ANDRZEJ NOWICKI (Toruń)

The primary decomposition of differential modules

1. Introduction. In [8] A. Seidenberg proved the following theorem: for any noetherian Ritt algebra each differential ideal A has an irredundant primary decomposition $A = A_1 \cap \ldots \cap A_s$, where A_1, \ldots, A_s are differential ideals.

A more general case is presented in [1]. In [7] the above theorem was proved by S. Sato for arbitrary noetherian differential rings.

In this paper, using methods similar to those of S. Sato, we prove that: if R is a noetherian differential ring and M is a differential R-module finitely generated over R, then any differential submodule N of M has an irredundant primary decomposition $N = N_1 \cap \ldots \cap N_s$, where all N_i are differential submodules.

From this fact a number of interesting conclusions follow concerning differential modules over a noetherian $d-MP$-ring.

In the last section we show an example of a differential ring for which the Differential Nakayama Lemma does not hold and a particular version of this lemma is given.

The author wishes to thank Professor S. Balcerzyk for many valuable discussions and criticism which helped to improve the text.

2. Preliminary notions. A differential ring (shortly: a d-ring) is a pair (R, d), where R is a commutative ring with unit and $d: R \to R$ is a mapping, called derivation, which satisfies the conditions:

$$d(r+s) = d(r) + d(s), \quad d(rs) = rd(s) + sd(r) \quad \text{for arbitrary } r, s \in R.$$

A differential module (shortly: a d-module) over a d-ring (R, d) is a pair (M, δ), where M is a R-module and $\delta: M \to M$ is a mapping which satisfies the conditions: $\delta(m + n) = \delta(m) + \delta(n), \quad \delta(mn) = r\delta(m) + d(r)m$ for arbitrary $m, n \in M, r \in R$.

Let (R, d) be a d-ring and (M, δ) a d-module over (R, d). An ideal A in R is called a d-ideal if $d(A) \subseteq A$. Similarly a submodule N of M is called a d-submodule if $\delta(N) \subseteq N$.
If A is a d-ideal in R, then AM is a d-submodule of M. If N and P are d-submodules of M, then $(N: P) = \{ r \in R; rP \subset N \}$ is a d-ideal in R. Similarly, if A is a d-ideal and N a d-submodule, then $(N: A) = \{ m \in M; Am \subset N \}$ is a d-submodule.

For an arbitrary subset T of $R(M)$ by $[T]$ we denote the smallest d-ideal (or sub-module) containing T.

We say that a d-module M is d-finitely generated if there is a finite number of elements $m_1, \ldots, m_n \in M$ such that $M = [m_1, \ldots, m_n]$. The d-ring (R, d) is called a d-MP ring if a radical of an arbitrary d-ideal in R is a d-ideal. Equivalent definitions of a d-MP ring may be found in [3]. If the d-ring (R, d) contains the field of rational numbers Q, then we call it a Ritt algebra. Every Ritt algebra is a d-MP ring. A d-ideal A is d-maximal if it is maximal among all d-ideals in R different from R. If R is a d-MP ring, then d-maximal ideals are prime (see [3]).

With every d-ring (R, d) we associate some ring (non-commutative in general) $D = D(R, d)$ (see [4], [5]) which is a left free R-module having basis $\{ 1, t, t^2, \ldots \}$, with the multiplication defined by: $r \cdot t = rt$, $t^n \cdot t^m = t^{n+m}$, $t \cdot r = d(r) + rt$. If (M, δ) is a d-module over (R, d), then M together with the multiplication $(r_n t^n + \ldots + r_0 m = r_n \delta^n(m) + \ldots + r_0 m$ is a left D-module. If M is a D-module, then the mapping $\delta: M \to M$, $\delta(m) = tm$, makes (M, δ) a d-module over (R, d). Any d-module over (R, d) is d-finitely generated if it is finitely generated as $D(R, d)$-module.

For a R-module M by $\text{Ass}_R(M)$ we denote the set of all prime ideals in R associated with M (see [5]).

3. Primary decomposition. Let (R, d) be a noetherian d-ring, (M, δ) a d-module finitely generated over R, and N a d-submodule of M.

Lemma 1. For any $x \in R$ there is a natural number k such that $(N: x^k)$ is a d-submodule of M and $(N: x^n) = (N: x^k)$ for any $n \geq k$.

Proof. For any $m \in U = \bigcup_{s=0}^{\infty} (N: x^s)$ we have $x^s m \in N$ for some s and then the element $\delta(x^s m) = x^s \delta(m) + sx^{s-1} d(x) m$ is in N, thus $x^{s+1} \delta(m) \in N$, i.e. $\delta(m) \in U$. It means that U is a d-submodule of M. It suffices now to consider the sequence $(N: x^1) \subset (N: x^2) \subset \ldots$

Definition 2. A d-submodule N of M is d-primary if for any d-ideal A and any d-submodule P of M, from $AP \subset N$ it follows that either $P \subset N$ or $A^n \subset (N: M)$ for some natural number n.

Definition 3. A d-submodule N of M is d-irreducible if it is not an intersection of two d-submodules different from N.

Lemma 4. If N is a d-primary d-submodule, then it is a primary submodule.

Proof. Let for given $r \in R, m \in M$, the element rm be in N. We must
show that either \(m \in N \) or \(r \in \sqrt{(N: M)} \). By Lemma 1 there is a natural number \(k \) such that \((N: r^k)\) is a \(d \)-submodule of \(M \). \(rm \in N \) implies \(m \in (N: r^k) \) since \(r \in (N: r^k) \) and hence \([m] \subseteq (N: r^k)\) and therefore \(r^k \in (N: [m]) \).

Now, \((N: [m])\) is a \(d \)-ideal in \(R \), thus \([r^k] \subseteq (N: [m])\), i.e. \([r^k][m] \subseteq N\). Since \(N \) is \(d \)-primary, we have either \([m] \subseteq N\) or \([r^k]^n \subseteq (N: M)\), i.e. \(m \in N \) or \(r \in \sqrt{(N: M)} \).

Lemma 5. If \(N \) is \(d \)-irreducible \(d \)-submodule of \(M \), then \(N \) is a \(d \)-primary \(d \)-submodule.

Proof. Assume that for a \(d \)-ideal \(A \) and a \(d \)-submodule \(P \) we have \(AP \subseteq N \) and \(A \nsubseteq \sqrt{(N: M)} \). Let \(N = N_1 \cap \ldots \cap N_k \) be a primary decomposition of \(N \). Since \(A \nsubseteq \sqrt{(N_i: M)} \) for some \(i \), we have \(A \nsubseteq \sqrt{(N_i: M)} \) for \(i = 1, 2, \ldots, s \) and \(A \subseteq \sqrt{(N_j: M)} \) for \(j = s+1, \ldots, k \).

If \(s = k \), then, for any \(i = 1, 2, \ldots, k \), \((N_i: A) = N_i \) and therefore \(P \subseteq (N: A) = \bigcap \limits_{i=1}^{k} (N_i: A) = \bigcap \limits_{i=1}^{k} N_i = N \). Assume that \(s < k \). Since \(R \) is noetherian, there is a natural number \(n \) such that \(A^n \subseteq (N_j: M) \) for \(j = s+1, \ldots, k \). In this case \((N_i: A^n) = N_i \) for \(i = 1, 2, \ldots, s \) and \((N_j: A^n) = M \) for \(j = s+1, \ldots, k \). Thus we have

\[
N \subseteq (N: A^n) \cap (N + A^n M) \subseteq \bigcap \limits_{i=1}^{s} N_i \cap \bigcap \limits_{j=s+1}^{k} N_j = N,
\]
i.e. \(N = (N: A^n) \cap (N + A^n M) \).

Since \(AP \subseteq N \), we have \(A^n P \subseteq N \) and \(N + P \subseteq (N: A^n) \). Therefore

\[
N \subseteq (N + P) \cap (N + A^n M) \subseteq (N: A^n) \cap (N + A^n M) = N,
\]
i.e. \(N = (N + P) \cap (N + A^n M) \).

By \(d \)-irreducibility of \(N \neq N + A^n M \) we have that \(N = N + P \), i.e. \(P \subseteq N \).

Theorem 6. Let \((R, d)\) be a noetherian \(d \)-ring and \((M, \delta)\) a \(d \)-module finitely generated over \(R \). Then any \(d \)-submodule \(N \) of \(M \) has an irredundant primary decomposition \(N = N_1 \cap \ldots \cap N_n \) such that \(N_i \) are \(d \)-submodules of \(M \).

Proof. Using Lemmas 4 and 5 the argument is standard.

4. Conclusions from Theorem 6 for noetherian \(d \)-\(MP \) rings. We assume now that \(R \) is a noetherian \(d \)-\(MP \) ring and \(M \) is a \(d \)-module finitely generated over \(R \).

From Theorem 6 we have an immediate

Corollary 7. Any prime ideal associated with a \(d \)-module \(M \) is a \(d \)-ideal.

Lemma 8. For any \(m \in M \) if \((\alpha: m)\) is a \(d \)-ideal, then \((\alpha: m) = (\alpha: [m])\).
Proof. See [2], Lemma 2.

Lemma 9. If $M \neq 0$, then there exists a d-submodule $N \neq 0$ and a prime d-ideal P such that N is a torsion-free d-submodule over R/P.

Proof. Let P be a maximal ideal in the family $\{(o; m); o \neq m \in M\}$. It is known that $(o; x) = P$ is a prime ideal. By Corollary 7, P is a d-ideal.

Put $N = [x]$. Clearly, N is a non-zero d-submodule and, by Lemma 8, $P = (o; x) = (o; [x]) = (O; N)$, thus $PN = 0$, i.e. N is a d-module over the d-ring R/P.

Now assume that $rn = o$, $r \in R \setminus P$, $o \neq n \in N$. Then $r \in (o; n)$, $r \notin (o; x) = P$, which gives $(o; x) \not\subset (o; n)$, contrary to the maximality of $(o; x)$.

Corollary 10. If $M \neq 0$, then there exist a sequence of d-submodules $0 = M_0 \subsetneq M_1 \subsetneq \ldots \subsetneq M_k = M$ and a sequence of prime d-ideals P_1, \ldots, P_k in R such that M_i/M_{i-1} is a torsion-free d-module over the d-ring R/P_i, $i = 1, \ldots, k$.

Proof. Let N and P be as in Lemma 9. We put $M_1 = N$ and $P_1 = P$. Then $M_1/M_0 = N$ is a torsion-free d-module over R/P_1. If $M_1 = M$, then there is nothing more to do. If $M_1 \not\subsetneq M$, then we apply Lemma 9 to the d-module $M/M_1 \neq 0$. Thus there exist a d-submodule $N_1 \neq 0$ of M/M_1 and a prime d-ideal P_2 such that N_1 is a torsion-free d-module over R/P_2. We take $M_2 = \varphi^{-1}(N_1)$, where $\varphi: M \to M/M_1$ is canonical. So we have $0 \subsetneq M_1 \subsetneq M_2$ and $M_2/M_1 = N_1$ is torsion-free d-module over R/P_2. Since M is noetherian, this procedure ends.

Corollary 11. Assume that $M \neq 0$ is a d-simple d-module (i.e. M is without any proper d-submodels). Then

1. $(O; M)$ is a prime d-ideal,
2. M is a torsion-free d-module over $R/(O; M),$
3. for any $o \neq m \in M$, we have $(o; m) = (O; M)$.

Proof. (1) Since $M \neq 0$, the set $\text{Ass}_R(M)$ is non-empty. Let $P = (o; m) \in \text{Ass}_R(M)$. By Corollary 7, P is a d-ideal. Thus Lemma 8 implies that $(O; M) = (O; [m]) = (o; m) = P$ is a prime d-ideal;

(2) Follows from (1) and from the proof of Lemma 9;

(3) For such m, since $[m] = M$, we have $(O; M) = (O; [m]) \subset (o; m)$. Assume that $(O; M) \subsetneq (o; m)$ and take $x \in (o; m)$ such that $x \notin (O; M)$. Since M is d-simple, O is a d-primary d-submodule, and by Lemma 4 it is a primary submodule of M. But $xm = o$; hence $m = o$ or $x \in \sqrt{(O; M)} = (O; M)$, a contradiction.

Corollary 12. If for all d-maximal d-ideals \frak{M} in R, $M_{\frak{M}} = 0$, then $M = 0$.

Proof. Assume that $M \neq 0$. Then there is a prime d-ideal P of the form $P = (o; x)$, for some $x \in M$, $x \neq o$, since $\text{Ass}_R(M) \neq \emptyset$. Let \frak{M} be
a d-maximal d-ideal containing P. Then $M_{dR} = 0$, thus $x/l = o$ in M_{dR}. It follows now that, for some $a \in R \setminus M$, $ax = 0$, hence $s \in (o : x) = P \subset M$, a contradiction.

5. The Differential Nakayama Lemma. Let $Jd(R)$ denote the intersection of all d-maximal d-ideals of the d-ring (R, d). We call $Jd(R)$ the Jacobson d-radical.

Definition 13. We say that d-ring (R, d) satisfies the Differential Nakayama Lemma if for any d-ideal $A \subset Jd(R)$ and any d-finitely generated d-module M the condition $AM = M$ implies $M = 0$.

Now we give an example of a d-ring which does not satisfy the Differential Nakayama Lemma.

Example 14. Let k be a field of characteristics zero, $R = k[x]$ a ring of polynomials in one variable x over k and let $d(x) = x$, $d(k) = 0$. Since the only d-maximal d-ideal in the d-ring (R, d) is (x), we have $Jd(R) = (x)$.

Note that for any $w \in D = D(R, d)$ there is $w' \in D$ such that $wx = xw'$. Indeed,

(a) if $w \in R$, then $wx = xw$,

(b) since $tx = d(x) + xt = x + xt = x(1 + t)$, we have $t^n \cdot x = x(1 + t)^n$,

(c) if $w = r_0 t_1 t + \ldots + r_n t^n$ is an arbitrary element of D, then

$$wx = \left(\sum_{i=0}^{n} r_i t^i \right) x = \sum_{i=0}^{n} r_i x(1 + t)^i = x\left(\sum_{i=0}^{n} r_i (1 + t)^i \right).$$

Let $f : k[x] \rightarrow k$ be such a homomorphism of rings that $f(x) = 1$ and $f(k) = k$ for any $k \in k$. The homomorphism f induces on k a structure of R-module given $wk = f(w)k$.

Put $M = D \otimes_R k$. Since M is a left D-module generated by the element $1 \otimes 1$, M is a d-module d-finitely generated over (R, d). We show now that $(x)M = M$. Take $m \in M$. Then $m = w(1 \otimes 1)$ for some $w \in D$. Thus we have:

$$m = w(1 \otimes 1) = w(1 \otimes x \cdot 1) = w(1 \otimes f(x) \cdot 1) = w(1 \otimes x \cdot 1)$$

$$= w(1 \cdot x \otimes 1) = wx(1 \otimes 1) = xw'(1 \otimes 1), \quad \text{i.e.} \quad m \in (x)M.$$

This proves that the d-ring (R, d) does not satisfy the Differential Nakayama Lemma.

With some limitations on d-ring R and d-module M one may prove the following version of the Differential Nakayama Lemma, different from previous one.

Proposition 15. Let (R, d) be a noetherian d-MP ring and (M, δ) a d-module finitely generated over R. If A is d-ideal such that $A \subset Jd(R)$ and $AM = M$, then $M = 0$.
Proof. If \mathfrak{M} is an arbitrary d-maximal d-ideal in R, then $A \subset Jd(R) \subset \mathfrak{M}$, $A_{SR} M_{SR} = M_{SR}$ and $A_{SR} \subset \mathfrak{M} R_{SR}$. From the Nakayama Lemma, $M_{SR} = 0$; hence by Corollary 12, $M = 0$.

References

INSTITUTE OF MATHEMATICS, N. COPERNICUS UNIVERSITY, TORUŃ