INNER DERIVATIONS OF HIGHER ORDERS

By

Andrzej NOWICKI

Summary. We define inner derivations of higher order of a ring \(R \) and we prove that they correspond to the inner automorphisms of a suitable ring. Moreover, we prove that any higher derivation of \(R \) is inner if and only if any usual derivation of \(R \) is inner.

I.

Let \(R \) be a ring with identity and let \(S \) be a segment of \(N=\{0, 1, 2, \ldots \} \), that is, \(S=N \) or \(S=\{0, 1, \ldots, s\} \) for some \(s\geq 0 \).

A family \(d=(d_n)_{n\in S} \) of mappings \(d_n: R \to R \) is called a derivation of order \(s \) of \(R \) (where \(s=\sup S \leq \infty \)) if the following properties are satisfied:

1. \(d_n(a+b)=d_n(a)+d_n(b) \),
2. \(d_n(ab)=\sum_{i+j=n} d_i(a)d_j(b) \),
3. \(d_0=\text{id}_R \).

The set of derivations of order \(s \) of \(R \), denoted by \(D_s(R) \), is the group under the multiplication \(* \) defined by the formula

\[
(d * d')_n = \sum_{i+j=n} d_i d'_j ,
\]

where \(d, d' \in D_s(R) \) and \(n \in S \) (\([1], [5], [7]\)).

It is easy to prove the following two lemmas.

Lemma 1.1. Let \(a \in R \), \(d_e=id_e \), and

\[
d_n(x)=a^nx-a^{n-1}xa=a^{n-1}(ax-xa)
\]

for \(n\geq 1 \), \(x \in R \). Then \(d=(d_n)_{n\in S} \) belongs to \(D_s(R) \).

Lemma 1.2. Let \(d \in D_s(R) \), \(k \in S \setminus \{0\} \) and let \(\delta=(\delta_n)_{n\in S} \) be the family of mappings from \(R \) to \(R \) defined by

\[
\delta_n = \begin{cases}
0, & \text{if } k \nmid n, \\
\delta_r, & \text{if } n=rk.
\end{cases}
\]
Then $\delta \in D_s(R)$.

The derivation d from Lemma 1.1 will be denoted by $[a, 1]$ and the derivation δ from Lemma 1.2, for $d=[a, 1]$, will be denoted by $[a, k]$. Therefore, for $a \in R$, $k \in \mathbb{S}\setminus\{0\}$, $x \in R$, $n \in \mathbb{S}$:

$$
[a, k]_n(x) =
\begin{cases}
x & \text{if } n=0, \\
0 & \text{if } k \nmid n, \\
ar^n - ar^{-1}xa & \text{if } n \neq 0 \text{ and } n=kr.
\end{cases}
$$

Let $a=(a_n)_{n \in \mathbb{S}}$ be a sequence in R. Denote by $\Delta(a)$ the element in $D_s(R)$ defined by

$$
\Delta(a)_n = ([a_1, 1] \ast [a_2, 2] \ast \cdots \ast [a_n, n])_n.
$$

For example

$$
\Delta(a)_1(x) = a_1x - xa_1 \\
\Delta(a)_2(x) = a_1^2x - a_1xa_1 + a_2x - xa_2 \\
\Delta(a)_3(x) = a_1^3x - a_1^2xa_1 + a_1a_2x + xa_2a_1 - a_1xa_1 - a_2xa_1 + a_3x - xa_3 \\
\Delta(a)_4(x) = a_1^4x - a_1^3xa_1 + a_1^2a_3x + a_2a_3x - a_1^2xa_1 + a_3^2x - xa_3 - a_4x + xa_4,
$$

$$
+ a_1xa_4a_1 + a_1a_3x - a_1xa_1 + xa_3a_1 + a_4x - xa_4.
$$

Definition 1.3. Let $d \in D_s(R)$. If there exists a sequence $a=(a_n)_{n \in \mathbb{S}}$ of elements of R such that $d = \Delta(a)$ then d is called an inner derivation of order s of R.

II.

Denote by T the additive group of the product of $s+1$ copies of R. The element $(a_n)_{n \in \mathbb{S}}$ will be always denoted by a. We define a multiplication on T as follows:

$$ab = c, \text{ where } c_n = \sum_{i+j=n} a_ib_j.
$$

T is a ring with identity $(1, 0, 0, \ldots)$ ([7], [8]). Notice that an element a is invertible in T iff a_0 is invertible in R.

For any $k \in \mathbb{S}$, let π_k denote the k-th projection from T to R. If $a \in R$ then $j_k(a)$, $p_k(a)$ and $q_k(a)$ (where $k \in \mathbb{S}$, $l \in \mathbb{S}\setminus\{0\}$) denote the elements of T defined by the following conditions:

$$
\pi_n j_k(a) =
\begin{cases}
0, & \text{for } n \neq k, \\
a, & \text{for } n = k,
\end{cases}
$$

$$
\pi_n p_k(a) =
\begin{cases}
0, & \text{if } l \nmid n, \\
a^*, & \text{if } n = rl,
\end{cases}
$$

$$
\pi_n q_k(a) =
\begin{cases}
0, & \text{if } l \nmid n, \\
a, & \text{if } n = rl.
\end{cases}
$$
Inner derivations of higher orders

\[\pi_n q_l(a) = \begin{cases}
1, & \text{for } n=0, \\
0, & \text{for } n \geq 1, n \neq l, \\
a_l, & \text{for } n = l.
\end{cases} \]

Let \(T_k \) (for \(k \in \mathbb{S} \setminus \{0\} \)) denote the set of elements \(a \) in \(T \) such that \(a_0 = 1 \) and \(a_i = 0 \) for \(i = 1, 2, \ldots, k \), and let \(T_k \) be the set of elements \(a \) in \(T \) such that \(a_0 = 1 \).

Observe that \(q_k(a) = 1 + q_k(a) \), and every element in \(T_k \) is of the form \(1 + f_{n+l}(1)a \), for some \(a \in T \).

It is easy to verify the following

Lemma 2.1. Let \(k \in \mathbb{S}, a \in R \).

1. If \(a, b \in T_k \) then \(ab, a^{-1} \in T_k \).
2. \(p_k(a)^{-1} = q_k(a) \).
3. If \(b \in T_k \) then \(bp_k(-b) = a \), where \(a_n = b_n \) for \(n = 0, 1, \ldots, k-1 \), and \(a_k = 0 \).

Now we prove two lemmas.

Lemma 2.2. Let \(b \in T_k \). Then there exists an element \(a \) in \(T_k \) such that \(bp_k(a) \in T_k \), for any \(k \in \mathbb{S} \setminus \{0\} \).

Proof. Let \(a_i = -b_i \). Then, by Lemma 2.1(3), we have \(bp_k(a_i) \in T_i \). Suppose that elements \(a_1, \ldots, a_n \) satisfy the condition

\[v^{(k)} = bp_k(a_i) \cdots p_k(a_k) \in T_k \]

for \(k = 1, 2, \ldots, n \).

Put \(a_{n+1} = -\pi_{n+1}(v^{(n)}) \). Then

\[v^{(n+1)} = v^{(n)} p_{n+1}(a_{n+1}) \]

\[-bp_k(a_i) \cdots p_{n+1}(a_{n+1}) \in T_{n+1} \]

by Lemma 2.1(3).

Lemma 2.3. Let \(a \in T_k \). Then there exists \(b \in T_k \) such that

\[p_k(a) p_k(a) \cdots p_k(a) b \in T_k \]

for any \(k \in \mathbb{S} \setminus \{0\} \).

Proof. Put \(b_n = 1 \) and \(b_n = \pi_n(u_{(m)} \), for \(n \geq 1 \), where \(u_{(m)} = q_n(-a_n) \cdots q_1(-a_1) \).

Then \(b_n = \pi_n(u^{(n)}) \) for any \(n \in \mathbb{S} \setminus \{0\} \) and \(n \geq n \). In fact, if \(k \geq 2 \) then
\[\pi_n(u^{(k+1)}) = \pi_n(u^{(k)}) + j_{n+1}(-a_{k+1})u^{(k)} \]
\[= \pi_n(u^{(k)}) + \pi_n(j_{n+1}(-a_{k+1})u^{(k)} \]
\[= \pi_n(u^{(k)}). \]

Therefore, if \(b = (b_n)_{n \in S} \) then \(\pi_n(b - u^{(k)}) = 0 \) for \(i = 0, 1, \ldots, k \). So \(b = u^{(k)} + j_{n+1}(1)v^{(k)} \), for some \(v^{(k)} \in T \), and, by Lemma 2.1, we have
\[p_1(a_1)p_2(a_2) \ldots p_{n}(a_n)b = p_1(a_1) \ldots p_{n}(a_n)q_1(-a_1) \ldots q_{n}(-a_{n}) + j_{n+1}(1)v^{(k)} \]
\[= 1 + j_{n+1}(1)c, \]
for some \(c \in T \). This completes the proof.

III.

If \(d \in D_s(R) \) then \(\exp(d) \) will denote the ring automorphism of \(T \) defined as follows:
\[\exp(d)(a) = b, \text{ where } b_n = \sum_{i+j=n} d_i(a_j) \quad ([5], [7], [8]). \]

In [7] Ribenboim showed that the mapping \(\exp \) is a group isomorphism from \(D_s(R) \) to the group \(B_k(R) \) of such automorphisms \(h : T \to T \) that \(h(j_1(1)) = j_1(1) \), \(\pi_n h = id_R \). If \(h \in B_k(R) \) then the derivation \(d = (d_n)_{n \in S} \), where \(d_n(x) = \pi_n h j_n(x) \) for \(x \in R \), satisfies the condition \(h = \exp(d) \) ([7]).

For any \(a \in T_s \) denote by \(\langle a \rangle \) the inner automorphism of \(T \) defined by
\[\langle a \rangle(x) = a^{-1}xa. \]
Observe that \(\langle a \rangle \) belongs to \(B_k(R) \).

Lemma 3.1.

1. If \(a \in R, \ k \in S \setminus \{0\} \) then \(\exp([a, k]) = \langle q_k(-a) \rangle \).
2. Let \(a \in T_s \). If \(d = (d_n)_{n \in S} \) is an element of \(D_s(R) \) such that \(\exp(d) = \langle a \rangle \), then \(d_1 = d_2 = \cdots = d_s = 0 \).

Proof.

1. If \(d \in D_s(R) \) satisfies \(\exp(d) = \langle q_k(-a) \rangle \) then
\[d_n(x) = \pi_n q_k(-a) j_n(x) \]
\[= \pi_n q_k(-a) j_n(x) q_k(-a) \]
\[= \pi_n p_n(a) j_n(x)(1 + j_k(-a)), \quad \text{for } n \in S. \]

Hence \(d_n(x) = 0 \) if \(k \not\in n \), and \(d_n(x) = a^n x - a^{n-1} x a \) if \(n = kr \). Therefore \(d = [a, k] \).

2. It follows from Lemma 2.1 since \(d_n = \pi_n \langle a \rangle j_n \).

Now we are ready to prove the following

Theorem 3.2. Let \(d \in D_s(R) \). Then \(d \) is inner iff there exists \(b \in T_0 \) such
that $\exp(d) = \langle b \rangle$.

Proof. Let $d = \Delta(a)$, where $a \in T_a$ and let b be as in Lemma 2.3. Moreover, let $\delta = \langle d \rangle_{\text{ess}}$ be the unique derivation satisfying $\exp(\delta) = \langle b \rangle$. We show that $\delta = d$.

Let $n \in S \setminus \{0\}$. It follows from Lemmas 2.3, 2.1 that

$$b = q_a \langle -a_a \rangle \cdots q_1 \langle -a_1 \rangle v^{(n)},$$

where $v^{(n)}$ is an element of T_a.

Therefore, if $F = \exp^{-1}$ then

$$\delta = F \langle b \rangle = F \langle v^{(n)} \rangle \ast F \langle q_1 \langle -a_1 \rangle \rangle \ast \cdots \ast F \langle q_a \langle -a_a \rangle \rangle,$$

and, by Lemma 3.1,

$$\delta_a = [[a_a, 1] \ast \cdots \ast [a_a, n]]_a = d_a.$$

Conversely, let $b \in T_a$, $d = \exp^{-1}(\langle b \rangle)$ and let a be such as in Lemma 2.2. We show that $d = \Delta(a)$.

Let $n \in S \setminus \{0\}$. It follows from Lemmas 2.2, 2.1 that

$$b = v^{(n)} q_a \langle -a_a \rangle \cdots q_1 \langle -a_1 \rangle,$$

where $v^{(n)} \in T_a$, and hence

$$d = F \langle b \rangle = F \langle q_1 \langle -a_1 \rangle \rangle \ast \cdots \ast F \langle q_a \langle -a_a \rangle \rangle \ast F \langle v^{(n)} \rangle,$$

where $F = \exp^{-1}$.

Therefore, by Lemma 3.1, we have

$$d_a = [[a_a, 1] \ast \cdots \ast [a_a, n]]_a \quad \text{i.e.} \quad d = \Delta(a).$$

Corollary 3.3. The set of inner derivations of order s of R is a normal subgroup of $D_s(R)$.

IV.

Recall that the usual (classical) derivation of R is the additive mapping $\delta : R \to R$ such that $\delta(ab) = \delta(a)b + a\delta(b)$, for all elements $a, b \in R$. The set of usual derivations of R corresponds bijectively, in the natural way, to the set $D_s(R)$. Evidently a usual derivation is inner iff there exists an element $a \in R$ such that $\delta(x) = ax - xa$ for any $x \in R$.

It is easy to see that

Lemma 4.1. Let $d, d' \in D_s(R)$. If $d_i = d'_i$ for $i = 0, 1, \ldots, n < s$ then $d_{s+1} - d'_{s+1}$
is a usual derivation.

Now we can prove

Theorem 4.2. If every classical derivation of \(R \) is inner then so is every derivation of order \(s \) of \(R \).

Proof. Let \(d \in D_s(R) \). We must construct an element \(a \in T \) such that \(d = \Delta(a) \).

Since \(d \) is a classical derivation then there exists \(a \in R \) such that \(d(x) = a_x - xa \), for any \(x \in R \). So we have \(d = [a, 1] \).

Let \(d'_3 = [a, 1]_3 \). Then \((1_R, a, d'_3) \) and \((1_R, d'_3, d'_3) \) are derivations of order 2 and hence, by Lemma 4.1, there exists \(a_2 \in R \) such that \(d'_3(x) = d'_3(x) + a_2 x - xa \), for any \(x \in R \). Therefore,

\[
d'_3 = d'_3 + [a, 2]_3 = [a, 1]_3 + [a, 2]_3, \\
= ([a, 1] + [a, 2])_3.
\]

Next let \(d'_3 = ([a, 1] + [a, 2])_3 \). Since \((1_R, d'_3, d'_3) \), \((1_R, d'_3, d'_3) \), \(d'_3, d'_3, d'_3, \) \(d'_3 \) are derivations of order 3 then, by Lemma 4.1, \(d'_3(x) = d'_3(x) + a_3 x - xa \), for some \(a_3 \in R \). So we have

\[
d'_3 = d'_3 + [a_3, 3]_3, \\
= ([a, 1] + [a, 2] + [a, 3])_3, \\
= ([a, 1] * [a, 2] * [a, 3])_3,
\]

and so on.

The assumption of the above theorem is satisfied for a large class of rings (see for example [3], [4], [2]).

V.

We end this paper with the following three remarks.

Remark 5.1. Let \(a \in R \). If \(d = [a, 1]^{-1} \) then \(d_n(x) = xa^n - axa^{n-1} \), for \(n \geq 1 \), \(x \in R \).

Remark 5.2. Let \(a \in R \). Let \(d = (d_n)_{n \in \mathbb{N}} \) be the family of mappings from \(R \) to \(R \) defined by

\[
d_n(x) = x \\
d_1(x) = ax - xa
\]
Inner derivations of higher orders

\[d_n(x) = a^n x + x(-a)^n + \sum_{k=1}^{n-1} a^{n-k} x(-a)^k, \quad \text{for } n \geq 2. \]

Then \(d \in D_s(R)\) (in general) but \(\delta = (2d_n)_{n \geq s}\) is an inner derivation of order \(s\) of \(R\). Namely, \(\delta = [a, 1]^s [-a, 1]^{-1}\).

Remark 5.3. Let \(d \in D_s(R)\). Suppose that there exists an element \(a \in R\) such that \(d_n = a^{n-1} d_1\) for any \(n \in S \setminus \{0\}\). If the set \(d_s(R)\) contains a regular element then \(d = [a, 1]\).

References

Institute of Mathematics,
N. Copernicus University,
Toruń 87-100, ul. Chopina 12/18,
Poland.