ON SOME COHEN-MACAULAY SUBSETS OF A PARTIALLY ORDERED ABELIAN GROUP

To the memory of Professor Gishiro Maruyama

ANDRZEJ NOWICKI, KAZUO KISHIMOTO and TAKASI NAGAHARA

This paper is about some Cohen-Macaulay subsets of a partially ordered abelian group which are useful in the study of Galois extensions of higher derivation type (cf. Remark and [4]).

Let $N = \{1, \ldots, n\}$, and $Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$. Now, if $G = (f_1) \times \cdots \times (f_n)$ is an abelian group which is the direct product of infinite cyclic groups (f_i) generated by f_i then G becomes a partially ordered group by

$$(\#) : \quad \prod_{i=1}^{n} f_i^i \supseteq \prod_{i=1}^{n} f_i^i \quad \Leftrightarrow \quad \sum_{j=1}^{n} s_j \supseteq \sum_{j=1}^{n} t_j \text{ for all } k \in N.$$

This partially ordered group G will be denoted by $(G, \#)$. Clearly $(G, \#)$ can be regarded as the partially ordered additive group $(Z^n, \#) = Z_1 \times \cdots \times Z_n$, where $Z_i = Z$ for all $i \in N$. As it is seen later on, $(Z^n, \#)$ is a modular lattice.

For $u_i, v_i \in Z$ with $u_i \leq v_i \ (i \in N)$, we set

$$\Delta = \prod_{i=1}^{n} [u_i, v_i] = \{(a_1, \ldots, a_n) : u_i \leq a_i \leq v_i, a_i \in Z\}$$

which is a subposet of $(Z^n, \#)$.

Our purpose of this note is to prove that Δ is a modular lattice under the ordering in $(Z^n, \#)$ (Theorem 7), and if, in particular, $u_i < v_i$ for all $i \in N$ then Δ is a modular sublattice of $(Z^n, \#)$ (Theorem 6).

In what follows, we shall use the following conventions:

Let A be a poset with order \geq and Δ a subposet of A. Then, for a, $b \in A$ and $c, d \in \Delta$,

- $a > b$ if and only if $a \geq b$ and $a \neq b$.
- $a \gg b$ (resp. $c \gg d$) if and only if $a > b$ (resp. $c > d$) and there are not elements e in A (resp. e' in Δ) such that $a > e > b$ (resp. $c > e' > d$).

For $a = (a_1, \ldots, a_n) \in (Z^n, \#)$, this is sometimes abbreviated to $a = (a_i)$, and for any $k \in N$, $\sum_{j=1}^{n} a_j$ is denoted by $t_k(a)$.

Let (Z^n, \ast) be a vector group with order \geq defined by

$$(\ast) : \quad (a_i) \geq (b_i) \quad \Leftrightarrow \quad a_i \geq b_i \text{ for all } i \in N \text{ (cf. [3])}.$$

Then, one will easily see that (Z^n, \ast) is a modular lattice. We consider
here the mapping
\[\phi: (\mathbb{Z}^n, \#) \longrightarrow (\mathbb{Z}^n, *) \]
defined by \(\phi(a) = (t_i(a)) \). Clearly \(\phi(a+b) = \phi(a) + \phi(b) \) for \(a, b \in (\mathbb{Z}^n, \#) \).
By our definition, \(\phi \) is injective. Moreover, since, for \((x_i) \in (\mathbb{Z}^n, *) \),
\[\phi((x_1 - x_2, x_2 - x_3, \ldots, x_{n-1} - x_n, x_n)) = (x_1, \ldots, x_n), \]
\(\phi \) is surjective. Hence \(\phi \) is a group isomorphism which preserves orders, and so, \((\mathbb{Z}^n, \#)\) is a modular lattice.

Now, let \(a = (a_i), b = (b_i) \in (\mathbb{Z}^n, \#) \), and \(a > b \). Then \(\{ c \in (\mathbb{Z}^n, \#); a \equiv c \equiv b \} \) is a finite set whose cardinal number is
\[\prod_{i=1}^n (t_i(a) - t_i(b) + 1) = \prod_{i=1}^n (\sum_{j=1}^n (a_j - b_j) + 1). \]

By \(f(a) \), we denote \(\sum_{i=1}^n t_i(a) \). Then one will easily see that \(f(a) = \sum_{i=1}^n i a_i \).

Additionally, let \(a \gg b \), and \(\phi(a) = (x_1, \ldots, x_n) \). Then \(\phi(a) \gg \phi(b) \),
and whence
\[\phi(b) = (x_1, \ldots, x_{i-1}, x_i - 1, x_{i+1}, \ldots, x_n) \]
for some \(1 \leq i \leq n \). Hence, it follows that there holds either
\[b = (a_1, \ldots, a_{i-2}, a_{i-1} + 1, a_i - 1, a_{i+1}, \ldots, a_n) (2 \leq i \leq n) \]
\[b = (a_i - 1, a_2, \ldots, a_n). \]
Moreover, we see that \(f(b) = \sum_{i=1}^n t_i(b) = \sum_{i=1}^n x_i - 1 = f(a) - 1 \).

Our study starts with the following

Lemma 1. Let \(a = (a_i), b = (b_i) \in (\mathbb{Z}^n, \#), \) and \(a > b \). If
\[a = a^{(0)} \gg a^{(1)} \gg \ldots \gg a^{(s)} = b \quad (a^{(s)} \in (\mathbb{Z}^n, \#)) \]
then \(p = \sum_{i=1}^n i (a_i - b_i) \), whence the length \(p \) is uniquely determined by \(a > b \).

Proof.
\[\sum_{i=1}^n i (a_i - b_i) = \sum_{i=1}^n i a_i - \sum_{i=1}^n i b_i = f(a) - f(b) \]
\[= \sum_{i=1}^n (f(a^{(i)}) - f(a^{(i+1)})) = p. \]

The above \(p \) will be denoted by \(| a > b | \).

Lemma 2. Let \(\Delta = \prod_{i=1}^n [u_i, v_i] \) where \(u_i, v_i \in \mathbb{Z} \) and \(u_i < v_i \) \((i \in N)\). If \(a, b \in \Delta \) and \(a \gg b \) then \(a > b \).
Proof. Let \(a = (a_i) \) and \(b = (b_i) \). One will easily see that our assertion is true for \((Z, \#)\). Hence we assume that our lemma holds for \((Z^{n-1}, \#)\). For any \(r = (r_1, \ldots, r_n) \in (Z^n, \#)\), we set \(C_2(r) = (r_2, \ldots, r_n) \), and \(C_2(\Delta) = \{ C_2(r) : r \in \Delta \} \). Then \(C_2(\Delta) \) can be regarded as a subset of \((Z^{n-1}, \#)\), and \(C_2(a), C_2(b) \subseteq C_2(\Delta) \). Clearly \(C_2(a) \cong C_2(b) \). In case \(C_2(a) = C_2(b) \), one will easily see that \(b = (a_1 - 1, a_2, \ldots, a_n) \) where \(a_1 > u_1 \), and so \(a \gg b \). Hence, let \(C_2(a) > C_2(b) \). Then, there exists an element \(e' \) in \(C_2(\Delta) \) such that

\[
C_2(a) \gg_{C_2(\Delta)} e' \cong C_2(b)
\]

By the induction assumption, we have \(C_2(a) \gg e' \). Hence \(e' \) coincides with either

\[
f' = (a_2, \ldots, a_{k-1}, a_{k-1} + 1, a_{k-1}, a_{k+1}, \ldots, a_n)
\]

where \(3 \leq k \leq n, a_{k-1} < v_{k-1} \) and \(a_k > u_{k} \) (in case \(k = 3, \ f' \) is taken as \((a_2 + 1, a_3 - 1, a_4, \ldots, a_n) \)), or

\[
g' = (a_2 - 1, a_3, \ldots, a_n)
\]

where \(a_2 > u_2 \). In case \(e' = f' \), we set

\[
f = (a_1, a_2, \ldots, a_{k-2}, a_{k-1} + 1, a_{k-1}, a_{k+1}, \ldots, a_n)
\]

Then \(f \in \Delta \), \(t_i(f) = t_i(a) \cong t_i(b) \). \(C_2(f) = e' \cong C_2(b) \). and whence \(a > f \cong b \) in \(\Delta \). Hence \(f = b \), and so \(a \gg b \). In case \(e' = g' \), we set

\[
g = (a_1 + 1, a_2 - 1, a_3, \ldots, a_n)
\]

If \(a_1 < v_1 \) then there exists a chain \(a > g \cong b \) in \(\Delta \), whence \(g = b \), and so, \(a \gg b \). If \(a_1 = v_1 \) then there is a chain

\[
a > (a_1 - 1, a_2, \ldots, a_n) > (a_1, a_2 - 1, a_3, \ldots, a_n) \cong b \text{ in } \Delta
\]

which is a contradiction. This completes the proof.

By virtue of the results of Lemma 1 and Lemma 2, we obtain the following

Theorem 3. Let \(\Delta = \Pi_{i=1}^n [u_i, v_i] \) where \(u_i, v_i \in Z \) and \(u_i < v_i \) (i \(\in \) \(N \)). Then, if \(a = (a_i), b = (b_i) \in \Delta, a \gg b \), and

\[
a = a^{(0)} \gg a^{(1)} \gg \cdots \gg a^{(q)} = b \quad (a^{(i)} \in \Delta)
\]

then \(q = |a \gg b| = \sum_{i=1}^n i(a_i - b_i) \), and \(a^{(t)} \gg a^{(t+1)} \) for \(t = 0, 1, \ldots, q - 1 \).

Lemma 4. Let \(\Delta = \Pi_{i=1}^n [u_i, v_i] \) where \(u_i, v_i \in Z \) and \(u_i < v_i \) (i \(\in \) \(N \)). Let \(b = (b_i), c, d \in \Delta, c \neq d, c \gg b, d \gg b, \text{ and } e = c \cup d \in \text{ the lattice } (Z^n, \#). \) Then

\[
e \in \Delta, e \gg c \gg b, e \gg d \gg b,
\]
and for \(r \in \Delta \) with \(r \geq c \) and \(r \geq d \),
\[
r \geq e \text{ and } |r \geq e| = |r > b| - 2.
\]

Proof. We have the two cases (1) and (2):

(1) \(c = (b_1 + 1, b_2, \ldots, b_n) \) and
\[
d = (b_1, \ldots, b_{j-2}, b_{j-1} - 1, b_j + 1, b_{j+1}, \ldots, b_n) \quad (2 \leq j \leq n);
\]

(2) \(c = (b_1, \ldots, b_{i-2}, b_{i-1} - 1, b_i + 1, b_{i+1}, \ldots, b_n) \quad (2 \leq i \leq n) \) and
\[
d = (b_1, \ldots, b_{j-2}, b_{j-1} - 1, b_j + 1, b_{j+1}, \ldots, b_n) \quad (i \leq j - 1 < n).
\]

In case (1) and \(j - 1 > 1 \), we set
\[
e' = (b_1 + 1, b_2, \ldots, b_{j-2}, b_{j-1} - 1, b_j + 1, b_{j+2}, \ldots, b_n).
\]

In case (1) and \(j - 1 = 1 \), we set
\[
e' = (b_1, b_2 + 1, b_3, \ldots, b_n).
\]

In case (2) and \(j - 1 > i \), we set
\[
e' = (b_1, \ldots, b_{i-2}, b_{i-1} - 1, b_i + 1, b_{i+1}, \ldots, b_{j-2}, b_{j-1} - 1, b_j + 1, b_{j+1}, \ldots, b_n).
\]

In case (2) and \(j - 1 = i \), we set
\[
e' = (b_1, \ldots, b_{i-2}, b_{i-1} - 1, b_i, b_{i+1} + 1, b_{i+2}, \ldots, b_n).
\]

Then we have
\[
e' \in \Delta, e' \gg c \gg b \text{ and } e' \gg d \gg b.
\]

Since \((Z^n, \#)\) is a lattice, \(e'\) coincides with \(c \cup d\) in \((Z^n, \#)\), that is, \(e' = e\). Moreover, for \(r \in \Delta\) with \(r \geq c\) and \(r \geq d\), we see that
\[
r \geq e' \text{ and } |r \geq e'| = |r > b| - 2.
\]

Lemma 5. Let \(\Delta = \prod_{i} [u_i, v_i] \) where \(u_i, v_i \in Z \) and \(u_i < v_i \) \((i \in N)\). Let \(c, d \in \Delta, e = c \cup d \), and \(f = c \cap d \) in the lattice \((Z^n, \#)\). Then \(e, f \in \Delta\).

Proof. Clearly \(u = (u_i) \in \Delta\), \(c \geq u\), and \(d \geq u\). Hence, we have \(e \geq u\) and a finite length \(|e \geq u|\). Let \(m(c, d)\) be the smallest integer in \(|e \geq w| ; c \geq w, d \geq w, w \in \Delta\). If \(m(c, d) = 0 \) then \(c = d = e\). By the induction with respect to \(m(c, d)\), we shall prove that \(e \in \Delta\). Hence, let \(m(c, d) = t \geq 1\), and assume that \(c' \cup d' \in \Delta\) for \(c', d' \in \Delta\) with \(m(c', d') < t\). If either \(c \geq d\) or \(d \geq c\) then our assertion holds trivially. Hence, let \(c \nleq d\) and \(d \nleq c\). Let \(w_0\) be an element of \(\Delta\) such that \(|e \geq w_0| = m(c, d)\), and consider the following chains (note Theorem 3):
\[
e \geq c = c^{(0)} \gg c^{(1)} \gg \cdots \gg c^{(q)} = w_0 \quad (c^{(q)} \in \Delta),
\]
\[
e \geq d = d^{(0)} \gg d^{(1)} \gg \cdots \gg d^{(q)} = w_0 \quad (d^{(q)} \in \Delta).
\]
Clearly \(c^{(q-1)} \neq d^{(q-1)} \). To prove \(e \in \Delta \), we shall distinguish the following cases:

1. \(c \gg w_0, \ d \gg w_0 \);
2. \(c \gg w_0, \ d \geq d^{(q-2)} \ (q \geq 2) \);
3. \(c \geq c^{(q-2)}, \ d \geq d^{(q-2)} \ (p \geq 2, \ q \geq 2) \).

In case (1), we have \(e = c \cup d \in \Delta \) by Lemma 4.

In case (2), we set \(w_1 = c \cup d^{(q-1)} \). Then, we have \(w_1 \in \Delta \) by Lemma 4, and \(w_1 \cup d = e \). Moreover, \(w_1 \geq d^{(q-1)}, \ d \geq d^{(q-1)} \), and so, \(m(w_1, d) < t \). Hence, we have \(w_1 \cup d \in \Delta \) by the induction assumption, that is, \(e \in \Delta \).

In case (3), we set \(w_1 = c^{(q-1)} \cup d^{(q-1)} \). Then, we have \(w_1 \in \Delta \) by Lemma 4, and \((c \cup w_1) \cup (w_1 \cup d) = e \). Since \(m(c, w_1) < t \) and \(m(w_1, d) < t \), we have \(c \cup w_1 \in \Delta \) and \(w_1 \cup d \in \Delta \). Moreover, since \(m(c \cup w_1, w_1 \cup d) < t \), it follows that \((c \cup w_1) \cup (w_1 \cup d) \in \Delta \), that is, \(e \in \Delta \). By the duality of the lattice \((Z^n, \#)\), we have \(f \in \Delta \). This completes the proof.

Now, by virtue of the result of Lemma 5, we obtain the following theorem which is our main result.

Theorem 6. Let \(\Delta = \prod_{i=1}^{n} [u_i, v_i] \) where \(u_i, v_i \in \mathbb{Z} \) and \(u_i < v_i \ (i \in N) \). Then \(\Delta \) is a modular sublattice of \((Z^n, \#)\).

By the general theory of modular lattices, it has been known that for any modular lattice with both chain conditions and for any chain \(a \geq b \) in its lattice, the composition chains \(a \gg \ldots \gg b \) has a unique length (cf. Lemma 1, Theorem 3, Theorem 6, [1], [2], and [5]). Now, we shall prove the following

Theorem 7. Let \(\Delta = \prod_{i=1}^{n} [u_i, v_i] \) where \(u_i, v_i \in \mathbb{Z} \) and \(u_i \leq v_i \ (i \in N) \). Then \(\Delta \) is a modular lattice under the ordering in \((Z^n, \#)\), and whence it is a Cohen-Macaulay poset. If \(a = (a_i), \ b = (b_i) \in \Delta \), \(a > b \) and

\[
 a = a^{(0)} \gg a^{(1)} \gg \ldots \gg a^{(q)} = b \ (a^{(l)} \in \Delta)
\]

then \(q = |a > b| - \sum_{i=1}^{n} (i(i-1)(a_i-b_i) = \sum_{i=1}^{n} (i-1)(a_i-b_i) \) where \(i(0) \) is the cardinal number of the set \(\{j \in N; \ u_j = v_j, \ j < i\} \).

Proof. Let \(\{\varepsilon(1), \ldots, \varepsilon(m)\} = \{i \in N; \ u_i < v_i\} \) where \(\varepsilon(1) < \cdots < \varepsilon(m) \). Then, there is an ordered isomorphism

\[
 \psi: \Delta = \prod_{i=1}^{n} [u_i, v_i] \longrightarrow \prod_{i=1}^{n} [u_{\varepsilon(i)}, v_{\varepsilon(i)}] \subset (Z^n, \#)
\]
such that \(\psi(d_1, \ldots, d_n) = (d_{\varepsilon(1)}, \ldots, d_{\varepsilon(m)}) \). By Theorem 6, \(\psi(\Delta) \) is a mod-
ular sublattice of \((\mathbb{Z}^n, \#)\). Hence \(\Delta\) is a modular lattice under the ordering in \((\mathbb{Z}^n, \#)\). Since \(u_{\varepsilon} \prec v_{\varepsilon}\) for \(j = 1, \ldots, m\) and \(\psi(a^{t+1}) \gg_{\psi \Delta} \psi(a^{t})\) in \(\psi(\Delta)\) for \(t = 0, 1, \ldots, q-1\), we have \(q = \sum_{t=1}^{n} \psi(a_{\varepsilon}^{t}) \geq \sum_{t=1}^{n} \psi(a_{\varepsilon}^{t-1})\) by Theorem 3. Hence, it follows from Lemma 1 that

\[
|a > b| = \sum_{t=1}^{n} \psi(a_{\varepsilon}^{t}) - \sum_{t=1}^{n} \psi(a_{\varepsilon}^{t-1}) + \sum_{t=1}^{n} \psi(a_{\varepsilon}^{t}) - \sum_{t=1}^{n} \psi(a_{\varepsilon}^{t-1}) = q + \sum_{t=1}^{n} \psi(0) (a_{\varepsilon}^{t} - b_{\varepsilon}^{t}).
\]

Remark. Let \(B\) be a ring with an identity 1 and \(A\) a subring of \(B\) with common identity 1 of \(B\). In [4], a sequence of additive \(A\)-endomorphisms \(\{f_0 = 1, f_1, \ldots, f_n\}\) of \(B\) is said to be a relative sequence of homomorphisms with \(\Psi\) if it satisfies the following conditions: for every \(j \in N = \{1, 2, \ldots, n\},\)

1. \(f_j f_k = f_k f_j\) and \(f_k(1) = 0\) for all \(k \in N\).
2. There exists \(\Psi_j = \{g(f_i, f_j) ; 0 \leq i \leq j\} \subset \text{End}(B)\) such that
 - \(g(f_i, f_j)(x)(y) = \sum_{t=0}^{j} g(f_j, f_i)(x)f_i(y)\) for \(x, y \in B\),
 - \(g(f_i, f_0) = f_i\),
 - \(g(f_i, f_j)\) is a ring isomorphism.

As is easily seen, for an \(A\)-automorphism \(\sigma\) of \(B\), if we put \(D = \sigma - 1\), then \(\Phi = \{D^0 = 1, D, \ldots, D^n\}\) becomes a relative sequence of homomorphisms with \(\Psi\) such that

\[
\Psi_j = \{g(D^i, D^j) = \binom{j}{i} \sigma^i D^{j-i} ; 0 \leq i \leq j\}.
\]

A subset \(\Phi = \{d_0 = 1, d_1, \ldots, d_n\}\) of \(\text{End}(B)\) is said to be an \(A\)-higher derivation of \(B\) if \(d_j(xy) = \sum_{t=0}^{j} d_{j-t}(x)d_t(y)\) for \(x, y \in B\). Then \(\Phi\) becomes a relative sequence of homomorphisms with \(\Psi\) such that \(\Psi_j = \{g(d_i, d_j) = d_{j-i} ; 0 \leq i \leq j\}\).

Now, for a relative sequence of homomorphisms \(\Phi = \{f_0 = 1, f_1, \ldots, f_n\}\) with \(\Psi\), we consider the multiplication subsemigroup \(L\) of \(\text{End}(B)\) which is generated by \(\Phi\), and assume the following conditions on \(L\):

1. There exists a positive integer \(q\) such that \((f_k)^q = 0\) and \((f_k)^s \neq 0\) for all \(k \in N\) and \(0 \leq s \leq q - 1\).
2. \(\Pi_{l=1}^{n} f_{l}^{s_l} \neq 0\) if \(0 \leq s_l \leq q - 1\) for all \(i \in N\).
3. If \(\Omega = \Pi_{l=1}^{n} f_{l}^{r_l}\) and \(\Lambda = \Pi_{l=1}^{n} f_{l}^{r_l} (0 \leq s_l, r_l \leq q - 1)\), then \(\Omega = \Lambda\) if and only if \(s_l = r_l\) for all \(i \in N\).

Then \(L = U \cup \{0\}\) where \(U = \{\Pi_{l=1}^{n} f_{l}^{s_l} ; 0 \leq s_l \leq q - 1\}\) becomes a
commutative finite multiplicative subsemigroup of \(\text{End}(B_s) \), and \(U \) becomes a modular lattice as is shown in Theorem 6. Further, in this case, we can see that
\[
(i)^* : \quad \mathcal{Q}(xy) = \sum_{r \leq \mathcal{Q}} g(\mathcal{Q}, \mathcal{I})(x)\mathcal{I}(y)
\]
for \(x, y \in B \) where \(g(\mathcal{Q}, \mathcal{I}) \) is obtained as a sum of products of \(g(f_{i_s} f_{o_s})'s \) with \(\prod_s f_{i_s} = \mathcal{Q} \) and \(\prod_s f_{o_s} = \mathcal{I} \). One of the authors made a study on Galois theory of \(B/A \) where \(A = B^t = \{ b \in B; \Lambda(b) = 0 \text{ for all } \Lambda(\neq 1) \in U \} \) in [4]. In that paper, \((i)^*\) and the uniqueness of \(|\mathcal{Q}| > 1 \) play important rôles. One of motivations of this paper comes from this study of Galois theory.

References

Institute of Mathematics
N. Copernicus University, 87-100 Toruń, Poland
Department of Mathematics
Shinshu University, Matsumoto 390, Japan
Department of Mathematics
Okayama University, Okayama 700, Japan

(Received October 1, 1986)