Non Local Means

ISO Images¹

Dariusz Borkowski^a Adam Jakubowski^a Katarzyna Jańczak-Borkowska^b

^aFaculty of Mathematics and Computer Science Nicolaus Copernicus University in Toruń

^bInstitute of Mathematics and Physics University of Technology and Life Sciences in Bydgoszcz

¹This research was supported by the National Science Centre under decision DEC-2012/07‡D/ST6‡02534 ≣

$$u: \bar{D} \to \mathbb{R}^3$$
 – original colour image,
 $u_0: \bar{D} \to \mathbb{R}^3$ – noisy colour image,

$$u_0=u+\eta,$$

$$\eta$$
 – Gaussian noise.

We are given u_0 , the problem is to reconstruct u.

The Inverse Problem

- ► linear filtering
- wevelets theory
- ► variational mathods
- ► PDE-based methods
- ▶ stochastic modelling
- ▶ non local means approach

Non Local Means

Let $v = \{u_0(i) | i \in I = \mathbf{Z}^2 \cap D\}$ be a discrete noisy image

$$NL(v)(i) = \sum_{j \in I} w(N_i, N_j)v(j).$$

The weight $w(N_i, N_i)$ depends on the similarity of the intensity gray level or colour vectors of neighbourhoods N_i , N_i centred at pixels i and i

Algorithm for Non Local Means

Let $B_{i,F}$ be a window of size $F \times F$ centred at i

$$u(i) \leftarrow 0; Z \leftarrow 0;$$
 Buades et al. (2005)
for $j \in B_{i,F}$ do
 $u(i) \leftarrow u(i) + w(B_{i,r}, B_{j,r}) \cdot v(j);$
 $Z \leftarrow Z + w(B_{i,r}, B_{j,r});$
end for
 $u(i) \leftarrow \frac{u(i)}{Z};$
 $w(B_{i,r}, B_{j,r}) = \exp\left(-\frac{\max\left(\frac{\|B_{i,r} - B_{j,r}\|^2}{3(2r+1)} - 2\rho^2, 0\right)}{s^2}\right)$
Buades et al. (2011)

$$\frac{\partial u}{\partial t} = Au$$

$$u(t,x)=\mathbf{E}\left[u_0(X_t)\right]$$

Non Local Means

$$X_{0} = x,$$
Borkowski (2013)

$$H_{k} = \prod_{D} (X_{k-1} + h \cdot (\Phi_{0,1}, \Phi_{0,1}))$$

$$X_{k} = \begin{cases} H_{k}, & \text{if } \Theta, \\ X_{k-1}, & \text{elsewhere,} \end{cases} \qquad k = 1, 2, ..., \tau_{m},$$

 $\Pi_D(x)$ denotes a projection of x on the set D $\Phi_{0,1}$ is a random number generator from the normal distribution with mean 0 and standard deviation 1.

By Θ we mean the condition

$$||(G_{\delta} * u_0)(H_k) - (G_{\delta} * u_0)(X_{k-1})|| \le 0.8 \cdot \rho$$

where G_δ is 3×3 Gaussian mask and by au_m

$$\tau_m = \min\{k; k \ge m \text{ and } \Theta \text{ is true } m \text{ times}\}.$$

$$u(x) \approx \sum_{i=1}^{M} \frac{1}{M} u_0(X_{\tau_m(\omega_i)}(\omega_i)),$$

Experimental Results

```
1: u(i) \leftarrow 0; X(0) \leftarrow i;
 2: for m = 1 ... M do
     k \leftarrow 1:
        while k \le K do
           X(k) \leftarrow \Pi_D (X(k-1) + h \cdot (\Phi_{0,1}, \Phi_{0,1}));
 5:
           if |G_{\delta} * u_0(X(k)) - G_{\delta} * u_0(X(k-1))| \le 0.8 \cdot \rho then
 6:
               k \leftarrow k + 1:
 7:
           end if
 8:
        end while
 9:
        u(i) \leftarrow u(i) + \frac{1}{M} \cdot u_0(X(K));
10:
11: end for
```

$$u(x) = \frac{1}{Z} \sum_{i=1}^{M} w(B_{x,r}, B_{X_{\tau_m(\omega_i)}(\omega_i),r}) u_0(X_{\tau_m(\omega_i)}(\omega_i)).$$

Experimental Results

New Algorithm

Non Local Means

```
1: u(i) \leftarrow 0; X(0) \leftarrow i; Z \leftarrow 0;
 2: for m = 1 ... M do
 3: k \leftarrow 1:
        while k \le K do
            X(k) \leftarrow \Pi_D (X(k-1) + h \cdot (\Phi_{0,1}, \Phi_{0,1}));
 5:
            if |G_{\delta} * u_0(X(k)) - G_{\delta} * u_0(X(k-1))| < 0.8 \cdot \rho then
 6:
               k \leftarrow k + 1:
 7:
            end if
 8:
         end while
 9.
        u(i) \leftarrow u(i) + w\left(B_{i,r}, B_{X(K),r}\right) \cdot u_0(X(K));
10:
        Z \leftarrow Z + w(B_{i,r}, B_{X(K),r});
12: end for
13: u(i) \leftarrow \frac{u(i)}{7}:
```


Figure : Original test images: 512×512 a) Peppers b) Lenna

PSNR

Image	Noise ρ	NL-means	Stoch. anis. diff.	New method
Peppers	10	32.9404	32.3572	33.1289
	20	30.2984	30.6057	31.0984
	30	27.3031	29.2140	29.8178
	40	26.6428	28.1988	28.6991
	50	25.9941	27.2549	27.8611
	60	25.5353	26.5094	27.0802
Lenna	10	34.0127	33.0964	34.3550
	20	31.5780	31.1301	31.8386
	30	29.6376	29.6041	30.2871
	40	28.6433	28.5068	29.0773
	50	27.7377	27.5843	28.1308
	60	27.0094	26.7234	27.3205

SSIM

Image	Noise ρ	NL-means	Stoch. anis. diff.	New method
Peppers	10	0.9536	0.9470	0.9548
	20	0.9194	0.9146	0.9232
	30	0.8898	0.8866	0.8994
	40	0.8645	0.8645	0.8759
	50	0.8383	0.8447	0.8564
	60	0.8284	0.8229	0.8362
Lenna	10	0.9588	0.9467	0.9573
	20	0.9224	0.9115	0.9232
	30	0.8929	0.8790	0.8930
	40	0.8640	0.8528	0.8648
	50	0.8377	0.8289	0.8414
	60	0.8174	0.8050	0.8176

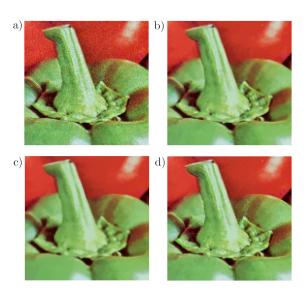


Figure : a) Noisy image $\rho=$ 10 b) New method c) Anisotropic diffusion d) NL-means

Experimental Results

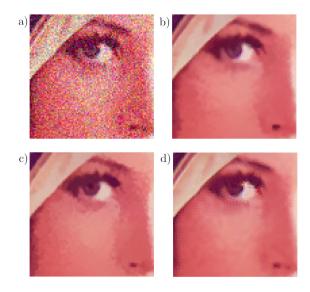


Figure : a) Noisy image $\rho=$ 30 b) New method c) Anisotropic diffusion d) NL-means

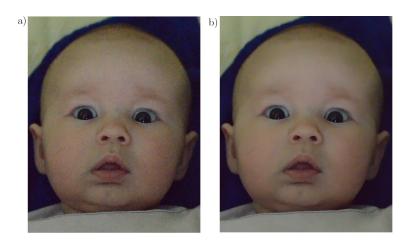


Figure : a) Input high ISO image b) Result of the reconstruction using new method

Conclusion

Applying the Feynman-Kac formula to express anisotropic diffusion in stochastic terms allows to adapt the idea from non local means, giving what is the best from these two classical approaches.