Symposium of Theory of Representation
Kyoto, 1987, 152-165.

DERIVATIONS IN MATRIX SUBRINGS

Andrzej NOWICKI

This note is an abstract of the author's papers [1], [2] and [3]. Let R be a ring with identity and let $M_n(R)$ denotes the ring of $n \times n$ matrices over R. We say that a subring P of $M_n(R)$ is special with the relation ω if P is of the form

$$P = \{ A \in M_n(R); A_{ij} = 0, \text{ for } (i,j) \notin \omega \},$$

where ω is a relation (reflexive and transitive) on the set $\{1,\ldots,n\}$.

We describe in this note all derivations, R-derivations and higher R-derivations of the ring P.

I. DERIVATIONS AND HIGHER DERIVATIONS IN A RING

1. Derivations. Let P be a ring with identity. An additive mapping $d: P \rightarrow P$ is called a derivation (or an ordinary derivation) of P if $d(xy) = d(x)y + xd(y)$, for any $x, y \in P$. We denote by $D(P)$ the set of all derivations of P. If d and d' are derivations of P then the mapping $d + d'$ is also a derivation of P, so $D(P)$ is an abelian group.

Let $a \in P$ and let $d_a: P \rightarrow P$ be a mapping defined by $d_a(x) = ax - xa$, for any $x \in P$. Then d_a is a derivation of P.

Let $d \in D(P)$. If there exists an element $a \in P$ such that $d = d_a$ then d is called an inner derivation (with respect to a) of P. We denote by $ID(P)$ the set of all inner derivations of P. $ID(P)$ is a (normal) subgroup of $D(P)$.

We shall say that P is an NS-ring if $ID(P) = D(P)$, that is, a ring P is an NS-ring if and only if every derivation of P is inner.
2. Higher derivations. Let P be a ring with identity and let S be a segment of $N = \{0, 1, \ldots \}$, that is, $S = N$ or $S = \{0, 1, \ldots, s\}$ for some $s \geq 0$. A family $d = (d_m)_{m \in S}$ of mappings $d_m : P \rightarrow P$ is called a derivation of order s of P (where $s = \sup(S) : S = \{0, 1, \ldots, s\}$) if the following properties are satisfied:

1. $d_m(x + y) = d_m(x) + d_m(y),$
2. $d_m(xy) = \sum_{i+j=m} d_i(x)d_j(y),$
3. $d_0 = \text{id}_P,$

for any $x, y \in P$, $m \in S$.

The set of derivations of order s of P, denoted by $D_s(P)$, is the group under the multiplication \ast defined by the formula

$$d \ast d' = \sum_{i+j=m} d_i \circ d'_j,$$

where $d, d' \in D_s(P)$ and $m \in S$.

Let $\delta : P \rightarrow P$ be a mapping. Then δ is an ordinary derivation of P if and only if (id_P, δ) is a derivation of order 1 of P. Therefore we may identify: $D(P) = D_1(P)$.

3. Examples of higher derivations. Let P and S be as in Section 2.

Example 3.1. Let $a \in P$, $d_0 = \text{id}_P$, and $d_m(x) = a^m x - a^{m-1} xa$, for $m \geq 1, x \in P$. Then $d = (d_m)_{m \in S}$ belongs to $D_s(P)$.

Example 3.2. Let $d \in D_s(P)$, $k \in S - \{0\}$ and let $\delta = (\delta_m)_{m \in S}$ be the family of mappings from P to P defined by

$$\delta = \begin{cases} 0, & \text{if } k \nmid m \\ d_r, & \text{if } m = rk. \end{cases}$$

Then $\delta \in D_s(P)$.

The derivation d (of order s) from Example 3.1 will be denoted by $[a, 1]$. The derivation \mathbf{d} (of order s) from Example 3.2, for $d = [a, 1]$
will be denoted by \([a,k]\).

4. Inner derivations. Let \(P\) and \(S\) be as in Section 2 and let \(a = (a_m)\)
(where \(m \in S\)) be a sequence in \(P\). Denote by \(\Delta(a)\) the element in \(D_s(P)\)
defined by

\[
\Delta(a)_m = ([a_1,1] \star [a_2,2] \star \ldots \star [a_m,m])_m,
\]

for any \(m \in S\).

Definition 4.1. Let \(d \in D_s(P)\). If there exists a sequence \(a = (a_m)\)
of elements of \(P\) such that \(d = \Delta(a)\) then \(d\) is called an **inner derivation**
of order \(s\) of \(P\).

Denote by \(\text{ID}_s(P)\) the set of inner derivations of order \(s\) of \(P\).

Proposition 4.2. \(\text{ID}_s(P)\) is a normal subgroup of \(D_s(P)\).

Proposition 4.3. The following properties are equivalent

1. \(P\) is an NS-ring,

2. \(\text{ID}_s(P) = D_s(P)\), for any \(0 < s \leq \infty\),

3. \(\text{ID}_s(P) = D_s(P)\), for some \(0 < s \leq \infty\).

5. R-derivations. Let \(R \subseteq P\) be rings with identity and let \(S\) be
a segment of \(N\). If a derivation (of order \(s\)) \(d \in D_s(P)\) satisfies the
condition

\[
d_m(r) = 0,
\]

for all \(m \in S - \{0\}\), \(r \in R\), then \(d\) is called **R-derivation of order \(s\)**
of \(P\), and the set of all such derivations is denoted by \(D^R_s(P)\).

We define similarly an ordinary \(R\)-derivation, an inner \(R\)-derivation,
an inner \(R\)-derivation of order \(s\) and also, we define similarly the groups
\(D^R(P)\), \(\text{ID}^R(P)\) and \(\text{ID}^R_s(P)\).

The group \(D^R_s(P)\) is a subgroup of \(D_s(P)\) and the group \(\text{ID}^R_s(P)\) is a
normal subgroup of \(D^R_s(P)\).

\(\text{\(\ldots\)}\)
We shall say that P is an NS-ring over R if $D^R_s(P) = D^R_s(P)$.

Proposition 5.1. The following properties are equivalent

(1) P is an NS-ring over R,

(2) $D^R_s(P) = D^R_s(P)$, for any $0 < s \leq \infty$,

(3) $D^R_s(P) = D^R_s(P)$, for some $0 < s \leq \infty$.

II. SPECIAL SUBRINGS OF MATRIX RINGS

6. Notices. Let R be a ring with identity, n a fixed natural number and ω a reflexive and transitive relation on the set $I_n = \{1, \ldots, n\}$. We denote by $M_n(R)$ the ring of $n \times n$ matrices over R and by $Z(R)$ the center of R. Moreover, we use the following conventions:

- $F(R)$ = the set of mappings from R to R,
- $\bar{\omega}$ = the smallest equivalence relation on I_n containing ω,
- T_ω = a fixed set of representatives of equivalence classes of $\bar{\omega}$,
- A_{ij} = ij-coefficient of a matrix A,
- E_{ij} = the element of the standard basis of $M_n(R)$,
- $M_n(R)_{\omega} = \{A \in M_n(R); A_{ij} = 0, \text{ for } (i,j) \notin \omega \}$.

The set $P = M_n(R)_{\omega}$ is a subring of $M_n(R)$ called a special subring with the relation ω. Every special subring contains the ring R (via injection $r \mapsto \bar{r}$, where \bar{r} is the diagonal matrix whose all coefficients on the diagonal are equal to $r \in R$).

7. Transitive mappings and regular relations. Let G be an abelian group. A mapping $f: \omega \longrightarrow G$ will be called transitive iff

\[f(a,c) = f(a,b) + f(b,c), \]

for any a,b and b,c.

If $f: \omega \longrightarrow G$ is a transitive mapping then we denote by $[f,_]$
(in the case $G = \mathbb{R}$) the mapping from ω to $F(\mathbb{R})$ defined by

$$[f,_](a,b)(r) = f(a,b)r - rf(a,b),$$

for $a \neq b$ and $r \in \mathbb{R}$. Clearly, $[f,_]$ is transitive too.

We shall say that f is **trivial** if there exists a mapping

$$\sigma: I_n \rightarrow G$$

such that

$$f(a,b) = \sigma(a) - \sigma(b),$$

for any $a \neq b$. Moreover, we shall say that f is **quasi-trivial** (in the case $G = \mathbb{R}$) if $[f,_]$ is trivial.

Every trivial transitive mapping from ω to \mathbb{R} is quasi-trivial, but the converse is not necessarily true.

Proposition 7.1. Let $f: \omega \rightarrow \mathbb{R}$ be a quasi-trivial transitive mapping. Then there exists a unique mapping $\tau: I_n \rightarrow F(\mathbb{R})$ such that

1. $[f,_](i,j) = \tau(i) - \tau(j)$, for all $i \neq j$,

2. $\tau(t) = 0$, for $t \in T_\omega$.

Moreover, $\tau(1), \ldots, \tau(n)$ are inner derivations of \mathbb{R}.

Definition 7.2. The relation ω is called **regular over an abelian group** G if every transitive mapping from ω to G is trivial.

8. The graph $\Gamma(\omega)$ and homology groups. Let \equiv be the equivalence relation on I_n defined by: $x \equiv y$ iff xwy and ywx. Denote by $[x]$ the equivalence class of $x \in I_n$ with respect to \equiv and let I'_n be the set of all equivalence classes. We define a relation ω' of partial order on I'_n as follows:

$[x] \omega' [y] \iff xwy.$

We will denote the pair (I'_n, ω') by $\Gamma(\omega)$ and call it the **graph of ω**.

Elements of I'_n we call **vertices** of $\Gamma(\omega)$ and pairs (a,b), where $aw'b$ and $a \neq b$, **arrows** of $\Gamma(\omega)$.

Let us imbed the set of the vertices of $\Gamma(\omega)$ in an Euclidean space of a sufficiently high dimension so that the vertices will be
linearly independent.

If \(a_0, a_1, \ldots, a_k \) are elements of \(I_n \) such that \(a_i \neq a_{i+1} \) for \(i=0,1,\ldots,k-1 \), then by \((a_0, a_1, \ldots, a_k) \) we denote the \(k \)-dimensional simplex with vertices \(a_0, \ldots, a_k \). The union of all 0, 1, 2 or 3-dimensional such simplicies we will denote also by \(\Gamma(\omega) \). Therefore, \(\Gamma(\omega) \) is a simplicial complex of dimension \(\leq 3 \).

Let \(C_k(\omega) \), for \(k=0,1,2,3 \), be the free abelian group whose free generators are \(k \)-dimensional simplicies of \(\Gamma(\omega) \). We have the following standard complex of abelian groups:

\[
0 \longrightarrow C_3(\omega) \overset{\partial_3}{\longrightarrow} C_2(\omega) \overset{\partial_2}{\longrightarrow} C_1(\omega) \overset{\partial_1}{\longrightarrow} C_0(\omega) \longrightarrow 0
\]

where

\[
\partial_1(a,b) = (b) - (a),
\partial_2(a,b,c) = (b,c) - (a,c) + (a,b),
\partial_3(a,b,c,d) = (b,c,d) - (a,c,d) + (a,b,d) - (a,b,c).
\]

Then \(H_1(\Gamma(\omega)) = \text{Ker}\partial_1/\text{Im}\partial_2 \), \(H_2(\Gamma(\omega)) = \text{Ker}\partial_2/\text{Im}\partial_3 \) and (by the Künneth formulas)

\[
H^1(\Gamma(\omega), G) = \text{Hom}(H_1(\Gamma(\omega)), G),
\]

for an arbitrary abelian group \(G \).

III DERIVATIONS IN SPECIAL SUBRINGS

9. Examples of derivations. Let \(P = M_n(R) \) be a special subring of \(M_n(R) \).

Example 9.1. Assume that \(f: \omega \longrightarrow R \) is a quasi-trivial transitive mapping and denote by \(\Delta^f \) the mapping from \(P \to P \) defined by

\[
\Delta^f_{pq}(B) = B_{pq} f(p,q) + \tau_f(p)(B_{pq}),
\]

for \(B \in P, p \neq q \), where \(\tau_f \) is the mapping \(\tau \) from Proposition 7.1.

Then \(\Delta^f \) is a derivation of \(P \). Moreover \(\Delta^f \) is inner if and only if \(f \) is trivial.
Example 9.2. Let $\delta = \{\delta_t; t \in T_\omega\}$ be a set of derivations of R. Denote by Θ_δ the mapping from P to P defined by

$$\Theta_\delta(B)_{pq} = \delta_t(B)_{pq},$$

for $B \in P, p\omega q$, where $t \in T_\omega$ such that $p\omega t$.

Then Θ_δ is a derivation of P. Moreover, Θ_δ is inner if and only if δ_t is inner for any $t \in T_\omega$.

10. A description of $D(P)$. Let $P = M_n(R)_\omega$ be a special subring of $M_n(R)$. The following theorem describes all derivations of P.

Theorem 10.1. Every derivation d of P has a unique representation:

$$d = d_A + \Delta^f + \Theta_\delta,$$

where

1. d_A is an inner derivation of P with respect to a matrix $A \in P$ such that $A_{pp} = 0$, for $p = 1, \ldots, n$,

2. $f: \omega \longrightarrow R$ is a quasi-trivial transitive mapping and Δ^f is the derivation from Example 9.1,

3. $\delta = \{\delta_t; t \in T_\omega\}$ is a set of derivations of R and Θ_δ is the derivation from Example 9.2.

The next theorem describes special subrings which are NS-rings.

Theorem 10.2. The following conditions are equivalent

1. P is an NS-ring,

2. R is an SN-ring and the relation ω is regular over $Z(R)$.

11. R-derivations of $M_n(R)_\omega$. Let $P = M_n(R)_\omega$ be a special subring of $M_n(R)$.

Example 11.1. Let $f: \omega \longrightarrow Z(R)$ be a transitive mapping and denote by Δ^f the mapping from P to P defined by $\Delta^f(B)_{pq} = f(p,q)B_{pq}$, for $B \in P$ and $p\omega q$. Then Δ^f is an R-derivation of P. Moreover Δ^f is
inner if and only if \(f \) is trivial.

Theorem 11.2. Any R-derivation \(d \) of \(P \) has a unique representation
\[
d = d_A + \Delta^f,
\]
where (1) \(d_A \) is an inner derivation of \(P \) with respect to a matrix \(A \in P \) such that \(A_{ij} \in Z(R) \) for \(i,j=1,\ldots,n \), and \(A_{ii} = 0 \) for \(i=1,\ldots,n \),
(2) \(f : \omega \rightarrow Z(R) \) is a transitive mapping and \(\Delta^f \) is the derivation from Example 11.1.

Theorem 11.3. The following conditions are equivalent
(1) \(P \) is an NS-ring over \(R \),
(2) \(\omega \) is regular over \(Z(R) \).

Corollary 11.4. If \(d \) and \(\delta \) are R-derivations of \(R \) then the derivation \(d \delta - \delta d \) is inner.

Corollary 11.5. If \(d \) is an R-derivation of \(P \) then \(d(Z(R)) = 0 \).

Corollary 11.6. If \(d \) is an R-derivation of \(P \) and \(U \) is an ideal of \(P \) then \(D(U) = U \).

12. An example of non-inner R-derivation. For \(n \leq 3 \) every relation \(\omega \) (reflexive and transitive) on \(I_n \) is regular over any group. Therefore (by Theorem 11.3), in this case any special subring of \(M_n(R) \) has only inner R-derivations. For \(n=4 \) it is not true. Let \(\omega_0 \) be the relation on \(I_4 = \{1,2,3,4\} \) defined by the graph
\[
\begin{array}{c}
1 \rightarrow 3 \\
\downarrow \\
4 \leftarrow 2
\end{array}
\]
that is, \(\omega_0 = \{(1,1),(2,2),(3,3),(4,4),(1,3),(1,4),(2,3),(2,4)\} \).
Denote by \(S_4(R) \) the special subring of \(M_4(R) \) with the relation \(\omega_0 \).
Then we have

$$S_4(R) = \begin{bmatrix} R & 0 & R & R \\ 0 & R & R & R \\ 0 & 0 & R & 0 \\ 0 & 0 & 0 & R \end{bmatrix}.$$

Consider the mapping $d: S_4(R) \rightarrow S_4(R)$ defined by

$$d(\begin{bmatrix} x_{11} & 0 & x_{13} & x_{14} \\ 0 & x_{22} & x_{23} & x_{24} \\ 0 & 0 & x_{33} & 0 \\ 0 & 0 & 0 & x_{44} \end{bmatrix}) = \begin{bmatrix} 0 & 0 & x_{13} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Then d is an R-derivation of $S_4(R)$ and d is not inner.

In [1] there is a description of the group $D^R(S_4(R))$. Note one of the properties of R-derivations of the ring $S_4(R)$.

Corollary 12.1. If d_1 and d_2 are R-derivations of $S_4(R)$ then the composition d_1d_2 is also R-derivation of $S_4(R)$.

13. A description of regular relations. Let $P = M_n(R)$ be a special subring of $M_n(R)$.

We know, by Theorem 10.2, that P is an NS-ring if and only if R is an NS-ring and the relation ω is regular over $Z(R)$. We know also, by Theorem 11.3, that P is an NS-ring over R if and only if the relation ω is regular over $Z(R)$.

In this section we give some sufficient and necessary conditions for the relation ω to be regular over an abelian group.

We may reduce our consideration to the case where ω is connected (that is, for any $a, b \in I_n$ there exist elements $a_1, \ldots, a_r \in I_n$ such that $a = a_1$, $b = a_r$ and $a_i = a_{i+1}$ or $a_{i+1} = a_i$, for $i = 1, \ldots, r-1$), because it is easy to show the following

Proposition 13.1. Let G be an abelian group. The relation ω is regular over G if and only if every connected component of ω is regular over G.

The next proposition says that we may also reduce our consideration to the case where \(\omega \) is a partial order.

Proposition 13.2. \(\omega \) is regular over \(G \) if and only if \(\omega' \) (see Section 8) is regular over \(G \).

Now we may give a description of regular relations.

Theorem 13.3. Assume that \(\omega \) is a connected partial order. The following properties are equivalent:

1. \(\omega \) is regular over some non-zero group,
2. \(\omega \) is regular over every torsion-free group,
3. \(\omega \) is regular over some torsion-free group,
4. \(\omega \) is regular over \(\mathbb{Z} \),
5. \(H_1(\Gamma(\omega)) \) is finite,
6. \(H^1(\Gamma(\omega), G) = 0 \), for any torsion-free group \(G \).

Theorem 13.4. Assume that \(\omega \) is connected partial order. The following properties are equivalent:

1. \(\omega \) is regular over any group,
2. \(\omega \) is regular over \(\mathbb{Q}/\mathbb{Z} \),
3. \(H_1(\Gamma(\omega)) = 0 \),
4. \(H^1(\Gamma(\omega), G) = 0 \), for any group \(G \).

Theorem 13.5. Assume that \(\omega \) is connected partial order, such that the order of the group \(H_1(\Gamma(\omega)) \) is equal to \(m > 1 \). Let \(G \) be an abelian group. The following properties are equivalent:

1. \(\omega \) is regular over \(G \),
2. \(G \) is an \(m \)-torsion-free group,
3. \(H^1(\Gamma(\omega), G) = 0 \).

Corollary 13.6. Let \(P = \mathcal{M}_n(\mathbb{R})_\omega \) be a special subring of \(\mathcal{M}_n(\mathbb{R}) \). The
following properties are equivalent

(1) Every R-derivation of P is inner,

(2) The relation ω is regular over $Z(R)$,

(3) $H^1(\Gamma(\omega), Z(R)) = 0$.

14. Examples. Let $P = M_n(R)$ where

a) $n \leq 3$, or

b) the graph $\Gamma(\omega)$ is a tree, or

c) the graph $\Gamma(\omega)$ is a cone (that is, there exists $b \in I_n$ such that $b \omega a$ or $a \omega b$ for any $a \in I_n$), in particular $P = M_n(R)$ is the ring of $n \times n$ matrices over R, or P is the ring of triangular $n \times n$ matrices over R.

Then every R-derivation (or every derivation, if every derivation of R is inner) of P is inner.

By Theorem 13.5 it follows that there exist relations ω which are regular over some groups and which are not regular over another groups. In the paper 1 there is an example of such a relation ω (for $n=17$) that if R is 2-torsion-free ring then $P = M_n(R)$ is an NS-ring over R, and if $\text{char}(R) = 2$ then $P = M_n(R)$ is not an NS-ring over R.

IV HIGHER DERIVATIONS IN SPECIAL SUBRINGS

15. An example of higher derivations. Let $P = M_n(R)$ be a special subring of $M_n(R)$, S a segment of N, and let $d = \{d(t); t \in T_\omega\}$ be a family of derivations of order s (where $s = \text{sup}(S)$) of the ring R.

Denote by $\mathcal{O}(d)$ the sequence $(d_m)_{m \in S}$ of mappings from P to P defined by

$$d_m(A)_{ij} = d_m((v(i))(A_{ij})),$$

for $m \in S$, $A \in P$, where $v: I_n \longrightarrow T_\omega$ is the mapping: $(j)p = t$ iff $p \omega t$.
Then $\Theta(d)$ is a derivation of order s of P. If $d \neq 0$ then the derivation $\Theta(d)$ is not an R-derivation.

In the next sections of this note we shall interesting only in R-derivations of order s of P.

16. **Transitive mappings of order** s. A sequence $f = \{f_m\}_{m \in S}$ of mappings $f_m : \omega \longrightarrow Z(R)$ is called a **transitive mapping of order** s (from ω to R) if the following properties are satisfied:

1. $f_0(p, q) = 1$, for all $p \omega q$,

2. $f_m(p, r) = \sum_{i+j=m} f_i(p, q)f_j(q, r)$, for all $m \in S$ and $p \omega q$ and $q \omega r$.

If $f = \{f_m\}_{m \in S}$ is a transitive mapping of order s then

$$f_1(p, r) = f_1(p, q) + f_1(q, r),$$

for any $p \omega q \omega r$ so, $f_1: \omega \longrightarrow Z(R)$ is a transitive mapping in the sense of Section 7.

17. **R-derivations of order** s. In this section we give a description of the group $D_s^R(P)$.

Example 17.1. Let $f = \{f_m\}_{m \in S}$ be a transitive mapping of order s from ω to $Z(R)$. Denote by Δ^f the sequence $\{\Delta^f_m\}_{m \in S}$ of mappings $\Delta^f_m : P \longrightarrow P$ defined by the following formula:

$$\Delta^f_m(A)_{pq} = f_m(p, q)A_{pq},$$

for all $A \in P$ and $p \omega q$.

Then Δ^f is an R-derivation of order s of P.

Theorem 17.2. Every R-derivation d of order s of P has a unique representation:

$$d = \Delta(A) * \Delta^f,$$

where
(1) $A = (A^{(m)})_{m \in S} - (0)$ is a sequence of matrices $A^{(m)} \in P \cap M_n(Z(R))$ such that $A^{(m)}_{ii} = 0$, for $i = 1, \ldots, n$, and $\Delta(A)$ is the inner derivation of order s with respect to A.

(2) f is a transitive mapping of order s from ω to R and Δ^f is the R-derivation from Example 17.1.

Corollary 17.3. If $d \in D^R_S(P)$ and U is an ideal of P then $d_{m}(U) \subseteq U$, for all $m \in S$.

Corollary 17.4. If $d \in D^R_S(P)$, then $d_{m}(Z(R)) = 0$, for all $m \in S - \{0\}$.

Corollary 17.5. Assume that there do not exist three different elements $e, b, c \in I$ such that $a \omega b \omega c$. Let $d = (d_{m})_{m \in S}$ be a sequence of mappings from P to P such that $d_{0} = id_{P}$. Then d is an R-derivation of order s of P if and only if every mapping d_{m} (for $m \in S - \{0\}$) is an ordinary R-derivation of P.

18. **Integrable derivations.** Let $S = \{0, 1, \ldots, s\}$, where $s < \omega$. Assume that S' is a segment of N such that $S \subseteq S'$. We say that an R-derivation $d \in D^R_S(P)$ is s'-integrable (where $s' = \sup(S') \leq \omega$) if there exists an R-derivation $d' = (d'_{m})_{m \in S'}$ of order s' of P such that $d'_{m} = d_{m}$, for all $m \in S$.

In the paper [3] there are some necessary conditions for any R-derivation of order s of P to be s'-integrable, and there is an example of non-integrable R-derivation (In this example $n=17$ and $R = Z_{2}$).

In this paper there are also proofs of the following two partial results:

Theorem 18.1. Let $s < s' \leq \beta$. If $H_{2}(\Gamma(\omega)) = 0$ and $H_{1}(\Gamma(\omega))$ is a free abelian group then every R-derivation of order s of P is s'-integrable.

Theorem 18.2. Assume that the homology group $H_{1}(\Gamma(\omega))$ is free abelian. Then
(1) Every R-derivation of order $s < 3$ of P is 3-integrable.

(2) If R is 2-torsion-free then every R-derivation of order < 5 of P
is 5-integrable.

(3) If R is 6-torsion-free then every R-derivation of order < 7 of P
is 7-integrable.

References

Institute of Mathematics
Copernicus University
Toruń, Poland

Department of Mathematics
Shinshu University
Matsumoto, Japan