Some Remarks on d-MP Rings

by

Andrzej NOWICKI

Presented by J. ŁOŚ on January 5, 1981

Summary. In this paper we study d-MP rings, i.e. differential commutative rings with the condition that the radical of any differential ideal is again a differential ideal. We give a characterization of d-MP rings of characteristic \(n > 0 \) and a characterization of noetherian d-MP rings. We give also examples and some properties of d-MP rings.

1. Preliminaries. Throughout this paper all rings are commutative with identity. For any ring \(R \) and for any ideal \(A \) of \(R \), \(r(A) \) will denote the radical of \(A \). The term \(d\text{-ring} \) will refer to a ring \(R \) together with a specified derivation \(d: R \to R \). The \(d\text{-ring} \) \(R \) will be called an integral domain \(d\text{-ring} \), a noetherian \(d\text{-ring} \), or a Dedekind \(d\text{-ring} \) iff \(R \) is an integral domain, a noetherian ring, or Dedekind domain, respectively.

Let \(R \) be a \(d\text{-ring} \). An ideal \(A \) is called \(d\text{-ideal} \) if \(d(A) \subseteq A \). For an arbitrary subset \(T \) of \(R \) by \([T] \) we denote the smallest \(d\text{-ideal} \) containing \(T \) and we set \(T_\# = \{ x \in R | d^n(x) \in T \text{ for all } n \geq 0 \} \).

A \(d\text{-ideal} \) \(A \) is \(d\text{-maximal} \) iff it is not contained in any proper, larger \(d\text{-ideal} \) of \(R \). Zorn's arguments imply that any \(d\text{-ideal} \) is contained in a \(d\text{-maximal} \) ideal and, since \(0 \) is a \(d\text{-ideal} \), \(d\text{-maximal} \) ideals always exist.

If \(S = R (x_i : i \in I) \) is a ring of polynomials over \(R \) then the derivation \(d \) of \(R \) may be extended to \(S \) by setting for \(d (x_i) \) some element \(f_i \) of \(S \), for all \(i \in I \) (see [2]).

If \(S = R [x_1, \ldots, x_n] \) is a formal power series ring over \(R \) then the derivation \(d \) of \(R \) may be extended to \(S \) by setting for \(d (x_i) \) some element \(f_i \) of \(S \), for \(i = 1, \ldots, n \) (see [2]).

A \(d\text{-ring} \) \(R \) is called \(Ritt algebra \) iff \(R \) contains the field of rational numbers.

Throughout the rest of the paper \(R \) is a \(d\text{-ring} \).

2. A characterization of \(d\text{-MP rings} \). A \(d\text{-ideal} \) \(P \) in \(R \) will be called quasi-prime iff there is a multiplicative subset \(S \) of \(R \) such that \(P \) is maximal among \(d\text{-ideals} \) disjoint from \(S \) ([7, 10]).
Theorem 2.1. The following conditions are equivalent:
(1) Every quasi-prime ideal in \(R \) is prime.
(2) Every quasi-prime ideal in \(R \) is radical.
(3) Every prime ideal minimal over a \(d \)-ideal is a \(d \)-ideal.
(4) The radical of an arbitrary \(d \)-ideal is a \(d \)-ideal.
(5) For every prime ideal \(P \) in \(R \) the ideal \(P_\# \) is prime.

Proof. The equivalence of conditions (1), (3), (4) is given in [4]. The equivalence of conditions (1) and (2) follows immediately from the fact that every quasi-prime ideal is primary (see [8]). The equivalence of (1) and (5) is in [7].

A \(d \)-ring \(R \) is called a \(d \)-MP ring ([3], [4]) or a special \(d \)-ring (see [7]) if \(R \) satisfies the equivalent conditions listed in Theorem 2.1. Some of the properties of the \(d \)-MP rings are given in [3, 4, 7, 9]. A Ritt algebra is a \(d \)-MP ring (see [6]). Any \(d \)-field and every ring with the derivation equal to zero are \(d \)-MP rings.

Example 2.2. For a field \(K \) let \(R = K \langle x_i : i \in I \rangle \) be a polynomial ring over \(K \) and \(d : R \to R \) be a derivation of \(R \) such that \(d(K) = 0 \), \(d(x_i) = x_i \) for all \(i \in I \). Moreover, let \(A \) be an ideal in \(R \) generated by all variables of \(R \). Thus \(A^2 \) is a \(d \)-ideal and \(d \)-ring \(R/A^2 \) is a \(d \)-MP ring.

3. The \(d \)-MP rings of characteristic \(n > 0 \).

Theorem 3.1. If \(R \) is a ring of characteristic \(n > 0 \) then the following conditions are equivalent:
(1) \(R \) is a \(d \)-MP ring.
(2) Every prime ideal in \(R \) is a \(d \)-ideal.
(3) Every radical ideal in \(R \) is a \(d \)-ideal.

Proof. The equivalence (2) \(\iff \) (3) and the implication (3) \(\Rightarrow \) (1) are obvious. We prove implication (1) \(\Rightarrow \) (3). If \(a \) is an arbitrary element in \(R \) then the ideal \((a^\alpha) \) is a \(d \)-ideal and from (1) it follows that \(r(a) = r(a^\alpha) \) is a \(d \)-ideal. Now let \(A \) be an arbitrary radical ideal in \(R \). If \(a \in A \) then \(r(a) \subseteq A \), thus \(d(a) \in r(a) \subseteq A \), i.e. \(d(A) \subseteq A \).

Corollary 3.2. If \(R \) is a unique factorization domain with characteristic \(n > 0 \) then the following conditions are equivalent:
(1) \(R \) is a \(d \)-MP ring.
(2) Every ideal in \(R \) is a \(d \)-ideal.

Proof. The implication (2) \(\Rightarrow \) (1) is obvious. Now, since every principal ideal of \(R \) is a product of prime ideals then from Theorem 3.1 it follows that every principal ideal of \(R \) is a \(d \)-ideal and thus every ideal is a \(d \)-ideal.

Corollary 3.3. Let \(R = K \langle x_i : i \in I \rangle \) be a polynomial ring over a field \(K \) and \(d : R \to R \) a nonzero derivation such that \(d(K) = 0 \). The following conditions are equivalent:
(1) \(R \) is a \(d \)-MP ring.
(2) \(K \) is of characteristic zero.
Proof. If K is of characteristic zero then R is a d-MP ring, since in this case R is a Ritt algebra. Assume now that R is a d-MP ring of characteristic $p > 0$. Since $d \neq 0$ then there is a variable x_i such that $d \left(x_i \right) \neq 0$. If $d \left(x_i \right) = k \in K$ then (x_i) is not a d-ideal and by Corollary 3.2 the ring R is not a d-MP ring. Now suppose $d \left(x_i \right) = f$, where the polynomial f has a variable x_i such that the highest exponent of x_i is $r > 0$. Consider the ideal $(x_i^p + x_i)$ and assume that $(x_i^p + x_i)$ is a d-ideal in R. Then $f = d \left(x_i^{rp} + x_i \right)$ belongs to $(x_i^p + x_i)$ and we have $rp = \deg_{x_i} \left(x_i^{rp} + x_i \right) \leq \deg_{x_i} f = r$, i.e. $rp \leq r$. Therefore $(x_i^{rp} + x_i)$ is not a d-ideal and from Corollary 3.2 the ring R is not a d-MP ring.

Corollary 3.4. Let $R = K \left[[x_1, \ldots, x_n] \right]$ be the formal power series ring over a field K of characteristic p and $d: R \to R$ a nonzero derivation of R such that $d \left(K \right) = 0$. The following conditions are equivalent:

1. R is a d-MP ring.
2. Either $p = 0$ or $p > 0$, $n = 1$, and $d \left(x_i \right) \in \left(x_i \right)$.

Proof. The implication (2) \Rightarrow (1) is obvious. To prove (1) \Rightarrow (2) suppose that R is a d-MP ring, $p > 0$ and $n \geq 2$. Since $d \neq 0$, there is a variable x_i such that $d \left(x_i \right) \neq 0$. From Corollary 3.2 it follows that for any natural number n we have $f = d \left(x_i + x_i^p \right) \in \left(x_i + x_i^p \right)$. It is easy to see that if $n = m$ then the elements $x_i + x_i^p$, $x_i + x_i^{mp}$ have no common divisors. Therefore the element f has an infinite number of common prime divisors. This contradicts the fact that $f \neq 0$. Consequently, if $p > 0$ then $n = 1$. Now, if $d \left(x_i \right) \notin \left(x_i \right)$ then (x_i) is not a d-ideal and by Corollary 3.2 it follows that R is not a d-MP ring.

If R is a d-MP ring then every d-maximal d-ideal in R is prime but the converse is not necessarily true.

Example 3.5. Let $R = K \left[[x, y] \right]$ be a formal power series ring over the field K of characteristic $p > 0$ and let $d: R \to R$ be a derivation of R such that $d \left(K \right) = 0$, $d \left(x \right) = y$, $d \left(y \right) = x$. Since the ideal (x, y) is a d-maximal d-ideal thus every d-maximal d-ideal in R is prime. By Corollary 3.4 it follows that R is not a d-MP ring.

4. Noetherian d-MP rings. If R is a d-ring then a d-ideal P is called d-prime iff $P \neq R$ and if for d-ideals A, B of R the relation $AB \subseteq P$ implies either $A \subseteq P$ or $B \subseteq P$.

Proposition 4.1. If every d-prime d-ideal of d-ring R is prime then R is a d-MP ring.

Proof. Every quasi-prime ideal is d-prime ([10] Theorem 4.1). Therefore every quasi-prime ideal in R is prime.

The converse is not necessarily true.

Example 4.2. Let $T = Z_2 \left[X_1, X_2, \ldots, Y_1, Y_2, \ldots \right]$ be a ring of polynomials over the field Z_2 and let A be an ideal in T generated by the squares
of all variables. Moreover, put \(R = T/A \) and let \(x_n = X_n + A, \ y_n = Y_n + A \) for all \(n \in N \). The ring \(R \) is local with the unique maximal ideal \(M = (x_1, x_2, \ldots, y_1, y_2, \ldots) \). Let \(d \) be a derivation of \(R \) such that \(d(x_n) = x_{n+1}, \ d(y_n) = y_{n+1} \) for every natural \(n \). \(R \) is therefore a \(d \)-ring and \(M \) is a \(d \)-ideal of \(R \). Since every quasi-prime ideal in \(R \) is equal to \(M \) ([10] Lemma 6.1) \(R \) is a \(d \)-MP ring. Here \(P = (y_1, y_2, \ldots) \) is a \(d \)-prime \(d \)-ideal in \(R \) ([10] Theorem 6.3) but it is not prime in \(R \).

Let \(A \) be a proper ideal in a ring \(R \) and let \(P \) be a prime ideal in \(R \). \(P \) is called a prime ideal associated with \(A \) iff there is \(x \in R \) such that \(P = (A:x) = \{ r \in R | rx \in A \} \) (see [13]).

Theorem 4.3. Let \(R \) be a noetherian \(d \)-ring. The following conditions are equivalent:

1. \(R \) is a \(d \)-MP ring.
2. Any prime ideal in \(R \) associated with a \(d \)-ideal is \(d \)-ideal.
3. Every \(d \)-prime \(d \)-ideal in \(R \) is prime.

Proof. (1) \(\Rightarrow \) (2). See [9], Corollary 7. (2) \(\Rightarrow \) (1). If prime ideals of \(R \) associated with \(d \)-ideals are prime then, in particular, prime ideals minimal over \(d \)-ideals are \(d \)-ideals and by Theorem 2.1 \(R \) is a \(d \)-MP ring. (3) \(\Rightarrow \) (1) follows from Proposition 4.1. (1) \(\Rightarrow \) (3). Since \(R \) is noetherian then \(d \)-prime \(d \)-ideals are quasi-prime ([10 Theorem 4.2]).

The implication (1) \(\Rightarrow \) (3) for noetherian Ritt algebras was proved by Jordan in [5].

Corollary 4.4. Let \(R \) be a noetherian \(d \)-MP ring and let \(x \) be an element of \(R \). If \(d(x) \) is not a zero-divisor in \(R \) then \(x \) is not one either.

Proof. In a noetherian ring \(R \) the set of all zero-divisors is the union of all prime ideals, associated with 0. Since 0 is a \(d \)-ideal, thus by Theorem 4.3 all prime ideals, associated with 0 are \(d \)-ideals. Therefore if \(x \) were zero-divisor then \(d(x) \) would be such too.

This Corollary for noetherian Ritt algebras was proved by Vasconcelos in [12]. If \(R \) is not \(d \)-MP ring then this corollary is not necessarily true, e.g. for \(R = Z_2 [X]/(X^2) \) with \(d(x) = 1 \), where \(x = X + (X^2) \), \(d(x) \) is not zero-divisor in \(R \) but \(x \) is such.

Corollary 4.5. Let \(R \) be a Dedekind \(d \)-ring. The following conditions are equivalent:

1. \(R \) is a \(d \)-MP ring.
2. Every proper \(d \)-ideal in \(R \) is a product of prime \(d \)-ideals.

Proof. (1) \(\Rightarrow \) (2). Let \(A \) be a \(d \)-ideal different from \(R \). Since \(R \) is a Dedekind domain then \(A = P_1^{e_1} \ldots P_n^{e_n} \), where \(P_1, \ldots, P_n \) are different prime ideals in \(R \) (see [13]). Thus we have \(r(A) = P_1 \cap \ldots \cap P_n \), i.e. the ideals \(P_1, \ldots, P_n \) are prime ideals associated with \(d \)-ideal \(r(A) \). By Theorem 4.3 ideals \(P_1, \ldots, P_n \) are \(d \)-ideals.

(2) \(\Rightarrow \) (1). Let \(A \) be a \(d \)-ideal different from \(R \). By (2) we have
Some Remarks on d-MP Rings

\[A = P_{1}^{a_1} \ldots P_{n}^{a_n}, \text{where } P_1, \ldots, P_n \text{ are prime } d\text{-ideals in } R. \text{ Thus } r(A) = P_1 \cap \ldots \cap P_n \text{ is a } d\text{-ideal.} \]

Lemma 4.6. Let \(A \) be a \(d\)-ideal in a noetherian \(d\)-ring \(R \). For any \(x \in R \) there is a natural number \(k \) such that \((A:x^k)\) is a \(d\)-ideal in \(R \).

Proof. See [11] or [9].

Theorem 4.7. Let \(R \) be a noetherian \(d\)-MP ring and let \(A \) be a \(d\)-ideal different from \(R \). There are a natural number \(n \) and prime \(d\)-ideals \(P_1, \ldots, P_n \) in \(R \) such that \(P_1 \supseteq A \supseteq P_1 P_2 \ldots P_n \) for \(i = 1, \ldots, n \).

Proof. (i) If \(A \) is a primary \(d\)-ideal then \(P = r(A) \) is a prime \(d\)-ideal and \(P^k \subseteq A \subseteq P \) for some natural number \(k \). Therefore, for \(n = k \) and \(P_1 = P_2 = \ldots = P_n = P \) we are done. (ii) Assume now that there are \(d\)-ideals such that the theorem is not true. Let \(M \) be the family of all such \(d\)-ideals and let \(B \) be a maximal element of \(M \). By (i) it follows that \(B \) is not primary. Thus there are two elements \(x, y \) of \(R \) such that \(xy \in B \), \(x \notin B \), \(y \notin r(B) \). Consider \(d\)-ideals \(B_1 = B + [x] \), \(B_2 = (B: [x]) \).

If \(B_1 = R \) then \(1 = b + u \), where \(b \in B \), \(u \in [x] \), and by Lemma 4.6 there is a natural number \(k \) such that \((B:y^k)\) is a \(d\)-ideal. Since \(xy \in B \), thus \(xy^k \in B \), i.e. \(x \in (B:y^k) \). Hence \([x] \subseteq (B:y^k) \), i.e. \(y^k [x] \subseteq B \). So we have \(y^k = y^k \).

If \(B_2 = R \) then \(1 \in (B: [x]) \) and thus \(x \in B \).

Therefore the \(d\)-ideals \(B_1 \) and \(B_2 \) are different from \(R \). Since \(B_1 \nsubseteq B \), \(B_2 \nsubseteq B \) then \(B_1 \notin M \) and \(B_2 \notin M \). So there are prime \(d\)-ideals \(P_1, \ldots, P_n \), \(Q_1, \ldots, Q_m \) such that \(P_i \supseteq B_1 \supseteq P_1 \ldots P_n \) for \(i = 1, \ldots, n \), \(Q_j \supseteq B_2 \supseteq Q_1 \ldots Q_m \) for \(j = 1, \ldots, m \). Moreover,

\[B_1 B_2 = (B + [x])(B: [x]) \subseteq B (B: [x]) + [x] (B: [x]) \subseteq B + B = B. \]

Thus we have

\[P_i \supseteq B \supseteq B_1 B_2 \supseteq P_1 \ldots P_n Q_1 \ldots Q_m \text{ for } i = 1, \ldots, n, \]

\[Q_j \supseteq B \supseteq B_1 B_2 \supseteq P_1 \ldots P_n Q_1 \ldots Q_m \text{ for } j = 1, \ldots, m. \]

But this contradicts the fact that \(B \) is in \(M \).

5. **Integral extensions.** Let \(R \) and \(S (R \subseteq S) \) be \(d\)-rings such that the derivation of \(R \) is the restriction to \(R \) of the derivation of \(S \). In [3] Gorman proved the following

Lemma 5.1. For \(d\)-MP rings \(R \subseteq S \) such that \(S \) is an integral over \(R \), let \(P \) be a prime ideal of \(R \) and let \(Q \subseteq S \) be a prime ideal lying over \(P \). Then \(P \) is a \(d\)-ideal if and only if \(Q \) is.

Now we give some extra information on the integral extensions of \(d\)-MP rings.

Proposition 5.2. Let \(R \subseteq S \) be \(d\)-rings with \(S \) integral over \(R \). If \(S \) is a \(d\)-MP ring then \(R \) is such too.
Proof. For a multiplicative subset \(T \) of \(R \), let \(A \) be a \(d \)-ideal in \(R \) disjoint from \(T \). We prove that a \(d \)-ideal \(B \) in \(R \), maximal among \(d \)-ideals of \(R \) containing \(A \) and disjoint from \(T \), is prime. Clearly, \(SB \) is a \(d \)-ideal disjoint from \(T \). Since \(T \) is also a multiplicative subset of \(d \)-MP ring \(S \) then a \(d \)-ideal \(Q \) in \(S \), maximal among \(d \)-ideals containing \(SB \) and disjoint from \(T \), is prime. Let \(P = R \cap Q \). Thus \(P \) is a prime \(d \)-ideal in \(R \) and \(P \cap T = 0 \), \(B \subset P \). Therefore \(B = P \), i.e. \(B \) is a prime ideal.

If a \(d \)-ring \(R \) has no \(d \)-ideals different from \(R \) and \(O \) then \(R \) is called a \(d \)-simple \(d \)-ring. A \(d \)-ideal \(A \) of \(d \)-ring \(R \) is a \(d \)-maximal \(d \)-ideal if and only if the \(d \)-ring \(R/A \) is \(d \)-simple. The intersection of all \(d \)-maximal \(d \)-ideals of \(d \)-ring \(R \), denoted by \(Jd \ (R) \), is called the Jacobson \(d \)-radical (see [3, 4, 9]).

Proposition 5.3. Let \(R \subset S \) be \(d \)-rings with \(S \) integral over \(R \).

1. If \(S \) is \(d \)-simple then \(R \) is such too.
2. If \(S \) is an integral domain and \(R \) is \(d \)-simple then \(S \) is \(d \)-simple.

Proof. (1). Let \(A \) be a \(d \)-ideal different from \(R \). Thus \(SA \) is a \(d \)-ideal in \(S \) different from \(S \). Since \(S \) is \(d \)-simple then \(SA = 0 \), i.e. \(A = 0 \).

(2). Let \(B \) be a \(d \)-ideal in \(S \) different from \(S \). Thus \(A = B \cap R \) is a \(d \)-ideal in \(R \) different from \(R \). Since \(R \) is \(d \)-simple then \(A = 0 \). Let \(Q \) be maximal among ideals in \(S \) containing \(B \) which lie over 0. Thus we have \(O = O \cap R = Q \cap R \), \(O \subset Q \) and \(O, Q \) are prime ideals in \(S \). By [1], Corollary 5.9, \(O = Q \), i.e. \(B = O \).

Corollary 5.4. Let \(R \subset S \) be \(d \)-rings with \(S \) integral over \(R \), let \(Q \) be a \(d \)-ideal in \(S \) and \(P = Q \cap R \).

1. If \(Q \) is a \(d \)-maximal \(d \)-ideals in \(S \) then \(P \) is \(d \)-maximal in \(R \).
2. If \(Q \) is prime and \(P \) is \(d \)-maximal in \(R \) then \(Q \) is \(d \)-maximal in \(S \).

Corollary 5.5. If \(R \subset S \) are \(d \)-rings with \(S \) integral over \(R \) then \(Jd \ (R) = Jd \ (S) \cap R \).

Theorem 5.6. Let \(R \subset S \) be \(d \)-MP rings and let \(S \) be integral over \(R \). For every \(d \)-maximal \(d \)-ideal \(P \) in \(R \) there is a \(d \)-maximal \(d \)-ideal \(Q \) in \(S \) which lies over \(P \).

Proof. Let \(P \) be \(d \)-maximal in \(R \). Since \(R \) is \(d \)-MP ring \(P \) is prime. Since \(S \) is an integral over \(R \) then there is a prime ideal \(Q \) in \(S \) which lies over \(P \). By Lemma 5.1 it follows that \(Q \) is a \(d \)-ideal and by Corollary 5.4 \(Q \) is a \(d \)-maximal \(d \)-ideal.

Corollary 5.7. If \(R \subset S \) are \(d \)-MP rings and \(S \) is integral over \(R \) then \(Jd \ (R) = Jd \ (S) \cap R \).
REFERENCES

А. Новицкий. Некоторые замечания о d-MP кольцах

В этой работе рассматриваются d-MP кольца, т.е. коммутативные дифференциальные кольца, у которых радикал произвольного дифференциального идеала также является дифференциальным идеалом.

Доказывается несколько необходимых и достаточных условий для того, чтобы: 1) дифференциальное кольцо положительной характеристики, 2) дифференциальное неётерово кольцо, являлись d-MP кольцами.

Доказывается также несколько свойств таких колец.