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Abstract. We give a criterion which proves non-ergodicity for certain in�nite
periodic billiards and directional �ows on Z-periodic translation surfaces. Our
criterion applies in particular to a billiard in an in�nite band with periodically
spaced vertical barriers and to the Ehrenfest wind-tree model, which is a planar
billiard with a Z2-periodic array of rectangular obstacles. We prove that, in
these two examples, both for a full measure set of parameters of the billiard
tables and for tables with rational parameters, for almost every direction the
corresponding directional billiard �ow is not ergodic and has uncountably many
ergodic components. As another application, we show that for any recurrent
Z-cover of a square tiled surface of genus two the directional �ow is not ergodic
and has no invariant sets of �nite measure for a full measure set of directions.
In the language of essential values, we prove that the skew-products which arise
as Poincaré maps of the above systems are associated to non-regular Z-valued
cocycles for interval exchange transformations.

1. Introduction and main results

The ergodic theory of directional �ows on compact translation surfaces (de�ni-
tions are recalled below) has been a rich and vibrant area of research in the last
decades, in connection with the study of rational billiards, interval exchange trans-
formations and Teichmüller geodesic �ows (see for example the surveys [37, 53, 54,
58]). On the other hand, very little is known about the ergodic properties of direc-
tional �ows on non-compact translation surfaces, for which the natural invariant
measure is in�nite (see [23]).

A natural motivation to study in�nite translation surfaces, as in the case of com-
pact ones, come from billiards. As linear �ows on compact translation surfaces arise
for example by unfolding billiard �ows in rational polygons, examples of �ows on
in�nite translation surfaces can be obtained by unfolding periodic rational billiards,
for example in a band (see the billiard described below, Figure 1 and �1.1) or in
the plane (as the Ehrenfest wind-tree model, see Figure 2 and �1.2). The in�nite
translation surfaces obtained in this way are rich in symmetry, and turns out to
be Zd-covers (see below for a de�nition) of compact translation surfaces. Poincaré
maps of directional �ows on compact surfaces are piecewise isometries known as
interval exchange transformations; Poincaré maps of directional �ows Zd-covers are
Zd-extensions of interval exchange transformations (see �2 for the de�nitions of
interval exchange transformations and extensions).

The ergodic properties of directional �ows on Zd-covers and more generally of
Zd-extensions of interval exchange transformations have been recently a very active
area of research, as shown by the recent works [10, 11, 23, 25, 28, 29, 30, 31] (as well
as, more generally, dynamical, geometric and arithmetic properties of non-compact
translation surfaces, see [2, 7, 23, 26, 27, 42, 43, 47, 48, 49]).
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Recall that a measurable �ow (φt)t∈R on the measurable space (X,B) preserves
the measure µ (where µ is σ-�nite) if µ(φtA) = µ(A) for all t ∈ R, A ∈ B. The
invariant measure µ is ergodic and we say that (φt)t∈R is ergodic with respect to µ
if for any measurable set A which is almost invariant, i.e. such that µ(φtA△A) = 0
for all t ∈ R, either µ(A) = 0 or µ(Ac) = 0, where Ac denotes the complement.
In the classical set-up, a celebrated result by Kercho�-Masur-Smillie [34] states
that for every compact connected translation surface for a.e. direction θ ∈ S1 the
directional �ow in direction θ is ergodic with respect to the Lebesgue measure and
moreover is uniquely ergodic, i.e. the Lebesgue measure is the unique �nite ergodic
invariant measure up to scaling. Some recent results concerning ergodicity are in the
direction of proving that also for some Z-covers ergodicity holds for a full measure
set of directions, for example in special cases as Z-covers of surfaces of genus 1 (see
[28]) or of Z-covers which have the lattice property (see Theorem 1.6 quoted below,
from [31]). Examples of ergodic directions in some in�nite translation surfaces were
also constructed by Hooper [25].

In contrast, in this paper we give a criterion (Theorem 6.1) which allows to show
that some in�nite billiards and Z-covers of translation surfaces are not-ergodic
and admits uncountably many ergodic components (we refer to Appendix B for the
de�nition of ergodic components). Our criterion allows us in particular to prove that
some well-studied in�nite periodic billiards, for example the billiard in a band with
barriers and the periodic Erhenfest-wind tree model are not ergodic both for a full
measure set of parameters and for certain speci�c values of parameters (Theorems
1.1 and 1.2). Moreover, the basic mechanism behind our criterion provides strong
restrictions on the behaviors of the billiard orbits, and in particular can be used to
directly derive the following topological consequence, which was pointed out to us
by Artur Avila. Let us say that a billiard �ow or a directional �ow on a translation
surface is transitive if there exists an orbit which is de�ned for all t ∈ R (that is,
which does not hit any corner of the billiard table or any conical singularity of the
translation surface) and is dense (see also � 8). We also show that the �ows which
satisfy the assumptions of our criterium are not transitive (see Theorem 8.1).

The criterion for non-ergodicity (Theorem 6.1) requires several preliminary def-
initions and it is therefore stated in �6. Here below (��1.1 and 1.2) we formulate
the two results just mentioned about in�nite billiards (Theorems 1.1 and 1.2), that
are based on this criterion. Another application of the non-ergodicity criterion is
given by Theorem 1.4, which yields a class of Z-covers of translation surfaces for
which both the set of ergodic directions θ for the directional �ow (φθt )t∈R and the
set of transitive ones have measure zero (see �1.4, where we state Theorem 1.4 after
the preliminary de�nitions in �1.3 and comment on the relations with other recent
results).

Let us remark that our Theorems can be rephrased in the language of skew-
products and essential values (as explained in �2 and �3 below). While skew-
products over rotations are well studied, very few results were previously known for
skew-products over IETs. The �rst return (Poincaré) maps of the billiard �ows or
of the directional �ows considered provide examples of skew-products associated to
non-regular cocycles for interval exchange transformations (see �3 for the de�nition
of non-regularity).

1.1. A billiard in an in�nite band. Let us consider the in�nite band R× [0, 1]
with periodically placed linear barriers (also called slits) handling from the lower
side of the band perpendicularly (see Figure 1). We will denote by T (l) = (R ×
[0, 1]) \ (Z × [0, l]) the billiard table in which the length of the slit is given by the
parameter 0 < l < 1 as shown in Figure 1. Let us recall that a billiard trajectory is
the trajectory of a point-mass which moves freely inside T (l) on segments of straight
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lines and undergoes elastic collisions (angle of incidence equals to the angle of
re�ection) when it hits the boundary of T (l). An example of a billiard trajectory is
drawn in Figure 1. The billiard �ow (bt)t∈R is de�ned on a full measure set of points

Figure 1. Billiard �ow on T (l).

in the phase space T 1(l), that consists of the subset of points (x, θ) ∈ T (l)×S1 such
that if x belongs to the boundary of T (l) then θ is an inward direction. For t ∈ R
and (x, θ) in the domain of (bt)t∈R, bt maps (x, θ) to bt(x, θ) = (x′, θ′), where x′ is
the point reached after time t by �owing at unit speed along the billiard trajectory
starting at x in direction θ and θ′ is the tangent direction to the trajectory at x′.

The in�nite billiard (bt)t∈R is an extension of a �nite billiard (in a rectangle
with a barrier), whose �ne dynamical properties were studied in many papers (see
[50, 8, 9, 15]). Let us also remark that a similar billiard in a semi-in�nite band was
studied in [4].

Since the directions of any billiard trajectory in T (l) are at most four, the set
T (l) × Γθ, where Γθ := {θ,−θ, π − θ, π + θ}, is an invariant subset in the phase
space T 1(l) for the billiard �ow on T (l). The �ow (bθt )t∈R will denote the restriction
of (bt)t∈R to this invariant set. Remark that the directional billiard �ow (bθt )t∈R
preserves the product of the Lebesgue measure on T (l) and the counting measure
on the orbit Γθ. We say that (bθt )t∈R on T (l) is ergodic if it is ergodic with respect
to this natural invariant measure.

Theorem 1.1. Consider the billiard �ow (bt)t∈R on the in�nite strip T (l). There
exists a set Λ ⊂ [0, 1] of full Lebesgue measure such that, if either:

(1) l is a rational number, or
(2) l ∈ Λ,

then for almost every θ ∈ S1 the directional billiard �ow (bθt )t∈R on T (l) is recurrent
and not ergodic. Moreover, (bθt )t∈R has uncountably many ergodic components and
is not transitive.

Let us remark that, even though we prove that the result holds for a full measure
set of parameters Λ, the assumption (1) is more precise since it gives concrete values
of the parameters for which the conclusion holds. It is natural to ask if there exists
exceptional directions θ ∈ S1 and l ∈ (0, 1) for which the �ow (bθt )t∈R is ergodic. In
[20] it is shown that the set of ergodic directions is uncountable for every l ∈ (0, 1).
Moreover, if l ∈ (0, 1) is rational then the Hausdor� dimension of the set of ergodic
directions is greater than 1/2.

1.2. The Ehrenfest wind-tree model. The Ehrenfest wind-tree billiard is a
model of a gas particle introduced in 1912 by P. and T. Ehrenfest. The periodic ver-
sion, which was �rst studied by Hardy and Weber in [24], consist of a Z2-periodic
planar array of rectangular scatterers, whose sides are given by two parameters
0 < a, b < 1 (see Figure 2). The billiard �ow in the complement E2(a, b) of the
interior of the rectangles is the Ehrenfest wind-tree billiard, that we will denote by
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(et)t∈R. An example of a billiard trajectory is also shown in Figure 2. Many re-
sults on the dynamics of the periodic wind-tree models, in particular on recurrence
and di�usion times, were proved recently, see [2, 11, 30, 46, 13, 14]. In particular,
it was recently shown that for every pair of parameters (a, b) and almost every
direction θ the billiard �ow on E2(a, b) is recurrent. One can also consider a one-

Figure 2. Ehrenfest wind-tree billiard on E2(a, b).

Figure 3. Ehrenfest wind-tree billiard on E1(a, b).

dimensional version of the periodic Ehrenfest wind-tree model, whose con�guration
space E1(a, b) is an in�nite tube R× (R/Z) with Z-periodic rectangular scatterers
(see Figure 3) of horizontal and vertical sides of lengths a and b respectively. We
will also denote by (et)t∈R the billiard �ow in E1(a, b). As for the billiard in a strip
in �1.1, any trajectory of (x, θ) for (et)t∈R in E1(a, b) or in E2(a, b) travels in at
most four directions, belonging to the set Γθ := {±θ, θ ± π}. The restriction of
(et)t∈R to the invariant set Ei(a, b)×Γθ for i = 1, 2 will be denoted by (eθt )t∈R. The
directional billiard �ow (eθt )t∈R preserves the product measure µ of the Lebesgue
measure on E1(a, b) (E2(a, b)) and the counting measure on Γθ and the ergodicity
of (eθt )t∈R refers to ergodicity with respect to this measure µ.

Theorem 1.2. Consider the billiard �ow (et)t∈R in the Z-periodic Ehrenfest wind-
tree model E1(a, b). There exists a set P ⊂ [0, 1]2 of full Lebesgue measure such
that, if either:

(1) a, b ∈ (0, 1) are rational numbers, or

(2) a, b ∈ (0, 1) can be written as 1/(1−a) = x+y
√
D, 1/(1−b) = (1−x)+y

√
D

with x, y ∈ Q and D a positive square-free integer, or
(3) (a, b) ∈ P,

then for almost every θ ∈ S1 the directional billiard �ow (eθt )t∈R on E1(a, b) is recur-
rent and not ergodic. Moreover, (eθt )t∈R has uncountably many ergodic components
and is not transitive.

As in Theorem 1.1, the result holds by (3) for the full measure set of parameters
P, but only the assumptions (1) and (2) give concrete values of the parameters
(a, b) for which the conclusion holds.

As a corollary, since (eθt )t∈R in E2(a, b) is a cover of (eθt )t∈R on E1(a, b), we have
the following conclusion about the original Ehrenfest periodic model.
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Corollary 1.3. If (a, b) satisfy either (1), (2) or (3) in Theorem 1.2, then for almost
every θ ∈ S1 the planar periodic Ehrenfest wind tree model (eθt )t∈R on E2(a, b) is
not ergodic, not transitive and there are uncountably many ergodic components.

1.3. Directional �ows on translation surfaces and Z-covers. We now re-
call some basic de�nitions to then state (in �1.4) another application of our non-
ergodicity criterion (Theorem 6.1) for a class of Z-covers of translation surfaces. A
translation surface is a pair (M,ω) where M is an oriented surface (not necessarily
compact) and ω is a translation structure on M , that is the datum of a complex
structure on M together with a Abelian di�erential, that is a non-zero holomorphic
1-form. Let us stress that for usM is only a topological manifold, while the transla-
tion structure ω determines both a complex structure and an Abelian di�erential on
M . This convention is perhaps non-standard (often in the literature on translation
surfaces M denotes a Riemann surface and ω denotes an Abelian di�erential), but
has the advantage of leading to a simpler notation in some of the following sections.
Let Σ = Σω ⊂ M be the set of zeros of ω. For every θ ∈ S1 = R/2πZ denote by
Xθ = Xω

θ the directional vector �eld in direction θ onM \Σ. Then the correspond-

ing directional �ow (φθt )t∈R = (φω,θt )t∈R (also known as translation �ow) on M \Σ
preserves the volume form νω = i

2ω ∧ ω = ℜ(ω) ∧ ℑ(ω). We will use the notation
(φvt )t∈R and Xv for the vertical �ow and vector �eld (corresponding to θ = π

2 ) and

(φht )t∈R and Xh for the horizontal �ow and vector �eld respectively (θ = 0). We
will sometimes consider translation surfaces of area one, that is renormalized so
that A(ω) := νω(M) is equal to one.

Notation. We will denote by Mθ (respectively Mv) the set of regular points for the
directional �ow (φθt )t∈R (or, respectively, for the vertical �ow (φvt )t∈R), i.e. the set
of point for which the orbit of the �ow may be de�ned for all times t ∈ R.

ThenMθ (and, as a special case,Mv) is a Borel subset ofM with νω(M \Mθ) = 0
and (φθt )t∈R restricted to Mθ is a well de�ned Borel �ow.

Let (M,ω) be a compact connected translation surface. A Z-cover of M is

a manifold M̃ with a free totally discontinuous action of the group Z such that

the quotient manifold M̃/Z is homeomorphic to M . We stress that we do not

assume that M̃ is connected and also that we adopt the convention that a Z-cover
is equipped with a given action of Z (while sometimes in the literature, e.g. in [45], a

Z-cover is a manifold which admits an action of Z). The map p : M̃ →M obtained

by composition of the projection M̃ → M̃/Z and the homeomorphism M̃/Z→ M
is called a covering map. Denote by ω̃ the pullback of the form ω by the map

p. Then (M̃, ω̃) is a translation surface as well. As we recall at the beginning of
Section 2, Z-covers of M up to isomorphism are in one-to-one correspondence with
homology classes in H1(M,Z).

Notation. For every γ ∈ H1(M,Z) we will denote by (M̃γ , ω̃γ) the translation
surface associated to the Z-cover given by γ.

For any Z-cover (M̃, ω̃) of the translation surface (M,ω) and θ ∈ S1 denote
by (φθt )t∈R and (φ̃θt )t∈R the volume-preserving directional �ows on (M,νω) and

(M̃, νω̃) respectively. Recall that a measure-preserving �ow (φt)t∈R on (X,B, µ) (µ
is σ-�nite) is recurrent if for any A ∈ B with µ(A) > 0, for a.e. x ∈ A there is
tn →∞ such that φtnx ∈ A.

Denote by hol : H1(M,Z) → C the holonomy map, i.e. hol(γ) =
∫
γ
ω for every

γ ∈ H1(M,Z). As recently shown by Hooper and Weiss (see Proposition 15 in [29])
a curve γ on (M,ω) has hol(γ) = 0 if and only if for every θ ∈ S1 such that (φθt )t∈R



6 K. FR�CZEK AND C. ULCIGRAI

is ergodic, the �ow (φ̃θt )t∈R on the Z-cover (M̃γ , ω̃γ) is recurrent. Thus, following
Hooper and Weiss, we adopt the following de�nition:

De�nition 1 (see [29]). The Z-cover (M̃γ , ω̃γ) of the translation surface (M,ω) given
by γ ∈ H1(M,Z) is called recurrent if hol(γ) = 0.

Recall that a translation surface (M,ω) is square-tiled if there exists a rami�ed
cover p : M → R2/Z2 unrami�ed outside 0 ∈ R2/Z2 such that ω = p∗(dz). Square
tiled surfaces are also known as origamis. Examples of square tiled surface (M,ω)
can be realized by gluing �nitely (or in�nitely) many squares of equal sides in R2

by identifying each left vertical side of a square with a right vertical side of some
square and each top horizontal side with a bottom horizontal side via translations.

1.4. Z-covers of genus two square tiled surfaces and staircases. Another
application of the non-ergodicity criterion (Theorem 6.1) is the following.

Theorem 1.4. If (M,ω) is square-tiled translation surface of genus 2, for any

recurrent Z-cover (M̃γ , ω̃γ) given by a non trivial γ ∈ H1(M,Z) and for a.e. θ ∈ S1

the directional �ow (φ̃θt )t∈R is not ergodic and not transitive. Moreover, it has no
invariant sets of positive measure and has uncountably many ergodic components.

Let us give an example to which Theorem 1.4 applies. Consider the in�nite stair-
case in Figure 4(a) and let us denote by Z∞

(3,0) the surface obtained by identifying

the opposite parallel sides belonging to the boundary by translations (the nota-
tion Z∞

(3,0) refers to [32]). The surface Z∞
(3,0) inherits from R2 a translation surface

structure and thus one can consider the directional �ows (φθt )t∈R in direction θ on
Z∞
(3,0). One can see that this in�nite translation surface is a Z-cover of the genus

(a) Translation surface Z∞
(3,0)

. (b) Translation surface Z(3,0).

Figure 4. The in�nite staircase translation surface Z∞
(3,0).

two square-tiled surface Z(3,0) shown in Figure 4(b). Thus, as a consequence of
Theorem 1.4 we get:

Corollary 1.5. The set of directions θ ∈ S1 such that the directional �ow (φθt )t∈R
on the in�nite staircase Z∞

(3,0) is ergodic has Lebesgue measure zero. Moreover, for

almost every θ ∈ S1, (φθt )t∈R has no invariant sets of �nite measure and is not
transitive.

More generally, a countable family of staircases translation surfaces Z∞
(a,b) de-

pending on the natural parameters a ≥ 2, b ≥ 0 was de�ned and studied by Hubert
and Schmithüsen in [32]. For a > 2, these translation surfaces are Z-covers of genus
2 square-tiled surfaces. Thus, Corollary 1.5 holds for any Z∞

(a,b) with a > 2, b ≥ 0.

On the other hand, we remark that, if one starts from the staircase in Figure 5
and obtains the translation surface known as Z∞

(2,0) by identifying opposite parallel
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sides belonging to the boundary, the set of directions θ such that the directional
�ow (φθt )t∈R on the in�nite staircase Z∞

(2,0) is ergodic has full Lebesgue measure

(see [31]). This di�erence is related to the fact that Z∞
(2,0) is not a (unrami�ed)

Z-cover of a genus 2 surface and the study of the directional �ows on Z∞
(2,0) can be

reduced to well-know results of ergodicity of skew products over rotations (see [31]
for references). Further interesting examples of in�nite staircases for which the set
of ergodic directions has full Lebesgue measure are presented in [43].

Figure 5. The in�nite staircases translation surface Z∞
(2,0).

Let us comment on the relation between Corollary 1.5 of our theorem and another
recent result by Hubert and Weiss. In Section 5 we recall the de�nition of the Veech
group SL(M,ω) < SL(2,R) of a translation surface. We say that a translation
surface (M,ω) (compact or not) is a lattice surface if the Veech group is a lattice in

SL(2,R). We say that a (in�nite) translation surface (M̃, ω̃) has an in�nite strip if

there exists a subset of M̃ isometric to the strip R× (−a, a) for some a > 0 (with

respect to the �at metric induced by ω̃ on M̃).

Theorem 1.6 (Hubert-Weiss, [31]). Let (M̃, ω̃) be a Z-cover that is a lattice surface
and has an in�nite strip. Then the directional �ow (φθt )t∈R on (M̃, ω̃) is ergodic
for a.e. θ ∈ S1.

One can easily check that Z∞
(3,0) has an in�nite strip (for example in the direction

θ = π
4 ). On the other hand, as it was proved in [32], the Veech group SL(Z∞

(3,0)) is

of the �rst kind, is in�nitely generated and is not a lattice. Thus, our result shows

that the assumption that SL(M̃, ω̃) (and not only SL(M,ω)) is a lattice is essential
for the conclusion of Theorem 1.6 to hold.

1.5. Outline and structure of the paper. The Sections from 2 to 5 contain
background material and preliminary results. In �2 we recall the construction of
Z-covers associated to a homology class and the de�nitions of interval exchange
transformations (IETs) and Z-extensions. We also explain how the study of direc-
tional �ows on Z covers can be reduced to the study of Z-extensions of IETs. We
then present some de�nitions and results used in the proofs about the theory of
essential values (Section 3), the Kontsevich-Zorich cocycle (Section 4) and lattice
surfaces (Section 5).

The heart of the paper is contained in Section 6, where the criterion for non-
ergodicity (Theorem 6.1) is both stated and proved. In Section 7 we state and
prove Theorem 7.1 (on the absence of invariant sets of �nite measure), which pro-
vides another crucial ingredient to prove the presence of uncountably many ergodic
components in the various applications. In Section 8 we state and prove Theorem
8.1, which shows that, under the assumptions of the ergodicity criterion, using the
results in the proof of Theorem 6.1, one can deduce not only non-ergodicity but
also non-transitivity.
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The proofs of the results stated in the introduction is �nally given in Section 9
and follows from Theorems 6.1 and 7.1 essentially from Fubini-type arguments. The
�rst Fubini argument presented applies to Veech surfaces and appears in �9.1, where
we prove Theorem 1.4 and Corollary 1.5. In �9.2 and �9.3 we prove respectively
Theorem 1.1 on the billiard in a strip and Theorem 1.2 and Corollary 1.3 on the
Ehrenfest wind-tree models.

In the Appendix we include the proof of two technical results used in the proof
of the non-ergodicity criterion and stated in Section 4, i.e. Lemma 4.3 and Theorem
4.2, which relates coboundaries with the unstable space of the Kontsevich-Zorich.

2. Z-covers and extensions of interval exchange transformations

Z-covers. Let (M,ω) be a compact connected translation surface and M̃ a Z-cover
of M (see �1). Let us show that there is a one-to-one correspondence between
H1(M,Z) and the set of Z-covers, up to isomorphism1. Let us �rst recall that we
have the following isomorphism (we refer for example to Proposition 14.1 in [21]):

Hom(π1(M,x),Z)←→ {Z-covers of M}/isomorphism.

In view of Hurewicz theorem π1(M,x)/[π1(M,x), π1(M,x)] and H1(M,Z) are iso-
morphic, so Hom(π1(M,x),Z) and Hom(H1(M,Z),Z) are isomorphic as well. This
yields a one-to-one correspondence

Hom(H1(M,Z),Z)←→ {Z-covers of M}/isomorphism.

The space H1(M,Z) is isomorphic to Hom(H1(M,Z),Z) via the map γ 7→ ϕγ :
H1(M,Z) → Z, ϕγ(γ′) = ⟨γ, γ′⟩, where ⟨ · , · ⟩ : H1(M,R) ×H1(M,R) → R is the
intersection form (see for example Proposition 18.13 in [21]). This gives the next
correspondence

(2.1) H1(M,Z)←→ {Z-covers of M}/isomorphism.

The Z-cover M̃γ determined by γ ∈ H1(M,Z) under the correspondence (2.1) has
the following properties. Remark that ⟨ · , · ⟩ restricted to H1(M,Z) × H1(M,Z)
coincides with the algebraic intersection number. If σ is a close curve in M and

n := ⟨γ, [σ]⟩ ∈ Z ([σ] ∈ H1(M,Z)), then σ lifts to a path σ̃ : [t0, t1] → M̃γ

such that σ(t1) = n · σ(t0), where · denotes the action of Z on (M̃γ , ω̃γ) by deck

transformations. Conversely, if v : [t0, t1]→ M̃ is a curve such

(2.2) v(t1) = n · v(t0) for some n ∈ Z, then ⟨γ, [p ◦ v]⟩ = n,

where [p◦v] ∈ H1(M,Z) is the homology class of the projection of v by p : M̃γ →M .

Interval exchange transformations. Let us recall the de�nition of interval exchange
transformations (IETs), with the presentation and notation from [52] and [53]. Let
A be a d-element alphabet and let π = (π0, π1) be a pair of bijections πε : A →
{1, . . . , d} for ε = 0, 1. Denote by SA the set of all such pairs. Let us consider
λ = (λα)α∈A ∈ RA

+, where R+ = (0,+∞). Set |λ| =
∑
α∈A λα, I = [0, |λ|) and, for

ϵ = 0, 1, let

Iϵα = [lϵα, r
ϵ
α), where lϵα =

∑
πϵ(β)<πϵ(α)

λβ , rϵα =
∑

πϵ(β)≤πϵ(α)

λβ .

Then |Iϵα| = λα for α ∈ A. Given (π, λ) ∈ SA × RA
+, let T(π,λ) : [0, |λ|) → [0, |λ|)

stand for the interval exchange transformation (IET) on d intervals Iα, α ∈ A,
which isometrically maps each I0α to I1α, i.e. T(π,λ)(x) = x+wα with wα := l1α− l0α,
for x ∈ I0α, α ∈ A.

1Let us remark that here we consider only unrami�ed Z-covers. More generally, one can
consider rami�ed covers determined by elements in the relative homology H1(M,Σ,Z), see [29].
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Cocycles and skew-product extensions. Let T be an ergodic automorphism of stan-
dard probability space (X,B, µ). Let G be a locally compact abelian second count-
able group. Each measurable function ψ : X → G determines a cocycle ψ( · ) for T
by the formula

(2.3) ψ(n)(x) =

 ψ(x) + ψ(Tx) + . . .+ ψ(Tn−1x) if n > 0
0 if n = 0

−(ψ(Tnx) + ψ(Tn+1x) + . . .+ ψ(T−1x)) if n < 0,

the function ψ is also called a cocycle. The skew product extension associated to
the cocycle ψ is the map Tψ : X ×G→ X ×G

Tψ(x, y) = (Tx, y + ψ(x)).

Clearly Tψ preserves the product of µ and the Haar measure mG on G. Moreover,

Tnψ (x, y) = (Tnx, y + ψ(n)(x)) for any n ∈ Z.

2.1. Reduction to Z-extensions over IETs. Let us explain how the question of
ergodicity for directional �ows for Z-covers of a compact translation surface (M,ω)
reduces to the study of Z-valued cocycles for interval exchange transformations

(IETs). Let (φ̃θt )t∈R be a directional �ows for a Z-cover (M̃, ω̃) of (M,ω) such that
the �ow (φθt )t∈R on M is ergodic. Let I ⊂ M \ Σ be an interval transversal to
the direction θ with no self-intersections. The Poincaré return map T : I → I is a
minimal ergodic IET (if (φθt )t∈R is ergodic), whose numerical data will be denoted
by (π, λ) ∈ SA × RA

+ (see for example [53, 54]). Let τ : I → R+ be the function
which assigns to x ∈ I the �rst return time τ(x) of x to I under the �ow. The
function τ is constant and equal to some τα on each exchanged interval Iα. The
�ow (φθt )t∈R is hence measure-theoretically isomorphic to the special �ow built over
the IET T : I → I and under the roof function τ : I → R+. For every α ∈ A we
will denote by γα ∈ H1(M,Z) the homology class of any loop vx formed by the
segment of orbit for (φθt )t∈R starting at any x ∈ Int Iα and ending at Tx together
with the segment of I that joins Tx and x, that we will denote by [Tx, x].

Let us now de�ne a cross-section for the �ow (φ̃θt )t∈R and describe the corre-

sponding Poincaré map. Let Ĩ be the preimage of the interval I via the covering

map p : M̃ → M . Fix I0 ⊂ Ĩ a connected component of Ĩ. Then p|I0 : I0 → I is a

homomorphism and Ĩ is homeomorphic to I × Z by the map

(2.4) I × Z ∋ (x, n) 7→ ϱ(x, n) := n · (p|I0)−1(x) ∈ Ĩ .

Denote by T̃ : Ĩ → Ĩ the the Poincaré return map to Ĩ for the �ow (φ̃θt )t∈R.

Lemma 2.1. Suppose that (M̃, ω̃) = (M̃γ , ω̃γ) for some γ ∈ H1(M,Z) is a Z-cover.
Then the Poincaré return map T̃ is isomorphic (via the map ϱ given in (2.4)) to
a skew product Tψ : I × Z → I × Z of the form Tψ(x, n) = (Tx, n + ψ(x)), where
ψ = ψγ : I → Z is a piecewise constant function given by

ψγ(x) = ⟨γ, γα⟩ if x ∈ Iα for each α ∈ A
and T and γα for α ∈ A are as above.

Proof. Let us �rst remark that

(2.5) p(ϱ(x, n)) = x and m·ϱ(x, n) = ϱ(x,m+n) for all x ∈ I, m, n ∈ Z.

Moreover, if ϱ(x, n), ϱ(x′, n′) ∈ Ĩ are joined by a curve in Ĩ then the points belong

to the same connected component of Ĩ, hence n = n′. Fix (x, n) ∈ Int Iα × Z
and denote by vx,n the lift of the loop vx which starts from the point ϱ(x, n) ∈ Ĩ.
Setting ϱ(x, ne) ∈ Ĩ by its endpoint, by (2.2) and (2.5), we have

ϱ(x, ne) = ⟨γ, [vx]⟩ · ϱ(x, n) = ⟨γ, γα⟩ · ϱ(x, n) = ϱ (x, n+ ⟨γ, γα⟩) ,
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so ne = n+ ⟨γ, γα⟩. Since vx,n is a lift of the curve formed by the segment of orbit
for (φθt )t∈R starting at x ∈ Int Iα and ending at Tx together with the segment of I
that joins Tx and x, vx,n is formed by the segment of orbit for (φ̃θt )t∈R starting at

ϱ(x, n) ∈ Ĩ and ending at T̃ ϱ(x, n) together with a curve in Ĩ that joins T̃ ϱ(x, n)

and ϱ(x, ne). As p(T̃ ϱ(x, n)) = Tx and the points T̃ ϱ(x, n) and ϱ(x, ne) belong to

the same connected component of Ĩ, it follows that

T̃ ϱ(x, n) = ϱ(Tx, ne) = ϱ (Tx, n+ ⟨γ, γα⟩) ,
which completes the proof. �

Remark 2.2. The ergodicity of the �ow (φ̃θt )t∈R on (M̃γ , ω̃γ) is equivalent to the

ergodicity of its Poincaré map T̃ and thus, by Lemma 2.1, it is equivalent to the
ergodicity of the skew product Tψγ : I × Z→ I × Z.

We now recall some properties of this reduction for a special choice of the section
I, which will be useful in �9. For simplicity let θ = π/2 and assume in addition that
the vertical �ow (φ̃vt )t∈R has no vertical saddle connections, i.e. none of its trajectory
joins two points of Σ, and that the interval I is horizontal and it is chosen so that
one endpoint belongs to the singularity set Σ and the other belongs to an incoming
or outgoing separatrix, that is to a trajectory which ends or begins at a point of
Σ. In this case the IET T has the minimal possible number of exchanged intervals
and the corresponding representation of the vertical �ow as a special �ow over T is
closely related to zippered rectangles (see [53] or [54] for more details). Recall that
each discontinuity of T belongs to an incoming separatrix (and, by choice, also the
endpoints of I belong to separatrices). For each α ∈ A, let σl,α ∈ Σ (respectively
σr,α ∈ Σ) be the singularity of the separatrix through the left (right) endpoint of
Iα.

While homology classes {γα : α ∈ A} de�ned at the beginning of this �2.1
generate the homology H1(M,Z) (Lemma 2.17, �2.9 in [53]), one can construct a
base of the relative homology H1(M,Σ,Z) as follows. For each α ∈ A denote by
ξα ∈ H1(M,Σ,Z) the relative homology class of the path which joins σl,α to σr,α,
obtained juxtaposing the segment of separatrix starting from σl,α up to the left
endpoint of Iα, the interval Iα, and the segment of separatrix starting from the
right endpoint of Iα and ending at σr,α. Then {ξα : α ∈ A} establishes a basis
of the relative homology H1(M,Σ,Z) (see [54]). This basis allows us to explicitly
compute the vectors (λα)α∈A and (wα)α∈A de�ning T and the return times (τα)α∈A
as follows (see [53] or [54]):

(2.6) λα =

∫
ξα

ℜω, wα =

∫
γα

ℜω, τα =

∫
γα

ℑω for all α ∈ A.

3. Essential values of cocycles

We give here a brief overview of the tools needed to prove the non-ergodicity
of the skew product Tψ (see Section 2.1) and describe its ergodic components.
For further background material concerning skew products and in�nite measure-
preserving dynamical systems we refer the reader to [1] and [44].

3.1. Cocycles for transformations and essential values. Given an ergodic
automorphism T of standard probability space (X,B, µ), a locally compact abelian
second countable group G and a cocycle ψ : X → G for T , consider the skew-
product extension Tψ : (X ×G,B × BG, µ×mG)→ (X ×G,B × BG, µ×mG) (BG
is the Borel σ-algebra on G) given by Tψ(x, y) = (Tx, y + ψ(x)).

Two cocycles ψ1, ψ2 : X → G for T are called cohomologous if there exists a
measurable function g : X → G (called the transfer function) such that ψ1 =
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ψ2 + g − g ◦ T . Then the corresponding skew products Tψ1 and Tψ2 are measure-
theoretically isomorphic via the map (x, y) 7→ (x, y + g(x)). A cocycle ψ : X → R
is a coboundary if it is cohomologous to the zero cocycle.

Denote by G the one point compacti�cation of G if the group G is not compact.
If G is compact then we set G := G. An element g ∈ G is said to be an essential
value of ψ, if for each open neighborhood Vg of g in G and each measurable set B ⊂
with µ(B) > 0, there exists n ∈ Z such that

µ(B ∩ T−nB ∩ {x ∈ X : ψ(n)(x) ∈ Vg}) > 0.(3.1)

The set of essential values of ψ will be denoted by EG(ψ) and put EG(ψ) = G ∩
EG(ψ). Then EG(ψ) is a closed subgroup of G.

A cocycle ψ : X → G is recurrent if for each open neighborhood V0 of 0, (3.1)
holds for some n ̸= 0. This is equivalent to the recurrence of the skew product Tψ
(cf. [44]). In the particular case G ⊂ R and ψ : X → G integrable we have that the
recurrence of ψ is equivalent to

∫
X
ψ dµ = 0.

We recall below some properties of EG(ψ) (see [44]).

Proposition 3.1. If H is a closed subgroup of G and ψ : X → H then EG(ψ) =
EH(ψ) ⊂ H. If ψ1, ψ2 : X → G are cohomologous then EG(ψ1) = EG(ψ2).

Consider the quotient cocycle ψ∗ : X → G/E(ψ) given by ψ∗(x) = ψ(x) +
E(ψ). Then EG/E(ψ)(ψ

∗) = {0}. The cocycle ψ : X → G is called regular if

EG/E(ψ)(ψ
∗) = {0} and non�regular if EG/E(ψ)(ψ

∗) = {0,∞}. Recall that if
ψ : X → G is regular then it is cohomologous to a cocycle ψ0 : X → E(ψ) such
that E(ψ0) = E(ψ).

The following classical Proposition gives a criterion to prove ergodicity and check
if a cocycle is a coboundary using essential values.

Proposition 3.2 (see [44]). Suppose that T : (X,µ) → (X,µ) is an ergodic auto-
morphism and let ψ : X → G be a cocycle for T . The skew product Tψ : X ×G→
X × G is ergodic if and only if EG(ψ) = G. The cocycle is a coboundary if and
only if EG(ψ) = {0}.

We also recall the following characterization of coboundaries.

Proposition 3.3 (see [6]). If T : (X,µ) → (X,µ) is an ergodic automorphism
then the cocycle ψ : X → G for T is a coboundary if and only if the skew product
Tψ : X ×G→ X ×G has an invariant set of positive �nite measure.

The non-regularity of a cocycle provide additional information on the structure of
ergodic components of the corresponding skew product. The proof of the following
result is postponed to Appendix B. We also refer reader to Appendix B for the
formal de�nition of the space of ergodic components of Tψ which appear in the
following statement.

Proposition 3.4. Let T : (X,µ) → (X,µ) be an ergodic automorphism and let
ψ : X → Z be a recurrent non-regular cocycle. Let (Y, ν) be the (probability) space
of ergodic components of the skew product Tψ : X × Z → X × Z and let {µy : y ∈
Y } be the family of σ-�nite Tψ-invariant measures on X × Z representing ergodic
components of Tψ. Then the measures ν and µy for ν-a.e. y ∈ Y are continuous.
In particular, the skew product Tψ has uncountably many ergodic components and
almost every ergodic component is not supported by a countable set.

Corollary 3.5. Let (φ̃θt )t∈R be a directional �ow on a Z-cover (M̃, ω̃) of (M,ω)
such that the �ow (φθt )t∈R on (M,ω) is ergodic. Suppose that its Poincaré return
map is isomorphic to a skew product Tψ : I×Z→ I×Z (as in Section 2.1) and the
cocycle ψ is recurrent and non-regular. Then the �ow (φ̃θt )t∈R is not ergodic and,
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by Proposition 3.4, it has uncountably many ergodic components and almost every
such ergodic component is not supported on a single orbit of the �ow.

3.2. Cocycles for �ows. Let (φt)t∈R be a Borel �ow on a standard probability
Borel space (X,B, µ). A cocycle for the �ow (φt)t∈R is a Borel function F : R×X →
R such that

F (t+ s, x) = F (t, φsx) + F (s, x) for all s, t ∈ R and x ∈ X.

De�nition 2. Two cocycles F1, F2 : R × X → R are called cohomologous if there
exists a Borel function u : X → R and a Borel (φt)t∈R-invariant subset X0 ⊂ X
with µ(X0) = 1 such that

F2(t, x) = F1(t, x) + u(x)− u(φtx) for all x ∈ X0 and t ∈ R.

A cocycle F : R ×X → R is said to be a cocycle if it is cohomologous to the zero
cocycle.

Lemma 3.6. Let us recall a simple condition on a cocycle F guaranteeing that
it is a coboundary: if there exist a Borel (φt)t∈R-invariant subset X0 ⊂ X with
µ(X0) = 1 such that the map R+ ∋ t 7→ F (t, x) ∈ R is continuous and bounded for
every x ∈ X0 then F is a coboundary. Moreover, the transfer function u : X → R
is given by

u(x) := lim sup
s→+∞

F (s, x) = lim sup
s∈Q, s→+∞

F (s, x) for x ∈ X0.

Proof. It is enough to remark that for every t ≥ 0 and x ∈ X0 we have

u(φtx) = lim sup
s→+∞

F (s, φtx) = lim sup
s→+∞

F (s+ t, x)− F (t, x) = u(x)− F (t, x).

�

Cocycles for translation �ows. Let (M,ω) be a compact translation surface and let
θ ∈ S1. For every x ∈ M \ Σ denote by Iθ(x) ⊂ R the maximal open interval for
which φθtx is well de�ned whenever t ∈ Iθ(x) ⊂ R. If x ∈Mθ then I

θ(x) = R. For
any smooth bounded function f :M \ Σ→ R let

(3.2) F θf (t, x) :=

∫ t

0

f(φθsx) ds if t ∈ Iθ(x).

Thus F θf is well de�ned on R×Mθ and it is a cocycle for the directional �ow (φθt )t∈R
considered on (Mθ, νω).

Assume that the directional �ow (φθt )t∈R is minimal and let Iθ ⊂ M be an
interval transverse to (φθt )t∈R. The �rst return (Poincaré) map of (φθt )t∈R to Iθ
is an interval exchange transformation Tθ. Let ψθf : I → R be the cocycle for Tθ
de�ned as follows. Let τ : Iθ → R+ be the piecewise constant function which gives
the �rst return time τ(x) of x to Iθ under the �ow (φθt )t∈R. Then

ψθf (x) = F θf (τ(x), x) =

∫ τ(x)

0

f(φθsx) ds for x ∈ Iθ.

The following standard equivalence holds (see for example [19]).

Lemma 3.7. The cocycle F θf is a coboundary for the �ow (φθt )t∈R if and only if

the cocycle ψθf is a coboundary for the interval exchange transformation Tθ.

Notation. Let T be an IET obtained as Poincaré map of the �ow (φθt )t∈R. For any
ρ ∈ Ω1(M) and any γ ∈ H1(M,R) we denote by ψρ : I → R and ψγ : I → R the
cocycles for T de�ned as follows.
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Given ρ ∈ Ω1(M), let f : M \ Σ → R be the smooth bounded function given
by f = iXθρ. Then ψρ : I → R is the corresponding cocycle for T de�ned by

ψρ(x) =
∫ τ(x)
0

f(φθsx) ds.
Given γ ∈ H1(M,R) the cocycle ψγ : I → R is such that ψγ(x) = ⟨γ, γα⟩ if

x ∈ Iα for α ∈ A.

Notation. For any ρ ∈ Ω1(M) let us consider the smooth bounded function f :
M \ Σ → R, f = iXθρ and let ψρ : I → R be the corresponding cocycle for T

de�ned by ψρ(x) =
∫ τ(x)
0

f(φθsx) ds.
For any γ ∈ H1(M,R) we denote by ψγ : I → R the cocycle for T : I → I such

that ψγ(x) = ⟨γ, γα⟩ if x ∈ Iα for α ∈ A.

Proposition 3.8. Let ρ ∈ Ω1(M) a let γ := P−1[ρ] ∈ H1(M,R), where P :
H1(M,R) → H1(M,R) is the Poincaré duality, see (4.1) for de�nition. Then the
cocycle ψρ is cohomologous to −ψγ .

Proof. Recalling the de�nitions of γα, vx and [x, Tx] in �2.1 and applying (4.2), for
every x ∈ Iα we get

⟨γα, γ⟩ =
∫
γα

ρ =

∫
vx

ρ =

∫ τ(x)

0

iXθρ(φ
θ
sx) ds+

∫
[Tx,x]

ρ = ψρ(x) + g(x)− g(Tx),

where g : I → R is given by g(x) =
∫
[x0,x]

ρ (x0 is the left endpoint of the interval

I). Consequently, ψρ + ψγ = g ◦ T − g is a coboundary. �

4. The Teichmüller flow and the Kontsevich-Zorich cocycle

Given a connected oriented surface M and a discrete countable set Σ ⊂ M ,
denote by Diff+(M,Σ) the group of orientation-preserving homeomorphisms of M
preserving Σ. Denote by Diff+

0 (M,Σ) the subgroup of elements Diff+(M,Σ) which
are isotopic to the identity. Let us denote by Γ(M,Σ) := Diff+(M,Σ)/Diff+

0 (M,Σ)
the mapping-class group. We will denote by Q(M) (respectively Q(1)(M) ) the
Teichmüller space of Abelian di�erentials (respectively of unit area Abelian di�er-
entials), that is the space of orbits of the natural action of Diff+

0 (M, ∅) on the
space of all Abelian di�erentials on M (respectively, the ones with total area
A(ω) =

∫
M
ℜ(ω) ∧ ℑ(ω) = 1). We will denote by M(M) (M(1)(M)) the moduli

space of (unit area) Abelian di�erentials, that is the space of orbits of the natural
action of Diff+(M, ∅) on the space of (unit area) Abelian di�erentials on M . Thus
M(M) = Q(M)/Γ(M, ∅) andM(M)(1) = Q(1)(M)/Γ(M, ∅).

The group SL(2,R) acts naturally on Q(1)(M) andM(1)(M) as follows. Given
a translation struture ω, consider the charts given by local primitives of the holo-
morphic 1-form. The new charts de�ned by postcomposition of this charts with an
element of SL(2,R) de�ne a new complex structure and a new di�erential which is
Abelian with respect to this new complex structure, thus a new translation struc-
ture.

Notation. We denote by g · ω the translation structure on M obtained acting by
g ∈ SL(2,R) on a translation structure ω on M .2

The Teichmüller �ow (Gt)t∈R is the restriction of this action to the diagonal
subgroup (diag(et, e−t))t∈R of SL(2,R) on Q(1)(M) and M(1)(M). Remark that
the SL(2,R) action preserves the zeros of ω and their degrees.

2We stress that this notation is di�erent than the perhaps more standard notation g · (M,ω) to
denote the SL(2,R) action. Since for us M is a topological manifold, while the complex structure
on M is given by the translation structure ω, we do not need to write the action of g on M . This
has the advantage of leading to a simpler notation throughout the paper.
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Let M be compact and of genus g and let κ be the number of zeros of ω. If ki,
1 ≤ i ≤ κ is the degrees of each zero, one has 2g − 2 =

∑κ
i=1 ki. Let us denote

by H(k) = H(k1, . . . , kκ) the stratum consisting of all (M,ω) such that ω has κ
zeros of degrees k1, . . . , kκ. Each stratum is invariant under the SL(2,R) action
and the connected components of this action were classi�ed in [35]. Let H(1)(k) =
H(k) ∩ M(1)(M). Each stratum H(1) = H(1)(k) carries a canonical SL(2,R)-
invariant measure µ

(1)
H that can de�ned as follows. Let {γ1, . . . , γn} be a basis of

the relative homology H1(M,Σ,Z). Remark that for each γi,
∫
γi
ω ∈ C ≈ R2. The

relative periods (
∫
γ1
ω, . . . ,

∫
γ1
ω) ∈ R2n are local coordinates on the stratum H(k).

Consider the pull-back by the relative periods of the Lebesgue measure on R2n.
This measure induces a conditional measure on the hypersurface H(1)(k) ⊂ H(k).
Since this measure is �nite (see [38, 51]), we can renormalize it to get a probability

measure that we will denote by µ
(1)
H . The measure µ

(1)
H is SL(2,R)-invariant and

ergodic for the Teichmüller �ow.

The Kontsevich-Zorich cocycle. Assume that M is compact. The Kontsevich-
Zorich cocycle (GKZt )t∈R is the quotient of the trivial cocycle

Gt × Id : Q(1)(M)×H1(M,R)→ Q(1)(M)×H1(M,R)

by the action of the mapping-class group Γ(M) := Γ(M, ∅). The mapping class
group acts on the �ber H1(M,R) by pullback. The cocycle (GKZt )t∈R acts on the
cohomology vector bundle

H1(M,R) = (Q(1)(M)×H1(M,R))/Γ(M)

(known as the Hodge bundle) over the Teichmüller �ow (Gt)t∈R on the moduli space
M(1)(M) = Q(1)(M)/Γ(M).

Notation. We will denote by H1((M,ω),R) the �ber of the Hodge bundle H1(M,R)
based at the translation surface (M,ω) ∈ Q(1)(M).

Clearly H1((M,ω),R) = H1(M,R). The space H1(M,R) is endowed with the
symplectic form

⟨c1, c2⟩ :=
∫
M

c1 ∧ c2 for c1, c2 ∈ H1(M,R).

This symplectic structure is preserved by the action of the mapping-class group and
hence is invariant under the action of SL(2,R).

Denote by P : H1(M,R)→ H1(M,R) the Poincaré duality, i.e.

(4.1) Pσ = c i�

∫
σ

c′ = ⟨c, c′⟩ for all c′ ∈ H1(M,R).

Since the Poincaré duality P : H1(M,R) → H1(M,R) intertwines the intersection
forms ⟨ · , · ⟩ on H1(M,R) and H1(M,R) respectively, that is ⟨σ, σ′⟩ = ⟨Pσ,Pσ′⟩
for all σ, σ′ ∈ H1(M,R), we have

(4.2) ⟨σ, σ′⟩ = ⟨Pσ,Pσ′⟩ =
∫
σ

Pσ′ for all σ, σ′ ∈ H1(M,R).

Each �ber H1((M,ω),R) of the vector bundle H1(M,R) is endowed with a natu-
ral norm, called the Hodge norm, de�ned as follows (see [17]). Given a cohomology
class c ∈ H1(M,R), there exists a unique holomophic one-form η, holomorphic with
respect to the complex structure induced by ω, such that c = [ℜη]. The Hodge norm
of ∥c∥ω is then de�ned as

(
i
2

∫
M
η ∧ η

)1/2
.
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Lyapunov exponents and Oseledets splitting. Let µ be a probability measure on
M(1)(M) which is invariant for the Teichmüller �ow and ergodic. Since the Hodge
norm of the Kontsevich-Zorich cocycle at time t is constant and equal to et (see [17])
and µ is a probability measure, the Kontsevich-Zorich cocycle is log-integrable with
respect to µ. Thus, it follows from Oseledets' theorem that there exists Lyapunov
exponents with respect to the measure µ. As the action of the Kontsevich-Zorich
cocycle is symplectic, its Lyapunov exponents with respect to the measure µ are:

1 = λµ1 > λµ2 ≥ . . . ≥ λµg ≥ −λµg ≥ . . . ≥ −λ
µ
2 > −λ

µ
1 = −1,

the inequality λµ1 > λµ2 was proven in [17]. The measure µ is called KZ-hyperbolic
if λµg > 0. When g = 2, it follows from a result by Bainbridge3 that:

Theorem 4.1 (Bainbridge). IfM is surface with genus g = 2 then for any probabil-

ity measure µ onM(1)(M) which is invariant for the Teichmüller �ow and ergodic
its second Lyapunov exponent λ2 is strictly positive. Thus, µ is KZ-hyperbolic.

If a measure µ is KZ-hyperbolic, by Oseledets' theorem, for µ-almost every
ω ∈ M(1)(M) (such points will be called Oseledets regular points), the �ber
H1((M,ω),R) of the bundle H1(M,R) at ω has a direct splitting

H1((M,ω),R) = E+
ω (M,R)⊕ E−

ω (M,R),

where the unstable space E+
ω (M,R) (respectively the stable space E−

ω (M,R)) is
the subspace of cohomology classes with positive (respectively negative) Lyapunov
exponents, i.e.

E+
ω (M,R) =

{
c ∈ H1((M,ω),R) : lim

t→+∞

1

t
log ∥c∥G−tω < 0

}
,(4.3)

E−
ω (M,R) =

{
c ∈ H1((M,ω),R) : lim

t→+∞

1

t
log ∥c∥Gtω < 0

}
.

Let µ be an SL(2,R)-invariant probability measure which is ergodic for the
Teichmüller �ow and let Lµ be the support of µ, which is an SL(2,R)-invariant
closed subset ofM(1)(M). Let F be a �eld (we will deal only with �elds R and Q).

A notion playing an important role in the paper is the notion of vector subbundle
of the cohomology bundle (respectively, vector subbundle of the homology bundle)
over Lµ, that we now de�ne.

Let L̃µ ⊂ Q(1)(M) be the lift of the support Lµ ⊂ M(1)(M) of µ to the

Teichmüller space Q(1)(M), that is the preimage of Lµ by the natural projection

Q(1)(M) → M(1)(M). Let us consider a subbundle over L̃µ which is determined

by a collection of sub�bers of the cohomology (or homology) �bers over L̃µ, that

is K̃1 =
∪
ω∈L̃µ

{ω} × K1(ω), where K1(ω) ⊂ H1((M,ω),F) is a linear subspace

(respectively K̃1 =
∪
ω∈L̃µ

{ω} × K1(ω), where K1(ω) ⊂ H1((M,ω),F)). We will

call K̃1 (K̃1) an invariant subbundle over L̃µ if:

(i) K1(g ·ω) = K1(ω) (K1(g ·ω) = K1(ω)) for every g ∈ SL(2,R) and ω ∈ L̃µ;

(ii) if ω1, ω2 ∈ L̃µ are two representatives of the same point ω1Γ = ω2Γ ∈ Lµ

and ϕ ∈ Γ(M) is an element of the mapping-class group such that ϕ∗(ω1) =
ω2 then ϕ∗K1(ω2) = K1(ω1) (ϕ∗K1(ω1) = K1(ω2)).

3In [5] Bainbridge actually computes the explicit value of λ2 for any µ probability measure
invariant for the Teichmüller �ow in the genus two strata H(2) and H(1, 1). The positivity of the
second exponent for g = 2 also follows by the thesis of Aulicino [3], in which it is shown that no
SL(2,R)-orbit in H(1, 1) or H(2) has completely degenerate spectrum.



16 K. FR�CZEK AND C. ULCIGRAI

Any invariant subbundle K̃1 (K̃1) over L̃µ determines the quotient subbundle K1 :=

K̃1/Γ(M) (K1 := K̃1/Γ(M)), which is also called an invariant subbundle over Lµ.
Moreover,

K1 =
∪

ω∈Lµ

{ω} ×K1(ω)
(
K1 =

∪
ω∈Lµ

{ω} ×K1(ω)
)
,

where K1(ω) (K1(ω)) is well de�ned for every ω ∈ Lµ thanks to condition (ii).

We say that an invariant subbundle K1 (K1) is constant if its lifting K̃1 (K̃1) is

a trivial bundle of the form L̃µ × K1 (L̃µ × K1), where K
1 ⊂ H1(M,F) (K1 ⊂

H1(M,F)) is a linear subspace.
For any cohomological invariant subbundle K1 with K1(ω) ⊂ H1(M,R) for

ω ∈ Lµ one can consider the Kontsevich-Zorich cocycle (GKZt )t∈R restricted to
the subbundle K1 over the Teichmüller �ow on Lµ. The Lyapunov exponents of

the reduced cocycle (GKZ,K
1

t )t∈R with respect to the measure µ will be called the
Lyapunov exponents of the subbundle K1.

A splitting {H1((M,ω),F) = K1(ω)⊕K1
⊥(ω), ω ∈ Lµ} (respectively {H1((M,ω),F) =

K1(ω) ⊕K⊥
1 (ω), ω ∈ Lµ}) is called an orthogonal invariant splitting if both cor-

responding subbundles K1 =
∪
ω∈Lµ

{ω} ×K1(ω) and K1
⊥ =

∪
ω∈Lµ

{ω} ×K1
⊥(ω)

(respectively K1 and K⊥
1 ) are invariant and K1(ω), K1

⊥(ω) (respectively K1(ω),
K⊥

1 (ω)) are orthogonal with respect to the symplectic form ⟨ · , · ⟩ for every ω ∈ Lµ.
Let {H1((M,ω),R) = K1(ω) ⊕ K1

⊥(ω), ω ∈ Lµ} be an orthogonal invariant
splitting. Since the Poincaré duality P : H1(M,R) → H1(M,R) intertwines the
intersection parings ⟨ · , · ⟩ on H1(M,R) and H1(M,R) respectively, one also has a
dual invariant orthogonal splitting given �berwise by

H1((M,ω),R) = K1(ω)⊕K⊥
1 (ω) with K1(ω) := P−1K1(ω), K⊥

1 (ω) := P−1K1
⊥(ω).

The Lyapunov exponents of the reduced cocycle (GKZ,K
1

t )t∈R with respect to the
measure µ will be also called the Lyapunov exponents of K1.

For any ω ∈ M1(M) denote by H1
st((M,ω),R) the subspace of H1(M,R) gen-

erated by [ℜ(ω)] and [ℑ(ω)]. Set

H1
(0)((M,ω),R) : = H1

st((M,ω),R)⊥

= {c ∈ H1((M,ω),R) : ∀c′∈H1
st((M,ω),R) ⟨c, c′⟩ = 0}.

Then one has the following orthogonal invariant splitting

{H1((M,ω),R) = H1
st((M,ω),R)⊕H1

(0)((M,ω),R), ω ∈M(1)(M)},

Let Hst1 (where st stands for standard) and H(0)
1 (also known as reduced Hodge

bundle) be the corresponding subbundles. The Lyapunov exponents of the sub-

bundle H(0)
1 are exactly {±λµ2 , . . . ,±λµg} (see the proof of Corollary 2.2 in [17]).

Correspondingly, one also has also the dual orthogonal invariant splitting

{H1(M,R) = Hst
1 ((M,ω),R)⊕H(0)

1 ((M,ω),R), ω ∈M(1)(M)}, where

H
(0)
1 ((M,ω),R) = {σ ∈ H1(M,R) :

∫
σ

c = 0 for all c ∈ H1
st((M,ω),R)};

Hst
1 ((M,ω),R) = {σ ∈ H1(M,R) : ⟨σ, σ′⟩ = 0 for all σ ∈ H(0)

1 ((M,ω),R)}.

Coboundaries and unstable space. If µ is a KZ-hyperbolic probability measure on
M(1)(M), on a full measure set of Oseledets regular ω ∈ M(M) one can relate
coboundaries for the vertical �ow with the stable space E−

ω (M,R) of the Kontsevich-
Zorich cocycle as stated in Theorem 4.2 below.
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Recall that given a smooth bounded function f : M \ Σ → R we denote by F θf
the cocycle over the directional �ow (φθt )t∈R given by

F θf (t, x) :=

∫ t

0

f(φθsx) ds for x ∈Mθ, t ∈ R.

The following theorem is one of the main technical tools used in the paper and
plays a crucial role in the proof of non-ergodicity and non-regularity in Sections 6
and 7.

Theorem 4.2. Let µ be any SL(2,R)-invariant probability measure on M(1)(M)
ergodic for the Teichmüller �ow. There exists a setM′ ⊂M(1)(M) with µ(M′) =
1, such that any ω ∈ M′ is Oseledets regular, has no vertical saddle connections
and for any smooth closed form ρ ∈ Ω1(M), if [ρ] ∈ E−

ω (M,R), then the cocycle F vf
with f := iXvρ (= ρ(Xv)) for the vertical �ow (φvt )t∈R is a coboundary. Moreover,
F vf (t, x) is uniformly bounded for any x ∈Mv and t ≥ 0.

If we assume in addition that µ is KZ-hyperbolic, we also have, conversely, that
if [ρ] /∈ E−

ω (M,R), then F vf is not a coboundary for the vertical �ow (φvt )t∈R.

The main technical tools to prove Theorem 4.2 are essentially present in the
literature4. For completeness, in the Appendix A we include a self-contained proof
of Theorem 4.2. In the same Appendix we also prove the following Lemma, which
is used in the proof of Theorem 4.2 and that will also be used in the proof of
non-regularity in Section 7.

Lemma 4.3. Let µ be any SL(2,R)-invariant probability measure on M(1)(M)
ergodic for the Teichmüller �ow. Then for µ-almost every ω ∈ M(1)(M), there
exists a sequence of times (tk)k∈N with tk → +∞, m ∈ N, a constant c > 1

and a sequence {γ(k)1 , . . . , γ
(k)
m }k∈N of elements of H1(M,Z) such that, for any ρ ∈

H1(M,R) one has

(4.4)
1

c
||ρ||Gtkω ≤ max

1≤j≤m

∣∣∣∣∣
∫
γ
(k)
j

ρ

∣∣∣∣∣ ≤ c||ρ||Gtkω.
5. Veech surfaces and square-tiled surfaces

The a�ne group Aff(M,ω) of (M,ω) is the group of orientation preserving
homeomorphisms of M and preserving Σ which are given by a�ne maps in regular
adopted coordinates. The set of di�erentials of these maps is denoted by SL(M,ω)
and it is a subgroup of SL(2,R). A translation surface (M,ω) is called a lattice
surface (or a Veech surface) if SL(M,ω) ⊂ SL(2,R) is a lattice.

If (M,ω0) is a lattice surface, the SL(2,R)-orbit of (M,ω0) inM(1)(M), which
will be denoted by Lω0 , is closed and can be identi�ed with the homogeneous space
SL(2,R)/SL(M,ω0). The identi�cation is given by the map Φ : SL(2,R)→ Lω0 ⊂
M(1)(M) that sends g ∈ SL(2,R) to g ·ω0 ∈ Lω0 , whose kernel is exactly the Veech
group SL(M,ω0). Thus Φ can be treated a map from SL(2,R)/SL(M,ω0) to Lω0 .
Therefore, Lω0 carry a canonical SL(2,R)-invariant measure µ0, which is the image
of the Haar measure on SL(2, R)/SL(M,ω0) by the map Φ : SL(2,R)/SL(M,ω0)→
M(1)(M). We will refer to µ0 as the canonical measure on Lω0 . Since the homoge-
neous space SL(2,R)/SL(M,ω0) is the unit tangent bundle of a surface of constant

4Theorem 4.2 could be deduced from the recent work of Forni in [18], in which much deeper
and more technical results on the cohomological equation are proved. The crucial point in the
proof of Theorem 4.2 is the control on deviations of ergodic averages from the stable space, which
�rst appears in the work by Zorich [57] in the special case in which µ is the canonical Masur-Veech
measure on a stratum. Very recently, an adaptation of the proof of Zorich's deviation result for
any SL(2,R)-invariant measure has appeared in the preprint [14].
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negative curvature, the (Teichmüller) geodesic �ow on SL(2,R)/SL(M,ω0) is er-
godic. Thus, µ0 is ergodic.

All square-tiled translation surfaces are examples of lattice surfaces. If (M,ω0)
is square-tiled, the Veech group SL(M,ω0) is indeed a �nite index subgroup of
SL(2,Z) (see [22]). Let (M,ω0) be square-tiled and let p :M → R2/Z2 be a rami�ed
cover unrami�ed outside 0 ∈ R2/Z2 such that ω0 = p∗(dz). Set Σ′ = p−1({0}).
For i-th square of (M,ω0), let σi, ζi ∈ H1(M,Σ′,Z) be the relative homology class
of the path in the i-th square from the bottom left corner to the bottom right
corner and to the upper left corner, respectively. Let σ =

∑
σi ∈ H1(M,Z) and

ζ =
∑
ζi ∈ H1(M,Z).

Proposition 5.1 (see [40]). The space H
(0)
1 ((M,ω),R) is the kernel of the homo-

morphism p∗ : H1(M,R)→ H1(R2/Z2,R). Moreover, Hst
1 ((M,ω),R) = Rσ ⊕ Rζ.

Remark 5.2. LetH
(0)
1 (M,Q) stand for the kernel of p∗ : H1(M,Q)→ H1(R2/Z2,Q)

and let Hst
1 (M,Q) := Qσ ⊕Qζ. In view of Proposition 5.1,

H1(M,Q) = H
(0)
1 (M,Q)⊕Hst

1 (M,Q)

is an orthogonal decomposition. Since H
(0)
1 (M,Q) is invariant under the action on

mapping-class group on Lω0 = SL(2, R) · ω0 ⊂ Q(1)(M), this yields the following
orthogonal invariant splitting, which is constant on Lω0 :

{H1((M,ω),Q) = H
(0)
1 (M,Q)⊕Hst

1 (M,Q), ω ∈ Lω0}.

Note that for every γ ∈ H1(M,R) the holonomy hol(γ) =
∫
γ
ω satis�es

hol(γ) =

∫
γ

p∗dz =

∫
p∗γ

dz.

Since ℜdz and ℑdz generate H1(R2/Z2,R), hol(γ) = 0 implies p∗γ = 0. Thus

ker hol ⊂ H
(0)
1 (M,R). Moreover, since both spaces have codimension two, the

previous inclusion is an equality:

(5.1) ker(hol) = H
(0)
1 (M,R).

6. Non-ergodicity

In this section we state and prove our main criterion for non-ergodicity.

Theorem 6.1. Let µ be an SL(2,R)-invariant probability measure on M1(M)
ergodic for the Teichmüller �ow. Let L ⊂ M(1)(M) stand for the support of µ.
Assume that

{H1((M,ω),Q) = K1 ⊕K⊥
1 , ω ∈ L }

is an invariant orthogonal splitting which is constant on L . Let K1 =
∪
ω∈L {ω}×

K1 denote the corresponding invariant subbundle. Suppose that dimQK1 = 2 and
the Lyapunov exponents of the Kontsevich-Zorich cocycle on R⊗QK1 are non-zero.

Then, for µ almost every ω ∈ L , for any Z-cover (M̃γ , ω̃γ) of (M,ω) given by

a homology class γ ∈ K1 ∩H1(M,Z), the vertical �ow (φ̃vt )t∈R on (M̃γ , ω̃γ) is not
ergodic.

The proof of Theorem 6.1 is given later in this section and is preceded by an
outline of the proof. Let us �rst give an application of Theorem 6.1.

Perhaps the simplest example of an invariant orthogonal splitting which satis�es
the assumptions in the Theorem arise if (M,ω0) is a square-tiled compact trans-
lation surface of genus 2. In this case, let Lω0 be the (closed) SL(2,R)-orbit of
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(M,ω0) and let µ0 be the canonical probability measure on Lω0 which is ergodic
(see �5). In this case, as pointed out in Remark 5.2, the canonical splitting

{H1((M,ω),Q) = Hst
1 (M,Q)⊕H(0)

1 (M,Q), ω ∈ Lω0}

(where H
(0)
1 (M,Q) consists of γ ∈ H1(M,Q) with hol(γ) = 0, see (5.1)) is an

invariant orthogonal splitting over Q constant over Lω0 . Setting K1 = H
(0)
1 (M,Q),

let us remark that the assumptions of Theorem 6.1 are satis�ed: sinceM has genus
two, dimQH1(M,R) = 4 and dimQK1 = 2 and the Lyapunov exponents are all
non-zero (see Theorem 4.1). Thus, we can apply Theorem 6.1. By remarking that,

in view of (5.1), the recurrent Z-covers of (M,ω0) are exactly the Z-covers (M̃γ , ω̃γ)

given by γ ∈ H(0)
1 (M,Q) ∩ H1(M,Z) = K1 ∩ H1(M,Z), we have thus proved the

following:

Corollary 6.2. Let (M,ω0) be a square-tiled compact translation surface of genus
2 and let µ0 be the canonical measure on the SL(2,R)-orbit of (M,ω0) (see �5).

For µ0-almost every (M,ω) the vertical �ow of each recurrent Z-cover (M̃, ω̃) is
not ergodic.

Outline of the proof of Theorem 6.1. In view of Lemma 2.1, the vertical �ow

(φ̃vt ) on (M̃γ , ω̃γ) has a special representation built over the skew product Tψ :
I × Z → I × Z, where T : I → I is an interval exchange transformation (Ij ,
1 ≤ j ≤ m are exchanged intervals) and ψ = ψγ : I → Z is given by ψγ(x) = ⟨γ, γj⟩
if x ∈ Ij for some γj ∈ H1(M,Z). Therefore we need to show that the skew
product Tψ is non-ergodic. In fact, we will prove that the group of essential values
EZ(ψ) = ER(ψ) = {0}.

The main part of the proof consists in the construction of a cocyle ψ′ = ψγ′ :
I → R with γ′ ∈ H1(M,R) such that ψ′ is a coboundary and the sum ϕ := ψ + ψ′

takes values in a subgroup aZ with irrational a. Since the cocycles ψ and ϕ are
cohomologous, by Proposition 3.1, we have ER(ψ) = ER(ϕ) ⊂ aZ. Therefore, by
the irrationality of a, ER(ψ) ⊂ Z ∩ aZ = {0} and we get EZ(ψ) = ER(ψ) = {0}.

Denote by K1 ⊂ H1(M,R) the R-subspace generated by K1. We can choose a
non-zero γ′ ∈ K1 which is a stable vector for the (dual) KZ-cocycle. The existence
of such element is guaranteed for almost every translation structure ω by the non-
triviality of the Lyapunov exponents of the KZ-cocycle (on the related subbundle).
Then the fact that ψγ′ is a coboundary follows from Theorem 4.2.

Let us conclude the outline by showing that ϕ takes values in a subgroup aZ with
irrational a. The element γ ∈ K1 can be completed to a basis {γ, σ} ⊂ H1(M,Z)
of K1. The coordinates of the stable vector γ′ ∈ K1 with respect to the base
{γ, σ} are incommensurate over Q (the proof of this �irrationality� of the stable
vector is given in Lemma 6.3). Up to changing γ′ by a scalar multiple, we can
hence assume that γ′ = −γ + aσ, where a /∈ Q. Since γ + γ′ = aσ, it follows that
the values of the cocycle ϕ associated to γ + γ′, which, for x ∈ Ij , are given by
ϕ(x) = ⟨γ + γ′, γj⟩ = a⟨σ, γj⟩ all belong to aZ (recall that σ, γj ∈ H1(M,Z) and
thus ⟨σ, γj⟩ ∈ Z) as claimed.

Before giving the proof of Theorem 6.1, we state and prove an auxiliary Lemma.
Let L , µ and K1,K

⊥
1 be as in the assumptions of Theorem 6.1. Remark that since

{H1((M,ω),R) = (R ⊗Q K1) ⊕ (R ⊗Q K
⊥
1 ), ω ∈ L } is an orthogonal splitting, by

Poincaré duality, we also have a dual constant orthogonal invariant splitting

{H1((M,ω),R) = K1 ⊕K1
⊥, ω ∈ L },

K1 := P(R⊗Q K1), K1
⊥ := P(R⊗Q K

⊥
1 ).

(6.1)
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Lemma 6.3. Let ω ∈ L be Oseledets regular for µ for which the conclusion of
Lemma 4.3 holds. Let ρ ∈ K1 ⊂ H1(M,R) be such that ρ ∈ E−

ω (M,R) \ {0}.
For any Q-basis {σ1, σ2} ⊂ H1(M,Z) of K1 the periods

(∫
σ1
ρ,
∫
σ2
ρ
)
∈ R2 do not

belong to R · (Q×Q).

Proof. First note that
( ∫

σ1
ρ,
∫
σ2
ρ
)
̸= (0, 0). Indeed, if

∫
σ1
ρ =

∫
σ2
ρ = 0 then

⟨Pσ, ρ⟩ =
∫
σ
ρ = 0 for every σ ∈ R⊗Q K1. By the de�nition of K1, it follows that

the symplectic form is degenerated on K1, which is a contradiction.
Denote by pK1 : H1(M,Q) → K1 the orthogonal projection. Since the splitting

is over Q, by writing the image by pK1 of each element of a basis of H1(M,Z) as a
linear combination over Q of σ1, σ2, one can show that there exists q ∈ N (the least
common multiple of the denominators) such that

(6.2) pK1(H1(M,Z)) ⊂ (Zσ1 ⊕ Zσ2)/q.

Suppose that, contrary to the claim in the Lemma,
( ∫

σ1
ρ,
∫
σ2
ρ
)
∈ R · (Q × Q).

Then there exists a ∈ R \ {0} such that
∫
σ1
ρ,
∫
σ2
ρ ∈ aZ. Thus, since ρ ∈ K1, by

the de�nition of K1 and (6.2), for every σ ∈ H1(M,Z) we have

(6.3)

∫
σ

ρ =

∫
pK1

σ

ρ ∈ 1

q

(
Z
∫
σ1

ρ+ Z
∫
σ2

ρ
)
∈ a

q
Z.

By Lemma 4.3 (which we can apply by assumption), there exists a constant c >

0, a sequence of times (tk)k∈N, tk → +∞ and a sequence {γ(k)1 , . . . , γ
(k)
m }k∈N ⊂

H1(M,Z), such that

(6.4) 0 <
1

c
∥ρ∥Gtkω ≤ ρ̂k := max

1≤j≤m

∣∣∣ ∫
γ
(k)
j

ρ
∣∣∣ ≤ c∥ρ∥Gtkω for any k ∈ N,

Thus, by (6.3), ρ̂k ∈ a
qZ \ {0} for every natural k. On the other hand, since

ρ ∈ E−
ω (M,R), ∥ρ∥Gtkω → 0 as k →∞. In view of (6.4), ρ̂k → 0 as k →∞, which

gives a contradiction. �

Proof of Theorem 6.1. Let L ′ be the set of Oseledets regular ω ∈ L for which
the conclusion of Theorem 4.2 and Lemma 4.3 hold and, in addition, for which the
vertical and the horizontal �ows on (M,ω) are ergodic. In view of Theorem 4.2,

Lemma 4.3 and [38], µ(L ′) = 1. For any ω ∈ L ′ let us consider a Z-cover (M̃, ω̃)
of (M,ω) associated to a non-trivial homology class γ ∈ H1(M,Z) ∩K1. If γ = 0

then the surface M̃γ is not connected (M̃γ =M ×Z) and every translation �ow on

M̃γ is automatically non-ergodic.
Consider the invariant orthogonal splitting of cohomology (6.1). By assumption,

the Lyapunov exponents of the reduced Kontsevich-Zorich cocycle (GKZ,K
1

t )t∈R are

non-zero. Since the cocycle (GKZ,K
1

t )t∈R preserves the symplectic structure on K1

given by the intersection form, it follows that the exponents of the subbundle K1

are one positive and one negative. Thus, the stable space E−
ω (M,R) intersects K1

exactly in a one dimensional space. Let ρ ∈ Ω1(M) be a non-zero smooth closed
form such that [ρ] ∈ E−

ω (M,R) ∩K1.
As γ ̸= 0, it can be completed to a basis a Q-basis {γ, σ} ⊂ H1(M,Z) of the space

K1. By Lemma 6.3, the periods Υ([ρ]) = (
∫
γ
ρ,
∫
σ
ρ) do not belong to R · (Q×Q).

Therefore, ∫
γ

ρ ̸= 0 ̸=
∫
σ

ρ and a :=

∫
γ
ρ∫

σ
ρ
∈ R \Q.
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Thus, since ⟨γ, σ⟩ ∈ Z \ {0}, up to multiplying ρ by a non-zero real constant (more
precisely, by ⟨γ, σ⟩/

∫
σ
ρ), we can assume that

(6.5) Υ([ρ]) = (a, 1)⟨γ, σ⟩.

Choose a transverse horizontal interval I ⊂ M and let T : I → I be the IET
obtained as Poincaré return map and let Ij , j ∈ A = {1, . . . ,m}, be the exchanged
subintervals. The homology classes γj , j ∈ A generates H1(M,Z) (as in �2.1,
γj = [vx] where vx is obtained by closing up the �rst return trajectory of the
vertical �ow (φvt )t∈R of any x ∈ Ij by a horizontal interval). Since the vertical
�ow (φvt )t∈R on (M,ω) is ergodic, T is ergodic as well. By Lemma 2.1, the vertical

�ow (φ̃vt ) on (M̃, ω̃) is isomorphic to a special �ow built over the skew product
Tψ : I × Z→ I × Z, where ψ = ψγ is given by

(6.6) ψγ(x) = ⟨γ, γj⟩ if x ∈ Ij .

Let us consider the smooth bounded function f :M \Σ→ R, f = iXvρ and let ψρ :

I → R be the corresponding cocycle for T de�ned by ψρ(x) =
∫ τ(x)
0

f(φvsx) ds. By

Theorem 4.2, since [ρ] ∈ E−
ω (M,R), the cocycle F vf for the vertical �ow (φvt )t∈R is a

coboundary and thus, equivalently, by Lemma 3.7, the cocycle ψρ is a coboundary
for T as well. Let γ′ := P−1[ρ] ∈ R ⊗Q K1 be the Poincaré dual of [ρ] ∈ K1. In
view of Proposition 3.8, the cocycle ψγ′ : I → R given by

(6.7) ψγ′(x) = ⟨γ′, γj⟩ whenever x ∈ Ij

is cohomologous to −ψρ and thus it is also a coboundary.
Clearly ψ : I → Z can be considered as cocycle taking values in R for the

automorphism T . Then the group of essential values ER(ψ) = EZ(ψ) of this cocycle
is a subgroup of Z. Let us consider the cocycle ϕ : I → R given by ϕ := ψ + ψγ′ .
In view of (6.6) and (6.7),

ϕ(x) = ⟨γ, γj⟩+ ⟨γ′, γj⟩ = ⟨γ + γ′, γj⟩ if x ∈ Ij .

Since γ′ ∈ R⊗Q K1 and {γ, σ} is also an R-basis of R⊗Q K1, we have

γ′ =
⟨γ′, σ⟩
⟨γ, σ⟩

γ +
⟨γ, γ′⟩
⟨γ, σ⟩

σ.

One can show this formula by checking that the symplectic products of the RHS
and the LHS with base elements are equal. As [ρ] = Pγ′, in view of (4.2) and (6.5),

(⟨γ, γ′⟩, ⟨σ, γ′⟩) =
(∫

γ

ρ,

∫
σ

ρ
)
= Υ([ρ]) = (a, 1)⟨γ, σ⟩

with a ∈ R \Q. It follows that

γ′ = −γ + a σ.

Hence, for x ∈ Ij we have

ϕ(x) = ⟨γ + γ′, γj⟩ = a ⟨σ, γj⟩ ∈ aZ.

Therefore, the cocycle ϕ : I → R takes values in aZ, hence ER(ϕ) ⊂ aZ (see
Proposition 3.1). Since ψ is cohomologous to ϕ, it follows from Proposition 3.1
that ER(ψ) = ER(ϕ) ⊂ aZ. As ER(ψ) = EZ(ψ) ⊂ Z and aZ ∩ Z = {0}, we get
EZ(ψ) = ER(ψ) = {0}. By Proposition 3.2, Tψ : I × Z → I × Z is not ergodic. In
view of Remark 2.2, it follows that the vertical �ow (φ̃vt )t∈R is not ergodic. �
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7. Non-regularity

In this section, we prove the following Theorem:

Theorem 7.1. Let µ be any SL(2,R)-invariant, KZ-hyperbolic probability ergodic

measure onM(1)(M). For µ-almost every (M,ω) the vertical �ow of each Z-cover
(M̃γ , ω̃γ) given by a non-zero γ ∈ H1(M,Z) has no invariant subset of positive
�nite measure.

Theorem 7.1 is derived from Theorem 4.2 and Lemma 7.2 stated below, via the
representation of directional �ows on Z-cover as special �ows over skew-products.

Lemma 7.2. Let µ be an SL(2,R)-invariant probability measure on M(1)(M)
ergodic for the Teichmüller �ow. For each non-zero γ ∈ H1(M,Z) and for µ-
a.e ω ∈ M(1)(M) the Poincaré dual class Pγ does not belong to the stable space
E−
ω (M,R).

Proof. Consider any Oseledets regular ω ∈ M(1)(M) in the set of µ full measure

given by Lemma 4.3 and let (tk)k∈N, {γ(k)1 , . . . , γ
(k)
m } ⊂ H1(M,Z) and c > 0 be

given by Lemma 4.3. Then, by Poincaré duality, Lemma 4.3 applied to Pγ ̸= 0
gives that

(7.1) 0 < γ̂k := max
1≤j≤m

∣∣⟨γ(k)j , γ⟩
∣∣ = max

1≤j≤m

∣∣∣ ∫
γ
(k)
j

Pγ
∣∣∣ ≤ c∥Pγ∥Gtkω

for every k ∈ N. Therefore, γ̂k is a natural number for any k ∈ N. If Pγ ∈
E−
ω (M,R), by de�nition of the stable space (see (4.3)), the RHS of (7.1) tends to

zero as k →∞, hence γ̂k → 0 as k →∞, which gives a contradiction. We conclude
that Pγ does not belong to E−

ω (M,R). �

Proof of Theorem 7.1. Let µ ∈ M(1) belong to the set of full µ measure given

by Lemma 7.2 and let (M̃, ω̃) = (M̃γ , ω̃γ) for some non-zero γ ∈ H1(M,Z). By
Lemma 2.1, the vertical �ow (φ̃vt )t∈R has a representation as a special �ow build
over the skew product Tψ : I × Z → I × Z, where ψ(x) = ⟨γ, γα⟩ if x ∈ Iα, α ∈ A
and under a roof function which takes �nitely many positive values. Thus, the
�ow (φ̃vt )t∈R has invariant subsets of �nite positive measure if and only if the skew
product Tψ has. In view of Proposition 3.3, this happens if and only if the cocycle
ψ : I → Z for the IET T is a coboundary. Thus, it is enough to show that ψ : I → Z
is not a coboundary.

Suppose that, contrary to our claim, ψ : I → Z is a coboundary. Choose a
smooth closed form ρ ∈ Ω1(M) such that [ρ] = Pγ. Let us consider the cocycle
F viXvρ for the �ow (φvt )t∈R and the corresponding cocycle ψρ : I → R for T (see the

Notation introduced just before Proposition 3.8). By Proposition 3.8, the cocycle
ψρ is cohomologous to the cocycle −ψ, so also ψρ is a coboundary. In view of
Lemma 3.7, it follows that also F viXvρ is a coboundary. Since µ is KZ-hyperbolic,

by the second part of Theorem 4.2, Pγ = [ρ] ∈ E−
ω (M,R). On the other hand, by

Lemma 7.2, Pγ /∈ E−
ω (M,R), which is a contradiction. �

Corollary 7.3. Let µ be any SL(2,R)-invariant, ergodic, KZ-hyperbolic �nite mea-

sure onM(1)(M) and let H1(M,Q) = K1 ⊕K⊥
1 be a decompositions satisfying the

assumption of Theorem 6.1. Then for µ-almost every (M,ω) and every non-zero

γ ∈ K1 ∩H1(M,Z) the vertical �ow of the Z-cover (M̃γ , ω̃γ) is not ergodic and it
has uncountably many ergodic components and it has no invariant subset of positive
�nite measure.

Proof. The absence of invariant subsets of positive �nite measure follow directly
from Theorem 7.1. By the proof of Theorems 6.1 and 7.1, for µ-almost every ω ∈
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M(1)(M) and every non-zero γ ∈ K1∩H1(M,Z) the vertical �ow on (M̃γ , ω̃γ) has a
special representation over a skew product Tψ : I×Z→ I×Z such that EZ(ψ) = {0}
and ψ is not a coboundary. In view of Proposition 3.2, EZ(ψ) = {0,∞}, so the
cocycle ψ is non-regular. By Proposition 3.4, the skew product and hence (by the

reduction in �2.1) also the vertical �ow on (M̃γ , ω̃γ) have uncountably many ergodic
components. �

8. Non-transitivity

In this section we consider the topological dynamical properties of translation
�ows under the assumptions of the non-ergodicity criterium (Theorem 6.1). Let us
recall that a continuous �ow or a homeomorphism on a topological space is called
(topologically) transitive if there exists a dense orbit. LetM be a translation surface
with the topology induced by the �at metric and let (φθt )t∈R be a directional �ow
on M . Recall that (φθt )t∈R is well de�ned for all t ∈ R only on the full measure
set Mθ ⊂ M of regular points and is not a continuous �ow, thus the standard
de�nition of transitivity does not apply. By convention, we say that the directional
�ow (φθt )t∈R is transitive if there exists a regular point x ∈Mθ whose orbit is dense.

In this section we prove the following result. We are indebted to Artur Avila
for pointing out to us that the following stronger topological conclusion could be
drawn from our non-ergodicity arguments.

Theorem 8.1. Let µ be any SL(2,R)-invariant, ergodic, KZ-hyperbolic �nite mea-

sure onM(1)(M) and let H1(M,Q) = K1 ⊕K⊥
1 be a decompositions satisfying the

assumption of Theorem 6.1. Then for µ-almost every (M,ω) and every non-zero

γ ∈ K1 ∩H1(M,Z) the vertical �ow of the Z-cover (M̃γ , ω̃γ) is not transitive.

Let us point out that in our set-up non-transitivity of a directional �ow (φθt )t∈R
implies non-ergodicity, but the proof of non-transitivity here presented crucially
exploits the arguments used to show non-ergodicity in the proof of Theorem 6.1.

Before proving Theorem 8.1, let us �rst prove the following general Proposition,
whose assumptions are motivated by the results in the proof of Theorem 6.1 (see
the proof of Theorem 8.1 below).

Proposition 8.2. Let T : X → X be a homeomorphism of a compact metric
space (X, d) and let f : X → Z be a continuous function. Assume that there exist
a continuous transfer function g : X → R, an irrational number α ∈ R and a
continuous function h : X → αZ such that

f(x) = g(x)− g(Tx) + h(x) for all x ∈ X.

Then the skew product homeomorphism Tf on X ×Z is not topologically transitive.

Proof. If f ≡ 0 then Tf is obviously non-transitive, so assume that f is non-zero.
Suppose that, contrary to our claim, Tf is transitive and let (x0, s0) ∈ X × Z
be a point with dense orbit. First observe that there exists x ∈ X such that
g(x) − g(x0) /∈ αZ. Otherwise, g(x) − g(x0) ∈ αZ for every x ∈ X, and hence
g(x)− g(Tx) = (g(x)− g(x0))− (g(Tx)− g(x0)) ∈ αZ for every x ∈ X. It follows
that

f(x) = g(x)− g(Tx) + h(x) ∈ αZ for all x ∈ X.
Thus the function f takes values only in the set Z∩αZ = {0}, contrary to assump-
tion.

Fix x ∈ X such that g(x)− g(x0) /∈ αZ. By transitivity, there exists a sequence
{kn}n∈N of integers such that

(T knx0, s0 + f (kn)(x0)) = T knf (x0, s0)→ (x, s0) as n→∞.
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Therefore T knx0 → x and

h(kn)(x0) = f (kn)(x0)− g(x0) + g(T knx0)→ g(x)− g(x0).
Since h takes values only in αZ, it follows that g(x) − g(x0) ∈ αZ, which is a
contradiction. �

Proof of Theorem 8.1. Let µ and K1⊕K⊥
1 be as in the assumptions of the theorem,

so that in particular the assumptions of Theorem 6.1 also hold. Let L be the
support of µ. In the proof of Theorem 6.1 we showed that there exists a set
L ′ ⊂ L with µ(L ′) = 1, consisting of Oseledets regular points without vertical
saddle connections, such that the following holds. For every ω ∈ L ′ and any

Z-cover (M̃γ , ω̃γ) of (M,ω) given by a homology class γ ∈ K1, the vertical �ow

(φ̃vt )t∈R on (M̃γ , ω̃γ) is isomorphic to a special �ow built over the skew product
Tψ : I ×Z→ I ×Z, where T is an ergodic IET and ψ : I → Z is piecewise constant
over each continuity interval Ij for T . Moreover, ψ can be written as ψ = ϕ− ψγ′ ,
where ϕ : I → R is also piecewise constant over each Ij , ϕ takes values in αZ where
α /∈ Q and ψγ′ is a coboundary given by

ψγ′(x) = F vf (τ(x), x) =

∫ τ(x)

0

f(φvsx) ds for all x ∈ I,

where τ(x) is the �rst return time of x ∈ I to I and f : M \ Σ → R is of the
form f = iXvρ for some [ρ] ∈ E−

ω (M,R). Moreover, since by de�nition of L ′, the
conclusion of Theorem 4.2 holds for any ω ∈ L ′, the cocycle F vf (t, x) over (φ

v
t )t∈R

associated to f is uniformly bounded for any x ∈Mv and t ≥ 0. In particular, since

ψ
(n)
γ′ (x) =

∫ τ(n)(x)

0

f(φvsx) ds = F vf (τ
(n)(x), x),

also the sequence

(8.1) {ψ(n)
γ′ (x)}n∈N = {ψ(n)(x)− ϕ(n)(x)}n∈N

is bounded for all x ∈ I.
Remark that since (φvt )t∈R has no vertical saddle connections, T satis�es the

Keane's condition and in particular it is minimal (see for example [36] or [53]).
Denote by D the set of discontinuities of iterates Tn, n ∈ Z. As shown in [36],
the IET T : I → I can be extended to a minimal homeomorphism S : X → X of
a totally disconnected perfect compact metric space X (Cantor set), that is there
exists a continuous map π : X → I for which π ◦ S = T ◦ π and moreover the
extension has the following properties:

(i) π is at most two-to-one and π : π−1(I\D)→ I\D is a homeomorphism;
(ii) if ψ : I → R is a function constant on each exchanged interval then ψ ◦ π :

X → R is continuous.

As the sequence (8.1) is bounded, {(ψ ◦π)(n)(x)−(ϕ◦π)(n)(x)} is bounded for each
x ∈ X. Since S : X → X is a minimal homeomorphism, in view of the classical
Gottschalk-Hedlund theorem, this implies that ψ ◦ π − ϕ ◦ π is a coboundary and
that there exists a continuous function g : X → R such that ψ◦π = g−g◦S+ϕ◦π.
By Proposition 8.2, we conclude that Sψ◦π is not transitive.

Let us show that this implies that also the vertical �ow (φ̃vt )t∈R is not transitive.
If by contradiction (φ̃vt )t∈R were transitive, it would imply by de�nition that there
exists a point (x, 0) ∈ I×Z with dense orbit for the skew product Tψ : I×Z→ I×Z.
Moreover, by de�nition of transitivity of (φ̃vt )t∈R, we also have that x ∈ I\D , since
the corresponding orbit for (φvt )t∈R is de�ned for all t ∈ R.

Let us now show that the existence of a dense orbit for Tψ would also imply the
transitivity of skew product homeomorphism Sψ◦π : X×Z→ X×Z, hence getting
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a contradiction. Indeed, if the orbit of (x, s) ∈ (I\D)×Z were dense in I ×Z, and
hence in particular in (I\D)×Z, since by property (i), π−1× Id : π−1(I\D)×Z→
(I\D)×Z is a well-de�ned homeomorphism, the orbit of (π−1(x), s) would also be
dense in π−1(I\D)×Z ⊂ X×Z. Moreover, since the metric space X×Z is perfect
and complete, and property (i) also implies that π−1(D)×Z is countable, the orbit
of (π−1(x), s) would also be dense in X ×Z and thus Sψ◦π would not be transitive.
We thus conclude that (φ̃vt )t∈R is not transitive. �

9. Final arguments

In this section we conclude the proofs of the main results stated in the Introduc-
tion, that is Theorem 1.1 (see �9.2), Theorem 1.2 and Corollary 1.3 (see �9.3) and
Theorem 1.4 and Corollary 1.5 (see �9.1). The arguments are essentially based on
a Fubini-type arguments. In �9.1 we �rst present a simple Fubini argument which
holds in the case of lattice surfaces (Proposition 9.1) and can be used to prove
Theorem 1.4 and parts (1) of Theorem 1.1 and (1), (2) of Theorem 1.2 . The other
parts of Theorem 1.1 and 1.5 require a di�erent type of Fubini argument, presented
in �9.2 and �9.3 respectively.

9.1. A Fubini argument for lattice surfaces. In this section we prove Theorem
1.4 and Corollary 1.5. We will use the following Proposition.

Proposition 9.1. Let (M,ω0) be a lattice surface and µ0 be the canonical measure
on its SL(2,R)-orbit Lω0 . Fix a non-zero γ ∈ H1(M,Z). Assume that for µ0-

almost every ω ∈ Lω0 the vertical �ow (φ̃vt )t∈R on (M̃γ , ω̃γ) satisfy one (or more)
of the following properties:

(P-1) is not ergodic;
(P-2) has uncountably many ergodic components;
(P-3) is not transitive;
(P-4) has no invariant sets of �nite measure.

Then for almost every θ ∈ S1, the directional �ow (φ̃θt )t∈R on (M̃γ , (̃ω0)γ) also

satisfy the same property (P-1), (P-2), (P-3) or (P-4).

The proof of Proposition 9.1, which we include for completeness below, exploits a
fairly standard argument which uses the local product structure of SL(2,R) and the
observation that the properties of the vertical �ow in the Proposition are invariant
under the action of the geodesic and horocycle �ow (since both gt and ht preserve
the vertical direction).

Let us �rst state two elementary Lemmas useful in the proofs.

Notation. For every g ∈ SL(2,R) and θ ∈ S1 let us denote by g · θ ∈ S1 the action
of SL(2,R) on S1 determined by eig·θ = g(eiθ)/|g(eiθ)|.

Lemma 9.2. Let (M,ω) be a translation surface (not necessary compact). Then
for every g ∈ SL(2, R) and θ ∈ S1 there exists s > 0 such that the directional �ows

(φg·θst )t∈R on (M, g ·ω) and (φθt )t∈R on (M,ω) are measure-theoretically isomorphic
via a homeomorphism.

Proof. Let s = s(g, θ) := |g(eiθ)|. We claim that sXg·θ
g·ω = Xθ

ω. Indeed

isXg·θg·ωω = sg−1(iXg·θg·ωg · ω) = sg−1(eig·θ) = g−1(|g(eiθ)|eig·θ) = g−1 ◦ g(eiθ) = eiθ

and since Xθ
ω is de�ned by iXθωω = eiθ, this proves the claim. From the claim,

we also have φg·ω,g·θst = φω,θt for every t ∈ R. Since moreover, νg·ω = νω and the
topologies induced by the �at metrics on (M, g · ω) and (M,ω) are equivalent, the
Lemma follows. �
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Lemma 9.3. For every γ ∈ H1(M,Z) and g ∈ SL(2, R) we have (M̃γ , g̃ · ωγ) =

(M̃γ , g · ω̃γ).

Proof. Denote by p : M̃γ → M the covering map. It is enough to remark that for
every g ∈ SL(2,R) we get g̃ · ωγ = p∗(g · ω) = g · ω ◦ p∗ = g · p∗(ω) = g · ω̃γ . �

Proof of Proposition 9.1. To avoid undue repetition, we will write that a directional
�ow satis�es (P-i) for i ∈ {1, 2, 3, 4}, where (P-i) could be any of the four properties,
(P-1), (P-2), (P-3) or (P-4), in the statement of the Lemma. The same proof indeed
applies for all four properties. Since (M,ω0) a lattice surface, we recall (see �5) that
the SL(2,R)-orbit of (M,ω0) (denoted by Lω0) is closed in M(1)(M) and can be
identi�ed to SL(2,R)/SL(M,ω0) by the map Φ : SL(2,R)/SL(M,ω0) → Lω0

that sends g SL(M,ω0) ∈ SL(2,R)/SL(M,ω0) to g · ω0 ∈ Lω0 . Denote by µ0 the
canonical measure on Lω0 .

Using the Iwasawa NAK decomposition, if we denote as usual by

gt =

(
et 0
0 e−t

)
, hs =

(
1 0
s 1

)
, ρθ =

(
cos θ − sin θ
sin θ cos θ

)
we can choose an open neighbourhood U ⊂ L0 of ω0 of the form

U = {ω ∈ L0 : ω = hsgtρθ · ω0 where (t, s, θ) ∈ (−ϵ, ϵ)2 × S1}

for some ϵ > 0. By assumption, for µ0 almost every ω ∈ U , the vertical �ow

(φ̃vt )t∈R on (M̃γ , ω̃γ) satis�es (P-i). Moreover, since µ0 is the pull-back by Φ of the
Haar measure on SL(2,R)/SL(M,ω0) which is locally equivalent to the product
Lebesgue measure in the coordinates (t, s, θ), it follows that for Lebesgue almost

every (t, s, θ) ∈ (−ϵ, ϵ)2×S1, the vertical �ow (φ̃vt )t∈R on (M̃γ , ˜(hsgtρθ · ω0)γ), which

by Lemma 9.3 is metrically isomorphic (via a homeomorphism) to (M̃γ , hsgtρθ ·
(̃ω0)γ), also satis�es (P-i).

Denote by S0 ⊂ S1 the subset of all θ ∈ S0 for which the directional �ow φ̃θt on

(M̃γ , (̃ω0)γ) does not satisfy (P-i). By Lemma 9.2, if θ ∈ S0 then also the vertical

�ow φ̃vt on (M̃γ , ρπ/2−θ · (̃ω0)γ) does not satisfy (P-i). Moreover, since the vertical

direction π/2 ∈ S1 is �xed both by hs and gt, i.e. hs · π2 = π
2 and gt · π2 = π

2 for

any s, t ∈ R, Lemma 9.2 also implies that the �ow φ̃vt on (M̃γ , hsgtρπ/2−θ · (̃ω0)γ)

does not satisfy (P-i) for all (t, s) ∈ (−ϵ, ϵ)2. It follows that for every (t, s, θ) ∈
(−ϵ, ϵ)2 × (π/2 − S0) the vertical �ow φ̃vt on (M̃γ , hsgtρθ · (̃ω0)γ) does not satisfy

(P-i). Therefore the set (−ϵ, ϵ)2× (π/2−S0) has zero Lebesgue measure and hence

S0 has zero Lebesgue measure. Thus, we conclude that for any Z-cover (M̃γ , (̃ω0)γ)

of (M,ω0) given by a non-zero γ ∈ K1 ∩ H1(M,Z), for almost every θ ∈ S1, the

directional �ow (φ̃θt )t∈R on (M̃γ , (̃ω0)γ) satis�es (P-i). �

Proof of Theorem 1.4. Let (M,ω0) is a square-tiled surface of genus 2. The canon-
ical probability measure µ0 on Lω0 is ergodic (see �5) and, by Theorem 4.1, is

KZ-hyperbolic. Moreover, setting K1 = H
(0)
1 (M,Q) and K⊥

1 = Hst
1 (M,Q) (see

�5), one can check, as in the proof of Corollary 6.2, that the assumptions of The-
orem 6.1 hold and that, in view of (5.1), the recurrent Z-covers are exactly the

Z-covers (M̃γ , ω̃γ) given by γ ∈ K1 ∩H1(M,Z). Thus, by Corollary 7.3 and Theo-

rem 8.1, for µ0-almost every ω ∈ Lω0 , for any recurrent Z-cover (M̃γ , ω̃γ) of (M,ω)

given by a non-zero γ the vertical �ow (φ̃vt )t∈R on (M̃γ , ω̃γ) is not ergodic, not
transitive, has no invariant set of �nite measure and has uncountably many ergodic
components. Thus, the claim follows from Proposition 9.1. �
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Proof of Corollary 1.5. Denote by Z(3,0) the square-tiled translation surface cor-
responding to the polygon drawn in Figure 4(b) with edges labeled by the same
letter identi�ed by translations. One can verify that Z(3,0) ∈ H(2). Consider the
homology class γ = [B]− [D] which is non trivial but has trivial holonomy. One can
check that the Z-cover of Z(3,0) associated to γ gives exactly the in�nite staircase
translation surface Z∞

(3,0). Thus, Theorem 1.4 applied to this surface shows that

the directional �ow on Z∞
(3,0) is not ergodic, not transitive and has no invariant set

of �nite measure for almost every direction. �

Remark 9.4. A similar proof shows that any surface in the family Z∞
(a,b) with (a, b) ∈

N2, b > 2, described by Hubert-Schmithüsen in [32] satisfy the same conclusion of
Corollary 1.5.

9.2. Non-ergodicity for billiards in the in�nite strip.

Proof of Theorem 1.1. Let us consider the billiard �ow on the table T (l) in Figure
1. Denote by Γ the 4-elements group of isometries of S1 generated by the re�ections
θ 7→ −θ, θ 7→ π − θ. Using the unfolding process described in [33] (see for example
[39]), one can verify that, for every direction θ ∈ S1 the �ow (bθt )t∈R is isomorphic

to the directional �ow (φ̃θt )t∈R on a non-compact translation surface (M̃, ω̃l), where

(M̃, ω̃l) is the translation surface resulting from gluing, along segments with the
same name, four copies of T (l), one for each element of Γ, according to the action

of Γ, as shown in the Figure 6. The surface (M̃, ω̃l) can be represented as gluing

Figure 6

Figure 7

two Z-periodic polygons, as shown in the Figure 7, where Rn = rn ∪ r′n and Ln =
ln ∪ l′n. Let us cut these polygons along the segments marked as Un, Vn, n ∈ Z, to
obtain rectangles Pn, P

′
n and let us glue Pn and P ′

n along the segment Rn (see the

Figure 8). It follows that (M̃, ω̃l) is a Z-cover of the compact translation surface

(M,ωl) presented in the Figure 8. More precisely, (M̃, ω̃l) = (M̃γ , (̃ωl)γ), where

γ = [V − U ] has trivial holonomy.

(1) Case l rational. One can verify that for any l ∈ (0, 1), (M,ωl) ∈ H(1, 1), thus,
in particular, M has genus 2. The assumption that l ∈ Q guarantees that (M,ωl)
is square-tiled. Thus, in this case we can apply Theorem 1.4 that implies that for

almost every θ ∈ S1 the directional �ow (φ̃θt )t∈R on (M̃, ω̃l) and hence the billiard
�ow (bθt )t∈R on T (l) is not ergodic, has no invariant sets of �nite measure and has
uncountably many ergodic components.



28 K. FR�CZEK AND C. ULCIGRAI

Figure 8

(2) Full measure set of values of the parameter l. Let us remark that (M,ωl) can
be obtained from two identical copies (M1, ω

1
l ), (M2, ω

2
l ) (corresponding to the

two rectangles in Figure 8) of a genus 1 translation surface with a slit (i.e. a
straight segment connecting two marked points), by identifying each side of the slit
in (M1, ω

1
l ) with the opposite side of the slit in (M2, ω

2
l ). In particular, this shows

that (M,ωl) is a branched 2-cover of the torus (M1, ω
1
l ) with covering map given

by the projection p :M →M1. Denote by τ :M →M the only non-trivial element
of the deck group of the covering p :M →M1 ≈ T2. Denote by L the locus

{ω ∈ H(2)(1, 1) : τ∗ω = ω}.

Equivalently, ω ∈ L if and only if ω = p∗ω0 for some ω0 ∈ H(1)(0, 0), where
H(1)(0, 0) is the stratum of a genus one translation surface with two marked points.
Therefore, L is the 2-cover of the moduli space stratum H(1)(0, 0) and therefore
L has dimension �ve, which is the dimension of H(1)(0, 0). Moreover, L carries
a natural SL(2,R)-invariant measure µL , which is simply the pull-back of the
canonical measure on the stratumH(1)(0, 0) via the covering map p. Let us consider
the decomposition H1(M,Q) = K1 ⊕K⊥

1 , where

K1 := {γ ∈ H1(M,Q) : τ∗γ = −γ} and K⊥
1 := {γ ∈ H1(M,Q) : τ∗γ = γ}.

This is an orthogonal decomposition. Indeed, if γ1 ∈ K1 and γ2 ∈ K⊥
1 then

⟨γ1, γ2⟩ = ⟨τ∗γ1, τ∗γ2⟩ = −⟨γ1, γ2⟩ =⇒ ⟨γ1, γ2⟩ = 0.

Moreover, dimQK1 = dimQK
⊥
1 = 2. Remark that the homology class γ = [V −U ]

which determines the Z-cover (M̃, ω̃l) belongs to K1.
Let p∗ : H1(M,Q) → H1(T2,Q) be the action induced on Q-homology by the

covering map p : M → M1. If τ∗γ = −γ then −p∗γ = p∗τ∗γ = (p ◦ τ)∗γ = p∗γ,
hence K1 is a subspace of the kernel kerQ p∗. Since dimQK1 = 2 = dimQ kerQ p∗,
we have K1 = kerQ p∗. Let ϕ ∈ Γ(M) an element of the mapping-class group such
that ω2 = ϕ∗ω1 for ω1 Γ(M) = ω2 Γ(M) ∈ L . Then there exists ϕ0 ∈ Γ(M1) such
that p ◦ ϕ = ϕ0 ◦ p. It follows that p∗γ = 0 implies p∗(ϕ∗γ) = (ϕ0)∗(p∗γ) = 0, so
ϕ∗K1 = K1. Since K

⊥
1 is the symplectic orthocomplement of K1 in H1(M,Q), we

obtain ϕ∗K
⊥
1 = K⊥

1 . Consequently,

{H1((M,ω),Q) = K1 ⊕K⊥
1 , ω ∈ L }

is an orthogonal invariant splitting which is constant on L . Let K1 and K⊥
1 be the

associated invariant subbundles over L .
Since the canonical measure on H(1)(0, 0) is ergodic for the Teichmüller �ow (see

[37]) and L is a connected cover of H(1)(0, 0) whose covering map is equivariant
with respect to the SL(2,R)-action, it follows (for example by the Hopf argument)
that also the measure µL on L is ergodic for the Teichmüller �ow. Thus, since µL

is an SL(2,R)-invariant measure and ergodic for the Teichmüller �ow on H(1, 1),
which is a genus two stratum, µL is KZ-hyperbolic (see Theorem 4.1). In partic-
ular, since there are no zero exponents, the Lyapunov exponents of the invariant
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subbundle R ⊗Q K1 (see �5) are both non zero. Thus, L , µL and K1 satisfy all
the assumptions of Theorem 6.1. It follows that for there exists a set L ′ ⊂ L
such that µL (L ′) = 1 and for all ω ∈ L ′ and all non-zero γ ∈ K1 ∩ H1(M,Q),

the vertical �ow (φ̃vt )t∈R on (M̃γ , ω̃γ) is not ergodic, and by Corollary 7.3 that it
has uncountably many ergodic components. Let us now show that this allows to
deduce the desired conclusion by a Fubini argument.

Since L is a 2-cover ofH(1)(0, 0), local coordinates on L are given by the relative
periods for the marked torus (M1, ω

1
l ) (see �5). We will deal with an open subset V

in L constructed as follows. Denote by {γ1, γ2, γ3} the basis of H1(M1,Σ1,Z) given
by γ1 = [U ] γ2 = [U ∪ L], γ3 = [T ], see Figure 8. Then {γ1, γ2, γ3, τ∗γ1, τ∗γ2, τ∗γ3}
is a family of generators of H1(M,Σ,Z). Let us consider

(9.1)

(x1, x2, x3) :=
(∫

γ1

ℜω,
∫
γ2

ℜω,
∫
γ3

ℜω
)
=

(∫
τ∗γ1

ℜω,
∫
τ∗γ2

ℜω,
∫
τ∗γ3

ℜω
)
,

(y1, y2, y3) :=
(∫

γ1

ℑω,
∫
γ2

ℑω,
∫
γ3

ℑω
)
=

(∫
τ∗γ1

ℑω,
∫
τ∗γ2

ℑω,
∫
τ∗γ3

ℑω
)
.

Since we are considering abelian di�erentials of area 2, the coordinates (9.1) are not
all independent (x2y3−x3y2 = 1), but one of them, say y3, is determined by the area
one requirement. Thus, (x, y) := (x1, x2, x3, y1, y2) are independent coordinates on
a subset of L and denote by ω(x, y) ∈ L the corresponding di�erential. Then
ω(0, 0, 1, l, 1) = ωl for every l ∈ (0, 1). Denote by V ⊂ L the open sets of all
ω(x, y) ∈ L with x1, x2 ̸= 0.

Fix a non-zero γ ∈ K1 ∩H1(M,Z). Recall that, in view of �2.1 (see Lemma 2.1
and choose I as at the end of �2.1 so that (2.6) holds), for every ω ∈ L there exists
a horizontal interval I ⊂M and γα ∈ H1(M,Z), ξα ∈ H1(M,Σ,Z) for α ∈ A such

that the vertical �ow (φ̃vt )t∈R on (M̃γ , ω̃γ) has a special representation built over
the skew product Tψ : I × R→ I × R such that for every α ∈ A

λα =

∫
ξα

ℜω and ψ(x) = ⟨γ, γα⟩, Tx = x+

∫
γα

ℜω for x ∈ Iα.

For every (M,ω0) ∈ V we can choose a neighbourhood U ⊂ V of ω0 such that γα
and ξα, for α ∈ A, do not depend on ω ∈ U .

Let us adopt the following convention: let us say that a �ow has property (P-1)
if it is not ergodic, property (P-2) if it has uncountably many ergodic components
and property (P-3) if it is not transitive. We claim that, if ω1 = ω(x1, y1), ω2 =

ω(x2, y2) ∈ U with x1 = x2, then the vertical �ow (φ̃vt )t∈R on (M̃γ (̃ω1)γ) has

property (P-i) for i ∈ {1, 2, 3} if and only if the vertical �ow (φ̃vt )t∈R on (M̃γ (̃ω2)γ)

has property (P-i). Indeed, if x1 = x2 then
∫
γi
ℜω1 =

∫
γi
ℜω2 and

∫
τ∗γi
ℜω1 =∫

τ∗γi
ℜω2 for i = 1, 2, 3. Thus

∫
γα
ℜω1 =

∫
γα
ℜω2,

∫
ξα
ℜω1 =

∫
ξα
ℜω2 for all α ∈ A.

It follows that both vertical �ows have special representations built over the same
skew product, which proves our claim.

Let us consider the di�eomorphismΥ : (0, 1)×((0, 2π)\{π/2, π, 3π/2})×R3 → R5

Υ(l, θ, t, y1, y2) = (−etl cos θ,−et cos θ, et sin θ, e−t(y1 + l sin θ), e−t(y2 + sin θ)).

The di�eomorphism Υ is de�ned so that we have

gtρπ/2−θωl = ω(Υ(l, θ, t, 0, 0)), ∀l ∈ [0, 1], θ ∈ S1, t ∈ R.

Denote by V0 ⊂ (0, 1) × ((0, 2π) \ {π/2, π, 3π/2}) × R × R2 (respectively L ′
0) the

preimage of V (respectively L ′) by the map (l, θ, t, y) 7→ ω(Υ(l, θ, t, y)) and by
µ0 the pullback of µL by this map. Since Υ is a di�eomorphism, the measure
µ0 is equivalent to the Lebesgue measure on V0, hence V0 \L ′

0 has zero Lebesgue
measure.
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For i = 1, 2, 3, denote by ¬Pi ⊂ (0, 1) × ((0, 2π) \ {π/2, π, 3π/2}) the set of all

(l, θ) such that the directional �ow (φ̃θt )t∈R on (M̃γ , (̃ωl)γ) does not have property

(P-i). We claim that ¬Pi has zero Lebesgue measure. If fact, we need to show that
for every (l, θ) ∈ ¬Pi there exists a neighbourhood (l, θ) ∈ U such that ¬Pi ∩U has
zero Lebesgue measure.

Fix (l0, θ0) ∈ ¬Pi. By Lemmas 9.3 and 9.2, (φ̃vt )t∈R on (M̃γ , ˜(ρπ/2−θ0 · ωl0)γ) is

metrically isomorphic via a homeomorphism to (φ̃θ0st )t∈R on (M̃γ , (̃ωl)γ) for some

s > 0 and also does not have property (P-i). Since ρπ/2−θ0 · ωl0 ∈ V, there exists
a neighbourhood of ρπ/2−θ0 · ωl0 ∈ U such that for all ω(x1, y1), ω(x2, y2) ∈ U with

x1 = x2 the vertical �ows on (M̃γ , (̃ω1)γ) and (M̃γ , (̃ω2)γ) have special represen-

tations over the same skew product. Let U1 ∋ (l, θ), (−ε, ε) and U2 ∋ (0, 0) be
neighbourhoods such that Υ(U1 × (−ε, ε)× U2) ⊂ U . We claim that

(9.2) (¬Pi ∩ U1)× (−ε, ε)× U2 ∩L ′
0 = ∅.

Indeed, if (l, θ) ∈ ¬Pi ∩ U1 then (φ̃vt )t∈R on (M̃γ , ˜(ρπ/2−θ · ωl)γ) does not have

property (P-i). Moreover, ρπ/2−θ · ωl = ω(Υ(l, θ, 0, 0, 0)) and Υ(l, θ, 0, 0, 0) ∈ U .
Therefore, for every y ∈ U2 the vertical �ow on (M̃γ , ˜ω(Υ(l, θ, 0, y))

γ
) does not have

property (P-i). Since every gt �xes the vertical direction, by Lemmas 9.3 and 9.2,

the vertical �ow on (M̃γ , ˜(gt · ω(Υ(l, θ, 0, y)))
γ
) does not have property (P-i) for

every t ∈ (−ε, ε). Since gt · ω(Υ(l, θ, 0, y)) = ω(Υ(l, θ, t, y)), it follows that the

vertical �ow on (M̃γ , ˜(ω(Υ(l, θ, t, y)))
γ
) does not have property (P-i) for every

(l, θ, t, y) ∈ (¬Pi ∩ U1)× (−ε, ε)× U2 ⊂ V0, which proves (9.2). In view of the fact
that V0 \L ′

0 has zero Lebesgue measure, the product set (¬Pi ∩U1)× (−ε, ε)×U2
and hence ¬Pi ∩ U1 has zero Lebesgue measure.

Thus, we conclude that for every non-zero γ ∈ K1 ∩H1(M,Z) there exists a set
Λ ⊂ (0, 1) of full Lebesgue measure such that for every l ∈ Λ for almost θ ∈ S1 the

directional �ow (φ̃θt )t∈R on the Z-cover (M̃γ , (̃ωl)γ) has properties (P-1), (P-2) and

(P-3). This in particular applies to the Z-cover that is given by γ = [V −U ] ∈ K1.
Consequently, for any l ∈ Λ the billiard �ow (bθt )t∈R on T (l) is not ergodic and it
has uncountably many ergodic components for almost every direction θ ∈ S1.

�

9.3. Non-ergodicity of the Ehrenfest wind-tree model. Let us now prove
Theorem 1.2 and Corollary 1.3.

Proof of Theorem 1.2. Let us consider the Z-periodic Ehrenfest billiard �ow (eθt )t∈R
on the tube E1(a, b) in Figure 3. Let us denote by Γ the 4-elements group of isome-
tries of the plane generated by ⟨τh, τv⟩, where τh denotes the horizontal re�ection
(x, y) 7→ (x,−y) and τv denotes the vertical re�ection (x, y) 7→ (−x, y) (Γ is the
Klein four-group Z2 × Z2). By the unfolding process (see [33]), for every direction
θ ∈ S1 the �ow (eθt )t∈R on E1(a, b) is isomorphic to the directional �ow (φ̃θt )t∈R on a

non-compact translation surface (M̃, ω̃a,b) which is obtained by gluing four copies of
E1(a, b), one for each element of the group Γ, according to action of Γ. This transla-
tion surface is a Z-cover of a compact translation surface (M,ωa,b) shown in Figure
9 and the cover is given by σ = v00 − v10 + v01 − v11 ∈ H1(M,Z) (referring to the
labelling of Figure 9). The surfaceM is glued from four copies of a fundamental do-
main F (a, b) := E1(a, b)∩([0, 1)×(R/Z)) for the natural Z-action (generated by the
translation by the vector (1, 0)) on the tube E1(a, b). Thus, if we denote by (N, νa,b)
the translation surface obtained from the fundamental domain F (a, b) gluing the
sides according to the identi�cations in Figure 9, the translation surface (M,ωa,b)
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Figure 9. Translation surfaces (M,ωa,b) and (N, νa,b)

is a cover of (N, νa,b) with the deck group Γ. Let us denote by p :M → N the cov-
ering map5. One can check that (N, νa,b) has genus two and belongs to the stratum
H(2), while (M,ωa,b) has genus 5 and belongs to H(2, 2, 2, 2). By abuse of notation,
we continue to write ωa,b for ωa,b/A(ωa,b) = ωa,b/(4(1− ab)) ∈ H(1)(2, 2, 2, 2). Let

L = {ω ∈ H(1)(2, 2, 2, 2) : ω =
1

4
p∗ν, ν ∈ H(1)(2)}.

Then L is a closed SL(2,R)-invariant subset of H(1)(2, 2, 2, 2) which is a �nite
connected cover of H(1)(2) and ωa,b ∈ L . The orbit closures and the SL(2,R)-
invariant measures on H (1)(2) were classi�ed by McMullen in [41] and give a clas-
si�cation of orbit closures and the SL(2,R)-invariant measures on L . From [41]
(see also [14]), it follows that if (a, b) satisfy assumption (1) or (2) in Theorem 1.2,
(M,ωa,b) is a Veech surface and its SL(2,R)-orbit is closed and carries the canonical
SL(2,R)-invariant measure. Let us consider the SL(2,R)-invariant measure µL on
L obtained by pull back by the �nite covering map of the canonical measure on
H(1)(2). Since the canonical measure is ergodic and the cover L is connected, each
of these measures on L is ergodic.

Let τh∗ , τ
v
∗ be the maps induced on the homology H1(M,Z) by the actions of the

re�ections τh, τv on (M,ωa,b). Consider the following orthogonal decomposition

H1(M,Q) = E++ ⊕ E+− ⊕ E−+ ⊕ E−−, for s0, s1 ∈ {+,−}, where

Es0s1 = {γ ∈ H1(M,Q) : τv∗ (γ) = s0γ and τh∗ (γ) = s1γ}.
(9.3)

Remark that (9.3) de�nes an invariant orthogonal splitting constant on L .

One can check that the homology class σ which determines the Z-cover (M̃, ω̃a,b)
of (M,ωa,b) belongs to the subspace E

−+ and that the space E−+ has dimension two
(we refer for details to [14], see Lemma 3 and Lemma 4). Moreover, the Lyapunov
exponents of the KZ cocycles for all the SL(2,R)-invariant ergodic measures on
L were computed in [14] (in particular the exponents corresponding to E−+) and
turn out to be all non-zero.

Given any parameter (a, b) ∈ (0, 1)2 let µa,b be the canonical measure for a
Veech surface (see �5) if (a, b) satisfy the assumptions (1) or (2) or µL otherwise.
Then, all the assumptions of Theorem 6.1 are satis�ed by taking µ := µa,b and
K1 := E−+. It follows from Corollary 7.3 that there exists a set L ′ contained in

5We remark that this surface is the same that the surface is obtained by considering a funda-
mental domain for the Z2-action on the planar billiard table E2(a, b), which is described in detail
in [14] (see �3).



32 K. FR�CZEK AND C. ULCIGRAI

the SL(2,R)-orbit closure of (M,ωa,b) such that µ(L ′) = 1 and for all ω ∈ L ′, for

any Z-cover (M̃γ , ω̃γ) with γ ∈ E−+ the vertical �ow (φ̃vt )t∈R is not-ergodic and it
has uncountably many ergodic components.

If (M,ωa,b) is a Veech surface, that is for (a, b) as in (1) or (2), Proposition 9.1
allows to conclude the proof. Therefore, from now on we consider the case µ = µL

and use a di�erent Fubini argument to prove the conclusion of the Theorem for a
full measure set of parameters (a, b). The arguments are similar to the proof of
Theorem 1.1 and also to the Fubini argument used by [14] in �6.

Let us consider local coordinates (x, y) = (x1, x2, x3, x4, y1, y2, y3, y4) on L given
by period coordinates as follows

xi =

∫
γijk

ℜω and yi =

∫
γijk

ℑω for i = 1, 2, 3, 4 and j, k ∈ {0, 1},

where γ1jk = wjk, γ
2
jk = ujk, γ

3
jk = hjk, γ

4
jk = vjk for j, k ∈ {0, 1} is a family of

generators in H1(M,Σ,Z). Since we are considering abelian di�erentials of unit
area, the coordinates (9.1) are not all independent, but one of them, say y4, is
determined by the area one requirement. Thus, (x, y) := (x1, x2, x3, x4, y1, y2, y3)
are independent coordinates on a subset of L . Let ω(x, y) be the corresponding

di�erential. Then ω
(

1
4(1−ab) (a, 0, 1, 0, 0, b, 0)

)
= ωa,b for every (a, b) ∈ (0, 1)2. Let as

consider the local di�eomorphism Υ : (0, 1)2× ((0, 2π)\{π/2, π, 3π/2})×R4 → R7,

Υ(a, b, θ, t, y1, y2, y3) =
1

4(1− ab)
·

(et(a sin θ,−b cos θ, sin θ,− cos θ), e−t(y1 + a cos θ, y2 + b sin θ, y3 + cos θ)).

Then gtρπ/2−θωa,b = ω(Υ(a, b, θ, t, 0, 0, 0)) and the pullback of the measure µL

by the map (a, b, θ, t, y) 7→ ω(Υ(a, b, θ, t, y)) is equivalent to the Lebesgue measure
restricted to the domain of the map.

As in the proof of Theorem 1.1, let us say that a �ow has property (P-1) if it is
not ergodic, (P-2) if it has uncountably many ergodic components and (P-3) if it
is not transitive and let us denote by ¬Pi ⊂ (0, 1)2 × (0, 2π) the set of all (a, b, θ)

such that the directional �ow (φ̃θt )t∈R on (M̃σ, (̃ωa,b)σ) does not have property (P-i)
for i = 1, 2, 3. The same argument as in the proof of Theorem 1.1 shows that for
every (a, b, θ) ∈ ¬Pi there exits neighbourhoods U1 ∋ (a, b, θ), U2 ⊂ R4 such that

for every ω ∈ ω(Υ((¬Pi ∩ U1) × U2)) the vertical �ow on (M̃σ, ω̃σ) does not have
(P-i). Therefore the set ω(Υ((¬Pi ∩ U1) × U2)) ⊂ L has zero µL measure. It
follows that (¬Pi ∩U1)×U2 and hence ¬Pi ∩U1 has zero Lebesgue measure. Thus,
for i ∈ {1, 2, 3}, ¬Pi ⊂ (0, 1)2 × (0, 2π) has zero Lebesgue measure. Consequently,
for almost every (a, b) ∈ (0, 1)2 for almost every θ the directional �ow (φ̃θt )t∈R on

(M̃σ, (̃ωa,b)σ) is not ergodic and has uncountably many ergodic components. �

Proof of Corollary 1.3. Let us remark that the billiard �ow (eθt )t∈R on the pla-
nar Ehrenfest model E2(a, b) projects on the the billiard �ow (eθt )t∈R on the one-
dimensional Ehrenfest table E1(a, b), via the map π : R2 → R × R/Z given by
π(x, y) = (x, y + Z). In other words, (eθt )t∈R on E1(a, b) is a factor of (eθt )t∈R on
E2(a, b). It follows that if (eθt )t∈R on E1(a, b) is not ergodic and has uncountably
many ergodic components, also the �ow (eθt )t∈R on E2

a,b is not ergodic and has
uncountably many ergodic components. Thus, Corollary 1.3 follows immediately
from Theorem 1.2. �
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Appendix A. Stable space and coboundaries.

In this Appendix we include for completeness the proof of Lemma 4.3 and The-
orem 4.2 (see �4.3) along the lines of [57, 17] (see also [14]).

The main idea of the proof of Theorem 4.2 is to show that for every p ∈Mreg,ω

the ergodic integrals
∫ t
0
f(φsp) ds are bounded uniformly in t ≥ 0 and hence deduce

that F vf is a coboundary. We will do so (as in [17]) by decomposing the ergodic
integral along a special sequence of times, given by returns to a section K for the
Teichmüller �ow.

The construction of the section K, which will be useful in both the proof of
Theorem 4.2 and Lemma 4.3, is given in � A.1. Some of the properties of K will
not be used in the proof of Lemma 4.3, but only in the proof of Theorem 4.2.

A.1. Preliminary de�nitions and notation. Let µ be any SL(2,R)-invariant
probability Borel measure on the moduli spaceM(1)(M) ergodic for the Teichmüller
�ow (Gt)t∈R. Since the measure µ is SL(2,R)-invariant and ergodic, we can assume
that it is supported on a stratumH(1) = H(1)(k1, . . . , kκ) for some k1, . . . , kκ. Let us
remark that since µ is a probability measure and it is ergodic for the Teichmüller
�ow, there exists a (Gt)t∈R-invariant set H0 ⊂ H(1) of µ-measure one such that
each ω ∈ H0 is Oseledets regular for the Kontsevich-Zorich cocycle (GKZt )t∈R (by
the Oseledets' theorem), every ω ∈ H0 has neither vertical nor horizontal saddle
connections and both the vertical and horizontal �ow on (M,ω) are ergodic (these
last two properties are classical and follow from example from [38]).

For any ω ∈ H(1) let Mreg,ω be the set of points which are regular both for the
vertical and horizontal �ow on (M,ω) (that, we recall, means that both �ows are
de�ned for all times).

Remark A.1. Remark that Mreg,ω has full measure on M and is invariant under
(Gt)t∈R, that is, Mreg,Gtω =Mreg,ω for all t ∈ R.

For any ω ∈ H(1) and any point p ∈ M \ Σ let us denote by Iω = Iω(p) the arc
of the horizontal �ow on (M,ω) of total length 1 centered at p.

Remark A.2. Since the Teichmüller �ow (Gt)t∈R preserves horizontal leaves and

rescales the horizontal vector �elds by Xω
h = etXGtω

h , we have that

t < s ⇒ IGsω(p) ⊂ IGtω(p).

In the rest of the Appendix we will consider ω and p such that Iω(p) satisfy the
following property:

Iω = Iω(p) has no self-intersections, does not intersect Σ

and all but �nitely many points from Iω return to Iω for the vertical �ow.
(A.1)

We will denote by T = Tω : Iω → Iω the Poincaré map of the vertical �ow
(φt)t∈R on (M,ω), which is well de�ned by (A.1) and is an IET. Let us denote
by τω : Iω → R+ the function which assigns to each point (apart from �nitely
many ones) its �rst return time. Let us also denote by Ij(ω), j = 1, . . . ,m, the
subintervals exchanged by Tω, by λj(ω) their lengths and by τj(ω) the �rst return
time of the interval Ij(ω) to Iω.

Since Iω(p) does not contain any singularity and the set of singularities is discrete,
let δ(ω) = δ(ω, p) > 0 to maximal such that the strip∪

0≤t<δ(ω)

φtIω(p)

does not contain any singularities, and thus is isometric to an Euclidean rectangle
of height δ(ω) and width 1 in the �at coordinates given by ω.
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For each j = 1, . . . ,m let γj(ω) ∈ H1(M,Z) be the homology class obtained by
considering the vertical trajectory of any point q ∈ Ij(ω) up to the �rst return time
to Iω and closing it up with a horizontal geodesic segment contained in Iω.

Remark A.3. Suppose that a pair (ω0, p0) ∈ H(1) × (M \ Σ) satis�es (A.1). Then
there exists a su�ciently small neighborhood U ⊂ H(1) of ω0 such that for any
ω ∈ U

(i) the pair (ω, p0) also satis�es (A.1),
(ii) the induced IET Tω on Iω(p0) has the same number m of exchanged inter-

vals and the same combinatorial datum,
(iii) the quantities λj(ω), τj(ω) for j = 1, . . . ,m and δ(ω, p0) change continu-

ously with ω ∈ U ,
(iv) for every 1 ≤ j ≤ m the homology class γj(ω) does not depend on ω ∈ U .

A.2. Proof of Lemma 4.3 and auxiliary Lemmas.

Lemma A.4. There exists p0 ∈ M , a subset K ⊂ H0 with positive transverse
measure and positive constants A,C, c > 0 such that for every ω ∈ K the pair
(ω, p0) satis�es (A.1),

(A.2)
1

c
∥ρ∥ω ≤ max

1≤j≤m

∣∣∣∣∣
∫
γj(ω)

ρ

∣∣∣∣∣ ≤ c∥ρ∥ω for every ρ ∈ H1(M,R),

(A.3) λj(ω) δ(ω) ≥ A and
1

C
≤ τj(ω) ≤ C for any 1 ≤ j ≤ m.

Moreover, every ω ∈ K is Birkho� generic.

Proof. Choose ω0 ∈ H0 in the support of the measure µ and let p0 ∈Mreg,ω0 . Then
the pair (ω0, p0) satis�es (A.1). Moreover, one can show that {γj(ω0), 1 ≤ j ≤ m}
generate the homology H1(M,R) (the proof is analogous to the proof of Lemma
2.17, �2.9 in [53]). In particular, their Poincaré dual classes {Pγj(ω0), 1 ≤ j ≤ m}
generate H1(M,R). Thus, it follows6 that there exists a constant c′ > 0 such that

(A.4)
1

c′
∥ρ∥ω0 ≤ max

1≤j≤m

∣∣∣∣∣
∫
γj(ω0)

ρ

∣∣∣∣∣ = max
1≤j≤m

|⟨Pγj(ω0), ρ⟩| ≤ c′∥ρ∥ω0

for all ρ ∈ H1(M,R). In view of Remark A.3, by choosing U to be a small compact
neighbourhood of ω0 in H(1), we have

(A.5) γj(ω) = γj(ω0) for any ω ∈ U and 1 ≤ j ≤ m
and there exist constants A > 0 and C > 1 such that

λj(ω) δ(ω) ≥ A and
1

C
≤ τj(ω) ≤ C for all ω ∈ U , 1 ≤ j ≤ m.

Furthermore, since U is compact, there exists a constant K > 0 such that for any
ω1, ω2 ∈ U , and any ρ ∈ H1(M,R) the Hodge norms satisfy ∥ρ∥ω1 ≤ K∥ρ∥ω2 (it
follows for example from [17], �2). Thus, by (A.4) and (A.5),

(A.6)
1

c
∥ρ∥ω ≤ max

1≤j≤m

∣∣∣∣∣
∫
γj(ω)

ρ

∣∣∣∣∣ ≤ c∥ρ∥ω for all ω ∈ U , ρ ∈ H1(M,R),

where c := Kc′. Since ω0 belongs to the support of µ, µ(U) > 0. Let S ⊂ H(1)

be a hypersurface containing ω0 and transverse to (Gt)t∈R and let K ⊂ S ∩U ∩H0

be a subset with positive transverse measure and compact closure such that every
ω ∈ K is Birkho� generic. Then K satis�es the conclusions of the Lemma. �

6This same remark is used in [56], see Lemma 6.2.
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Proof of Lemma 4.3. Let K be the section from Lemma A.4. Since (Gt)t∈R is er-
godic and K has positive transverse measure, there exists a full µ-measure set
M′ ⊂ H(1) such that for any ω ∈ M′ there exists a sequence {tk}k∈N of posi-
tive numbers such that tk → +∞ and Gtk(ω) ∈ K for each k ∈ N. Now taking

γ
(k)
j := γj(Gtkω) and applying Lemma A.4 to every Gtkω ∈ K we get (4.4). �
Notation. For each j = 1, . . . ,m, consider the set

Rj(ω) := {φup : p ∈ Ij(ω), 0 ≤ u ≤ δ(ω)}
(where Ij(ω) and δ(ω) are de�ned above Remark A.3). Remark that Rj(ω) is a
rectangle in (M,ω) of base λj(ω) and height δ(ω) in the translation structure given
by ω, since by the de�nition of δ(ω) it is contained in the rectangle of base Iω and
height δ(ω).

Lemma A.5. Suppose that ω ∈ K. Let ρ ∈ Ω1(M) be a form vanishing on the
interval Iω = Iω(p0) and set f := iXvρ. Let p ∈ Iω(p0) and let τ = τω(p) > 0 be its
�rst return time to Iω(p0) for the vertical �ow (φt)t∈R. If p ∈ Ij(ω) then

(A.7)
∣∣∣ ∫ τ

0

f(φtp) dt
∣∣∣ = ∣∣∣ ∫

γj(ω)

ρ
∣∣∣ ≤ c∥ρ∥ω.

Moreover, the rectangle Rj(ω) has area νω(Rj(ω)) ≥ A, where A is the constant
given by Lemma A.4, and if q ∈ Rj(ω) then

(A.8)
∣∣∣ ∫ τ

0

f(φtq) dt
∣∣∣ ≥ ∣∣∣ ∫

γj(ω)

ρ
∣∣∣− ∥iXhρ∥∞.

Proof. Let us assume that p ∈ Ij(ω). Let γ̃j be the curve γ̃j : [0, τ ]→M given by
γ̃j(s) = φsp for 0 ≤ s ≤ τ . By the de�nition of f ,∫ τ

0

f(φsp) ds =

∫
γ̃j

ρ.

Recall that γj(ω) ∈ H1(M,Z) denotes the homology class of the loop which is
obtained by closing up γ̃j with a a horizontal segment contained in Iω. Thus, since
ρ vanishes on Iω, we obtain∫ τ

0

f(φsp) ds =

∫
γ̃j

ρ =

∫
γj(ω)

ρ.

Combining this with (A.2), we have (A.7).
Next remark that, by (A.3), the area of the rectangle Rj(ω) (de�ned before

Lemma A.5) satis�es
νω(Rj(ω)) = λj(ω)δ(ω) ≥ A.

Let q ∈ Rj(ω). Then q = φup for some p ∈ Ij(ω) and 0 ≤ u ≤ δ(ω). Thus, since by
de�nition of �rst return time τ = τω(p) we have φτp = Tωp, where Tω is the �rst
return map of (φt)t∈R to Iω, we can write

(A.9)

∫ τ

0

f(φsp) ds−
∫ τ

0

f(φsq) ds =

∫ u

0

f(φsp) ds−
∫ u

0

f(φsTω(p)) ds.

Remark now that p, Tω(p), φup, φuTω(p) are corners of a rectangle R because they
are contained in the rectangle of base Iω and height δ(ω) in the translation structure
given by ω. Denote by ∂vR and ∂hR the vertical and the horizontal part of the
boundary of R respectively . Then

∫
∂vR

ρ is equal to the RHS of (A.9) and
∫
∂hR

ρ

is bounded by ∥iXhρ∥∞. Thus, since ρ is closed and R is simply connected, we have∫
R
dρ = 0 and by Stoke's theorem 0 =

∫
∂R
ρ =

∫
∂vR

ρ+
∫
∂hR

ρ. It follows that∣∣∣ ∫ u

0

f(φsp)ds−
∫ u

0

f(φsTω(p))ds
∣∣∣ = ∣∣∣ ∫

∂vR

ρ
∣∣∣ = ∣∣∣ ∫

∂hR

ρ
∣∣∣ ≤ ∥iXhρ∥∞.
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This, combined with (A.9) and (A.7), yields (A.8). �
Remark A.6. Recall that for any real t the vertical and horizontal vector �elds Xω

v

and Xω
h on (M,ω) rescale as follows under the Teichmüller geodesic �ow (Gt)t∈R:

Xω
v = e−tXGtω

v , Xω
h = etXGtω

h .

Thus, the vertical and horizontal �ows satisfy:

φv,ωs p = φv,Gtωe−ts p, φh,ωs p = φh,Gtωets p.

Notation. For 0 ≤ t0 < t1, consider the intervals IGt0ω, IGt1ω de�ned at the be-
ginning of the section, that, by Remark A.2, satisfy IGt1ω ⊂ IGt0ω and for every

regular point p ∈ IGt0ω denote respectively by τ+t0,t1(p) ≥ 0 and τ−t0,t1(p) ≥ 0 the
times of the �rst forward and respectively backward entrance of the vertical orbit
of p to IGt1ω.

Lemma A.7. Suppose that for some ω ∈ H(1) there exists 0 ≤ t0 < t1 such that
Gt0ω,Gt1ω ∈ K. Then the entrance times τ+t0,t1(p), τ

−
t0,t1(p) ≥ 0 of p in IGt1ω

satisfy

(A.10) τ+t0,t1(p) ≤ e
t1C, τ−t0,t1(p) ≤ e

t1C.

Let ρ ∈ Ω1(M) be a form vanishing on the interval IGt0ω and set f := iXvρ. Then

for every −τ−t0,t1(p) ≤ s ≤ τ
+
t0,t1(p) such that φsp ∈ IGt0ω we have∣∣∣ ∫ s

0

f(φtp)dt
∣∣∣ ≤ cC2et1−t0∥ρ∥Gt0ω.

Proof. Let us assume that s ≥ 0. The proof for s < 0 is analogous. Denote
by 0 = s0 < s1 < . . . < sK = s the consecutive return times (to IGt0ω) of the
forward vertical orbit of p. For each pair si−1, si of consecutive return times of the
vertical �ow (φt)t∈R on (M,ω) to the interval IGt0ω, it follows from Remark A.6

that e−t0si−1, e
−t0si are consecutive return times of the vertical �ow (φvGt0ω

)t∈R

on (M,Gt0ω) to IGt0ω. Thus, since the �rst return time function of (φvGt0ω
)t∈R to

IGt0ω assumes the �nitely many values τj(Gt0ω) for i = 1, . . . ,K (see � A.1), for
all 0 ≤ i < K we have

(A.11) e−t0si − e−t0si−1 ≥ min
1≤j≤m

τj(Gt0ω).

Moreover, recalling the de�nition of f = iXvωρ and using Remark A.6, it also follows
that ∫ si

si−1

f(φtp)dt =

∫ si

si−1

iXωv ρ(φtp)dt =

∫ e−t0si

e−t0si−1

i
X
Gt0

ω

v

ρ(φ
v,Gt0ω
t p)dt.

Thus, by Lemma A.5 applied to Gt0ω ∈ K, we have∣∣∣ ∫ si

si−1

f(φtp)dt
∣∣∣ ≤ c∥ρ∥Gt0ω,

for each 1 ≤ i ≤ K. Therefore,∣∣∣ ∫ sK

s0

f(φtp)dt
∣∣∣ ≤ K∑

i=1

∣∣∣ ∫ si

si−1

f(φtp)dt
∣∣∣ ≤ Kc∥ρ∥Gt0ω

We need to show that K ≤ C2et1−t0 . From (A.11) we get

sK ≥ Ket0 min
1≤j≤m

τj(Gt0ω).

Moreover, the orbit segment

{φv,ωt p : s0 < t < sK} = {φ
v,Gt1ω
t p : 0 < t < e−t1sK}
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does not intersect the interval IGt1ω. It follows that

e−t1sK ≤ max
1≤j≤m

τj(Gt1ω).

Therefore,

K ≤ et1 max1≤j≤m τj(Gt1ω)

et0 min1≤j≤m τj(Gt0ω)
.

In view of (A.3), it follows that K ≤ et1−t0C2 and s ≤ et1C. �

Let us recall that to each smooth f :M → R one can associate a cocycle F vf over

the �ow (φt)t∈R that for for x ∈Mreg and t ∈ R is given by F vf (t, x) :=
∫ t
0
f(φsx) ds

(see (3.2)).

Lemma A.8. If a smooth form ρ ∈ Ω1(M) is exact then the cocycle F vf associated

to f = iXvρ is a coboundary. Moreover, for every smooth form ρ ∈ Ω1(M) and any
simply connected subset D ⊂ M there exists ρ′ ∈ Ω1(M) vanishing on D and such
that [ρ′] = [ρ].

Proof. If ρ ∈ Ω1(M) is exact then ρ = dh for some smooth function h : M → R.
Thus

f = iXvρ = iXvdh = LXvh.
Therefore,

F vf (t, x) =

∫ t

0

f(φsx) ds =

∫ t

0

LXvh(φsx) ds = h(φtx)− h(x),

so F vf is a coboundary.

Let ρ ∈ Ω1(M) be an arbitrary form. Since D ⊂ M is simply connected, there
exists a smooth function h : M → R such that dh = ρ on D. Then ρ′ := ρ− dh is
cohomologous to ρ and vanishes on D. �

A.3. Decomposition of ergodic integrals and proof of Theorem 4.2.

Proof of Theorem 4.2. Let p0 ∈ M and K be the point and the section given by
Lemma A.4. Since (Gt)t∈R is ergodic and K has positive transverse measure, there
exists a full µ-measure set M′ ⊂ H(1) such that for any ω ∈ M′ there exists a
sequence {tk}k≥0 of positive numbers such that tk → +∞ and Gtk(ω) ∈ K for each
k ≥ 0. Let us show thatM′ satis�es the conclusion of the theorem.

Let us remark �rst that, since both the property of being Oseledets regular
and having no vertical saddle connections are (Gt)t∈R-invariant, any ω ∈ M′ is
Oseledets regular and has no vertical saddle connections by the de�nition of K.

Fix ω ∈ M′ and let t0 be the minimum t ≥ 0 such that Gt(ω) ∈ K and let
{tk}k∈N be the sequence of successive returns to K. Let ρ be a closed smooth form
such that [ρ] ∈ E−

ω (M,R). Let (φt)t∈R be the vertical �ow on (M,ω) and consider
the function f = iXvρ. We want to show that the associated cocycle F vf (whose

de�nition is recalled before Lemma A.8) is a coboundary for (φt)t∈R. In view of
Lemma A.8, we can also assume that ρ vanishes on the interval IGt0ω.

Let us consider the sequence of intervals {IGtkω}k≥0 centered at p0. By Remark

A.2, {IGtkω}k≥0 is a decreasing sequence of nested intervals. Fix a regular point

p ∈Mreg,ω. For any t > 0, the trajectory Φt := {φsp : 0 ≤ s ≤ t} can be inductively
decomposed into principal return trajectories as follows (analogously to Lemma 9.4
in [17]). Let K ∈ N be the maximum k ≥ 0 such that Φt intersect IGtkω. For every
k = 0, . . . ,K let 0 ≤ lk ≤ rk ≤ t be the times of the �rst and the last intersection
of Φt with IGtkω. Then, since, by Remark A.2, the intervals {IGtkω}k are nested,

0 ≤ l0 ≤ l1 ≤ . . . ≤ lK ≤ rK ≤ . . . ≤ r1 ≤ r0 ≤ t.
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Moreover, li − li−1 = τ+ti−1,ti(φli−1p), ri−1 − ri = τ−ti−1,ti(φri−1p) for i = 1, . . . ,K

and rK − lK ≤ τ+tK ,tK+1
(φlKp), where the functions τ±ti−1,ti are de�ned before

Lemma A.7. By Lemma A.7, for every 1 ≤ i ≤ K we have

(A.12)
∣∣∣ ∫ li

li−1

f(φsp)ds
∣∣∣ = ∣∣∣ ∫ li−li−1

0

f(φsφli−1p)ds
∣∣∣ ≤ cC2eti−ti−1∥ρ∥Gti−1

ω,

(A.13)
∣∣∣ ∫ ri−1

ri

f(φsp)ds
∣∣∣ = ∣∣∣ ∫ 0

ri−ri−1

f(φsφri−1p)ds
∣∣∣ ≤ cC2eti−ti−1∥ρ∥Gti−1

ω

and

(A.14)
∣∣∣ ∫ rK

lK

f(φsp)ds
∣∣∣ = ∣∣∣ ∫ rK−lK

0

f(φsφlKp)ds
∣∣∣ ≤ cC2etK+1−tK∥ρ∥GtKω.

Moreover, since l0 ≤ τ−t0,t1(φl0p) and t − r0 ≤ τ+t0,t1(φr0p), by (A.10), we have

l0, t− r0 ≤ et1C. Thus

(A.15)
∣∣∣ ∫ l0

0

f(φsp)ds
∣∣∣ ≤ et1C∥f∥∞, ∣∣∣ ∫ t

r0

f(φsp)ds
∣∣∣ ≤ et1C∥f∥∞.

Summing (A.12)-(A.15) we get

(A.16)
∣∣∣ ∫ t

0

f(φsp)ds
∣∣∣ ≤ 2

∞∑
k=0

cC2etK+1−tK∥ρ∥GtKω + 2et1C∥f∥∞.

Since, by assumption, [ρ] ∈ E−
ω (M,R) (recall (4.3)), it follows that there exists

constants C1, θ > 0 such that ∥ρ∥GtKω ≤ C1e
−θtk for all k ≥ 0. Using this inequality

together with (A.16), we get that there exists C2 > 0 such that for any t ≥ 0, one
has

(A.17)

∣∣∣∣∫ t

0

f(φsp)ds

∣∣∣∣ ≤ C2

∞∑
k=0

e(tk+1−tk)e−θtk +C2 = C2

∞∑
k=0

e

(
tk+1−tk

tk
−θ

)
tk +C2.

Since K has positive transverse measure and ω is Birkho� generic (since Birkho�
generic points are (Gt)t∈R-invariant and Gt0ω ∈ K which by construction consists
only of Birkho� generic points), by Birkho� ergodic theorem we have limk→∞ tk/k =
1/µtr(K), where µtr(K) > 0 is the transverse measure of K. Thus, if k is su�ciently
large, (tk+1−tk)/tk−θ ≤ −θ/2, which shows that the above series is convergent and
the ergodic integrals in (A.17) are uniformly bounded for all t ≥ 0 and p ∈Mreg,ω.
By Lemma 3.6 this implies that F vf is a coboundary. This concludes the proof of
the �rst part of Theorem 4.2.

Let us now prove the second part of Theorem 4.2. Let us assume in addition
from now on that µ is KZ-hyperbolic. Let ω ∈ M′, p ∈ Mreg,ω and, as before,
let us denote by (φt)t∈R the vertical �ow on (M,ω). Let ρ ∈ Ω1(M) be a smooth
closed one form such that [ρ] /∈ E−

ω (M,R). Again, by Lemma A.8, we can assume
that ρ vanishes on the interval IGt0ω.

For every k ∈ N, consider the return times τj(Gtkω) (see the de�nition in � A.1)
and let

(A.18) Tk := etkτj(Gtkω),

so that, by Remark A.6, Tk is the return time of a point p ∈ Ij(Gtkω) to IGtkω under

the vertical �ow (φt)t∈R for (M,ω). Since Gtkω ∈ K for k ∈ N, by Lemma A.5,
for every k ∈ N and j = 1, . . . ,m there exists a rectangle Rj(Gtkω) in (M,ω) such
that νω(Rj(Gtkω)) = νGtkω(Rj(Gtkω)) ≥ A and

(A.19)
∣∣∣ ∫ Tk

0

f(φtq) dt
∣∣∣ ≥ ∣∣∣ ∫

γj(Gtkω)

ρ
∣∣∣− e−tk∥iXhρ∥∞ for q ∈ Rj(Gtkω).
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Let us now prove that the cocycle F vf is not a coboundary. Assume by contradiction
that F vf is a coboundary with a measurable transfer function u : M → R. Then
there exists a constant B > 0, depending on the constant A given by Lemma A.4,
such that the set

ΛB := {q ∈M : |u(q)| ≥ B} satis�es νω(ΛB) ≤ A/2.

Thus, for any �xed k ∈ N and 1 ≤ j ≤ m, for all q in a set of νω-measure greater
than 1−A (more precisely, for all q /∈ ΛB ∪ φ−TkΛB), we have

(A.20)
∣∣∣ ∫ Tk

0

f(φvs q) ds
∣∣∣ = |F vf (Tk, q)| = |u(φTkq)− u(q)| ≤ 2B.

Since νω(Rj(Gtkω)) ≥ A, there exists qj ∈ Rj(Gtkω) satisfying (A.20). In view of
(A.19) and (A.2) (applied to Gtkω ∈ K) and by de�nition (A.18) of Tk, it follows
that

1

c
∥ρ∥Gtkω ≤ max

1≤j≤m

∣∣∣ ∫
γj(Gtkω)

ρ
∣∣∣ ≤ max

1≤j≤m

∣∣∣ ∫ Tk

0

f(φsqj) ds
∣∣∣+ ∥iXhρ∥∞

≤ 2B + e−tk∥iXhρ∥∞ ≤ 2B + ∥iXhρ∥∞.

Thus, lim inft→+∞ ∥ρ∥Gtω < ∞. Since µ is KZ-hyperbolic, recalling the de�ni-
tion of the stable space (4.3), this implies that [ρ] ∈ E−

ω (M,R), contrary to the
assumptions. Thus, we conclude that F vf cannot be a coboundary. �

Appendix B. Ergodic decomposition and Mackey action

Given an ergodic automorphism T of a standard probability space (X,B, µ), a
locally compact abelian second countable group G and a cocycle ψ : X → G for T ,
consider the skew-product extension Tψ : X × G → X × G. If the skew product
is not ergodic then the structure of its ergodic components (de�ned below) can be
studied by looking at properties of the so called Mackey action.

Let (τg)g∈G denote the G-action on (X×G,B×BG, µ×mG) given by τg(x, h) =
(x, h + g). Then (τg)g∈G commutes with the skew product Tψ. Fix a probability
Borel measure m on G equivalent to the Haar measure mG. Then the probability
measure µ × m is quasi-invariant under Tψ and (τg)g∈G, i.e. (Tψ)∗(µ × m) and
(τg)∗(µ ×m) for any g ∈ G are equivalent to µ ×m (or, in other words, Tψ and
(τg)g∈G are non-singular actions on (X×G,B×BG, µ×m)). Denote by Iψ ⊂ B×BG
the σ-algebra of Tψ-invariant subsets. Since (X ×G,B × BG, µ×m) is a standard
probability Borel space, the quotient space ((X×G)/Iψ, Iψ, µ×m|Iψ ) is well-de�ned
(and is also standard). This space is called the space of ergodic components and
it will be denoted by (Y, C, ν). Since (τg)g∈G preserves Iψ it also acts on (Y, C, ν).
This non-singular G-action is called theMackey action (and is denoted by (τψg )g∈G)
associated to the skew product Tψ, and it is always ergodic. Moreover, there exists
a measurable map Y ∋ y 7→ µy taking values in the space of probability measures
on (X ×G,B × BG) such that

• µ×m =
∫
Y
µy dν(y);

• µy is quasi-invariant and ergodic under Tψ for ν-a.e. y ∈ Y ;
• µy is equivalent to a σ-�nite measure µy invariant under Tψ.

Then Tψ on (X ×G,B × BG, µy) for y ∈ Y are called ergodic components of Tψ.

Theorem B.1 ([44, 55]). Suppose that T : (X,µ) → (X,µ) is ergodic and let
ψ : X → G be a cocycle. Then

(i) ψ is recurrent if and only if the measure µy is continuous for ν-a.e. y ∈ Y ;
(ii) ψ is non-recurrent if and only if µy is purely atomic for ν-a.e. y ∈ Y ;
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(iii) ψ is regular if and only if the Mackey action (τψg )g∈G is strictly transitive,

i.e. the measure ν is supported on a single orbit of (τψg )g∈G.

If ψ is not recurrent then almost every ergodic component Tψ : (X × G,µy) →
(X ×G,µy) is trivial, i.e. it is strictly transitive.

If ψ is regular then the structure of ergodic components is trivial, i.e. if we �x
one ergodic component then every other ergodic component is the image of the
�xed component by a transformation τg. In particular, all ergodic components are
isomorphic.

As a immediate consequence of Theorem B.1 we obtain that if a cocycle is
recurrent and non-regular then the structure of ergodic components of the skew
product and the dynamics inside ergodic components are highly non-trivial.

Proof of Proposition 3.4. Since the measure ν is ergodic for the Mackey Z-action, it
is either continuous or purely discrete. If ν is discrete then, by ergodicity, ν is sup-
ported by a single orbit, in contradiction with (iii). Consequently, ν is continuous
and the skew product Tψ has uncountably many ergodic components. Indeed, if Tψ
has at most countably many ergodic components then the measure ν is supported
on an at most countable set, so ν is purely discrete.

The continuity of almost every measure µy follows directly from (i). This also
shows that ν-a.e. ergodic component is not supported by a countable set, since if
an ergodic component representing by y ∈ Y has at most countably many elements
then the measure µy is also discrete. �
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