k}(v) \sigma_{j k}(u) d v d u$,
we have $\frac{d}{d t}\left(\left\langle\sigma_{i k}, \sigma_{j k}\right\rangle_{k, t}\right)=2 \sigma_{i k}(t) \hat{\sigma}_{j k}(t)>0$, where $\hat{\sigma}_{j k}(t)=\int_{0}^{t} \phi_{k}(t-u) \sigma_{j k}(u) d u$.
$\left(H_{2}\right) \xi=h\left(\eta_{T}\right)$ for some function h with bounded derivative and such that $E|\xi|^{2}<\infty$
$\left(H_{3}\right) f:[0, T] \times \mathbb{R}^{d} \times \mathbb{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a continuous function and there exists a positive constant L such that for all $t \in[0, T], x \in \mathbb{R}^{d}, y, y^{\prime} \in \mathbb{R}, z, z^{\prime} \in \mathbb{R}^{m}$,

$$
\left|f(t, x, y, z)-f\left(t, x, y^{\prime}, z^{\prime}\right)\right| \leq L\left(\left|y-y^{\prime}\right|+\left\|z-z^{\prime}\right\|\right)
$$

and

$$
E\left(\int_{0}^{T}\left|f\left(t, \eta_{t}, 0,0\right)\right|^{2} d t\right)<\infty
$$

Dariusz Borkowski

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18, 87-100 Toruń, Poland
dbor@mat.umk.pl

Consider the set $\mathscr{V}_{T}=\left\{Y=\phi(\cdot, \eta(\cdot)): \phi \in C_{p o l}^{1,3}([0, T] \times \mathbb{R})\right.$ and $\frac{\partial \phi}{\partial t}$ is bounded $\}$
By $\tilde{\mathscr{V}}_{T}^{H}$ denote the completition of the set of processes from \mathscr{V}_{T} with the norm

$$
\|Y\|_{H}=\left(\int_{0}^{T} t^{2 H-1} E\left|Y_{t}\right|^{2} d t\right)^{1 / 2}=\left(\int_{0}^{T} t^{2 H-1} E\left|\phi\left(t, \eta_{t}\right)\right|^{2} d t\right)^{1 / 2}, \quad H \geq 1 / 2
$$

Definition 1 A solution of the backward stochastic differential equation driven by multidimensional fBm is a pair of processes $(Y, Z)=\left(Y_{t}, Z_{t}\right)_{t \in[0, T]}$ satisfying

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, \eta_{s}, Y_{s}, Z_{s}\right) d s-\sum_{k=1}^{m} \int_{t}^{T} Z_{s}^{k} d B_{s}^{H_{k}} \tag{1}
\end{equation*}
$$

and such that $Y \in \tilde{\mathscr{V}}_{T}^{1 / 2}$ and $Z=\left(Z^{1}, \ldots, Z^{m}\right)$, where $Z^{k} \in \tilde{\mathscr{V}}_{T}^{H_{k}}$.
Theorem 3 Assume $\left(H_{1}\right)-\left(H_{3}\right)$. For $(U, V) \in \mathscr{V}_{T} \times \mathscr{V}_{T}^{m}$ let $(Y, Z) \in \mathscr{V}_{T} \times \mathscr{V}_{T}^{m}$ be the unique solution of the following BSDE:

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, \eta_{s}, U_{s}, V_{s}\right) d s-\sum_{k=1}^{m} \int_{t}^{T} Z_{s}^{k} d B_{s}^{H_{k}}, \quad t \in[0, T] \tag{2}
\end{equation*}
$$

Let $\xi=0$. Then for all $\beta>0$ there exists $C(\beta)=C(\beta, T, L)>0$ such that
$\sup _{t \in[0, T]} e^{\beta t} E\left|Y_{t}\right|^{2}+\int_{0}^{T} e^{\beta s} E\left|Y_{s}\right|^{2} d s+\sum_{k=1}^{m} \int_{0}^{T} e^{\beta s} s^{2 H_{k}-1} E\left|Z_{s}^{k}\right|^{2} d s$
$\leq C(\beta)\left(\int_{0}^{T} e^{\beta s} E\left|U_{s}\right|^{2} d s+\sum_{k=1}^{m} \int_{0}^{T} e^{\beta s} s^{2 H_{k}-1} E\left|V_{s}^{k}\right|^{2} d s+\int_{0}^{T} e^{\beta s} E\left|f\left(s, \eta_{s}, 0,0\right)\right|^{2} d s\right)$.
Moreover, $C(\beta)$ can be chosen such that $\lim _{\beta \rightarrow \infty} C(\beta)=0$.
Theorem 4 Assume $\left(H_{1}\right)-\left(H_{3}\right)$. There exists a unique solution of (1).
Proof. We use a fixed point theorem. Consider the mapping $\Phi: \mathscr{V}_{T} \times \mathscr{V}_{T}^{m} \rightarrow \mathscr{V}_{T} \times \mathscr{V}_{T}^{m}$ given by $(U, V) \mapsto \Phi(U, V)=(Y, Z)$, where (Y, Z) is the unique solution of the equation (2). $\Phi: \mathscr{V}_{[0, T]} \times \mathscr{V}_{[0, T]}^{m} \rightarrow \mathscr{V}_{[0, T]} \times \mathscr{V}_{[0, T]}^{m}$ described by (2) is a contraction with respect to norm:

$$
\|(u, v)\|_{1 / 2, H}=\|u\|_{1 / 2}+\|v\|_{H}=\|u\|_{1 / 2}+\sqrt{\sum_{k=1}^{m}\left\|v^{k}\right\|_{H_{k}}^{2}} .
$$

Therefore a sequence $\left\{\left(Y^{p}, Z^{p}\right)\right\}_{p \in \mathbb{N}}$ defined by

$$
Y_{t}^{p+1}=\xi+\int_{t}^{T} f\left(s, \eta_{s}, Y_{s}^{p}, Z_{s}^{p}\right) d s-\sum_{k=1}^{m} \int_{t}^{T} Z_{s}^{p+1, k} d B_{s}^{H_{k}}, \quad t \in[0, T]
$$

is a Cauchy sequence in $\tilde{\mathscr{V}}_{T}^{1 / 2} \times \tilde{\mathscr{V}}_{T}^{H}, \tilde{\mathscr{V}}_{T}^{H}=\tilde{\mathscr{V}}_{T}^{H_{1}} \times \ldots \times \tilde{\mathscr{V}}_{T}^{H_{m}}$. Hence there exists a pair (Y, Z) satysfying (1) and such that $\lim _{p \rightarrow \infty}\left\|\left(Y^{p}-Y, Z^{p}-Z\right)\right\|_{1 / 2, H}=0$.

Applications

We can write the partial differential equation associated with (1) of the form:

$$
\begin{align*}
& u(T, x)=h(x), \quad \frac{\partial u}{\partial t}+\frac{1}{2} \sum_{i, j=1}^{d} \sum_{k=1}^{m} \frac{d}{d t}\left\langle\sigma_{i k}, \sigma_{j k}\right\rangle_{k, t} \frac{\partial^{2} u}{\partial x_{i} x_{j}} \tag{3}\\
& =-f\left(t, x, u,-\sum_{i=1}^{d} \sigma_{i 1} \frac{\partial u}{\partial x_{i}}, \ldots,-\sum_{i=1}^{d} \sigma_{i m} \frac{\partial u}{\partial x_{i}}\right)
\end{align*}
$$

Theorem 5 If the equation (3) has a solution $u(t, x)$ which is continuously differentiable with respect to t and twice continuously differentiable with respect to x, then $Y_{t}=u\left(t, \eta_{t}\right), Z_{t}^{k}=\sum_{i=1}^{d} \sigma_{i k}(t) \frac{\partial u}{\partial x_{i}}\left(t, \eta_{t}\right), k=1, \ldots, m$.

Theorem 6Assume that (1) has a solution (Y, Z) of the form $Y_{t}=u\left(t, \eta_{t}\right)$ and $Z_{t}=\left(Z_{t}^{1}, \ldots, Z_{t}^{m}\right)$ where $Z_{t}^{k}=v_{k}\left(t, \eta_{t}\right), k=1, \ldots m$. Then $v_{k}(t, x)=\sum_{i=1}^{d} \sigma_{i k}(t) \frac{\partial u}{\partial x_{i}}(t, x)$.

