Polynomial imaginary decompositions
for finite extensions of fields
of characteristic zero

Andrzej Nowicki and Stanisław Spodzieja*

December 27, 2001

Abstract

Let k be a field of characteristic zero, $L = k[\xi]$ a finite field extension of degree $m > 1$, and $f(z)$ a polynomial in one variable z over L. Then there exist unique polynomials u_0, \ldots, u_{m-1} belonging to $k[x_0, \ldots, x_{m-1}]$ such that $f(x_0 + \xi x_1 + \cdots + \xi^{m-1} x_{m-1}) = u_0 + \xi u_1 + \cdots + \xi^{m-1} u_{m-1}$. We prove that if $f(z) \notin L$, then the polynomials u_0, \ldots, u_{m-1} are algebraically independent over k and they have no common divisors in $k[x_0, \ldots, x_{m-1}]$ of positive degrees. Some other properties of polynomials u_0, \ldots, u_{m-1} are also given.

1 Introduction

If z, x, y are variables and $f(z)$ is a polynomial from $\mathbb{C}[z]$, then there exist unique polynomials $u(x, y), v(x, y)$ belonging to $\mathbb{R}[x, y]$ such that $f(x + iy) = u(x, y) + iv(x, y)$. We will show that if f is nonzero, then the polynomials $u(x, y)$ and $v(x, y)$ are coprime. We will also show that the same is true if instead of the extension $\mathbb{R} \subset \mathbb{C}$ we consider a finite field extension of characteristic zero.

More exactly, assume that k is a field and $L = k[\xi]$ is a finite field extension of degree $m > 1$. Let z and x_0, \ldots, x_{m-1} be variables and let $f(z)$ be a polynomial from $L[z]$. Then there exist unique polynomials u_0, \ldots, u_{m-1}, belonging to $k[x] := k[x_0, \ldots, x_{m-1}]$, such that

$$f(x_0 + \xi x_1 + \cdots + \xi^{m-1} x_{m-1}) = u_0 + \xi u_1 + \cdots + \xi^{m-1} u_{m-1}.$$
This representation we call the *imaginary decomposition* of \(f \), and the polynomials \(u_0, \ldots, u_{m-1} \) we call the *imaginary parts* of \(f \). We will show that if \(f \) is nonzero, then the imaginary parts of \(f \) have no common divisors in \(k[x] \) of positive degrees. Moreover, we prove that a sequence \((u_0, \ldots, u_{m-1})\) of polynomials from \(k[x] \) forms imaginary parts of a polynomial \(f(z) \in L[z] \) if and only if the polynomials \(u_0, \ldots, u_{m-1} \) satisfy some generalizations of Cauchy-Riemann equations. Some other properties concerning the divisibility of imaginary parts are also given.

2 Notations and preliminaries

Throughout the paper \(k \) is a field of characteristic zero and \(L = k[\xi] \) is a finite field extension of degree \(m > 1 \). Assume that

\[
\varphi(t) = t^m - a_{m-1}t^{m-1} - \cdots - a_1t - a_0
\]

(with \(a_0, \ldots, a_{m-1} \in k \)) is the minimal polynomial of \(\xi \) over \(k \). Let \(x = (x_0, x_1, \ldots, x_{m-1}) \), where \(x_0, \ldots, x_{m-1} \) are variables, and let \(k[x] := k[x_0, \ldots, x_{m-1}] \), \(L[x] := L[x_0, \ldots, x_{m-1}] \) be the polynomial rings. We denote by \(M \) the set \(k[X]^m \), that is,

\[
M := \{(u_0, u_1, \ldots, u_{m-1}); u_0, \ldots, u_{m-1} \in k[x]\}.
\]

Let \(u = (u_0, \ldots, u_{m-1}) \in M \). We use the following notations. We denote by \(\overline{u} = (\overline{u}_0, \ldots, \overline{u}_{m-1}) \) the element from \(M \) defined by:

\[
\overline{u}_0 = a_0u_{m-1}, \quad \overline{u}_1 = u_0 + a_1u_{m-1}, \quad \overline{u}_2 = u_1 + a_2u_{m-1}, \quad \vdots \quad \overline{u}_{m-1} = u_{m-2} + a_{m-1}u_{m-1}.
\]

Moreover, we denote by \([u]\) the polynomial from \(L[x] \) defined as

\[
[u] := u_0 + \xi u_1 + \cdots + \xi^{m-1} u_{m-1}.
\]

In particular, \([x] := x_0 + \xi x_1 + \cdots + \xi^{m-1} x_{m-1} \). If the polynomials \(u_0, \ldots, u_{m-1} \) are imaginary parts of a polynomial \(f(z) \in L[z] \), then \(f([x]) = [u] \). Observe that the equality \(\xi^m = a_0 + a_1\xi + \cdots + a_{m-1}\xi^{m-1} \) implies that \([u]\xi = [\overline{u}]\).

If \(i \in \{0, \ldots, m-1\} \), then we denote by \(\frac{\partial u}{\partial x_i} \) the element from \(M \) defined as

\[
\frac{\partial u}{\partial x_i} := \left(\frac{\partial u_0}{\partial x_i}, \ldots, \frac{\partial u_{m-1}}{\partial x_i} \right).
\]
Lemma 2.1. If u_0, \ldots, u_{m-1} are imaginary parts of a polynomial $f(z) \in L[z]$, then
\[
\left[\frac{\partial u}{\partial x_i} \right] = f'([x]) \xi^i
\]
for $i \in \{0, \ldots, m-1\}$, where $f'(z)$ means the ordinary derivative of f with respect to z.

Proof. \[
\left[\frac{\partial u}{\partial x_i} \right] = \frac{\partial}{\partial x_i} [u] = \frac{\partial}{\partial x_i} f([x]) = f'([x]) \frac{\partial}{\partial x_i} [x] = f'([x]) \xi^i. \]
As a consequence of this lemma we obtain the following proposition.

Proposition 2.2. If $u_0, \ldots, u_{m-1} \in \mathbb{k}[x]$ are imaginary parts of a polynomial $f(z) \in L[z] \setminus L$, then u_0, \ldots, u_{m-1} are algebraically independent over \mathbb{k}.

Proof. Assume that $f([x]) = [u]$, where $u := (u_0, \ldots, u_{m-1})$ and $f(z) \in L[z] \setminus L$. Suppose that u_0, \ldots, u_{m-1} are algebraically dependent over \mathbb{k}. Then the vectors $\frac{\partial u}{\partial x_0}, \ldots, \frac{\partial u}{\partial x_{m-1}}$ are linearly dependent over the field $\mathbb{k}(x) := \mathbb{k}(x_0, \ldots, x_{m-1})$. Hence, there exist a nonzero sequence $\alpha = (\alpha_0, \ldots, \alpha_{m-1})$ of polynomials from $\mathbb{k}[x]$ such that $\sum_{i=0}^{m-1} \alpha_i \frac{\partial u}{\partial x_i} = 0$, that is, $\sum_{i=0}^{m-1} \alpha_i \left[\frac{\partial u}{\partial x_i} \right] = 0$. Now, by Lemma 2.1 we get:
\[
0 = \sum_{i=0}^{m-1} \alpha_i \left[\frac{\partial u}{\partial x_i} \right] = \sum_{i=0}^{m-1} \alpha_i f'([x]) \xi^i = f'([x]) \left(\sum_{i=0}^{m-1} \alpha_i \xi^i \right) = f'([x]) [\alpha].
\]
Hence, in the polynomial ring $L[x]$ we have the equality $f'([x]) [\alpha] = 0$. But $f'([x]) \neq 0$ and $[\alpha] \neq 0$. So, we have a contradiction. □

3 Generalization of the Cauchy-Riemann equation

We introduce the following generalization of the Cauchy - Riemann equation.

Definition 3.1. Let $u \in M$. We say that u is a ξ-sequence if
\[
\frac{\partial u}{\partial x_i} = \frac{\partial u}{\partial x_{i-1}},
\]
for all $i = 1, 2, \ldots, m - 1$.

The following proposition show that the imaginary parts of a polynomial from $L[z]$ form a ξ-sequence.
Proposition 3.2. Let \(f(z) \in L[z] \) and let \(u \) be the element from \(M \) such that
\[
f([x]) = [u].
\]

Then \(u \) is a \(\xi \)-sequence.

Proof. If \(i \in \{1, \ldots, m-1\} \) then, by Lemma 2.1, we have:
\[
\left[\frac{\partial u}{\partial x_i} \right] = f'([x]) \xi^i = f'([x]) \xi^{i-1} \cdot \xi = \left[\frac{\partial u}{\partial x_{i-1}} \right] \cdot \xi = \left[\frac{\partial u}{\partial x_{i-1}} \right] = \left[\frac{\partial u}{\partial x_{i-1}} \right],
\]
and hence \(\frac{\partial u}{\partial x_i} = \frac{\partial u}{\partial x_{i-1}} \). \(\Box \)

We will show that the converse of the above proposition is also true. For a proof of this fact we need several lemmas.

Lemma 3.3. If \(u \in M \) is a \(\xi \)-sequence, then each partial derivative \(\frac{\partial u}{\partial x_j} \), for \(j = 0, \ldots, m-1 \), is also a \(\xi \)-sequence.

Proof. Let \(j \in \{0, \ldots, m-1\} \) and put \(w := \frac{\partial u}{\partial x_j} = \left(\frac{\partial u}{\partial x_0}, \ldots, \frac{\partial u}{\partial x_{m-1}} \right) \).
Then for every \(i \in \{1, \ldots, m-1\} \) we have:
\[
\frac{\partial w}{\partial x_i} = \frac{\partial^2 u}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_j} \frac{\partial u}{\partial x_i} = \frac{\partial}{\partial x_j} \frac{\partial u}{\partial x_{i-1}} \frac{\partial u}{\partial x_{i-1}} = \frac{\partial u}{\partial x_{i-1}} \frac{\partial u}{\partial x_j} = \frac{\partial w}{\partial x_{i-1}};
\]
and hence, \(w \) is a \(\xi \)-sequence. \(\Box \)

Lemma 3.4. If \(u \in M \) is a \(\xi \)-sequence, then
\[
\left[\frac{\partial u}{\partial x_i} \right] \xi^i = \left[\frac{\partial u}{\partial x_{i+1}} \right],
\]
for \(i = 0, 1, \ldots, m-2 \). In particular,
\[
\left[\frac{\partial u}{\partial x_0} \right] \xi = \left[\frac{\partial u}{\partial x_1} \right], \quad \left[\frac{\partial u}{\partial x_1} \right] \xi^2 = \left[\frac{\partial u}{\partial x_2} \right], \quad \ldots, \quad \left[\frac{\partial u}{\partial x_0} \right] \xi^{m-1} = \left[\frac{\partial u}{\partial x_{m-1}} \right].
\]

Proof. \(\left[\frac{\partial u}{\partial x_i} \right] \xi = \left[\frac{\partial u}{\partial x_{i+1}} \right] = \left[\frac{\partial u}{\partial x_{i+1}} \right] \). \(\Box \)

Consider the usual gradation \(k[x] = \bigoplus_{s \geq 0} k[x]_s \), where each \(k[x]_s \) is the subgroup of \(k[x] \) containing zero and all homogeneous polynomials from \(k[x] \) of degree \(s \). We say that an element \(u = (u_0, \ldots, u_{m-1}) \) from \(M \) is homogeneous of degree \(s \), if all the polynomials \(u_0, \ldots, u_{m-1} \) belong to \(k[x]_s \).

Every polynomial \(h \in k[x] \) has a presentation of the form \(h = h^{(0)} + h^{(1)} + \cdots + h^{(r)} \), where each \(h^{(j)} \), for \(j = 0, \ldots, r \), is a unique homogeneous polynomial belonging to \(k[x]_j \).

4
Let \(u = (u_0, \ldots, u_{m-1}) \in M \). Then there exists a common integer \(r \geq 0 \) such that
\[
u_i = u_i^{(0)} + u_i^{(1)} + \cdots + u_i^{(r)},
\]
for all \(i = 0, \ldots, m-1 \), and we have
\[
u = u^{(0)} + u^{(1)} + \cdots + u^{(r)},
\]
where \(u^{(j)} = (u_0^{(j)}, u_1^{(j)}, \ldots, u_{m-1}^{(j)}) \) for \(j = 0, 1, \ldots, r \). Then each \(u^{(j)} \), for \(j = 0, \ldots, r \), is a homogeneous element of \(M \) of degree \(j \). We call it the \textit{homogeneous component} of \(u \) of degree \(j \). Since
\[
\frac{\partial}{\partial x_i} (k[x]_s) \subseteq k[x]_{s-1},
\]
for every \(s \geq 0 \) and \(i = 0, 1, \ldots, m-1 \) (where \(k[x]_{-1} = 0 \)), we obtain the following lemma.

\textbf{Lemma 3.5.} Let \(u \in M \). If \(u \) is a \(\xi \)-sequence, then each homogeneous component of \(u \) is also a \(\xi \)-sequence. □

Note also:

\textbf{Lemma 3.6.} Let \(u \) be a homogeneous element of \(M \) of degree \(s \geq 0 \). If \(u \) is a \(\xi \)-sequence, then
\[
[x] \left[\frac{\partial u}{\partial x_0} \right] = s[u].
\]

\textbf{Proof.} As a consequence of Lemma 3.4 we have:
\[
[x] \left[\frac{\partial u}{\partial x_0} \right] = (x_0 + \xi x_1 + \xi^2 x_2 + \cdots + \xi^{m-1} x_{m-1}) \left[\frac{\partial u}{\partial x_0} \right]
\]
\[
= x_0 \left[\frac{\partial u}{\partial x_0} \right] + x_1 \left[\frac{\partial u}{\partial x_1} \right] \xi + x_2 \left[\frac{\partial u}{\partial x_0} \right] \xi^2 + \cdots + x_{m-1} \left[\frac{\partial u}{\partial x_{m-1}} \right] \xi^{m-1}
\]
\[
= x_0 \left[\frac{\partial u}{\partial x_0} \right] + x_1 \left[\frac{\partial u}{\partial x_1} \right] + x_2 \left[\frac{\partial u}{\partial x_2} \right] + \cdots + x_{m-1} \left[\frac{\partial u}{\partial x_{m-1}} \right]
\]
\[
= x_0 \frac{\partial u}{\partial x_0} + x_1 \frac{\partial u}{\partial x_1} + x_2 \frac{\partial u}{\partial x_2} + \cdots + x_{m-1} \frac{\partial u}{\partial x_{m-1}}
\]
\[
= [su] = s[u].
\]
We used also the well-known Euler equality. □

\textbf{Lemma 3.7.} Let \(u \) be a homogeneous element of \(M \) of degree \(s \geq 0 \). If \(u \) is a \(\xi \)-sequence, then there exists a unique \(b \in L \) such that \([u] = b[x]_s\).
Proof. We use an induction with respect to s. It is obvious for $s = 0$. Let $s > 0$ and assume that it is true for all homogeneous ξ-sequences of degree $s - 1$.

Let u be a homogeneous ξ-sequence of degree s. Then, by Lemma 3.3, the partial derivative $\frac{\partial u}{\partial x_0}$ is a homogeneous ξ-sequence of degree $s - 1$ and hence, by induction, there exists an element $c \in L$ such that

$$\left[\frac{\partial u}{\partial x_0} \right] = c[x]^{s-1}. $$

Put $b := \frac{1}{s}c$. Then, by Lemma 3.6, we have:

$$b[x]^s = \frac{1}{s}c[x]^{s-1}[x] = \frac{1}{s} \left[\frac{\partial u}{\partial x_0} \right] [x] = \frac{1}{s} s[u] = [u]. $$

The uniqueness is obvious. □

Now we are ready to prove the following theorem.

Theorem 3.8. Let k be a field of characteristic zero and let $L = k[\xi]$ be a finite field extension of degree $m > 1$. Let $z, x_0, x_1, \ldots, x_{m-1}$ be variables and let $u = (u_0, \ldots, u_{m-1})$ be a sequence of polynomials belonging to $k[x] := k[x_0, \ldots, x_{m-1}]$. Then the following two conditions are equivalent.

1. u is a ξ-sequence.
2. There exists a polynomial $f(z) \in L[z]$ such that the polynomials u_0, \ldots, u_{m-1} are the imaginary parts of $f(z)$, that is,

$$f(x_0 + \xi x_1 + \cdots + \xi^{m-1} x_{m-1}) = u_0 + \xi u_1 + \cdots + \xi^{m-1} u_{m-1}. $$

Proof. The implication (2) \Rightarrow (1) we already proved (see Proposition 3.2). Assume now that u is a ξ-sequence. Let $u = u^{(0)} + u^{(1)} + \cdots + u^{(r)}$ be the homogeneous decomposition of u. Then each $u^{(j)}$, for $j = 0, \ldots, r$, is (by Lemma 3.5) a homogeneous ξ-sequence of degree j and so, by Lemma 3.7, there exists $b_j \in L$ such that $[u^{(j)}] = b_j[x]^j$. Put $f(z) := b_0 + b_1 z + \cdots + b_r z^r$. Then

$$f([x]) = b_0[x]^0 + b_1[x]^1 + \cdots + b_r[x]^r = \left[u^{(0)} \right] + \left[u^{(1)} \right] + \cdots + \left[u^{(r)} \right] = \left[u \right].$$

This completes the proof. □

Corollary 3.9. If $u \in M$ is a ξ-sequence, then \overline{u} is also a ξ-sequence.

Proof. By Theorem 3.8 there exists a polynomial $f(z) \in L[z]$ such that $f([x]) = [u]$. Consider the polynomial $g(z) := \xi f(z) \in L[z]$. Since $g([x]) = \xi f(z) = \xi[u] = [\overline{u}]$, the sequence \overline{u} is, again by Theorem 3.8, a ξ-sequence. □
4 Divisibility

In this section we use the same notations as in the previous sections.

Proposition 4.1. Let \(u = (u_0, \ldots, u_{m-1}) \) be a \(\xi \)-sequence. Assume that the polynomials \(u_1, u_2, \ldots, u_{m-1} \) belong to \(k \). Then \(u_0 \in k \).

Proof. Since \(\frac{\partial u}{\partial x_i} = \frac{\partial u}{\partial x_{i-1}} \) for all \(i = 1, \ldots, m-1 \) (see Definition 3.1), we have
\[
\frac{\partial u_0}{\partial x_i} = \frac{\partial u_0}{\partial x_{i-1}} = \frac{\partial u_0 u_{m-1}}{\partial x_{i-1}} = 0,
\]
(for \(i = 1, \ldots, m-1 \)) and moreover,
\[
0 = \frac{\partial u_1}{\partial x_1} = \frac{\partial u_0}{\partial x_0} = \frac{\partial (u_0 + a_1 u_{m-1})}{\partial x_0} = \frac{\partial u_0}{\partial x_0} + a_1 \frac{\partial u_{m-1}}{\partial x_0} = \frac{\partial u_0}{\partial x_0}.
\]
Therefore, \(\frac{\partial u_0}{\partial x_0} = \frac{\partial u_0}{\partial x_1} = \cdots = \frac{\partial u_0}{\partial x_{m-1}} = 0 \) and hence, since \(\text{char}(k) = 0 \), the polynomial \(u_0 \) belongs to \(k \). □

Proposition 4.2. Let \(u = (u_0, \ldots, u_{m-1}) \) be a nonzero homogeneous \(\xi \)-sequence. Then \(\gcd(u_0, \ldots, u_{m-1}) = 1 \).

Proof. We know, by Lemma 3.7, that \([u] = b[x]^s \) for some \(b \in L \) and \(s \geq 0 \). Let \(0 \neq h \in k[x] := k[x_0, \ldots, x_{m-1}] \) be a common divisor of all the polynomials \(u_0, \ldots, u_{m-1} \). We will show that \(h \in k \).

Put \(u_0 = v_0 h, \ldots, u_{m-1} = v_{m-1} h \) with \(v_0, \ldots, v_{m-1} \in k[x] \). Then in the polynomial ring \(L[x] := L[x_0, \ldots, x_{m-1}] \) we have the equality
\[
b[x]^s = [v]h.
\]
But \(L[x] \) is a UFD and \([x] = x_0 + \xi x_1 + \cdots + \xi^{m-1} x_{m-1} \) is an irreducible polynomial in \(L[x] \), so \(h = c[x]^r \) for some nonzero \(c \in L \) and \(0 \leq r \leq s \). This means (by Theorem 3.8) that \((h, 0, 0, \ldots, 0) \) is a \(\xi \)-sequence. Now Proposition 4.1 implies that \(h \in k \). □

Theorem 4.3. Let \(k \) be a field of characteristic zero and let \(L = k[\xi] \) be a finite field extension of degree \(m > 1 \). Let \(z, x_0, x_1, \ldots, x_{m-1} \) be variables and let \(u = (u_0, \ldots, u_{m-1}) \) be a sequence of polynomials belonging to \(k[x] := k[x_0, \ldots, x_{m-1}] \). If the polynomials \(u_0, \ldots, u_{m-1} \) are the imaginary parts of a nonzero polynomial \(f(z) \in L[z] \), then \(\gcd(u_0, \ldots, u_{m-1}) = 1 \).
Proof. Let \(0 \neq h \in k[x] := k[x_0, \ldots, x_{m-1}] \) be a common divisor of all the polynomials \(u_0, \ldots, u_{m-1} \). Denote by \(h^* \) the homogeneous component of highest degree of \(h \), and let \(u_0^*, \ldots, u_{m-1}^* \) be the homogeneous components of highest degree of \(u_0, \ldots, u_{m-1} \), respectively. Then \(0 \neq h^* \) is a common divisor of all the polynomials \(u_0^*, \ldots, u_{m-1}^* \) and moreover, by Lemma 3.5, \((u_0^*, \ldots, u_{m-1}^*) \) is a homogeneous \(\xi \)-sequence. This implies, by Proposition 4.2, that \(h^* \in k \). Therefore, \(h \in k \) and so, \(\gcd(u_0, \ldots, u_{m-1}) = 1 \). □

As a consequence of theorems 3.8 and 4.3 we have:

Theorem 4.4. Let \(k \) be a field of characteristic zero and let \(k \subset L \) be a finite field extension. If \((u_0, \ldots, u_{m-1}) \) is a nonzero \(\xi \)-sequence, then the polynomials \(u_0, \ldots, u_{m-1} \) have no common divisors of positive degrees. □

5 Quadratic extensions

Throughout this section \(L = k[\xi] \) is a quadratic field extension of \(k \). We assume that \(\xi^2 = r \), where \(r \) is a nonzero element from \(k \) such that the polynomial \(t^2 - r \) is irreducible in \(k[t] \). Every element of \(L \) has a unique presentation of the form \(a + b\xi \) with \(a, b \in k \).

Let \(x, y, z \) be variables. If \(w \in k[x, y] \), then we denote by \(w_x \) and \(w_y \) the partial derivatives \(\frac{\partial w}{\partial x} \) and \(\frac{\partial w}{\partial y} \), respectively. In this case a pair \((u, v) \) of polynomials from \(k[x, y] \) is a \(\xi \)-sequence iff \(u_y = rv_x \) and \(v_y = u_x \). Such a pair we will call a \(\xi \)-pair. By Theorem 3.8 we have:

Proposition 5.1. Let \((u, v) \) be a pair of polynomials from \(k[x, y] \). The following two conditions are equivalent.

1. There exists a polynomial \(f(z) \in L[z] \) such that \(f(x + \xi y) = u + \xi v \).
2. \(u_y = rv_x \) and \(v_y = u_x \). □

Let \(\Delta : k[x, y] \to k[x, y] \) be a generalization of the Laplace operator defined by

\[
\Delta := r \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2},
\]

that is, \(\Delta(w) = rw_{xx} - w_{yy} \) for \(w \in k[x, y] \). It is easy to check that if \((u, v) \) is a \(\xi \)-pair, then \(\Delta(u) = \Delta(v) = 0 \). Note the following observation.

Proposition 5.2. Let \(u \in k[x, y] \). The following two conditions are equivalent.

1. There exists a polynomial \(v \in k[x, y] \) such that \((u, v) \) is a \(\xi \)-pair.
2. \(\Delta(u) = 0 \).
Proof. The implication (1) ⇒ (2) is obvious. We prove the implication (2) ⇒ (1). Let $f := \frac{1}{r} u_y$ and $g := u_x$. Since $f_y = g_x$ and char$(k) = 0$, there exists a polynomial $v \in k[x, y]$ such that $v_x = f$ and $v_y = g$. Then $u_y = rv_x$ and $v_y = u_x$ and hence, by Proposition 5.1, (u, v) is a ξ-pair. □

Consider two sequences (p_n) and (q_n) of polynomials from $k[x, y]$ defined as follows:

$$
\begin{align*}
 p_0 &= 1, & q_0 &= 0, \\
 p_{n+1} &= xp_n + ryq_n, & q_{n+1} &= yp_n + xq_n.
\end{align*}
$$

In particular, $p_1 = x$, $p_2 = x^2 + ry^2$, $p_3 = x(x^2 + 3ry^2)$, $p_4 = x^4 + 6rx^2y^2 + r^2y^4$, $q_1 = y$, $q_2 = 2xy$, $q_3 = y(3x^2 + ry^2)$, $q_4 = 4xy(x^2 + ry^2)$. Note the following matrix presentation of these sequences.

Proposition 5.3. If $A = \begin{bmatrix} x & ry \\ y & x \end{bmatrix}$, then $A^n = \begin{bmatrix} p_n & rq_n \\ q_n & p_n \end{bmatrix}$, for all $n \geq 0$. □

It is easy to check that, for any nonnegative n, the pair (p_n, q_n) is a ξ-pair such that

$$(*) \quad p_n + \xi q_n = (x + \xi y)^n.$$

We present some observations concerning the sequence (p_n) and (q_n).

As a consequence of $(*)$ and Proposition 2.2 we obtain

Proposition 5.4. If $n \geq 1$, then the polynomials p_n and q_n are algebraically independent over k. □

As a consequence of $(*)$ and Theorem 4.3 we obtain

Proposition 5.5. $\gcd(p_n, q_n) = 1$. □

The equality $(*)$ implies the following proposition.

Proposition 5.6. If n and m are nonnegative integers, then

$$p_{n+m} = p_np_m + rq_nq_m \quad \text{and} \quad q_{n+m} = p_nq_m + p_mq_n.$$ □

In particular, for $n = m$, we get

Proposition 5.7. $p_{2n} = p_n^2 + rq_n^2$ and $q_{2n} = 2p_nq_n$. □

Using a simple induction and the above propositions it is easy to prove the next proposition.
Proposition 5.8.

1. \(y \mid q_n \), for \(n \in \mathbb{N} \).
2. If \(n \mid m \), then \(q_n \mid q_m \).
3. \(p_n \mid q_{2kn} \), for \(n, k \in \mathbb{N} \).
4. \(p_n \mid p_{(2k+1)n} \), for \(n, k \in \mathbb{N} \).
5. \(\gcd(p_{kn}, q_n) = 1 \), for \(n, k \in \mathbb{N} \).
6. \(\gcd(q_{kn+r}, q_n) = \gcd(q_r, q_n) \), for \(n, k, r \in \mathbb{N} \). □

Now, by Proposition 5.8 and the Euclid algorithm, we have:

Proposition 5.9. If \(n, m \in \mathbb{N} \), then

\[\gcd(q_n, q_m) = q_{\gcd(n,m)}. \] □

Note that a similar proposition is well known for some classical sequences of integers. Such a property have the sequences of Fibonacci numbers, Mersenne numbers and others (see for example, [1], [2]).

References

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, 87-100 Toruń, Poland
e-mail: anow@mat.uni.torun.pl

Faculty of Mathematics
University of Łódź
S. Banacha 22
90-238 Łódź, Poland
e-mail: spodziej@imul.uni.lodz.pl