RATIONAL CONSTANTS OF CYCLOTOMIC DERIVATIONS

JEAN MOULIN OLLAGNIER AND ANDRZEJ NOWICKI

1. INTRODUCTION

Let $K(X) = K(x_0, \ldots, x_{n-1})$ be the field of rational functions in $n \geq 3$ variables over a field K of characteristic zero. Let d be the cyclotomic derivation of $K(X)$, that is, d is the K-derivation of $K(X)$ defined by

$$d(x_j) = x_{j+1}, \quad \text{for } j \in \mathbb{Z}_n.$$

We denote by $K(X)^d$ the field of constants of d, that is, $K(X)^d = \{f \in K(X); d(f) = 0\}$.

We are interested in algebraic descriptions of the field $K(X)^d$. However, we know that such descriptions are usually difficult to obtain. Fields of constants appear in various classical problems; for details we refer to [2], [3], [12], [9] and [11].

We already know (see [10]) that if K contains the n-th roots of unity, then $K(X)^d$ is a field of rational functions over K and its transcendence degree over K is equal to $m = n - \varphi(n)$, where φ is the Euler totient function. In our proof of this fact the assumption concerning n-th roots plays an important role. We do not know if the same is true without this assumption. What happens, for example, when $K = \mathbb{Q}$?

In this article we give a partial answer to this question, for arbitrary field K of characteristic zero.

We introduce a class of special positive integers, and we prove (see Theorem 9.1) that if n belongs to this class, then the mentioned result is also true for arbitrary field K of characteristic zero, without the assumption concerning roots of unity.

2010 Mathematics Subject Classification. Primary 12H05; Secondary 13N15.

Key words and phrases. Derivation, cyclotomic polynomial, Darboux polynomial, Euler totient function, Euler derivation, factorisable derivation, Jouanolou derivation, Lotka-Volterra derivation.
Moreover, we construct a set of free generators of $K(X)^d$, which are polynomials with integer coefficients. Thus, if the number n is special, then

$$K(X)^d = K(F_0, \ldots, F_{m-1}),$$

for some, algebraically independent, polynomials F_0, \ldots, F_{m-1} belonging to the polynomial ring $\mathbb{Z}[X] = \mathbb{Z}[x_0, \ldots, x_{n-1}]$, and where $m = n - \varphi(n)$. Note that in the segment $[3, 100]$ there are only 3 non-special numbers: 36, 72 and 100. We do not know if the same is true for non-special numbers, for example when $n = 36$.

In our proofs we use classical properties of cyclotomic polynomials, and an important role play some results ([4], [5], [16], [17] and others) on vanishing sums of roots of unity.

2. Notations and preparatory facts

Throughout this paper $n \geq 3$ is an integer, ε is a primitive n-th root of unity, and \mathbb{Z}_n is the ring $\mathbb{Z}/n\mathbb{Z}$. Moreover, K is a field of characteristic zero, $K[X] = K[x_0, \ldots, x_{n-1}]$ is the polynomial ring over K in variables x_0, \ldots, x_{n-1}, and $K(X) = K(x_0, \ldots, x_{n-1})$ is the field of quotients of $K[X]$. The indexes of the variables x_0, \ldots, x_{n-1} are elements of the ring \mathbb{Z}_n. The cyclotomic derivation d is the K-derivation of $K(X)$ defined by $d(x_i) = x_{i+1}$ for $i \in \mathbb{Z}_n$.

For every sequence $\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_{n-1})$, of integers, we denote by $H_\alpha(t)$ the polynomial from $\mathbb{Z}[t]$ defined by

$$H_\alpha(t) = \alpha_0 + \alpha_1 t^1 + \alpha_2 t^2 + \cdots + \alpha_{n-1} t^{n-1}.$$

An important role in our paper will play two subsets of \mathbb{Z}^n denoted by G_n and M_n. The first subset is the set of all sequences $\alpha = (\alpha_0, \ldots, \alpha_{n-1})$ such that $\alpha_0, \ldots, \alpha_{n-1}$ are integers and

$$\alpha_0 + \alpha_1 \varepsilon^1 + \alpha_2 \varepsilon^2 + \cdots + \alpha_{n-1} \varepsilon^{n-1} = 0.$$

The second subset M_n is the set of all such sequences $\alpha = (\alpha_0, \ldots, \alpha_{n-1})$ which belong to G_n and the integers $\alpha_0, \ldots, \alpha_{n-1}$ are nonnegative, that is, they belong to the set of natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$. To be precise,

$$G_n = \{ \alpha \in \mathbb{Z}^n; H_\alpha(\varepsilon) = 0 \}, \quad M_n = \{ \alpha \in \mathbb{N}^n; H_\alpha(\varepsilon) = 0 \} = G_n \cap \mathbb{N}^n.$$

If $\alpha, \beta \in G_n$, then of course $\alpha \pm \beta \in G_n$, and if $\alpha, \beta \in M_n$, then $\alpha + \beta \in M_n$. Thus G_n is an abelian group, and M_n is an abelian monoid with zero $0 = (0, \ldots, 0)$.

Let us recall that ε is an algebraic element over \mathbb{Q}, and its monic minimal polynomial is equal to the n-th cyclotomic polynomial $\Phi_n(t)$. Recall also (see for example [6] or [7]) that $\Phi_n(t)$ is a monic irreducible polynomial with integer coefficients of degree $\varphi(n)$, where φ is the Euler totient function. This implies the following proposition.

Proposition 2.1. Let $\alpha \in \mathbb{Z}^n$. Then $\alpha \in G_n$ if and only if there exists a polynomial $F(t) \in \mathbb{Z}[t]$ such that $H_\alpha(t) = F(t) \Phi_n(t)$.
Put \(e_0 = (1, 0, 0, \ldots, 0), e_1 = (0, 1, 0, \ldots, 0), \ldots, e_{n-1} = (0, 0, \ldots, 0, 1), \) and let
\[e = \sum_{i=0}^{n-1} e_i = (1, 1, \ldots, 1). \] Since \(\sum_{i=0}^{n-1} e_i = 0, \) the element \(e \) belongs to \(\mathcal{M}_n. \)

The monoid \(\mathcal{M}_n \) has an order \(\geq. \) If \(\alpha, \beta \in \mathcal{G}_n, \) the we write \(\alpha \geq \beta, \) if \(\alpha - \beta \in \mathbb{N}^n, \)
that is, \(\alpha \geq \beta \iff \text{ there exists } \gamma \in \mathcal{M}_n \text{ such that } \alpha = \beta + \gamma. \) In particular, \(\alpha \geq 0 \) for any \(\alpha \in \mathcal{M}_n. \) It is clear that the relation \(\geq \) is reflexive, transitive and antisymmetric. Thus \(\mathcal{M}_n \) is a poset with respect to \(\geq. \)

Let \(\alpha \in \mathcal{M}_n. \) We say that \(\alpha \) is a minimal element of \(\mathcal{M}_n, \) if \(\alpha \neq 0 \) and there is
no \(\beta \in \mathcal{M}_n \) such that \(\beta \neq 0 \) and \(\beta < \alpha. \) Equivalently, \(\alpha \) is a minimal element of
\(\mathcal{M}_n, \) if \(\alpha \neq 0 \) and \(\alpha \) is not a sum of two nonzero elements of \(\mathcal{M}_n. \)

We denote by \(\zeta, \) the rotation of \(\mathbb{Z}^n \) given by \(\zeta(\alpha) = (a_{n-1}, a_0, a_1, \ldots, a_{n-2}), \)
for \(a = (a_0, a_1, \ldots, a_{n-1}) \in \mathbb{Z}^n. \) The mapping \(\zeta \) is a \(\mathbb{Z} \)-module automorphism of
\(\mathbb{Z}^n. \) Note that \(\zeta^{-1}(\alpha) = (a_1, \ldots, a_{n-1}, a_0), \) for all \(\alpha = (a_0, a_1, \ldots, a_{n-1}) \in \mathbb{Z}^n. \) If
\(a, b \in \mathbb{Z} \) and \(a \equiv b \pmod{\mathbb{N}}, \) then \(\zeta^a = \zeta^b. \) Moreover, \(\zeta(e_j) = e_{j+1} \) for all \(j \in \mathbb{Z}_n, \)
and \(\zeta(e) = e. \)

Let us recall from [10] some basic properties of \(\mathcal{M}_n \) and \(\mathcal{G}_n. \)

Proposition 2.2 ([10]).

1. If \(\alpha \in \mathcal{G}_n, \) then there exist \(\beta, \gamma \in \mathcal{M}_n \) such that \(\alpha = \beta - \gamma. \)
2. The poset \(\mathcal{M}_n \) is artinian, that is, if \(\alpha^{(1)} \geq \alpha^{(2)} \geq \alpha^{(3)} \geq \ldots \) is a sequence
of elements from \(\mathcal{M}_n, \) then there exists an integer \(s \) such that \(\alpha^{(j)} = \alpha^{(j+1)} \) for all
\(j \geq s. \)
3. The set of all minimal elements of \(\mathcal{M}_n \) is finite.
4. For any \(0 \neq \alpha \in \mathcal{M}_n \) there exists a minimal element \(\beta \) such that \(\beta \leq \alpha. \) Moreover, every nonzero element of \(\mathcal{M}_n \) is a finite sum of minimal elements.
5. Let \(\alpha \in \mathbb{Z}^n. \) If \(\alpha \in \mathcal{G}_n, \) then \(\zeta(\alpha) \in \mathcal{G}_n. \) If \(\alpha \in \mathcal{M}_n, \) then \(\zeta(\alpha) \in \mathcal{M}_n. \) Moreover, \(\alpha \) is a minimal element of \(\mathcal{M}_n \) if and only if \(\zeta(\alpha) \) is a minimal element of
\(\mathcal{M}_n. \)

Look at the cyclotomic polynomial \(\Phi_n(t). \) Assume that \(\Phi_n(t) = c_0 + c_1 t + \cdots + c_{\varphi(n)} t^{\varphi(n)}. \) All the coefficients \(c_0, \ldots, c_{\varphi(n)} \) are integers, and \(c_0 = c_{\varphi(n)} = 1. \) Put
\(m = n - \varphi(n) \) and

\[\gamma_0 = \left(c_0, c_1, \ldots, c_{\varphi(n)}, 0, \ldots, 0 \right)_{m-1}. \]

Note that \(\gamma_0 \in \mathbb{Z}^n, \) and \(H_{\gamma_0}(t) = \Phi_n(t). \) Consider the elements \(\gamma_0, \gamma_1, \ldots, \gamma_{m-1} \)
defined by \(\gamma_j = \zeta^j(\gamma_0), \) for \(j = 0, 1, \ldots, m-1. \) Observe that \(H_{\gamma_j}(t) = \Phi_n(t) \cdot t^j \) for all \(j \in \{0, \ldots, m-1\}. \) Since \(\Phi_n(e) = 0, \) we have \(H_{\gamma_j}(e) = 0, \) and so, the elements
\(\gamma_0, \ldots, \gamma_{m-1} \) belong to \(\mathcal{G}_n. \) Moreover, we proved in [10], that they form a basis
over \(\mathbb{Z}, \) which is the following theorem.

Theorem 2.3 ([10]). \(\mathcal{G}_n \) is a free \(\mathbb{Z} \)-module, and the elements \(\gamma_0, \ldots, \gamma_{m-1}, \) where
m = n - \varphi(n), form its basis over \(\mathbb{Z}. \)
3. Standard minimal elements

Assume that p is a prime divisor of n, and consider the sequences

$$m(p, r) = \sum_{i=0}^{p-1} e_{r+i \frac{n}{p}},$$

for $r = 0, 1, \ldots, \frac{n}{p} - 1$. Observe that each $m(p, r)$ is equal to $\zeta^r (m(p, 0))$. Each $m(p, r)$ is a minimal element of \mathcal{M}_n (see [10] for details). We say that $m(p, r)$ is a standard minimal element of \mathcal{M}_n. In [10] we used the notation $E_r^{(p)}$ instead of $m(p, r)$. It is clear that if $r_1, r_2 \in \{0, 1, \ldots, \frac{n}{p} - 1\}$ and $r_1 \neq r_2$, then $m(p, r_1) \neq m(p, r_2)$.

If $\alpha = (\alpha_0, \ldots, \alpha_{n-1}) \in \mathbb{Z}^n$, then we denote by $|\alpha|$ the sum $\alpha_0 + \cdots + \alpha_{n-1}$. Observe that, for every r, we have $|m(p, r)| = p$. This implies, that if $p \neq q$ are prime divisors of n, then $m(p, r_1) \neq m(q, r_2)$ for all $r_1 \in \{0, \ldots, \frac{n}{p} - 1\}, r_2 \in \{0, 1, \ldots, \frac{n}{q} - 1\}$. Note the following two obvious propositions.

Proposition 3.1. $\sum_{r=0}^{p-1} m(p, r) = (1, 1, \ldots, 1) = e$.

Proposition 3.2. If p is a prime divisor of n, then the standard elements $m(p, 0), m(p, 1), \ldots, m(p, \frac{n}{p} - 1)$ are linearly independent over \mathbb{Z}.

The following two propositions are less obvious and deserve a proof.

Proposition 3.3. Let $n = pqN$, where $p \neq q$ are primes and N is a positive integer. Then

$$\sum_{k=0}^{p-1} m(q, kN) = \sum_{k=0}^{q-1} m(p, kN),$$

which, for any shift r, is easily extended to

$$\sum_{k=0}^{p-1} m(q, kN + r) = \sum_{k=0}^{q-1} m(p, kN + r).$$

Proof. If m is a positive integer, then we denote by $[m]$ the set $\{0, 1, \ldots, m - 1\}$. First observe that $\left\{ k + ip; k \in [p], i \in [q] \right\} = \left\{ k + iq; k \in [q], i \in [p] \right\} = [pq]$. Hence,

$$\sum_{k=0}^{p-1} m(q, kN) = \sum_{k=0}^{p-1} \sum_{i=0}^{q-1} e^{kN + i \frac{p}{q}} = \sum_{k=0}^{p-1} \sum_{i=0}^{q-1} e^{N(k+ip)} = \sum_{k=0}^{pq-1} e_{Nk};$$

$$\sum_{k=0}^{q-1} m(p, kN) = \sum_{k=0}^{q-1} \sum_{i=0}^{p-1} e^{kN + i \frac{q}{p}} = \sum_{k=0}^{q-1} \sum_{i=0}^{p-1} e^{N(k+iq)} = \sum_{k=0}^{pq-1} e_{Nk}.$$

Thus,

$$\sum_{k=0}^{p-1} m(q, kN) = \sum_{k=0}^{pq-1} e_{kN} = \sum_{k=0}^{q-1} m(p, kN).$$

\square
Proposition 3.4. Let \(p \) be a prime divisor of \(n \). Let \(0 \leq r < \frac{n}{p} \), and \(a \in \mathbb{Z} \). Then
\[
\zeta^a(m(p, r)) = m(p, b), \quad \text{where} \quad b = (a + r) \left(\text{mod} \frac{n}{p} \right).
\]

Proof. Put \(w = \frac{n}{p} \), and \([p] = \{0, 1, \ldots, p-1\} \). Let \(a + r = cw + b \), where \(c, b \in \mathbb{Z} \) with \(0 \leq b < w \). Observe that \(\{b + (c + i)w \ (\text{mod} \ n) ; \ i \in [p]\} = \{b + iw ; \ i \in [p]\} \).

Hence,
\[
\zeta^a(m(p, r)) = \zeta^a\left(\sum_{i=0}^{p-1} e_{r+iw} \right) = \sum_{i=0}^{p-1} e_{a+r+iw} = \sum_{i=0}^{p-1} e_{b+cw+iw} = \sum_{i=0}^{p-1} e_{b+(c+i)w} = m(p, b),
\]
and \(b = (a + r) \ (\text{mod} \ w) \). □

We will apply the following theorem of Rédei, de Bruijn and Schoenberg.

Theorem 3.5 ([13], [1], [15]). The standard minimal elements of \(\mathcal{M}_n \) generate the group \(\mathcal{G}_n \).

Known proofs of the above theorem used usually techniques of group rings. Lam and Leung [5] gave a new proof using induction and group-theoretic techniques.

We know (see for example [10]) that if \(n \) is divisible by at most two distinct primes, then every minimal element of \(\mathcal{M}_n \) is standard. It is known (see for example [5], [17], [14]) that in all other cases always exist nonstandard minimal elements.

4. The sets \(I_j \)

Let \(n \geq 3 \) be an integer, and let \(n = p_1^{\alpha_1} \cdots p_s^{\alpha_s} \), where \(p_1, \ldots, p_s \) are distinct primes and \(\alpha_1, \ldots, \alpha_s \) are positive integers. Put \(n_j = \frac{n}{p_j} \) for \(j = 1, \ldots, s \). Let \(I_1, \ldots, I_s \) be sets of integers defined as follows:

\[
I_1 = \left\{ r \in \mathbb{Z}; \ 0 \leq r < n_1 \right\},
\]

\[
I_2 = \left\{ r \in \mathbb{Z}; \ 0 \leq r < n_2, \ \gcd(r, p_1) = 1 \right\},
\]

\[
I_3 = \left\{ r \in \mathbb{Z}; \ 0 \leq r < n_3, \ \gcd(r, p_1p_2) = 1 \right\},
\]

\[
\vdots
\]

\[
I_s = \left\{ r \in \mathbb{Z}; \ 0 \leq r < n_s, \ \gcd(r, p_1p_2\cdots p_{s-1}) = 1 \right\}.
\]

That is, \(I_1 = \{r \in \mathbb{Z}; \ 0 \leq r < n_1\} \) and \(I_j = \{r \in \mathbb{Z}; \ 0 \leq r < n_j, \ \gcd(r, p_1\cdots p_{j-1}) = 1\} \) for \(j = 2, \ldots, s \). This definition depends of the fixed succession of primes. We will say that the above \(I_1, \ldots, I_s \) are the \emph{n-sets of type} \([p_1, \ldots, p_s]\).
Let for example \(n = 12 = 2^23 \). Then \(I_1 = \{0, 1, 2, 3, 4, 5\} \), \(I_2 = \{1, 3\} \) are the 12-sets of type \([2, 3]\), and \(I_1 = \{0, 1, 2, 3\} \), \(I_2 = \{1, 2, 4, 5\} \) are the 12-sets of type \([3, 2]\).

Example 4.1. The 30-sets of a a given type:

<table>
<thead>
<tr>
<th>type</th>
<th>(I_1)</th>
<th>(I_2)</th>
<th>(I_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([2, 3, 5])</td>
<td>{0, 1, 2, ..., 14}</td>
<td>{1, 3, 5, 7, 9}</td>
<td>{1, 5}</td>
</tr>
<tr>
<td>([2, 5, 3])</td>
<td>{0, 1, 2, ..., 14}</td>
<td>{1, 3, 5}</td>
<td>{1, 3, 7, 9}</td>
</tr>
<tr>
<td>([3, 2, 5])</td>
<td>{0, 1, 2, ..., 9}</td>
<td>{1, 2, 4, 5, 7, 8, 10, 11, 13, 14}</td>
<td>{1, 5}</td>
</tr>
<tr>
<td>([3, 5, 2])</td>
<td>{0, 1, 2, ..., 9}</td>
<td>{1, 2, 4, 5}</td>
<td>{1, 2, 4, 7, 8, 11, 13, 14}</td>
</tr>
<tr>
<td>([5, 2, 3])</td>
<td>{0, 1, 2, 3, 4, 5}</td>
<td>{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14}</td>
<td>{1, 3, 7, 9}</td>
</tr>
<tr>
<td>([5, 3, 2])</td>
<td>{0, 1, 2, 3, 4, 5}</td>
<td>{1, 2, 3, 4, 6, 7, 8, 9}</td>
<td>{1, 2, 4, 7, 8, 11, 13, 14}</td>
</tr>
</tbody>
</table>

Now we calculate the cardinality of the sets \(I_1, \ldots, I_s \). We denote by \(|X| \) the number of all elements of a finite set \(X \). First observe that if \(a, b \) are relatively prime positive integers, then in the set \(\{1, 2, \ldots, ab\} \) there are exactly \(\varphi(ab) \) numbers relatively prime to \(a \). In fact, let \(u \in \{1, 2, \ldots, ab\} \). Then \(u = ka + r \), where \(0 \leq k \leq b \) and \(0 \leq r < a \), and \(\gcd(u, a) = 1 \iff \gcd(r, a) = 1 \). Thus, every such \(u \), which is relatively prime to \(a \), is of the form \(ka + r \) with \(1 \leq r < a \), \(\gcd(r, a) = 1 \) and where \(k \) is an arbitrary number belonging to \(\{0, 1, \ldots, b - 1\} \). Hence, we have exactly \(b \) such numbers \(k \), and so, the number of integers in \(\{1, \ldots, ab\} \), relatively prime to \(a \), is equal to \(\varphi(ab) \). As a consequence of this fact we obtain

Lemma 4.2. Let \(a \geq 2 \), \(b \geq 2 \) be relatively prime integers. Then there are exactly \(\varphi(ab) \) such integers belonging to \(\{0, 1, \ldots, ab - 1\} \) which are relatively prime to \(a \).

Let us recall that \(\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_s}\right) \). Now we are ready to prove the following proposition.

Proposition 4.3. \(|I_1| = n_1 \), and \(|I_j| = n_j \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_{j-1}}\right) \), for all \(j = 2, 3, \ldots, s \).

Proof. The case \(|I_1| = n_1 \) is obvious. Let \(j \geq 2 \), and put \(a = p_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}} \), \(b = p_j^{\alpha_j} \cdots p_{j-1}^{\alpha_{j-1}} \). Then \(\gcd(a, b) = 1 \), \(n_j - 1 = ab - 1 \), and if \(r \in \{0, 1, \ldots, n_j - 1\} \), then \(r \in I_j \iff \gcd(r, a) = 1 \). Hence, by Lemma 4.2, we have

\[
|I_j| = \varphi(a)b = p_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}} \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_{j-1}}\right) \left(1 - \frac{1}{p_j}\right) = n_j \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_{j-1}}\right) \left(1 - \frac{1}{p_j}\right).
\]

This completes the proof. \(\Box \)

Lemma 4.4. Consider some nonzero numbers \(z_1, \ldots, z_s \). Define \(w_1 \) by \(w_1 = \frac{1}{z_1} \) and \(w_j \) by \(w_j = \frac{1}{z_j} \left(1 - \frac{1}{z_1}\right) \left(1 - \frac{1}{z_2}\right) \cdots \left(1 - \frac{1}{z_{j-1}}\right) \) for \(j = 2, \ldots, s \). Then

\[
w_1 + w_2 + \cdots + w_s = 1 - \left(1 - \frac{1}{z_1}\right) \left(1 - \frac{1}{z_2}\right) \cdots \left(1 - \frac{1}{z_s}\right) = \frac{1}{z_1} \cdot \frac{1}{z_2} \cdots \frac{1}{z_s}.
\]
Proposition 4.5.

Proof. The case $s = 1$ is obvious. Assume now that it is true for an integer $s \geq 1$, and consider nonzero numbers z_1, \ldots, z_{s+1}. Then we have
\[
1 - \left(1 - \frac{1}{z_1}\right) \cdots \left(1 - \frac{1}{z_{s+1}}\right) = \left(1 - \left(1 - \frac{1}{z_1}\right) \cdots \left(1 - \frac{1}{z_s}\right)\right) + \frac{1}{z_{s+1}} \left(1 - \frac{1}{z_1}\right) \cdots \left(1 - \frac{1}{z_s}\right).
\]
This completes the proof. □

Proposition 4.6. $|I_1| + |I_2| + \cdots + |I_s| = n - \varphi(n)$.

Proof. We know, by Proposition 4.3, that $|I_j| = nw_j$, for $j = 1, \ldots, s$, where $w_1 = \frac{1}{p_1}$ and $w_j = \frac{1}{p_1} \left(1 - \frac{1}{p_2}\right) \left(1 - \frac{1}{p_3}\right) \cdots \left(1 - \frac{1}{p_s}\right)$ for $j = 2, \ldots, s$. Thus, by Lemma 4.4,
\[
|I_1| + |I_2| + \cdots + |I_s| = n \left(1 - \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_s}\right)\right) = n - n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_s}\right) = n - \varphi(n).
\]
This completes the proof. □

Let us recall the following well-known lemma where ε is a primitive n-th root of unity.

Lemma 4.6. Let c be an integer and let $U = \sum_{r=0}^{n-1} (\varepsilon^c)^r$. If $n \mid c$ then U is equal to 0, and in the other case, when $n \nmid c$, this sum is equal to n.

Using this lemma we may prove the following proposition.

Proposition 4.7. If $c \in \mathbb{Z}$ then, for any $j \in \{1, \ldots, s\}$, the sum $W_j = \sum_{r \in I_j} (\varepsilon^{p_j c})^r$ is an integer.

Proof. First consider the case $j = 1$. Let $\eta = \varepsilon^{p_1}$. Then η is a primitive n_1-th root of unity, and $W_1 = \sum_{r=0}^{n_1-1} (\eta^r)^r$. It follows from Lemma 4.6 that W_1 is an integer.

Now assume that $j \geq 2$. Put $X = \{0, 1, \ldots, n_j - 1\}$, and $D_i = \{r \in X; \ p_i \mid r\}$ for $i = 1, \ldots, j - 1$. Then $I_j = X \setminus (D_1 \cup \cdots \cup D_{j-1})$, and then $W_j = U - V$, where
\[
U = \sum_{r \in X} (\varepsilon^{p_j c})^r, \quad V = \sum_{r \in D_1 \cup \cdots \cup D_{j-1}} (\varepsilon^{p_j c})^r.
\]
Observe that $U = \sum_{r=0}^{n_j-1} (\eta^r)^r$, where $\eta = \varepsilon^{p_j}$ is a primitive n_j-root of unity. Thus, by Lemma 4.6, U is an integer. Now we will show that V is also an integer. For
this aim first observe that
\[V = \sum_{k=1}^{j-1} (-1)^{k+1} \sum_{i_1 < \cdots < i_k} \sum_{r \in D_{i_1 \cdots i_k}} (\varepsilon^{p,c})^r, \]
where the sum \(\sum_{i_1 < \cdots < i_k} \) runs through all integer sequences \((i_1, \ldots, i_k) \) such that \(1 \leq i_1 < \cdots < i_k \leq j - 1 \), and where \(D_{i_1 \cdots i_k} = D_{i_1} \cap \cdots \cap D_{i_k} \).

Let \(1 \leq i_1 < \cdots < i_k \leq j - 1 \) be a fixed integer sequence. Then we have
\[\sum_{r \in D_{i_1 \cdots i_k}} (\varepsilon^{p,c})^r = \sum_{r=0}^{u-1} (\eta^r)^r, \]
where \(\eta = \varepsilon^{p_1^{n_1} \cdots p_k^{n_k}} \), and \(u = \sum_{j=i}^{n} n_j = \frac{n}{p_j^{n_j} - 1} \). Since \(\eta \) is a primitive \(u \)-th root of unity, it follows from Lemma 4.6 that the last sum is an integer. Hence, every sum of the form \(\sum_{r \in D_{i_1 \cdots i_k}} (\varepsilon^{p,c})^r \) is an integer, and consequently, \(V \) is an integer. We already know that \(U \) is an integer. Therefore, \(W_j = U - V \) is an integer.

\[\square \]

5. Special numbers

As in the previous section, let \(n = p_1^{n_1} \cdots p_s^{n_s} \), where \(p_1, \ldots, p_s \) are distinct primes and \(n_1, \ldots, n_s \) are positive integers. Put \(n_j = \frac{n}{p_j^{n_j}} \) for \(j = 1, \ldots, s \). Assume that \([p_1, \ldots, p_s] \) is a fixed type, and \(I_1, \ldots, I_s \) are the \(n \)-sets of type \([p_1, \ldots, p_s] \). If \(j \in \{1, \ldots, s\} \) and \(0 \leq r < n_j \), then we have the standard minimal element \(m(p_j, r) = \sum_{i=0}^{p_j-1} e_{r+i n_j} \). Let us recall that each \(m(p_j, r) \) belongs to the monoid \(\mathcal{M}_n \), and it is a minimal element of \(\mathcal{M}_n \). Moreover, \(n_j = \frac{n}{p_j} \) for \(j = 1, \ldots, s \).

The main role in this section will play the sets \(A_1, \ldots, A_s \), which are subsets of the monoid \(\mathcal{M}_n \). We define these subsets as follows
\[A_j = \left\{ m(p_j, r); \ r \in I_j \right\}, \]
for all \(j = 1, \ldots, s \). We denote by \(A \) the union \(A = A_1 \cup \cdots \cup A_s \). Note that the above sets \(A \) and \(A_1, \ldots, A_s \) are determined by the fixed succession \(P = [p_1, \ldots, p_s] \) of the primes \(p_1, \ldots, p_s \). In our case we will say that \(A \) is the \(n \)-standard set of type \(P \).

Observe that the sets \(A_1, \ldots, A_s \) are pairwise disjoint, and as a consequence of Proposition 4.5 we have the equality \(|A| = n - \varphi(n) \).

Let us recall (see Theorem 2.3) that the group \(\mathcal{G}_n \) is a free \(\mathbb{Z} \)-module, and its rank is equal to \(n - \varphi(n) \), so this rank is equal to \(|A| \). We are interested in finding conditions for \(A \) to be a basis of \(\mathcal{G}_n \). First we need \(A \) to be linearly independent over \(\mathbb{Z} \).
Special numbers will then be convenient to prove Theorem 9.1. We will say that the number n is special of type P if the n-standard set \mathcal{A} of type P is linearly independent over \mathbb{Z}. Moreover, we will say that the number n is absolutely special if there exists a type P for which n is special of type P. We will say that the number n is absolutely special if it is special with respect to any type P.

Example 5.1. Let $n = 12 = 2^3$ and consider the type $[2, 3]$. In this case we have: $s = 2$, $p_1 = 2$, $p_2 = 3$, $n_1 = 6$, $n_2 = 4$, $I_1 = \{0, 1, 2, 3, 4, 5\}$ and $I_2 = \{1, 3\}$. The 12-standard set \mathcal{A} of type $[2, 3]$ is the set of the following 8 sequences:

\[
\begin{align*}
m(2, 0) &= (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), \\
m(2, 1) &= (0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0), \\
m(2, 2) &= (0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0), \\
m(2, 3) &= (0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0), \\
m(2, 4) &= (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0), \\
m(2, 5) &= (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1), \\
m(3, 1) &= (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0), \\
m(3, 3) &= (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1).
\end{align*}
\]

Observe that $m(2, 1) + m(2, 3) + m(2, 5) = m(3, 1) + m(3, 3)$. Hence, the set \mathcal{A} is not linearly independent over \mathbb{Z}. This means, that 12 is not a special number of type $[2, 3]$.

Now consider $n = 12$ and the type $[3, 2]$. In this case $p_1 = 3$, $p_2 = 2$, $n_1 = 4$, $n_2 = 6$, $I_1 = \{0, 1, 2, 3\}$ and $I_2 = \{1, 2, 5\}$. The 12-standard set \mathcal{A} of type $[3, 2]$ is in this case the set of the following 8 sequences:

\[
\begin{align*}
m(3, 0) &= (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0), \\
m(3, 1) &= (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0), \\
m(3, 2) &= (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1), \\
m(3, 3) &= (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1), \\
m(2, 1) &= (0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0), \\
m(2, 2) &= (0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0), \\
m(2, 4) &= (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0), \\
m(2, 5) &= (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1).
\end{align*}
\]

It is easy to check that in this case the set \mathcal{A} is linearly independent over \mathbb{Z}. Thus, 12 is a special number of type $[3, 2]$, and 12 is not a special number of type $[2, 3]$.

We will prove that the number n is absolutely special if and only if either n is square-free or n is a power of a prime number. Moreover, we will prove that the number n is special if and only if $n = p_1p_2 \cdots p_{s-1}p_s^{\alpha_s}$, where p_1, \ldots, p_s are distinct primes and $\alpha_s \geq 1$.

Proposition 5.2. Every power of a prime is an absolutely special number.
Proof. Let \(n = p^m \), where \(p \) is a prime and \(m \geq 1 \). Then \(s = 1 \), \(n_1 = p^{m-1} \), \(I_1 = \{0, 1, \ldots, p^{m-1} - 1\} \) and there is only one type \(P = [p] \). Thus, \(A = A_1 \) and, by Proposition 3.2, the set \(A \) is linearly independent over \(\mathbb{Z} \). \(\square \)

Lemma 5.3. Let \(p \) be a prime number, and let \(N \geq 2 \) be an integer such that \(p \nmid N \). Then, for every integer \(r \), there exists a unique \(c_r \in \{0, 1, \ldots, p-1\} \) such that the number \(r + c_rN \) is divisible by \(p \). Moreover, all numbers of the form \(r + c_rN \) with \(0 \leq r < N \) are pairwise different.

Proof. Let \(r \in \mathbb{Z} \). Consider the integers \(r, r + N, r + 2N, \ldots, r + (p - 1)N \), and observe that these numbers are pairwise noncongruent modulo \(p \). Thus, there exists a unique \(c_r \in \{0, 1, \ldots, p-1\} \) such that \(r + c_rN = 0 \mod p \). Assume that \(r_1 + c_{r_1}N = r_2 + c_{r_2}N \) for some \(r_1, r_2 \in \{0, 1, \ldots, N - 1\} \). Then \(N \mid r_1 - r_2 \) and so, \(r_1 = r_2 \). \(\square \)

Despite the fact that we need the full Theorem 5.10 (\(A \) generates \(G_n \)), we first state and prove the following Proposition (\(A \) is linearly independent over \(\mathbb{Z} \)) for a better understanding. This Proposition is not equivalent, as \(A \) could generate a subgroup of \(G_n \) of finite index.

Proposition 5.4. Let \(n = p_1 \cdots p_{s-1} \cdot p_s^\alpha \), where \(s \geq 2 \), \(\alpha \geq 1 \), and \(p_1, \ldots, p_s \) are distinct primes. Then \(n \) is a special number of every type of the form \([p_{\sigma(1)}] \cdots [p_{\sigma(s-1)}] \cdot p_s^\alpha\), where \(\sigma \) is a permutation of \(\{1, \ldots, s-1\} \).

Proof. Let \(P \) be a fixed type with \(p_s \) at the end. Without loss of generality, we may assume that \(P = [p_1, \ldots, p_{s-1}, p_s] \). Let \(I_1, \ldots, I_s \) be \(n \)-sets of type \(P \), and assume that

\[
\sum_{j=1}^s \left(\sum_{r \in I_j} \gamma_r^{(j)} m(p_j, r) \right) = (0, 0, \ldots, 0),
\]

where each \(\gamma_r^{(j)} \) is an integer. We will show that \(\gamma_r^{(j)} = 0 \) for all \(j, r \).

Note, that every standard element \(u = m(p_j, r) \) is a sequence \((u_0, u_1, \ldots, u_{n-1}) \), where all \(u_0, \ldots, u_{n-1} \) are integers belonging to \(\{0, 1\} \). We will denote by \(S(u) \) the support of \(u \), that is, \(S(u) = \{ k \in \{0, 1, \ldots, n-1\}; u_k = 1 \} \).

Consider the case \(j = 1 \). Put \(p = p_1 \) and \(N = n_1 = n \cdot p = p_2 p_3 \cdots p_{s-1} \cdot p_s^\alpha \). Observe that \(p \nmid N \), and all the numbers \(n_2, \ldots, n_s \) are divisible by \(p \). Let \(u = m(p_j, r) \) with \(r \in I_j \), where \(j \geq 2 \). Then \(p \nmid r \), and

\[
S(u) = \{ r, r + n_j, r + 2n_j, \ldots, r + (p_j - 1)n_j \},
\]

and hence, all the elements of \(S(u) \) are not divisible by \(p \).

Look at the support of \(m(p_1, r) \) with \(r \in I_1 \). We have \(S(m(p_1, r)) = \{ r, r + N, r + 2N, \ldots, r + (p - 1)N \} \). It follows from Lemma 5.3 that in this support there exists exactly one element divisible by \(p \). Let us denote this element by \(r + c_rN \).
We know also from the same lemma, that all the elements \(r + c_r N \) with \(r \in I_1 \) are pairwise different. These arguments imply, that in the equality (a) all the integers \(\gamma_r^{(1)} \), with \(r \in I_1 \), are equal to zero.

Now let \(2 \leq j_0 < s \), and assume that we already proved the equalities \(\gamma_r^{(j)} = 0 \) for all \(j < j_0 \) and \(r \in I_j \). Then the equality (a) is of the form

\[
(b) \quad \sum_{j=j_0}^s \left(\sum_{r \in I_j} \gamma_r^{(j)} m(p_j, r) \right) = (0, 0, \ldots, 0),
\]

We will show that \(\gamma_r^{(j_n)} = 0 \) for all \(r \in I_{j_n} \).

Put \(p = p_{j_0} \) and \(N = n_{j_0} = \frac{n}{p} \). Observe that \(p \nmid N \), and all the numbers \(n_j \) with \(j > j_0 \) are divisible by \(p \). Let \(u = m(p_j, r) \) with \(r \in I_j \), where \(j > j_0 \). Then \(p \nmid r \), and

\[
S(u) = \{ r, r + n_j, r + 2n_j, \ldots, r + (p_j - 1)n_j \},
\]

and hence, all the elements of \(S(u) \) are not divisible by \(p \).

Look at the support of \(m(p_{j_0}, r) \) with \(r \in I_{j_0} \). We have \(S(m(p_{j_0}, r)) = \{ r, r + N, r + 2N, \ldots, r + (p - 1)N \} \}. It follows from Lemma 5.3 that in this support there exists exactly one element divisible by \(p \). Let us denote this element by \(r + c_r N \). We know also from the same lemma, that all the elements \(r + c_r N \) with \(r \in I_{j_0} \) are pairwise different. These arguments imply, that in the equality (b) all the integers \(\gamma_r^{(j_n)} \), with \(r \in I_{j_n} \), are equal to zero.

Hence, by the induction hypothesis, the equality (b) reduces to the equality

\[
\sum_{r \in I_s} \gamma_r^{(s)} m(p_s, r) = (0, 0, \ldots, 0),
\]

where each \(\gamma_r^{(s)} \) is an integer. Now we use Proposition 3.2 and we have \(\gamma_r^{(s)}(s) = 0 \) for all \(r \in I_s \). Thus, we proved that in the equality (a) all the integers of the form \(\gamma_j \), where \(j \in \{1, \ldots, s\} \) and \(r \in I_j \), are equal to zero. This means that the \(n \)-standard set \(\mathcal{A} \) of type \(P \) is linearly independent over \(\mathbb{Z} \). Therefore, \(n \) is a special number of type \(P \).

Using the above proposition for \(\alpha = 1 \) we obtain

Proposition 5.5. Every square-free integer \(n \geq 2 \) is absolutely special.

Lemma 5.6. Let \(n = p_1^{\alpha_1} \cdots p_s^{\alpha_s} \), where \(s \geq 2 \), \(p_1, \ldots, p_s \) are distinct prime numbers and \(\alpha_1, \ldots, \alpha_s \) are positive integers. Let \(P = [p_1, \ldots, p_s] \). If \(\alpha_1 \geq 2 \), then \(n \) is not a special number of type \(P \).

Proof. Put \(p = p_1, q = p_2, u = \frac{n}{p}, v = \frac{n}{pq}, a = \sum_{k=0}^{u-1} m(p, pk + 1), b = \sum_{k=0}^{v-1} m(q, pk + 1) \). Observe that \(a \) is a sum of elements from \(\mathcal{A}_1 \), and \(b \) is a sum of elements from
where

\[A_2. \text{ Moreover, } n_1 = \frac{p}{p} = pu, n_2 = \frac{q}{q} = pv, \]

\[a = \sum_{k=0}^{u-1} p^{k+1+in_1} = \sum_{k=0}^{u-1} p^{k+1+ipu} = \sum_{k=0}^{u-1} \sum_{i=0}^{p} p^{k+1+ipu} = \sum_{k=0}^{u-1} p^{(k+iu)+1} = \sum_{j=0}^{n_1-1} e_{pj+1}, \]

\[b = \sum_{k=0}^{v-1} q^{-1} p^{k+1+in_2} = \sum_{k=0}^{v-1} q^{-1} p^{k+1+ipw} = \sum_{k=0}^{v-1} \sum_{i=0}^{q} p^{k+1+ipw} = \sum_{k=0}^{v-1} e_{qj+1} = \sum_{j=0}^{n_1-1} e_{pj+1}. \]

Hence, \(a = \sum_{j=0}^{n_1-1} e_{pj+1} = b \). This implies that the \(n \)-standard set \(A \) of type \(P \) is not linearly independent over \(\mathbb{Z} \). Thus, \(n \) is not a special number of type \(P \). \(\square \)

Lemma 5.7. Let \(n = p_1^{\alpha_1} \cdots p_s^{\alpha_s} \), where \(s \geq 2 \), \(p_1, \ldots, p_s \) are distinct prime numbers and \(\alpha_1, \ldots, \alpha_s \) are positive integers. Let \(P = [p_1, \ldots, p_s] \). If there exists \(j_0 \in \{1, 2, \ldots, s-1\} \) such that \(\alpha_{j_0} \geq 2 \), then \(n \) is not a special number of type \(P \).

Proof. If \(j_0 = 1 \) then the assertion follows from Lemma 5.6. Assume that \(j_0 \geq 2 \), and let \(A_1, \ldots, A_s \) be the \(n \)-standard sets of type \(P \). Put \(N = p_1^{\alpha_1} \cdots p_{j_0-1}^{\alpha_{j_0-1}} \),

\[p = p_{j_0}, \quad q = p_{j_0+1}, \quad u = \frac{n}{Np}, \quad v = \frac{n}{Npq}, \quad w = \frac{n}{pN}, \quad a = \sum_{k=0}^{u-1} m(p, pNk + 1), \quad \text{and} \]

\[b = \sum_{k=0}^{v-1} m(q, pNk + 1). \]

Observe that \(a \) is a sum of elements from \(A_{j_0} \), and \(b \) is a sum of elements from \(A_{j_0+1} \). Moreover, \(n_{j_0} = \frac{p}{p} = pN, n_{j_0+1} = \frac{q}{q} = pNv, \)

\[a = \sum_{k=0}^{u-1} p^{k+1+in_{j_0}} = \sum_{k=0}^{u-1} p^{k+1+iupN} = \sum_{k=0}^{u-1} p^{(k+iu)+1} = \sum_{j=0}^{n_1-1} e_{pj+1}, \]

\[b = \sum_{k=0}^{v-1} q^{-1} p^{k+1+in_{j_0+1}} = \sum_{k=0}^{v-1} q^{-1} p^{k+1+iqv} = \sum_{k=0}^{v-1} p^{(k+iv)+1} = \sum_{j=0}^{n_1-1} e_{pj+1}. \]

Hence, \(a = \sum_{j=0}^{w-1} e_{pj+1} = b \), where \(w = \frac{n}{pN} \). This implies that the \(n \)-standard set \(A \) of type \(P \) is not linearly independent over \(\mathbb{Z} \). Thus, \(n \) is not a special number of type \(P \). \(\square \)

As a consequence of the above facts we obtain the following theorems.

Theorem 5.8. An integer \(n \geq 2 \) is special if and only if \(n = p_1p_2 \cdots p_s-1p_s^{\alpha_s} \), where \(p_1, \ldots, p_s \) are distinct primes and \(\alpha_s \geq 1 \).
Theorem 5.9. An integer \(n \geq 2 \) is absolutely special if and only if either \(n \) is square-free or \(n \) is a power of a prime number.

The smallest non-special positive integer \(n \geq 2 \) is \(n = 36 \). In the segment \([2, 100]\) there are 3 non-special numbers: 36, 72 and 100.

Let us recall that if \(n \) is a special number, then its \(n \)-standard set \(\mathcal{A} \) is linearly independent over \(\mathbb{Z} \). Now we will show that, in this case, the set \(\mathcal{A} \) is a basis of \(G_n \).

Let us denote by \(\mathcal{A} \) the subgroup of \(G_n \) generated by \(\mathcal{A} \). Every element of \(\mathcal{A} \) is a finite combination over \(\mathbb{Z} \) of some elements of \(\mathcal{A} \).

We already know (see Theorem 3.5) that the group \(G_n \) is generated by all the standard minimal elements of \(M_n \). Thus, for a proof that \(\mathcal{A} \) is a basis of \(G_n \), it suffices to prove that every standard minimal element of \(M_n \) belongs to \(\mathcal{A} \).

Theorem 5.10. Let \(n = p_1 \cdots p_s - 1 \), \(\alpha \geq 1 \), and \(p_1, \ldots, p_s \) are pairwise different primes. Let \(P = [p_1, \ldots, p_s] \), and let \(\mathcal{A} \) be the \(n \)-standard set of type \(P \). Then every standard minimal element of \(M_n \) belongs to \(\mathcal{A} \).

Proof. First, all \(p_1 \)-standard elements \(m(p_1, r) \) with \(0 \leq r < \frac{n}{p_1} \) belong to \(A_1 \) and thus to \(\mathcal{A} \).

To go further, for \(j > 1 \), we will use the relations given in Proposition 3.3 and we define therefore the height of a \(p_j \)-standard element (that may not belong to \(A_j \)) as the number of primes among \(\{p_1, \ldots, p_j\} \) that divide \(r \) and denote it by \(h(m(p_j, r)) \). Elements of \(A_j \) have height 0. A \(p_j \)-standard element has an height at most \(j - 1 \).

By definition all standard elements of height 0 belong to \(\mathcal{A} \) and thus to \(\mathcal{A} \).

To achieve the proof by induction, we use the following fact.

Key fact. For \(j > 1 \), let \(m(p_j, r) \) be a \(p_j \)-standard element with a non-zero height. Then some of the \(p_i, 1 \leq i < j \) divide \(r \). Let then denote by \(p \) one of them and \(p_j \) by \(q \).

As all prime factors but the last have exponent 1 in the decomposition of \(n \), when we apply Proposition 3.3, \(N = n/pq \) is coprime with \(p \) and a multiple of all \(p_l, 1 \leq l < j, l \neq i \).

For any \(k, 1 \leq k \leq p - 1 \), \(r + kN \) is coprime with \(p \) and keeps the same other divisors among the other \(p_l, 1 \leq l < j, l \neq i \): the height \(h(m(p_j, r + kN)) \) is then \(h(m(p_j, r)) - 1 \).

Whence the following relation we get from Proposition 3.3

\[
m(q, r) = \sum_{k=0}^{q-1} m(p, kN + r) - \sum_{k=1}^{p-1} m(q, kN + r).
\]
which means
\[m(p_j, r) = \sum_{k=0}^{q-1} m(p_i, kN + r) - \sum_{k=1}^{p-1} m(p_j, kN + r). \]

and \(m(p_j, r) \) is a \(\mathbb{Z} \)-linear combination of some \(m(p_j, r') \) with a strictly smaller height and of some \(m(p_i, r'') \) for an index \(i < j \).

The proof is now a double induction with the following steps.

Let \(j > 1 \) and suppose that all \(m(p_i, r) \) have been proven to belong to \(\mathcal{A} \) for all \(i < j \).

All \(m(p_j, r) \) with a 0 height belong to \(\mathcal{A}_j \) and then to \(\mathcal{A} \).

For any \(h', 1 \leq h' < j \), if we know that all \(m(p_j, r) \) with \(h(m(p_j, r)) < h' \) belong to \(\mathcal{A} \), then the same is true for all \(m(p_j, r) \) with \(h(m(p_j, r)) = h' \) according to the previous key fact. \(\square \)

6. The cyclotomic derivation \(d \)

Throughout this section \(n \geq 3 \) is an integer, \(K \) is a field of characteristic zero, \(K[X] = K[x_0, \ldots, x_{n-1}] \) is the polynomial ring over \(K \) in variables \(x_0, \ldots, x_{n-1} \), and \(K(X) = K(x_0, \ldots, x_{n-1}) \) is the field of quotients of \(K[X] \). We denote by \(\mathbb{Z}_n \) the ring \(\mathbb{Z}/n\mathbb{Z} \). The indexes of the variables \(x_0, \ldots, x_{n-1} \) are elements of \(\mathbb{Z}_n \). We denote by \(d \) the cyclotomic derivation of \(K[X] \), that is, \(d \) is the \(K \)-derivation of \(K[X] \) defined by
\[d(x_j) = x_{j+1}, \quad \text{for} \quad j \in \mathbb{Z}_n. \]

We denote also by \(d \) the unique extension of \(d \) to \(K(X) \). We denote by \(K[X]^d \) and \(K(X)^d \) the \(K \)-algebra of constants of \(d \) and the field of constants of \(d \), respectively. Thus,
\[K[X]^d = \{ F \in K[X]; d(F) = 0 \}, \quad K(X)^d = \{ f \in K(X); d(f) = 0 \}. \]

Now we recall from [10] some basic notions and facts concerning the derivation \(d \). As in the previous sections, we denote by \(\varepsilon \) a primitive \(n \)-th root of unity, and first we assume that \(\varepsilon \in K \).

The letters \(\varrho \) and \(\tau \) we book for two \(K \)-automorphisms of the field \(K(X) \), defined by
\[\varrho(x_j) = x_{j+1}, \quad \tau(x_j) = \varepsilon^j x_j \quad \text{for all} \quad j \in \mathbb{Z}_n. \]

Observe that \(\varrho d \varrho^{-1} = d \). We denote by \(u_0, u_1, \ldots, u_{n-1} \) the linear forms, belonging to \(K[X] \), defined by
\[u_j = \sum_{i=0}^{n-1} (\varepsilon^j)^i x_i, \quad \text{for} \quad j \in \mathbb{Z}_n. \]
Then we have the equalities
\[x_i = \frac{1}{n} \sum_{j=0}^{n-1} (\varepsilon^{-i})^j u_j, \]
for all \(i \in \mathbb{Z}_n \). Thus, \(K[X] = K[u_0, \ldots, u_{n-1}] \), \(K(X) = K(u_0, \ldots, u_{n-1}) \), and the forms \(u_0, \ldots, u_{n-1} \) are algebraically independent over \(K \). Moreover,
\[\tau(u_j) = u_{j+1}, \quad \varphi(u_j) = \varepsilon^{-j} u_j, \quad d(u_j) = \varepsilon^{-j} u_j, \]
for all \(j \in \mathbb{Z}_n \).

It follows from the last equality that \(d \) is a diagonal derivation of the polynomial ring \(K[U] = K[u_0, \ldots, u_{n-1}] \) which is equal to the ring \(K[X] \).

If \(\alpha = (\alpha_0, \ldots, \alpha_{n-1}) \in \mathbb{Z}^n \), then we denote by \(u^\alpha \) the rational monomial \(u_0^{\alpha_0} \cdots u_{n-1}^{\alpha_{n-1}} \). Recall (see Section 2) that \(H_\alpha(t) \) is the polynomial \(\alpha_0 + \alpha_1 t^1 + \cdots + \alpha_{n-1} t^{n-1} \) belonging to \(\mathbb{Z}[t] \). Since \(d(u_j) = \varepsilon^{-j} u_j \) for all \(j \in \mathbb{Z}_n \), we have
\[d(u^\alpha) = H_\alpha(\varepsilon^{-1}) u^\alpha, \quad \text{for all } \alpha \in \mathbb{Z}^n. \]

Note that \(\varepsilon^{-1} \) is also a primitive \(n \)-th root of unity. Hence, by Proposition 2.1, we have the equivalence \(H_\alpha(\varepsilon^{-1}) = 0 \iff H_\alpha(\varepsilon) = 0 \), and so, we see that if \(\alpha \in \mathbb{Z}^n \), then \(d(u^\alpha) = 0 \iff \alpha \in \mathcal{G}_n \), and if \(\alpha \in \mathbb{N}^n \), then \(d(u^\alpha) = 0 \iff \alpha \in \mathcal{M}_n \). Moreover, if \(F = b_1 u^{\alpha^{(1)}} + \cdots + b_r u^{\alpha^{(r)}} \), where \(b_1, \ldots, b_r \in K \) and \(\alpha^{(1)}, \ldots, \alpha^{(r)} \) are pairwise different elements of \(\mathbb{N}^n \), then \(d(F) = 0 \) if and only if \(d(b_i u^{\alpha^{(i)}}) = 0 \) for every \(i = 1, \ldots, r \). In [10] we proved the following proposition.

Proposition 6.1 ([10]). If the primitive \(n \)-th root \(\varepsilon \) belongs to \(K \), then:

1. the ring \(K[X]^d \) is generated over \(K \) by all elements of the form \(u^\alpha \) with \(\alpha \in \mathcal{M}_n \);
2. the ring \(K[X]^d \) is generated over \(K \) by all elements of the form \(u^\beta \), where \(\beta \) is a minimal element of the monoid \(\mathcal{M}_n \);
3. the field \(K(X)^d \) is generated over \(K \) by all elements of the form \(u^\gamma \) with \(\gamma \in \mathcal{G}_n \);
4. the field \(K(X)^d \) is the field of quotients of the ring \(K[X]^d \).

Let \(m = n - \varphi(n) \), and let \(\gamma_0, \ldots, \gamma_{m-1} \) be the elements of \(\mathcal{G}_n \) introduced in Section 2. We know (see Theorem 2.3) that these elements form a basis of the group \(\mathcal{G}_n \). Consider now the rational monomials \(w_0, \ldots, w_{m-1} \) defined by
\[w_j = u^{\gamma_j} \quad \text{for } j = 0, 1, \ldots, m - 1. \]

It follows from Proposition 6.1, that these monomials belong to \(K(X)^d \) and they generate the field \(K(X)^d \). We proved in [10] that they are algebraically independent over \(K \). Moreover, in [10] proved the following theorem.
Theorem 6.2. If the primitive n-th root ε belongs to K, then the field of constants $K(X)^d$ is a field of rational functions over K and its transcendental degree over K is equal to $m = n - \varphi(n)$, where φ is the Euler totient function. More precisely,

$$K(X)^d = K\left(w_0, \ldots, w_{m-1}\right),$$

where the elements w_0, \ldots, w_{m-1} are as above.

7. The polynomials $S_{p,m}$

In this section we use the notations from the previous section, and we again assume that K is a field of characteristic zero containing ε. Let us recall that if p is a prime divisor of n and $0 \leq r \leq \frac{n}{p} - 1$, then $m(p, r)$ is the standard minimal element of the monoid \mathcal{M}_n defined by $m(p, r) = \sum_{i=0}^{p-1} e_{r+i} \frac{p}{n}$. Observe that if a, b are integers such that $a \equiv b (\text{mod} \frac{n}{p})$, then $\sum_{i=0}^{p-1} e_{a+i} \frac{p}{n} = \sum_{i=0}^{p-1} e_{b+i} \frac{p}{n}$. Thus, we may define

$$m(p, a) := \sum_{i=0}^{p-1} e_{a+i} \frac{p}{n}, \quad \text{for} \quad a \in \mathbb{Z}.$$

Note, that if $a \in \mathbb{Z}$, then $m(p, a) = m(p, r)$, where r is the remainder of division of a by $\frac{n}{p}$. Moreover, $\zeta^a \left(m(p, b)\right) = m(p, b)$ for $b \in \mathbb{Z}$, and more general, $\zeta^a \left(m(p, b)\right) = m(p, a + b)$ for all $a, b \in \mathbb{Z}$ (see Proposition 3.4).

For every integer a, we define

$$S_{p,a} := u^{m(p, a)} = \prod_{i=0}^{p-1} u_{a+i} \frac{p}{n}.$$

Observe that $S_{p,a} = S_{p,r}$, where r is the remainder of division of a by $\frac{n}{p}$. Each $S_{p,a}$ is a monomial belonging to $K[U] = K[w_0, \ldots, w_{m-1}]$. Since $m(p, a) \in \mathcal{M}_n \subset \mathcal{G}_n$, each $S_{p,a}$ belongs to the constant field $K(X)^d$.

Recall (see Section 6) that ϱ is the K-automorphism of the field $K(X)$, defined by

$$\varrho(x_j) = x_{j+1}, \quad \text{for} \quad j \in \mathbb{Z}_n.$$

We have $\varrho(u_j) = \varepsilon^{-j} u_j$ for $j \in \mathbb{Z}_n$. In particular, $\varrho(u_0) = u_0$. The proof of the following proposition is an easy exercise.

Proposition 7.1. If $a \in \mathbb{Z}$, then $\varrho(S_{p,a}) = \varepsilon^{-b} S_{p,a}$, where $b = pa + \frac{(p-1)n}{2}$. In particular, if p is odd then $\varrho(S_{p,a}) = \varepsilon^{-a} S_{p,a}$. If $p = 2$, then n is even and $\varrho(S_{2,a}) = \varepsilon^{-2a+\frac{n}{2}} S_{2,a}$.

Recall the following well known lemma, which appears in many books of linear algebra.
Lemma 7.2. For any integer \(n \geq 2 \),

\[
u_0 u_1 \cdots u_{n-1} = \begin{vmatrix}
 x_0 & x_1 & \cdots & x_{n-1} \\
 x_{n-1} & x_0 & \cdots & x_{n-2} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_1 & x_2 & \cdots & x_0
\end{vmatrix}.
\]

In particular, the product \(u_0 u_1 \cdots u_{n-1} \) is a polynomial belonging to \(\mathbb{Z}[X] \).

Using this lemma we obtain the following proposition.

Proposition 7.3. The polynomial \(S_{p,0} \) belongs to \(\mathbb{Z}[X] \).

Proof. Put \(b = \frac{n}{p} \), \(\eta = \zeta^b \), and \(v_i = u_{ib}, y_i = \sum_{j=0}^{p-1} x_i + j p \) for all \(i = 0, 1, \ldots, p-1 \). Then \(\eta \) is a primitive \(p \)-th root of unity, and \(v_i = \sum_{k=0}^{p-1} (\eta^j)^k y_k \), for all \(i = 0, 1, \ldots, p-1 \). Now we use Lemma 7.2, and we have

\[
S_{p,0} = v_0 v_1 \cdots v_{p-1} = \begin{vmatrix}
 y_0 & y_1 & \cdots & y_{p-1} \\
 y_{p-1} & y_0 & \cdots & y_{p-2} \\
 \vdots & \vdots & \ddots & \vdots \\
 y_1 & y_2 & \cdots & y_0
\end{vmatrix}.
\]

Thus, \(S_{p,0} \in \mathbb{Z}[X] \). \(\square \)

Let \(n = p_1^{\alpha_1} \cdots p_s^{\alpha_s} \), where \(p_1, \ldots, p_s \) are distinct primes and \(\alpha_1, \ldots, \alpha_s \) are positive integers. Let \(n_j = \frac{n}{p_j} \) for \(j = 1, \ldots, s \). Assume that \(P = [p_1, \ldots, p_s] \) is a fixed type, and \(I_1, \ldots, I_s \) are the \(n \)-sets of type \(P \).

For every \(j \in \{1, \ldots, s\} \) we denote by \(V_j \) the \(K \)-subspace of \(K[U] \) generated by all the monomials \(S_{p,0} \) with \(r \in I_j \). Let us remember

\[
V_j = \langle S_{p,0}; r \in I_j \rangle, \quad \text{for} \quad j = 1, \ldots, s.
\]

We will say that \(V_1, \ldots, V_s \) are \(n \)-spaces of type \(P \). As a consequence of Propositions 4.3 and 4.5 we obtain the following proposition.

Proposition 7.4. If \(V_1, \ldots, V_s \) are \(n \)-spaces of type \(P = [p_1, \ldots, p_s] \), then \(\dim_K V_1 = n_1 \) and \(\dim_K V_j = n_j \left(\frac{1}{p_1} - \frac{1}{p_j} \right) \left(\frac{1}{p_2} - \frac{1}{p_j} \right) \cdots \left(\frac{1}{p_{j-1}} - \frac{1}{p_j} \right) \), for all \(j = 2, 3, \ldots, s \). Moreover,

\[
\dim_K (V_1 \oplus \cdots \oplus V_s) = n - \varphi(n).
\]

Let \(\mathcal{A} \) be the \(n \)-standard set of type \(P \). Let us recall (see Section 5) that \(\mathcal{A} = \mathcal{A}_1 \cup \cdots \cup \mathcal{A}_s \), where \(\mathcal{A}_j = \{ p(p_j, r); r \in I_j \} \) for \(j = 1, \ldots, s \). Hence, for each \(j \) we have the equality \(V_j = \langle u^a; a \in \mathcal{A}_j \rangle \). Let \(\mathcal{S} \) the set of all the monomials \(u^a \) with \(a \in \mathcal{A} \), that is,

\[
\mathcal{S} = \left\{ S_{p,0}; j \in \{1, \ldots, s\}, \ r \in I_j \right\}.
\]
Proposition 7.5. If the number n is special of type P, then the above set S is algebraically independent over K, and $K(X)^d = K(S)$.

Proof. Assume that n is special of type P. Let $\gamma_0, \ldots, \gamma_{m-1}$ be the elements of G_n defined in Section 2, and let $w_i = u^{\gamma_i}$ for $i = 0, \ldots, m - 1$. Recall that $m = n - \varphi(n)$. Put $\Gamma = \{\gamma_0, \ldots, \gamma_{m-1}\}$, and $W = \{w_0, \ldots, w_{m-1}\}$. We know (see Theorem 2.3) that Γ is a basis of G_n. Since n is special, the set \mathcal{A} is also a basis of G_n. This implies that $K(\mathcal{S}) = K(W)$. But, by Theorem 6.2, the set W is algebraically independent over K and $K(W) = K(X)^d$. Moreover, $|S| = |W| = m$ Hence, the set S is also algebraically independent over K, and we have the equality $K(X)^d = K(\mathcal{S})$.

In the above proposition we assumed that n is special of type P. This assumption is very important. Consider for example $n = 12$ and $P = [2,3]$. We know (see Example 5.1) that 12 is not special of type P. In this case the set S is not algebraically independent over K. In fact, we have the polynomial equality $S_{2,1}S_{2,3}S_{2,5} = S_{3,1}S_{3,3}$.

8. The polynomials $T_{p,m}$

Let $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, where p_1, \ldots, p_s are distinct prime numbers and $\alpha_1, \ldots, \alpha_s$ are positive integers. Let $n_j = \frac{n}{p_j}$ for $j = 1, \ldots, s$. Assume that $P = [p_1, \ldots, p_n]$ is a fixed type, and I_1, \ldots, I_s are the n-sets of type P.

Now assume that j is a fixed element from the set $\{1, \ldots, s\}$, and a is an integer. Put

$$T_{p_j,a} = \sum_{r \in I_j} (\varepsilon^{-ap_j})^r S_{p_j,r}.$$

Observe that $T_{p_j,a} = T_{p_j,m}$, where m is the remainder of division of a by n_j. Let us recall that $\varepsilon \in K$. Thus, every $T_{p_j,a}$ is a polynomial from $K[U]$ belonging to the subspace \mathcal{V}_j.

Proposition 8.1. For every $j = 1, \ldots, s$, all the polynomials $T_{p_j,m}$ with $0 \leq m < n_j$, generate the K-space \mathcal{V}_j.

Proof. Let $q \in I_j$ and consider the sum $H = \sum_{m=0}^{n_j-1} (\varepsilon^{mp_j})^m T_{p_j,m}$. Put $\eta = \varepsilon^{p_j}$. Then η is a primitive n_j-th root of unity, and we have

$$H = \sum_{m=0}^{n_j-1} (\varepsilon^{mp_j})^m \left(\sum_{r \in I_j} \varepsilon^{p_j,m} S_{p_j,r} \right) = \sum_{r \in I_j} \left(\sum_{m=0}^{n_j-1} \varepsilon^{mp_j,m} \right) S_{p_j,r}$$

$$= \sum_{r \in I_j} \left(\sum_{m=0}^{n_j-1} \eta^{mp_j,m} \right) S_{p_j,r} = n_j S_{p_j,q}.$$
In the last equality we used Lemma 4.6. Thus, if \(q \in I_j \), then \(S_{p_j,q} = \frac{1}{n_j} \sum_{m=0}^{n_j-1} (\varepsilon^{p_j})^m T_{p_j,m} \). But \(\varepsilon \in K \), so now it is clear that all \(T_{p_j,m} \) with \(0 \leq m < n_j \), generate the \(K \)-space \(V_j \). \(\square \)

Now we will prove that every polynomial \(T_{p_j,a} \) belongs to the ring \(\mathbb{Z}[X] \). For this aim first recall (see Section 6) that \(\tau \) is a \(K \)-automorphism of \(K(X) \) defined by

\[
\tau(x_j) = \varepsilon^j x_j \quad \text{for all} \quad j \in \mathbb{Z}_n.
\]

Since \(\tau(u_i) = u_{i+1} \) for all \(i \in \mathbb{Z}_n \), we have

\[
S_{p_j} = \tau(S_{p_j,0})
\]

for \(j \in \{1, \ldots, s\} \) and \(r \in \mathbb{Z} \) (in particular, for \(r \in I_j \)). We say (us in [10]) that a rational function \(f \in K(X) \) is \(\tau \)-homogeneous, if \(f \) is homogeneous in the ordinary sense and \(\tau(f) = \varepsilon^r f \) for some \(c \in \mathbb{Z}_n \). In this case we say that \(c \) is the \(\tau \)-degree of \(f \) and we write \(\deg_{\tau}(f) = c \). Note that \(\deg_{\tau}(f) \) is an element of \(\mathbb{Z}_n \). Every rational monomial \(x^\alpha = x_0^{\alpha_0} \cdots x_{n-1}^{\alpha_{n-1}} \), where \(\alpha = (\alpha_0, \ldots, \alpha_{n-1}) \in \mathbb{Z}^n \), is \(\tau \)-homogeneous and its \(\tau \)-degree is equal to \(\sum_{i=0}^{n-1} i \alpha_i \) (mod \(n \)).

Let \(j \) be a fixed number from \(\{1, \ldots, s\} \) and consider the polynomial \(S_{p_j,0} \). We know by Proposition 7.3 that this polynomial belongs to \(Z[X] \). Hence, we have the unique determined polynomials \(B_0, \ldots, B_{n-1} \in \mathbb{Z}[X] \) such that \(S_{p_j,0} = B_0 + \cdots + B_{n-1} \), and each \(B_i \) is \(\tau \)-homogeneous of \(\tau \)-degree \(i \).

Put \(C_i = \tau^{n_j}(B_i) \), for all \(i = 0, \ldots, n-1 \). Since \(\tau(B_i) = \varepsilon^i B_i \), we have \(C_i = \varepsilon^{in_j} B_i \), and this implies that \(\tau(C_i) = \varepsilon^i C_i \). In fact,

\[
\tau(C_i) = \tau(\tau^{n_j}(B_i)) = \tau(\varepsilon^{in_j} B_i) = \varepsilon^{in_j} \tau(B_i) = \varepsilon^{in_j} \cdot \varepsilon^i B_i = \varepsilon^i \cdot \varepsilon^{in_j} B_i = \varepsilon^i C_i.
\]

Thus, every polynomial \(C_i \) is \(\tau \)-homogeneous of \(\tau \)-degree \(i \). Observe that

\[
\tau^{n_j}(S_{p_j,0}) = S_{p_j,0}.
\]

But \(\tau^{n_j}(S_{p_j,0}) = \sum_{i=0}^{n-1} C_i \), so \(C_i = \tau^{n_j}(B_i) = B_i \) and so, \(\varepsilon^{in_j} B_i = B_i \), for all \(i = 0, \ldots, n-1 \). Thus, if \(B_i \neq 0 \), then \(n \mid in_j \). But \(n = p_j n_j \) so, if \(B_i \neq 0 \), then \(i \) is divisible by \(p_j \). Therefore,

\[
S_{p_j,0} = \sum_{k=0}^{n_j-1} B_k p_j,
\]
where each B_{kp_j} is τ-homogeneous polynomial from $\mathbb{Z}[X]$ of τ-degree kp_j. Hence, for every $m \in \{0, \ldots, n - 1\}$, we have

$$T_{p_j, m} = \sum_{r \in I_j} \varepsilon^{-rp_j m} S_{p_j, r} = \sum_{r \in I_j} \varepsilon^{-rp_j m} \tau^r (S_{p_j, 0})$$

$$= \sum_{r \in I_j} \varepsilon^{-rp_j m} \tau^r \left(\sum_{k=0}^{n_j-1} B_{kp_j} \right) = \sum_{r \in I_j} \varepsilon^{-rp_j m} \left(\sum_{k=0}^{n_j-1} \tau^r (B_{kp_j}) \right)$$

$$= \sum_{r \in I_j} \varepsilon^{-rp_j m} \left(\sum_{k=0}^{n_j-1} \varepsilon^{kp_j r} B_{kp_j} \right) = \sum_{r \in I_j} B_{kp_j} \left(\sum_{r \in I_j} \varepsilon^{rp_j (k-m)} \right).$$

Observe that, by Proposition 4.7, every sum $\sum_{r \in I_j} \varepsilon^{rp_j (k-m)}$ is an integer. Moreover, every polynomial B_{kp_j} belongs to $\mathbb{Z}[X]$. Hence, $T_{p_j, m} \in \mathbb{Z}[X]$.

Recall that $T_{p_j, a} = T_{p_j, m}$, where m is the remainder of division of a by n_j. Thus, we proved the following proposition.

Proposition 8.2. For any $j \in \{1, \ldots, s\}$ and $a \in \mathbb{Z}$, the polynomial $T_{p_j, m}$ belongs to the polynomial ring $\mathbb{Z}[X]$.

Now we will prove some additional properties of the polynomials $T_{p_j, a}$.

Proposition 8.3. Assume that $s \geq 2$, and let $i, j \in \{1, \ldots, s\}$, $i < j$. Then

$$\sum_{k=0}^{p_j - 1} T_{p_j, k} = 0.$$

Proof. Put $p = p_i$, $q = p_j$, and $N = \frac{n}{pq}$. Then we have

$$\sum_{k=0}^{p_j - 1} T_{p_j, k} \cdot \tau^{k/p_j} = \sum_{k=0}^{p_i - 1} T_{p_i, k} \cdot \tau^{k/p_i} \cdot \sum_{r \in I_j} \left(\varepsilon^{-kNq} \right)^r S_{q, r} = \sum_{r \in I_j} \left(\sum_{k=0}^{p_i - 1} \left(\varepsilon^{-k r/p_i} \right)^k \right) S_{q, r}.$$

Let $\eta = \varepsilon^{-1/p_i}$. Then η is a primitive p-th root of unity. If $r \in I_j$, then $p \nmid r$ and, by Lemma 4.6, we have

$$\sum_{k=0}^{p_i - 1} \left(\varepsilon^{-k r/p_i} \right)^k = \sum_{k=0}^{p_i - 1} \eta^{rk} = 0.$$

Thus,

$$\sum_{k=0}^{p_i - 1} T_{p_j, k} \cdot \tau^{k/p_j} = \sum_{r \in I_j} \left(\sum_{k=0}^{p_j - 1} \left(\varepsilon^{-k r/p_j} \right)^k \right) S_{q, r} = \sum_{r \in I_j} 0 \cdot S_{q, r} = 0. \quad \square$$

Proposition 8.4. For any integer a, we have

$$\varphi(T_{p_j, a}) = \begin{cases} T_{p_j, a+1}, & \text{when } p_j \neq 2, \\ -T_{p_j, a+1}, & \text{when } p_j = 2. \end{cases}$$
RATIONAL CONSTANTS OF CYCLOMATIC DERIVATIONS

Proof. First assume that \(p_j \) is odd. In this case (see Proposition 7.1), \(\varrho(S_p, r) = e^{-p_j r} S_p, r \) for any \(r \in \mathbb{Z} \). Hence,

\[
\varrho(T_{p_j}, a) = \sum_{r \in I_j} (e^{-ap_j})^r \varrho(S_p, r) = \sum_{r \in I_j} (e^{-ap_j})^r e^{-p_j r} S_p, r = \sum_{r \in I_j} (e^{-(a+1)p_j})^r S_p, r = T_{p_j, a+1}.
\]

Now let \(p_j = 2 \). Then, by Proposition 7.1, \(\varrho(S_p, r) = e^{-(n_j r + \frac{n_j}{2})} S_p, r \) for any \(r \in \mathbb{Z} \). Moreover, \(e^{-\frac{n_j}{2}} = -1 \). Thus, we have

\[
\varrho(T_{p_j}, a) = \sum_{r \in I_j} (e^{-ap_j})^r \varrho(S_p, r) = \sum_{r \in I_j} (e^{-ap_j})^r e^{-(n_j r + \frac{n_j}{2})} S_p, r = - \sum_{r \in I_j} (e^{-(a+1)p_j})^r S_p, r = -T_{p_j, a+1}.
\]

This completes the proof. \(\square \)

Proposition 8.5. Assume that \(s \geq 2 \). Let \(i, j \in \{1, \ldots, s\} \), \(i < j \), and let \(a \in \mathbb{Z} \). Then

\[
T_{p_j, a} = - \sum_{k=1}^{p_j-1} T_{p_i, a+k \frac{n_j}{p_j r_j}}.
\]

Proof. It follows from Proposition 8.4 that \(T_{p_j, a} = (-1)^{p_j-1} \varrho^a(T_{p_j, 0}) \). Hence, using Proposition 8.3, we obtain

\[
T_{p_j, a} = (-1)^{p_j-1} \varrho^a(T_{p_j, 0}) = (-1)^{p_j-1} \varrho^a \left(- \sum_{k=1}^{p_j-1} T_{p_j, k \frac{n_j}{p_j r_j}} \right)
= (-1)^{p_j} \sum_{k=1}^{p_j-1} \varrho^a \left(T_{p_j, k \frac{n_j}{p_j r_j}} \right) = (-1)^{p_j} \sum_{k=1}^{p_j-1} (-1)^{p_j-1} T_{p_j, a+k \frac{n_j}{p_j r_j}}
= - \sum_{k=1}^{p_j-1} T_{p_j, a+k \frac{n_j}{p_j r_j}},
\]

This completes the proof. \(\square \)

For any \(j \in \{1, \ldots, s\} \), let us denote by \(W_j \) the \(\mathbb{Z} \)-module generated by all the polynomials \(T_{p_j, r} \) with \(r \in I_j \). It is clear that every polynomial \(T_{p_j, a} \), for arbitrary integer \(a \), belongs to \(W_j \).

Theorem 8.6. If the number \(n \) is special, then for all \(j \in \{1, \ldots, s\} \) and \(a \in \mathbb{Z} \), the polynomial \(T_{p_j, a} \) belongs to \(W_j \).

Proof. Let \(n = p_1 \cdots p_{s-1} \cdot p_s^a \), where \(s \geq 1, \alpha \geq 1 \), and \(p_1, \ldots, p_s \) are distinct primes. Let \(n_j = \frac{n}{p_j} \) for \(j = 1, \ldots, s \). Assume that \(P = [p_1, \ldots, p_s] \) is a fixed type, and \(I_1, \ldots, I_s \) are the \(n \)-sets of type \(P \).

Let \(j \) be a fixed element from \(\{1, \ldots, s\} \). If \(s = 1 \) or \(j = 1 \), then we are done. Assume that \(s \geq 2, j \geq 2 \), and \(a \) is an integer. Since \(T_{p_j, a} = T_{p_i, m} \), where \(m \) is
the remainder of division of a by n_j, we may assume that $0 \leq a < n_j$. We use the following notations:

$$M := \{p_1, p_2, \ldots, p_{j-1}\}, \quad q := p_j, \quad B_c := T_{p_j, c} \quad \text{for} \quad c \in \mathbb{Z}.$$

We will show that $B_a \in W_j$. If $\gcd(a, p_1 \cdots p_{j-1}) = 1$, then $a \in I_j$ and so, $B_a \in W_j$. Now let $\gcd(a, p_1 \cdots p_{j-1}) \geq 2$. In this case, a is divisible by some primes belonging to M.

Step 1. Assume that a is divisible by exactly one prime number p_i belonging to M. Then $i < j$ and, by Proposition 8.5, we have the equality

$$B_a = - \sum_{k=1}^{p_i-1} B_{a+k \frac{n}{p_i}}.$$

Let $k \in \{1, \ldots, p_i-1\}$, and consider $c := a + k \frac{n}{p_i}$. Since n is special, the number $k \frac{n}{p_i}$ is not divisible by p_i. But $p_i \mid a$, so $p_i \nmid c$. If $p \in M$ and $p \neq p_i$, then $p \nmid a$ and $p \mid k \frac{n}{p_i}$, so $p \nmid c$. Hence, the numbers c and $p_1 \cdots p_{j-1}$ are relatively prime. This implies that the element $c \pmod{n_j}$ belongs to I_j, and so, $B_c \in W_j$. Therefore, by the above equality, $B_a \in W_j$.

We see that if $s = 2$ or $j = 2$, then we are done. Now suppose that $s \geq 3$ and $j \geq 3$.

Step 2. Let $1 \leq t \leq j - 2$, and assume that we already proved that $B_c \in W_j$ for every integer c which is divisible by exactly t primes belonging to M. Assume that a is divisible by exactly $t+1$ distinct primes m_1, \ldots, m_{t+1} from M. We have: $m_1 \mid a$ for $i = 1, \ldots, t+1$, and $m \nmid a$ for $m \in M \setminus \{m_1, \ldots, m_{t+1}\}$. Put $p = m_{t+1}$.

It follows from Proposition 8.5, that have the following equality:

$$B_a = - \sum_{k=1}^{p-1} B_{a+k \frac{n}{p}}.$$

Let $k \in \{1, \ldots, p-1\}$, and consider $c := a + k \frac{n}{p}$. Since n is special, the number $k \frac{n}{p}$ is not divisible by p. But $p \nmid a$, so $p \nmid c$, and consequently, $m_{t+1} \nmid c$. It is clear that $m_i \mid c$ for all $i = 1, \ldots, t$, and $m \nmid c$ for all $m \in M \setminus \{m_1, \ldots, m_t\}$. This means that c is divisible by exactly t primes from M. Thus, by our assumption, $B_c \in W_j$. Therefore, by the above equality, $B_a \in W_j$.

Now we use a simple induction and, by Steps 1 and 2, we obtain the proof of our theorem. \(\square\)

9. The main theorem

Assume that $n \geq 3$ is a special number of a type P. Let I_1, \ldots, I_s be the n-sets of type P, let A be the n-standard set of type P, and let

$$S = \left\{ S_{p_j, r}; \ j \in \{1, \ldots, s\}, \ r \in I_j \right\}, \quad T = \left\{ T_{p_j, r}; \ j \in \{1, \ldots, s\}, \ r \in I_j \right\}.$$
Since n is special, we have the following sequence of important properties.

1. A is a basis of the group G_n (Theorems 5.8, 3.5 and 5.10).

2. S is algebraically independent over K, and $K(X)^d = K(S)$ (Proposition 7.5).

3. $K(S) = K(T)$ (Proposition 8.1 and Theorem 8.6).

We know also (see Proposition 8.2) that each element of T is a polynomial belonging to $Z[X]$. Moreover, $|T| = |S| = |A| = n - \varphi(n)$. In particular, the set T is algebraically independent over K. Put an order on the set T. Let $T = \{F_0, F_1, \ldots, F_{m-1}\}$ where $m = n - \varphi(n)$. Thus, if the number n is special, then $K(X)^d = K(F_0, \ldots, F_{m-1})$, where F_0, \ldots, F_{m-1} are polynomials belonging to $Z[X]$, and these polynomials are algebraically independent over Q.

Let us recall, that K is a field of characteristic zero containing ε (where ε is a primitive n-th root of unity). But the polynomials F_0, \ldots, F_{m-1} have integer coefficients, and they are constants of d. They are not dependent from the field K. Since the polynomials $d(x_0), \ldots, d(x_{n-1})$ belong to $Z[X]$, we see that we may assume that K is a field of characteristic zero, without the assumption concerning ε. Thus, we proved the following theorem.

Theorem 9.1. Let K be an arbitrary field of characteristic zero, $n \geq 3$ an integer, and $K[X] = K[x_0, \ldots, x_{n-1}]$ the polynomial ring in n variables over K. Let $d : K[X] \to K[X]$ be the cyclotomic derivation, that is, d is a K-derivation of $K[X]$ such that

$$d(x_i) = x_{i+1} \quad \text{for} \quad i \in \mathbb{Z}_n.$$

Assume that $n = p_1 p_2 \cdots p_s$, where $s \geq 1$, $\alpha \geq 1$ and p_1, \ldots, p_s are distinct primes. Let $m = n - \varphi(n)$, where φ is the Euler totient function. Then

$$K(X)^d = K(F_0, \ldots, F_{m-1}),$$

where F_0, \ldots, F_{m-1} are algebraically independent over Q polynomials belonging to $Z[X]$.

More exactly, $\{F_0, F_1, \ldots, F_{m-1}\} = \{T_{p_j^r}; \ j \in \{1, \ldots, s\}, r \in I_j\}$, where I_1, \ldots, I_s are the n-sets of type $[p_1, \ldots, p_s]$.

We end this article with several examples illustrating the above theorem.

Example 9.2. If $n = 4$, then $K(X)^d = K(F_0, F_1)$, where $F_0 = x_0^2 - 2x_1 x_3 + x_2^2$, and $F_1 = \varphi(F_0)$.

Example 9.3. If $n = 8$, then $K(X)^d = K(F_0, F_1, F_2, F_3)$, where $F_1 = \varphi(F_0)$, $F_2 = \varphi^2(F_0)$, $F_3 = \varphi^3(F_0)$ and $F_0 = x_0^2 + x_2^2 - 2x_3 x_5 - 2x_7 x_1 + 2x_2 x_6$.

Example 9.4. If \(n = 9 \), then \(K(X)^d = K(F_0, F_1, F_2) \), where \(F_1 = \varrho(F_0) \), \(F_2 = \varrho^2(F_0) \),

\[
F_0 = 3x_1x_2^2 + 3x_3x_2 + 3x_8x_3^2 - 3x_0x_4x_5 - 3x_1x_0x_8 - 3x_2x_4x_3 - 3x_2x_7x_0 - 3x_8x_0x_4 + 3x_2x_5 + 3x_7x_6 + x_6^2 + 3x_1x_3x_9 + 6x_9x_6x_3 - 3x_8x_7x_3 - 3x_2x_1x_6 - 3x_5x_7x_6 + x_3^2.
\]

Example 9.5. If \(n = 6 \) and \(P = [2, 3] \), then \(K(X)^d = K(F_0, F_1, F_2, F_3) \), where \(F_0 \), \(F_1 \), \(F_2 \), \(F_3 \) are as follows,

\[
F_0 = x_0^2 - 2x_1x_5 + 2x_2x_4 - x_3^2,
F_1 = (x_1^2 + x_4x_3 - x_0x_4 + x_1x_2 + x_3^2 - x_5x_3 + x_2x_3 - 2x_2x_5 + x_0x_5 - 2x_0x_3 - x_2x_2 - x_4x_0 + x_4^2 - x_1x_3 + x_2^2 + 4x_5 + x_1x_2 + x_0^2 - x_1x_5 - x_4x_2 + x_3^2)(x_0 - x_1 - x_2 - x_3 + x_4 - x_5),
\]

and \(F_1 = \varrho(F_0), F_2 = \varrho^2(F_0) \).

Example 9.6. If \(n = 6 \) and \(P = [3, 2] \), then \(K(X)^d = K(F_0, F_1, F_2, F_3) \), where \(F_0 \), \(F_1 \), \(F_2 \), \(F_3 \) are as follows,

\[
F_0 = x_0^2 + x_1^2 + x_4^2 + 3x_0x_2^2 + 3x_2x_3^2 + 3x_4x_7^2 - 3x_0x_2x_4 - 3x_5x_0x_1 - 3x_1x_2x_3 - 3x_3x_4x_5,
F_1 = 2x_1^2 + x_4^2 - x_3^2 - 2x_1x_4 + x_3^2 + x_0^2 - 2x_1x_3 + 2x_2x_4 + 4x_3x_5 + 2x_4x_0 - 2x_5x_1 - 4x_2x_0,
\]

and \(F_1 = \varrho(F_0), F_3 = \varrho(F_2) \).

Example 9.7. If \(n = 12 \), then \(K(X)^d = K(F_0, \ldots, F_7) \), where \(F_0 \), \(F_1 \), \(F_2 \), \(F_3 \), \(F_4 \), \(F_5 \), \(F_6 \), \(F_7 \) are as follows,

\[
F_0 = -3x_0x_2x_4 - 3x_0x_8x_{10} - 3x_4x_0x_8 + x_0^3 + 3x_0^2x_0 - 3x_1x_8x_3 + 3x_0^2x_6 + 3x_2x_6 + 3x_3x_11x_0 + 6x_5x_11x_8 - 3x_1x_5x_6 + 3x_2^2x_10 + 3x_2x_4^2 - 3x_2x_7x_6 - 3x_7x_1x_3 - 3x_10x_11x_3 - 3x_10x_5x_9 - 3x_4x_11x_9 - 3x_4x_5x_3 - 3x_1x_2x_9 - 3x_5x_3x_2 - 3x_7x_2x_9 + x_7^2 - 3x_10x_2x_0,
F_1 = 4x_8x_8 + x_9^2 - 2x_10x_8 + 2x_7x_3 + 2x_7x_11 - 2x_10x_0 - 2x_4x_2 - 2x_4x_6 + 2x_1x_3 + 2x_1x_5 + 4x_0x_2 - 2x_0x_6 - 4x_3x_11 - 2x_7^2 + x_7^2 + 4x_4x_10 - 2x_2x_4 - 2x_7^2 + x_6^2 - 4x_9x_5,
\]

and \(F_1 = \varrho(F_0), F_2 = \varrho^2(F_0), F_3 = \varrho^3(F_0), F_5 = \varrho(F_4), F_6 = \varrho^3(F_4), F_7 = \varrho^4(F_4) \).

References

RATIONAL CONSTANTS OF CYCLOTOMIC DERIVATIONS

(Jean Moulin Ollagnier) Laboratoire LIX, École Polytechnique, F 91128 Palaiseau Cedex, France
E-mail address: jean.moulin-ollagnier@polytechnique.edu

(Andrzej Nowicki) Nicolaus Copernicus University, Faculty of Mathematics and Computer Science, ul. Chopina 12/18, 87-100 Toruń, Poland
E-mail address: anow@mat.uni.torun.pl